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Abstract In this paper we revisit the problem of Brownian motion in a tilted periodic po-
tential. We use homogenization theory to derive general formulas for the effective velocity
and the effective diffusion tensor that are valid for arbitrary tilts. Furthermore, we obtain
power series expansions for the velocity and the diffusion coefficient as functions of the ex-
ternal forcing. Thus, we provide systematic corrections to Einstein’s formula and to linear
response theory. Our theoretical results are supported by extensive numerical simulations.
For our numerical experiments we use a novel spectral numerical method that leads to a very
efficient and accurate calculation of the effective velocity and the effective diffusion tensor.

Keywords Homogenization theory · Linear response theory · Einstein’s relation · Spectral
methods for PDEs

1 Introduction

Brownian motion in periodic potentials is one of standard models in condensed matter
physics. Applications include the modeling of Josephson junctions, polymer dynamics, su-
perionic conduction, dielectric relaxation, plasma physics and surface diffusion [33]. A de-
tailed discussion and extensive bibliography can be found in [4, 27].

The goal of this paper is to study Brownian motion in a tilted periodic potential for
arbitrary values of the drift and of the tilt (external forcing). The dynamics of the Brownian
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particle is governed by the Langevin equation

q̈ = −∇qψ(q) + F − γ q̇ +
√

2γβ−1Ẇ , (1)

where ψ is a periodic potential with period L (in each direction), F denotes a constant
external force, so that the effective potential is

ψeff(q) = ψ(q) − F · q, (2)

γ is the friction coefficient, β is the inverse temperature and W (t) is a standard Brownian
motion on R

d .
The main objective is the calculation of the drift and diffusion coefficients which are

defined as

U = lim
t→∞

〈q(t) − q(0)〉
t

(3)

and

D = lim
t→∞

〈(q(t) − 〈q(t)〉) ⊗ (q(t) − 〈q(t)〉)〉
2t

. (4)

Here 〈·〉 denotes ensemble average and ⊗ stands for the tensor product. Explicit formulas
for these coefficients are available only in the overdamped limit and mostly in one dimen-
sion. An exact analytical formula for the effective velocity of an overdamped Brownian
particle moving in a one dimensional tilted periodic potential was obtained many years ago
by Stratonovich ([30], [31, Chap. 9]). A corresponding analytical formula for the diffusion
coefficient was obtained and analyzed more recently [19, 23, 24], and verified in an exper-
imental realization of the model involving rotating optical tweezers [8]. Simpler algebraic
formulas were deduced from these for the special case of piecewise linear potentials in [12].
Only potentials with very specific geometries can lead to analytical formulas in dimension
higher than one [2, 3]. A wealth of information on the problem of Brownian motion in a
tilted periodic potential in one dimension can be found in [27, Chap. 11]. More recent de-
velopments, with particular attention to the remarkable physical transport phenomenology
that arises, are presented in the review article [29] and the references therein.

It is well known that the equilibrium diffusion coefficient (i.e., the diffusion coefficient
in the absence of an external drift) and the drift, or, rather, the mobility are related through
the famous Einstein formula:

D0 = β−1μ, (5)

with

μ = lim
|F |→0

∇F U

The validity of this formula has been proved rigorously for several models [18], including
that of a Brownian particle in a tilted periodic potential [28]. Formulas of the form (5) can
be understood in the more general framework of linear response theory and of the Green-
Kubo formalism [17, 26]. A recent rigorous analysis of the Green-Kubo formalism for the
calculation of the shear viscosity can be found in [25].

The main goal of the present paper is to investigate the validity and usefulness of cor-
rections to linear response theory. In particular, we calculate all terms in the power series
expansions (with respect to the forcing F ) for the drift and diffusion coefficients and we
use these in order to calculate corrections to Einstein’s formula (5). Our analysis is based
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on the formalism of averaging and homogenization [21]. From this formalism we know that
both drift and diffusion coefficients can be expressed in terms of the solution of appropriate
Poisson equations (14)–(17). Details are presented in the next section.

For simplicity of notation and presentation, we will restrict our calculations for correc-
tions to linear response theory to the one dimensional case d = 1, and hence hereafter drop
vector and tensor notation. Analogous formulas are applicable in multiple dimensions, as
we discuss in Appendix A. We present our results in detail in Sect. 3, and summarize them
here rather imprecisely:

Proposition 1.1 The drift and diffusion coefficients admit the asymptotic expansions

U =
∑

�≥1

F�V�, (6)

and

D =
∑

�≥0

F�

[

β−1V�+1 +
�∑

n=1

Σn�

]

(7a)

= β−1 dU

dF
+

∑

�≥1

F�

�∑

n=1

Ξn�. (7b)

The coefficients Vj , Σnj , Ξnj ; n, j = 1,2, . . . can be computed in terms of solutions to
Poisson equations for the generator of the equilibrium dynamics F = 0. In particular, the
higher order corrections to the drift and diffusion coefficients are not compatible with an
extension of the Einstein relation (5) beyond the linear response regime F → 0.

For the case of a symmetric potential (ψ(q) = ψ(−q)), then Vn = 0 for even n and
Σn� = Ξn� = 0 for odd �.

Thus, it is possible, in principle, to calculate the drift and diffusion coefficients of the
nonequilibrium dynamics (1) in terms of the equilibrium dynamics

q̈ = −ψ ′(q) − γ q̇ +
√

2γβ−1Ẇ (8)

for at least a finite interval of values of F .
The validity and usefulness of the power series expansions (6) is tested by performing

numerical experiments. For the calculation of drift and diffusion coefficients we need to
solve Poisson equations of the form

−Lφ = f (p,q), (9)

with L being the generator of the Markov process {q,p} with p = q̇ . We solve equations of
the form (9) using a spectral method [22] that is an extension of Risken’s continued fraction
expansion method [27]. By comparing the results obtained using our spectral method with
results obtained from (the computationally more expensive) Monte Carlo simulations, we
demonstrate that our method performs very well.

The rest of the paper is organized as follows. In Sect. 2 we present the formulas for the
drift and diffusion coefficients obtained using homogenization theory. In Sect. 3 we calcu-
late the power series expansions for the drift and the diffusion coefficient. In Sect. 4 we
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present results of numerical simulations on the calculation of U and D. Section 5 summa-
rizes our conclusions. The extension of our results to multiple dimensions is presented in
Appendix A. The details of the spectral method for the solution to the Poisson equation
are presented in Appendix B. Some discussion of how our formulas relate to an alternative
approach developed in [1] can be found in Appendix C.

2 Formulas for the Drift and Diffusion Coefficients

We start by writing (1) as a first order system, in d = 1 dimension:

q̇ = p, ṗ = −ψ ′(q) + F − γp +
√

2γβ−1Ẇ . (10)

The process {q,p} is a Markov process with generator

L = p∂q + (−∂qψ + F)∂p + γ
(−p∂p + β−1∂2

p

)
. (11)

The Fokker-Planck operator, i.e. the L2-adjoint of the generator, is

L∗ = −p∂q + (∂qψ − F)∂p + γ ∂p

(
p + β−1∂p

)
. (12)

The potential function ψ has period L. We can use homogenization theory [11, 19, 20] to
prove that the rescaled process

qε(t) := εq
(
t/ε2

) − tU

ε
, (13)

where U is the effective drift as defined below, converges weakly on C([0, T ];R) to a Brow-
nian motion with diffusion coefficient D. To write down the formulas for the drift U and
the diffusion coefficient D we need to consider the process X(t) = (q(t),p(t)) defined on
X := T × R where T denotes a one-dimensional circle with length L corresponding to the
period of the potential ψ . The generator and Fokker-Planck operator of this process are still
given by formulas (11) and (12) but now restricted on X, with periodic boundary conditions
with respect to q . It can be shown [28] that X(t) is an ergodic Markov process with in-
variant measure μβ(dpdq) that has a smooth density ρβ(p, q) with respect to the Lebesgue
measure on X. The invariant density is the unique solution of the stationary Fokker-Planck
equation on X:

L∗ρβ = 0. (14)

The drift is then given by the average of the momentum with respect to ρβ over X:

U =
∫

X

pρβ(p,q) dp dq. (15)

The diffusion coefficient is given by the formula

D =
∫

X

(p − U)φρβ(p, q) dp dq (16a)

= γβ−1
∫

X

(∂pφ)2ρβ(p, q) dp dq, (16b)
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where φ is the solution of the Poisson equation

−Lφ = p − U,

∫

X

φρβ dp dq = 0. (17)

Equations (14) and (17) are equipped with periodic boundary conditions in q and suitable
integrability conditions [11, 19, 20]. Formula (16b), which shows that the effective diffusion
tensor is positive semidefinite, follows from (16a) after an integration by parts.

It is possible to prove that both U and D are analytic functions of the forcing F . This has
been proved for the drift in [5] (in fact, in this paper the analyticity of the drift with respect
to the forcing is proved for several models including systems of coupled Fokker–Planck
equations). A similar analysis can be used to prove the analytic dependence of D on F .

3 Corrections to Linear Response Theory

In this section we solve perturbatively equations (14) and (17) in one dimension, in order
to obtain the power series expansions (6). Calculations of this form are quite standard when
investigating the effect of colored noise on the drift and diffusion coefficients, e.g. [7, 14,
19]. Related calculations have presented recently in [25].

The main result of this section is a precise formulation of Proposition 1.1. To state the
result, we need to introduce some notation. We denote by H0 the Hamiltonian of the unper-
turbed (equilibrium) dynamics (1):

H0(p, q) = 1

2
p2 + ψ(q).

The invariant density of the unperturbed dynamics on X is denoted by ρ̄:

ρ̄(q,p) = 1

Z
e−βH0(q,p), Z =

∫

X

e−βH0(q,p) dq dp. (18)

We will work in the weighted L2 space H = L2(T×R; ρ̄). The inner product in this Hilbert
space will be denoted by 〈·, ·〉β . The generator of the unperturbed dynamics can be written
in the form

L0 = A + γ S, (19)

where

A = p∂q − ∂qψ∂p and S = −p∂p + β−1∂2
p,

denote the reversible and irreversible parts, respectively. The operators A and S are antisym-
metric and symmetric, respectively, in H. We introduce now the creation and annihilation
operators [10, 13, 27, 32]

a+ := −∂p + βp and a− := ∂p. (20)

These two operators are H-adjoint:

〈
a+f,h

〉
β

= 〈
f,a−h

〉
β
, ∀f,h ∈ H.
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Proposition 3.1 The drift and diffusion coefficients admit the asymptotic expansions

U =
∑

�≥1

F�V� (21)

and

D =
∑

�≥0

F�

[

β−1V�+1 +
�∑

n=1

Σn�

]

(22a)

= β−1 dU

dF
+

∑

�≥1

F�

�∑

n=1

Ξn�. (22b)

The coefficients V�, Σk�, Ξk� k ≤ � = 1,2, . . . are given by the formulas

V� =
∫

X

f�pρ̄ dp dq = β

∫
φ�−1pρ̄ dp dq, (23a)

Σn� =
∫

X

pφ�−nfnρ̄ dp dq, (23b)

Ξn� = β−1
∫

X

φ�−n∂pfnρ̄ dp dq (23c)

where fj , φj , j = 0, . . . are solutions to the (adjoint) Poisson equations

−L̂0fj = a+fj−1, f0 = 1,

∫
fj ρ̄ = 0, j = 1,2, . . . , (24a)

−L0φ0 = p,

∫
φ0ρ̄ = 0, (24b)

−L0φj = a−φj−1 − Vj ,

∫
φj ρ̄ = −

j∑

r=1

∫
frφj−r ρ̄, j = 1, . . . . (24c)

We have used the notation L̂0 = −A + γ S to denote the H-adjoint of the generator L0.

Remark 3.1 The expansion formulas for the drift and velocity are consistent with the ex-
act statistical reflection symmetry q → −q , p → −p, and F → −F in the stochastic sys-
tem (10) or infinitesimal generator (11) when the potential is symmetric: ψ(q) = ψ(−q).
Since the drift is odd and the diffusivity even under reflection, this implies that the coeffi-
cients V� = 0 when � is even and the coefficients Σn� = Ξn� = 0 when � is odd. One can
verify that our formulas do indeed have these vanishing properties under symmetry of the
potential, noting that the operators a+ and a− are odd under reflection, whereas L0 and L̂0

are even. By uniqueness of solutions of the Poisson equations (24a), (24b), (24c) and the
symmetry properties of the operators, inhomogeneity, and auxiliary conditions, we first ver-
ify by induction that the functions fj have even reflection symmetry for even j and odd
reflection symmetry for odd j . Then we similarly induce that the functions φj have odd
reflection symmetry for even j and even reflection symmetry for odd j . Finally, ρ̄ (18) has
manifestly even symmetry under reflection symmetry. Therefore, when � is even, V� can be
checked to be the periodic integral of an odd function and when � is odd, Ξn� and Σn� are
periodic integrals of odd functions, and so vanish.
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Using the notation that we have introduced in this section, Einstein’s formula (linear
response theory) can be written in the form

D0 = β−1V1.

However, formula (22a) shows that it is not true that a similar simple relation holds for
higher order terms in the expansions for the drift and the diffusion coefficients. In particular,
it is not true that

Dn = β−1Vn+1, n = 1, . . . , (25)

but instead there is a non-trivial correction to (25) that is given by the second term on the
right hand side of (22a). As an example, we present the formula for the diffusion coefficient
that is valid up to O(F 3):

D = β−1V1 + F

(
β−1V2 +

∫

X

pφ0f1ρ̄ dp dq

)

+ F 2

(
β−1V3 +

∫

X

pφ1f1ρ̄ dp dq +
∫

X

pφ0f2ρ̄ dp dq

)
+ O

(
F 3

)
. (26)

Notice that the calculation of the next two terms in the expansion for the diffusion coefficient
requires the solution of an additional Poisson equation, in order to compute φ1, as well as
the calculation of three additional integrals.

Similarly, it is not true that the Einstein relation (5) can be extended away from F = 0 in
the form:

D(F) = β−1 dU(F )

dF
, (27)

because of the presence of correction terms in Eq. (22b). This issue is investigated numer-
ically in the next section, see Figs. 4 and 5. The relation Eq. (27) was indeed hypothesized
in [6], but [23] showed through analytical and numerical studies that while it seems qualita-
tively correct, and is quantitatively correct in the three limits F → 0, F → ∞, and β → ∞,
it is not quantitatively accurate for general parameter values. Our results in Proposition 3.1
give quantitative formulas for this discrepancy, for example, through third order:

D = β−1 dU(F )

dF
+ Fβ−1

∫

X

φ0∂pf1ρ̄ dp dq (28)

+ F 2β−1

(∫

X

φ0∂pf2ρ̄ dp dq +
∫

X

φ1∂pf1ρ̄ dp dq

)
. (29)

The violation of the Einstein relation for F = 0 in the model under consideration, and
other nonequilibrium steady-state models, was recently analyzed by [1] from a different
nonperturbative perspective, expressing the correction terms with respect to various time-
correlation functions of the dynamics. But as we discuss in Appendix C, our framework
based on perturbation expansions of the equations from homogenization theory appear to
yield more easily computable expressions. We remark also that [16] have examined devi-
ations from the Einstein relation in the context of stochastic tracer dynamics in a random
environment.



J.C. Latorre et al.

Proof of Proposition 3.1 We start with the analysis of the stationary Fokker-Planck equa-
tion (14). We set

ρβ(p, q) = ρ̄(p, q)f (p,q). (30)

We substitute (30) into (14) and use the symmetry and antisymmetry of S and A, respec-
tively as well as equation (20) to obtain

(
L̂0 + Fa+)

f = 0. (31)

Equation (31) is posed on X := T × R and is equipped with periodic boundary conditions
with respect to q as well as the normalization condition

∫

X

f ρ̄ dp dq = 1.

We look for a solution to (31) as a power series expansion in F :

f (p,q) =
N∑

j=0

F jfj (p, q). (32)

The normalization condition becomes

N∑

j=0

F j

∫

X

fj (p, q)ρ̄(p, q) dp dq = 1.

This condition has to be satisfied for all F ∈ R which implies that the following normaliza-
tion conditions should be satisfied

〈f0,1〉β = 1, 〈fj ,1〉β = 0, j = 1,2, . . . . (33)

We substitute the expansion for f into (31) to obtain the sequence of equation

L̂0f0 = 0, (34a)

−L̂0fj = a+fj−1, j = 1,2, . . . . (34b)

The above equations are of the form

−L̂0g = u. (35)

The null space of L̂0, as well as its H-adjoint L0 is one-dimensional and consists of con-
stants. Consequently, the solvability condition for equations of the form (35) is that

〈1, u〉β = 0. (36)

Provided that the solvability condition (36) is satisfied, the Poisson equation (35) has a
unique mean zero solution, 〈g,1〉β = 0. We correspondingly define the operator (−L̂0)

−1

on the subspace of functions satisfying (36) to be this unique mean zero solution.
From the first equation in (34a), (34b) and the normalization condition we deduce that

f0 = 1. (37)
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The properties of the operators a± immediately yield that the solvability condition is satis-
fied for all equations for fj , j = 1, . . . :

〈
a+fj−1,1

〉
β

= 〈
fj−1, a

−1
〉
β

= 0.

The solution of Eqs. (34b) can be written as

fj = (−L̂0)
−1a+fj−1 = K̂fj−1,

where K̂ is the H-adjoint of K := a−(−L−1
0 ). Consequently,

fj = K̂j 1, j = 0,1, . . . . (38)

Thus, we have obtained a power series expansion for the invariant distribution in powers
of F :

ρ(p,q;F) = ρ̄(p, q)

(
1 +

∑

j≥1

F j K̂j 1
)

(39)

from which we immediately deduce the expansion for the effective drift:

U =
∑

j≥1

F j 〈p,fj 〉β

=
∑

j≥1

F j 〈p, K̂j 1〉β

= β−1
∑

j≥1

F j
〈
a+1, K̂j 1

〉
β

= β−1
∑

j≥1

F j
〈
1, a−K̂j 1

〉
β
. (40)

In particular:

Vj = β−1
〈
1, a−K̂j 1

〉
β
. (41)

Now we proceed with the analysis of the Poisson equation (17) which, in view
of (40), (30), (32), and (37), can be written as

−Lφ = p −
∑

j≥1

F jVj ,

〈
φ,

∑

j≥0

F jfj

〉

β

= 0, (42)

with Vj given by (41). The generator of the perturbed dynamics is

L = L0 + Fa−,

where L0 is given by (19). We look for a solution of (42) in the form of a power series
expansion in F :

φ(p,q) =
∑

j≥0

F jφj (p, q). (43)
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We substitute this expansion into Eq. (42) to obtain the sequence of equations (recalling
from Eq. (37) that f0 = 1):

−L0φ0 = p, 〈φ0,1〉β = 0 (44a)

−L0φj = a−φj−1 − Vj , 〈φj ,1〉β = −
j∑

r=1

〈fr,φj−r〉β, j = 1,2, . . . . (44b)

Equation (44a) is precisely the Poisson equation for the unperturbed dynamics F = 0. Now
we show that the solvability condition (36) is satisfied for Eqs. (44b). We need to show that

Vj = 〈
a−φj−1,1

〉
β
. (45)

Lemma 3.1 The solvability condition (45) is satisfied for all j ≥ 1, and moreover the rela-
tion

〈
a−φ0, fk

〉
β

= 〈
a−φm,fk−m

〉
β

for k = m,m + 1, . . . (46)

holds for all m ≥ 0.

Proof Our strategy pivots on the observation that if we can establish (46) for m =
0,1,2, . . . ,M , then the solvability condition (45) follows for j = 1,2, . . . ,M + 1:

Vj = β−1
〈
1, a−K̂j 1

〉
β

= β−1
〈

Ka+1, K̂j−11
〉
β

= β−1
〈
a−(−L0)

−1a+1, K̂j−11
〉
β

= 〈
a−φ0, fj−1

〉
β

= 〈
a−φj−1, f0

〉
β

= 〈
a−φj−1,1

〉
β
,

using Eq. (46) with m = j − 1 in the penultimate equality.
We now proceed to establish (46) inductively for m = 0,1,2, . . . . The case m = 0 is

trivial. Suppose now Eq. (46) has been shown for all m = 0,1,2, . . . ,M ; we will show that
(46) also follows for m = M + 1. To this end, it is useful to introduce the operator P̄ which
projects orthogonally onto the hyperplane in H orthogonal to constants:

P̄g := g − 〈1, g〉β .

Since, by the above argument and the induction hypothesis, the solvability condition for
(44b) is satisfied for j = 1,2, . . . ,M + 1, we can write

φM+1 = (−L0)
−1

Pa−φM −
M+1∑

r=1

〈fr,φM+1−r〉β,

where the second sum of constants is included to meet the side condition in Eq. (17), as
we have defined (−L0)

−1 to yield a mean zero solution. But the operator a− will kill these
constants, and therefore, for k = M + 1,M + 2, . . . , we can write:

〈
a−φM+1, fk−M−1

〉
β

= 〈
a−(−L0)

−1
Pa−φM,fk−M−1

〉
β

= 〈
KPa−φM,fk−M−1

〉
β

= 〈
a−φM,PK̂fk−M−1

〉
β
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= 〈
a−φM, K̂fk−M−1

〉
β

= 〈
a−φM,fk−M

〉
β

= 〈
a−φ0, fk

〉
β
.

In the penultimate equality, we used PK̂ = K̂ from the fact that by definition of (−L̂0)
−1,

P(−L̂0)
−1 = (−L̂0)

−1; the final equality follows from the induction hypothesis. �

Now we derive (22a). Using the centering condition in (17) we have that the diffusion
coefficient is given by

D =
∫

X

pφρβ dp dq =
∑

�≥0

∑

n≥0

Fn+�

∫

X

pφ�fnρ̄ dp dq

=
∞∑

r=0

r∑

n=0

F r

∫

X

pφr−nfnρ̄ dp dq

=
∞∑

r=0

F r

[∫

X

pφrf0ρ̄ dp dq +
r∑

n=1

∫

X

pφr−nfnρ̄ dp dq

]

=
∞∑

r=0

F r

[

β−1
〈
φr, a

+1
〉
β

+
r∑

n=1

∫

X

pφr−nfnρ̄ dp dq

]

=
∞∑

r=0

F r

[

β−1Vr+1 +
r∑

n=1

Σnr

]

,

yielding (22a).
We can also alternatively restructure this expansion as follows, using the relations (45)

and (46):

D =
∞∑

r=0

r∑

n=0

F r

∫

X

pφr−nfnρ̄ dp dq =
∞∑

r=0

r∑

n=0

F rβ−1
〈
φr−n,

(
a+ + a−)

fn

〉
β

(47)

= β−1
∞∑

r=0

F r

r∑

n=0

[〈
a−φr−n, fn

〉
β

+ 〈
φr−n, a

−fn

〉
β

]

= β−1
∞∑

r=0

F r

r∑

n=0

[〈
a−φr, f0

〉
β

+ 〈
φr−n, a

−fn

〉
β

]

= β−1
∞∑

r=0

F r

r∑

n=0

[
Vr+1 + 〈

φr−n, a
−fn

〉
β

]

= β−1
∞∑

r=0

F r

[

(r + 1)Vr+1 +
r∑

n=0

〈
φr−n, a

−fn

〉
β

]

= β−1 dU

dF
+

∞∑

r=1

F r

r∑

n=1

Ξnr, (48)

establishing the statement (22b) in the proposition. In the last equality, we used that
a−f0 = 0. �
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Fig. 1 Solid lines: U as a function of F for γ = 0.01, 0.1 and 1. Markers: Monte Carlo estimates. Other
parameters of the simulations are ψ0 = π2/16, β = 1.2ψ−1

0 , and L = 2π . Following convention, the force
variable is scaled by the critical force Fc ≈ 3.36γ

√
ψ0 at which the effective potential (2) becomes mono-

tonic, and the drift is scaled by the value UL = F/γ it would have in absence of the periodic potential φ(x).
For the Monte Carlo simulations we use an Euler-Maruyama scheme with a time step t = 0.1 integrating
over N = 5000000 time steps (after 100000 time steps of a transient integration interval) and averaging over
5000 trajectories

4 Numerical Simulations

In this section we present results of numerical simulations that corroborate the theoretical
results presented in the previous section. The calculation of the drift and diffusion coeffi-
cients is based on the numerical solution of the hypoelliptic boundary value problems (14)
and (17) as well as the calculation of the integrals (15) and (16a). Both PDEs are solved
using a spectral method that relies on the expansion of the solution of the stationary Fokker-
Planck and the Poisson equations in a Fourier-Hermite expansion. This method is adapted
from Risken’s continued fraction expansion method [27]; see also [9]. This method was
used previously in the study of the diffusion coefficient for a Brownian particle in a pe-
riodic potential in [22]. Details about the numerical method can be found in Appendix B.
The purpose of our calculations here is primarily to validate the perturbation expansions and
spectral numerical method we have developed here. A recent review [29], and the references
therein (see also [15]), covers analytical and computational studies of Brownian motion in
tilted periodic potentials which explore a wide range of interesting phenomena beyond the
scope of the present work.

In all the numerical experiments we use a cosine potential, ψ(q) = ψ0 cos(ω1q), with
ω1 = 2π/L. As a first test for the validity of our numerical method, in Figs. 1, 2 and 3
we compare the results obtained from the solution of the two PDEs with results obtained
using Monte Carlo simulations. In particular, in Figs. 1 and 2 we reproduce the results
reported in [6] for γ = 0.01 and go beyond this for larger values of γ . In all the Monte
Carlo simulations reported in this paper we take a sufficiently large number of realizations,
a sufficiently small time step and sufficiently long paths so that the results of the simulations
are very accurate.1 Details on the values of the parameters used in the simulations can be
found in the caption figures. In Fig. 3 we present results for U and D for larger values of γ .

1In fact, in all the figures where the results of Monte Carlo simulations are presented, we also include the
error bars. However, they are so small that they are barely visible.
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Fig. 2 Solid lines: D as a
function of F for γ = 0.01, 0.1
and 1. Markers: Monte Carlo
estimates. Parameters of the
simulations are as in Fig. 1, with
diffusivity now scaled by the
value DL = (βγ )−1 it would
have in absence of the periodic
potential φ(x)

Fig. 3 (a) Solid lines: U

computed from (15). (b) Solid
lines: D computed from (16a).
Markers: Monte Carlo estimates.
Parameters of the simulations are
ψ0 = 1, β = 5, and L = 1. For
the Monte Carlo simulations we
have used a time step t = 0.01
over 6000000 time steps and
averaging over 6000 trajectories

We emphasize the fact that the spectral method enables us to calculate the drift and diffu-
sion coefficients very accurately for a very wide range of values of the friction coefficient γ

as well as the forcing F . As expected, the numerical method becomes computationally more
expensive as γ decreases, since more Hermite and Fourier modes are needed for the accu-
rate calculation of the diffusion coefficient. We note also that, in two and higher dimensions,
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Fig. 4 U for γ = 1 (blue lines) and γ = 50 (red lines). Solid lines: U computed from (15). Markers: Monte
Carlo estimates. Broken lines: Expansion for U in terms of F by solving numerically for the coefficients
Vj given by (23a). γ = 1: Dots: linear approximation, Dash: 5th-order expansion, Dash-Dash: 9th-order
expansion (overlapped with solid line). γ = 50: Dots: linear approximation, Dash-dot: 3rd-order expansion,
Dash-Dash: 5th-order expansion (overlapped with solid line). Parameters of the simulations are ψ0 = 1,
β = 5, and L = 1. For the Monte Carlo simulations we have integrated 5000 trajectories using a time step
t = 0.01 over 1000000 time steps for γ = 1, while t = 0.005 over 4000000 time steps for γ = 50 (Color
figure online)

the underdamped regime requires appropriate preconditioning for the efficient solution of
the resulting linear algebraic problem.

Now we turn our attention to the numerical study of formulas (21) and (27). In Fig. 4
we have calculated numerically the effective drift U using (15), and we have also calculated
numerically the coefficients Vn in (21). For this we need to solve the Poisson equations (24a),
where the generator of the unperturbed dynamics, i.e. with F = 0, appears. We can see that
as we increase the number of terms in the power series expansion, the series converges
to the value of u computed from solving the stationary Fokker-Planck equation (14) and
computing the integral in (15). We stress that, using the expansion (21) we can calculate the
nonequilibrium drift for arbitrary values of the external forcing F using only information
from the equilibrium dynamics.

In Fig. 5 we plot the diffusion coefficient D, as a function of the forcing F , using (16a).
In addition, we plot the power series expansions of different orders according to assump-
tion (27) that linear response relationships between drift and diffusion extend to the higher
order coefficients. The drift U is computed as in Fig. 4, using the expansion (21). While
the power series expansion does match the value of D for F = 0, as it should according to
linear response theory, the series does not converge to the values computed numerically for
F = 0 using the spectral method described in Appendix B. This shows in particular that the
correction terms Ξk� in Eq. (23c) are nontrivial, as also evidenced by the results of Fig. 1
in [23]. To emphasize this point, we also compare in Fig. 6 the effective diffusion coefficient
with formula (27), where U is computed using (15) and the derivative with respect to F is
approximated numerically using a centered finite difference scheme. See Fig. 6. The linear
response relations, however, do perform better for larger values of γ .

Finally, we investigate the overdamped limit. The drift and diffusion coefficients of an
overdamped particle moving in a one dimensional periodic potential under constant exter-
nal force can be computed analytically in terms of quadratures. The exact formula for the
effective drift is computed in ([30], [31, Ch. 9]), whereas the exact formula for the diffusion
coefficient can be found in [23] and [19].
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Fig. 5 D for γ = 1 (blue lines) and γ = 50 (red lines). Solid lines: Homogenization formula (16a). Mark-
ers: Monte Carlo estimates. Broken lines: Expansion for D in terms of F assuming (27) and using the drift
expansion (21). γ = 1: Dots: constant approximation, Dash: 4th-order expansion, Dash-Dot: 8th-order ex-
pansion. γ = 50: Dots: constant approximation, Dash: 2nd-order expansion, Dash-Dot: 6th-order expansion.
Parameters of the simulation are as in Fig. 4 (Color figure online)

Fig. 6 D for γ = 1 (blue lines)
and γ = 50 (red lines). Solid
lines: Homogenization
formula (16a). Broken lines:
Computation of D assuming the
Einstein relation (27), with
derivative evaluated through
centered finite differences of the
drift computed from the
homogenization formula (15).
Parameters of the simulation as
in Fig. 4 (Color figure online)

Expanding (14) and (17) in inverse powers of γ we obtain

U = UO

γ
+ O

(
1

γ 3

)
(49)

and

D = DO

γ
+ O

(
1

γ 3

)
, (50)

where UO and DO denote the drift and diffusion coefficients for the overdamped problem
(with γ scaled out, as described by the generator (52) below). Rather than computing the
integrals in the formulas for UO and DO (see, e.g. [19, Eq. B.6 and Eq. B.9]) we solve the
stationary Fokker-Planck and the Poisson equations [22]:

UO =
∫ L

0

(−ψ ′(q) + F
)
ρO(q)dq, L∗

OρO = 0, (51)
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Fig. 7 (a) Solid lines: Effective
drift U computed from (15).
Broken lines: Asymptotic
approximation (49). (b) Solid
lines: Effective diffusivity D

computed from (16a). Broken
lines: Asymptotic approximation
(50). Parameters of the
simulations are ψ0 = 1, β = 5,
and L = 1

with L∗
O the adjoint (Fokker-Planck operator) of the generator of the overdamped dynamics

LO = (−ψ ′(q) + F
) ∂

∂q
+ β−1 ∂2

∂q2
. (52)

The generator is posed on [0,L] equipped with periodic boundary conditions. Similarly, the
diffusion coefficient is given by

DO = β−1
∫ (

1 + ∂qφO(q)
)
ρO(q)dq,

with

−LOφO(q) = −ψ ′(q) + F,

on [0,L] with periodic boundary conditions. Higher order corrections in (49) and (50) can
be obtained through the solution of further auxiliary Poisson equations. As shown in Fig. 7,
the overdamped formulas for the drift and diffusion coefficients offer a very accurate ap-
proximation even for moderately high values of the friction coefficient, uniformly in F .
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5 Conclusions

Using the framework of homogenization theory and multiscale analysis, we have developed
a systematic expansion of the effective drift and effective diffusivity for the nonequilibrium
dynamics of a particle in a tilted periodic potential. The coefficients in this expansion relate
the nonequilibrium transport coefficients to statistical averages involving the equilibrium dy-
namics (with no imposed tilt), computed through the solutions of boundary value problems
for deterministic partial differential equations of hypoelliptic type. The expansions give a
detailed description, valid also in multiple dimensions (see Appendix A), of how Einstein’s
relation between the diffusivity and mobility of a particle is violated in higher orders with
respect to the perturbation from equilibrium. Our theoretical results were confirmed by nu-
merical simulations based on a new efficient spectral method for the solution of Poisson
equations for the generator of the Langevin dynamics.

Substantial directions for future research include the application of the homogenization
procedure to multiscale and locally periodic potentials, as well as to time-dependent external
forcing. This last setting could have particular relevance to the study of stochastic resonance
phenomena.
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Appendix A: The Multidimensional Case

The computations presented in Sect. 3 can be readily extended to the multidimensional case.
Since the analysis is almost identical to that for the one dimensional problem, we will be
very brief.

Here and in what follows, operators and functions with identical symbolic representation
as in the main text are just direct multidimensional versions, i.e., with one-dimensional vari-
ables p and q replaced by vectors p and q. In particular, ρβ is the solution of the stationary
Fokker-Planck equation L∗ρβ = 0, which is the multidimensional version of Eq. (14). We
will find it convenient to decompose the applied vector force F = Fη into its magnitude
F = |F| and direction η, and to define creation and annihilation operators

a+
η := η · (−∇p + βp); a−

η := η · ∇p. (53)

The multidimensional version of Proposition 3.1 reads:

Proposition A.1 The drift coefficient can be expressed in terms of a generalized mobility
matrix M(F) via:

U = F · M(F) (54a)

where this generalized mobility matrix and the diffusion coefficient have the formal asymp-
totic expansions:

M =
∑

�≥0

F�ϒ�(η) (54b)
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and

D = β−1 Sym M +
∑

�≥1

F�

[
�∑

n=1

�n�(η)

]

. (55a)

We can also relate the expansion of the drift and diffusion coefficients as follows:

η · D · η = β−1η · ∂U
∂F

+
∑

�≥1

F�

�∑

n=1

Ξn�(η). (55b)

The coefficients M�, �k�, Ξk� k ≤ � = 1,2, . . . are given by the formulas

ϒ�(η) = β

∫

X

φ� ⊗ pρ̄ dpdq, (56a)

�n�(η) = Sym
∫

X

p ⊗ φ�−nfnρ̄ dpdq, (56b)

Ξn�(η) = β−1
∫

X

(η · φ�−n)(η · ∇pfn)ρ̄ dpdq (56c)

where Sym denotes the symmetric part of a matrix, and fj , φj , j = 0, . . . are solutions to
the (adjoint) Poisson equations

−L̂0fj = a+
η fj−1, f0 = 1,

∫
fj ρ̄ = 0, j = 1,2, . . . , (57a)

−L0φ0 = p,

∫
φ0ρ̄ = 0, (57b)

−L0φj = a−
η φj−1 − η · ϒj−1,

∫
φj ρ̄ = −

j∑

r=1

∫
frφj−r ρ̄, j = 1, . . . . (57c)

We stress that the expansion coefficients in Eq. (56a), (56b), (56c) depend on the direc-
tion η of the applied force, due to the appearance of η in the PDEs (57a), (57b), (57c) for
{fj }∞

j=1 and {φj }∞
j=1. Therefore, the expansions (54a), (54b) cannot be interpreted as multi-

variable Taylor expansions, but rather formal single variable expansions with respect to the
magnitude F of the force, applied along an arbitrary direction η. We note that the multidi-
mensional version of Einstein’s formula (5) results directly from Eq. (55a), once we note
that the standard mobility matrix is just the small force limit of the generalized mobility
matrix M(F):

lim
F→0

∇FU = M(0),

and that this matrix is symmetric (though M(F) need not be for F = 0):

M(0) = ϒ0 = β

∫

X

φ0 ⊗ pρ̄ dpdq = β

∫

X

φ0 ⊗ (−L0φ0)ρ̄ dpdq

= −β

∫

X

φ0 ⊗ (Sφ0)ρ̄ dpdq
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= −β

∫

X

φ0 ⊗ (−p · ∇p + β−1∇p · ∇p
)
φ0)ρ̄ dpdq

=
∫

X

(∇pφ0) ⊗ (∇pφ0)ρ̄ dqdq.

The last line results from integrating by parts once with respect to p; no boundary terms
arise because of the periodic domain.

We will derive Proposition A.1 through a close parallel of our one-dimensional derivation
by first deriving formulas for the projections of the effective drift vector U and diffusion
tensor D along an arbitrary unit vector ξ ∈ R

d , ‖ξ‖ = 1:

U ξ ≡ ξ · U =
∫

X

pξρβ(p,q) dpdq, (58)

Dξ =
∫

X

(
pξ − U ξ

)
φξρβ(p,q) dpdq. (59)

Here pξ = ξ · p, X ≡ T
d × R

d , and φξ is the solution of the Poisson equation on X:

−Lφξ = pξ − U ξ ,

∫

X

φξρβ dpdq = 0. (60)

We will also employ the following creation and annihilation operators together with those
in Eq. (53):

a+
ξ := ξ · (−∇p + βp); a−

ξ := ξ · ∇p. (61)

We write the stationary distribution ρβ again in the form (30), so that the stationary Fokker-
Planck equation can be written

(
L̂0 + Fa+

η

)
f = 0. (62)

The Poisson equation (60) can similarly be expressed as:

−(
L0 + Fa−

η

)
φξ = pξ − U ξ . (63)

We solve these equations perturbatively using expansions:

f (p,q) =
∑

j≥0

F jfj (p,q) and φξ (p,q) =
∑

j≥0

F jφ
ξ
j (p,q). (64)

From the stationary Fokker-Planck equation (62) we obtain (34b), with a+ replaced with
a+

η . We can readily check that the solvability condition for these equations is satisfied and
obtain a solution using (38):

fj = K̂j 1, j = 0,1, . . . , K̂F := (−L̂0)
−1a+

η .

As in the one dimensional case, K̂ is the H-adjoint of K := a−
η (−L−1

0 ). We emphasize the

fact that the solution operator K̂j

F depends on the direction η of the forcing. We obtain in
this way an asymptotic expansion for the drift along the direction ξ

U ξ =
∑

j≥1

F jV
ξ
j
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with

V
ξ
j = β−1

〈
1, a−

ξ K̂j

F 1
〉
β
. (65)

Now we proceed with the analysis of the Poisson equation. Equations (44a), (44b) be-
come

−L0φ
ξ
0 = pξ ,

〈
φ

ξ
0 ,1

〉
β

= 0, (66a)

−L0φ
ξ
j = a−

η φ
ξ
j−1 − V

ξ
j ,

〈
φ

ξ
j ,1

〉
β

= −
j∑

r=1

〈
fr,φ

ξ
j−r

〉
β
, j = 1,2, . . . . (66b)

We can check that Lemma 3.1 and consequently the solvability condition (45) which now
becomes

V
ξ
j = 〈

a−
η φ

ξ
j−1,1

〉
β

= 〈
φ

ξ
j−1, a

+
η 1

〉
β
, (67)

are satisfied. We can now obtain the expansions for the diffusion coefficient by proceeding
as in the proof of Proposition 3.1. We obtain first:

Dξ =
∞∑

r=0

F r

[

β−1
〈
φξ

r , a
+
ξ 1

〉
β

+
r∑

n=1

∫

X

pξφ
ξ
r−nfnρ̄ dpdq

]

. (68)

Recognizing now that φ
ξ
j = ξ · φj and using the definitions in Eqs. (53) and (61) of the

raising and lowering operators, we can rewrite Eqs. (67) and (68) as

V
ξ
j = βξ ·

[∫

X

φj−1 ⊗ pρ̄ dpdq
]

· η = ξ · ϒj−1(η) · η

and

Dξ =
∞∑

r=0

F rξ ·
[∫

X

φr ⊗ pρ̄ dpdq +
r∑

n=1

∫

X

p ⊗ φr−nfnρ̄ dpdq

]

· ξ

= ξ ·
[ ∞∑

r=0

F rϒr(η) +
r∑

n=1

�nr

]

· ξ .

Since these expressions hold for arbitrary unit vectors ξ , they uniquely determine the coef-
ficients in the asymptotic expansion of the drift vector U and symmetric diffusion tensor D,
and we thereby verify all statements in Proposition A.1 except for Eq. (55b).

For this last statement, we choose ξ = η, and then argue similarly to Eq. (48):

η · D · η = Dη = β−1
∞∑

r=0

F r

r∑

n=0

[〈
a−

η φη
r , f0

〉
β

+ 〈
φ

η
r−n, a

−
η fn

〉
β

]

= β−1
∞∑

r=0

F r

[

(r + 1)
〈
a−

η φη
r ,1

〉
β

+
r∑

n=0

〈
φ

η
r−n, a

−
η fn

〉
β

]

= β−1
∞∑

r=0

F r

[

(r + 1)V
η
r+1 +

r∑

n=0

∫

X

(η · φr−n)(η · ∇p)fnρ̄ dpdq

]

,

from which Eq. (55b) follows.
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Appendix B: Numerical Algorithm

In this appendix we present a numerical approach for solving the 1-dimensional stationary
Fokker-Planck equation (14) together with the cell problem (17) for computing U and D

via (15) and (16a). This numerical method is based on the approach by [27] and consists in
a spectral decomposition of the solution of (14) and (17) in terms of Hermite polynomials
and Fourier series, followed by a recursive method to solve the resulting system of algebraic
equations. Since this approach is presented in [27] for finding numerically ρβ(q,p) and U ,
we will focus on the computation of D via the solution for the auxiliary field φ(q,p) in Eq.
(17) and Eq. (16a).

B.1 Solution in Terms of Hermite Polynomials

The cell problem for the auxiliary field φ(q,p) can be written in terms of the infinitesimal
generator of the Ornstein-Uhlenbeck (OU) process as introduced in Sect. 3,

S = −p∂p + β−1∂2
p,

as

Lφ(q,p) = p∂qφ + (−ψ ′(q) + F
)
∂pφ + γ Sφ = U − p,

with U the effective drift as given by (15). Note that the invariant distribution ρ̂(p) of the OU
process, S ∗ρ̂(p) = 0, implies ρ̂ ∼ e−βp2/2. In view of the structure of the previous equation,
we use the following representation for its solution,

φ(q,p) =
∞∑

n=0

φn(q)Hn(p), (69)

where φn(q) is a series of functions to be determined. Hn(p) are rescaled Hermite polyno-
mials

Hn(p) = 1√
n!Hen

(
pβ1/2

)
,

Hen(x) = (−1)nex2/2 dn

dxn
e−x2/2,

which are the eigenfunctions of the operator S ,

SHn(p) = −nHn(p), n = 1,2, . . . .

Also, these rescaled Hermite polynomials are orthonormal with respect to the unperturbed
stationary distribution:

〈
Hn(p)Hm(p)

〉
ρ̂

=
∫ ∞

−∞
Hn(p)Hm(p)ρ̄(p)dy = δnm,

and satisfy the relations:

pHn(p) = β−1/2
(√

n + 1Hn+1(p) + √
nHn−1(p)

)
,
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H ′
n(p) = (βn)1/2Hn−1(p).

Upon substituting (69) into ((17)), projecting against H0, H1, and Hn for n ≥ 2 respectively,
and using the orthonormality property of the Hermite polynomials, we obtain the following
infinite system of ordinary differential equations for φn(q),

φ′
1(q) + β

(−ψ ′(q) + F
)
φ1(q) = √

βU,

φ′
0(q) − γ

√
β φ1(q) + β

(−ψ ′(q) + F
)√

2φ2(q) + √
2φ′

2(q) = −1,

√
nφ′

n−1(q) − γ
√

βnφn(q) + √
n + 1φ′

n+1(q) + β
(−ψ ′(q) + F

)√
n + 1φn+1(q) = 0,

for n = 2,3, . . . .

B.2 Spectral Decomposition

Since the solution to the cell problem must be periodic in q , the auxiliary functions φn(q)

must also be periodic. It is natural then to express these functions in terms of their Fourier
series,

φn(q) =
∞∑

j=−∞
Φj

n eiωj q , ωj = 2πj

L
.

For simplicity, we will focus now on the simplest periodic potential, namely,

ψ(q) = ψ0 cos(2πq/L),

although more complex potentials can be studied. In terms of this potential, the equations
take the following form,

iωjΦ
j

1 + β

(
ψ0ω1

2i

(
Φ

j−1
1 − Φ

j+1
1

) + FΦ
j

1

)
= √

β Uδj,0,

i ωjΦ
j

0 − γ
√

β Φ
j

1 + √
2

(
iωj Φ

j

2 + β

(
ψ0ω1

2i

(
Φ

j−1
2 − Φ

j+1
2

) + FΦ
j

2

))
= −δj,0,

(70)
i
√

nωjΦ
j

n−1 − γ
√

β nΦj
n

+ √
n + 1

(
iωj Φ

j

n+1 + β

(
ψ0ω1

2i

(
Φ

j−1
n+1 − Φ

j+1
n+1

) + FΦ
j

n+1

))
= 0,

for n = 2,3, . . . , j = 0,±1,±2, . . . .

B.3 Solution of φn

We now proceed to describe the numerical algorithm for computing D. In order to solve
(17) in its spectral representation (70), we approximate φn(q) by a Galerkin truncation of
the Fourier series after the M th term,

φn(q) ≈
M∑

j=−M

Φj
n eiωj q .
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The infinite system of algebraic equations (70) becomes then an infinite, tri-diagonal system
of equations expressed as follows. By explicitly writing the real and imaginary parts of
Φ

j
n = ξ

j
n + iη

j
n and using the fact that the solution must be real-valued (which implies that

ξ
−j
n = ξ

j
n and η

−j
n = −η

j
n) we form the vectors,

Φn =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ξ 0
n

ξ 1
n

...

ξM
n

η1
n

...

ηM
n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, n = 0,1,2, . . . .

This representation leads to the following system of equations,

Q−
0 Φ1 = B, (71a)

Q+
1 Φ0 + Q1Φ1 + Q−

1 Φ2 = A, (71b)

Q+
n Φn−1 + QnΦn + Q−

n Φn+1 = 0, n = 2,3, . . . . (71c)

These matrices are given, for n = 0,1, . . . , by,

Qn = −γ
√

βnI 2M+1,

where I k is the k × k identity matrix. For n = 1,2, . . . we have,

Q+
n = √

n

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 . . . 0
−ω1 0 . . . 0

0
...

. . .
...

. . . 0 −ωM

0 ω1 0 0 . . . 0
0 0 ω2 0 . . . 0 0
...

. . .
...

0 0 . . . 0 ωM

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

Q−
n = √

n + 1

(
Qaa Qab

Qba Qbb

)
,

Qaa = FβIM+1, Qbb = FβIM

Qab =

⎛

⎜⎜⎜⎜⎜
⎝

−β ψo ω1 0 0 0 . . . 0
−ω1 −β ψo ω1/2 0 0 . . . 0

β ψo ω1/2 −ω2 −β ψo ω1/2 0 . . . 0
. . .

. . .
. . .

...

0 . . . 0 β ψo ω1/2 −ωM

⎞

⎟⎟⎟⎟⎟
⎠

,
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Qba =

⎛

⎜⎜⎜
⎝

−β ψo ω1/2 ω1 β ψo ω1/2 0 0 . . . 0
0 −β ψo ω1/2 ω2 β ψo ω1/2 0 . . . 0
...

. . .
. . .

. . .
...

...

0 . . . 0 −β ψo ω1/2 ωM

⎞

⎟⎟⎟
⎠

,

[B]k = √
β Uδk,1, [A]k = −δk,1,

where [B]k represents the kth element of the vector B (respectively for A). In order to
solve the infinite system of algebraic equations, we impose some boundary condition of the
form ΦN+1 = SNΦN , for large N . Tested boundary conditions include SN = 0 (Dirichlet
boundary condition), which we employed in the simulations in Sect. 4 , and SN = I 2M+1

(Neumann boundary condition). Defining matrices {Sn}N−1
n=0 recursively downwards from

n = N − 1 by

Sn = −(
Qn+1 + Q−

n+1Sn+1
)−1

Q+
n+1 for n = 0, . . . ,N − 1,

we can check by induction (again downwards) that for n = 1, . . . ,N ,

Φn+1 = SnΦn (72)

Indeed, this relation is already in force for n = N , and assuming it to be true for some
n = m ≥ 2, from Eq. (71c) we find:

Q+
mΦm−1 + QmΦm + Q−

mSmΦm = Q+
mΦm−1 + (

Qm + Q−
mSm

)
Φm = 0,

so that Eq. (72) holds for n = m−1 as well. Turning now to Eqs. (71a) and (71b), we have

Q+
1 Φ0 + (

Q1 + Q−
1 S1

)
Φ1 = A, (73a)

Q−
0 Φ1 = B, (73b)

from which we find by solving for Φ1 in terms of Φ0:

Φ1 = S0Φ0 + (
Q1 + Q−

1 S1

)−1
A.

Substituting this expression into Eq. (73b), we finally obtain a closed equation for Φ0:

Q−
0 S0Φ0 = B − Q−

0

(
Q1 + Q−

1 S1

)−1
A. (74)

The matrix Q−
0 S0 will have one null eigenvalue (corresponding to the null space of L). One

can verify, by considering the analogous numerical solution scheme for ρβ and U , presented
in [27], that the right-hand side of Eq. (74) satisfies the solvability condition that it be orthog-
onal to the left eigenvector of Q−

0 S0 with zero eigenvalue. A unique solution for Φ0 is then
obtained by discretization of the auxiliary condition in Eq. (17). In particular, representing
the solution to the stationary Fokker-Planck (14) by a Hermite polynomial expansion

ρβ(q,p) = ρ̂(p)

∞∑

n=0

Rn(q)Hn(p),
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and approximating the functions Rn(q) by a finite Fourier series, with coefficients organized
into vectors Rn analogously to Eq. (69), this auxiliary condition reads:

N∑

n=0

(
2RT

n Φn − [
RT

n Φn

]
1

) = 0.

This then determines, with Eq. (74), Φ0 from which he remaining {Φn}N
n=1 are found re-

cursively using the matrices Sn and the relations (72). Once the vectors Φ i are found, D is
easily computed by replacing the proposed solution for ρβ(q,p) and φ(q,p) in (16a) and
using the Hermite polynomial properties to obtain:

D = L

N∑

n=0

√
n + 1

β

(
2RT

n+1Φn − [
RT

n+1Φn

]
1
+ 2RT

n Φn+1 − [
RT

n Φn+1

]
1

)
.

Appendix C: Alternative Approach to Obtaining Corrections to Einstein’s Formula

The relation between the diffusivity and mobility is expressed in [1] as follows (in our nota-
tion):

D = β−1 dU

dF
+ lim

T →∞
1

2γ

∫ T

0

〈
(q(T ) − q(0)

T
;−ψ ′(q(t)

) + F

〉
dt, (75)

where 〈g;h〉 = 〈gh〉 − 〈g〉〈h〉 and 〈·〉 denotes an average over the stochastic noise (and
possibly random initial conditions). The correction term was studied in [1] on the model
system (1) as well as other non-equilibrium systems through direct numerical simulation of
the governing dynamical equations and Monte Carlo estimation of the statistical average.
We can express Eq. (75) in terms of deterministic operators through the following formal
manipulations. First, we re-express

q(T ) − q(0) =
∫ T

0
p(t ′) dt ′,

which avoids the complication of working with the nonperiodic variable q(t). We then have:

D = β−1 dU

dF
+ lim

T →∞
1

2γ T

∫ T

0

∫ T

0

〈
p(t ′);−ψ ′(q(t)

) + F
〉
dt ′ dt.

Now, thanks to the large factor of T in the denominator, we may neglect initial transients
and evaluate the statistical average in the nonequilibrium steady state, i.e., with single-time
statistics governed by the invariant density ρβ , the solution of the stationary Fokker-Planck
equation (14). We then express the two-time correlation function formally using the evo-
lution operator eLt , where L denotes the generator of the Langevin dynamics, for the
forward-in-time variable, and the projection operator

Pg = g − 〈g〉ρ
where

〈g〉ρ ≡
∫

X

gρβ dp dq
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to obtain:

D = β−1 dU

dF
− lim

T →∞
1

2γ T

∫ T

0

[∫ t

0

〈
(Pp)

(
eL(t−t ′)

Pψ ′(q)
)〉

ρ
dt ′

+
∫ T

t

〈(
eL(t ′−t)

Pp
)(

Pψ ′(q)
)〉

ρ
dt ′

]
dt

= β−1 dU

dF
− lim

T →∞
1

2γ T

[〈(
L−2

(
eLT − I − LT

)
Pp

)(
Pψ ′(q)

)〉
ρ

+ 〈
(Pp)

(
L−2

(
eLT − I − LT

)
Pψ ′(q)

)〉
ρ

]
,

where I is the identity operator. Using now the nonpositivity of the operator L and the fact
that Ran P = Ran L since P projects onto the subspace orthogonal to the kernel of L∗, the
L2 adjoint of L, we can evaluate the T → ∞ limit to obtain the following formal operator-
theoretic equivalent to the formula (75) from [1]:

D = β−1 dU

dF
+ 1

2γ

[〈(
L−1

Pp
)
ψ ′(q)

〉
ρ
+ 〈

(Pp)
(

L−1
Pψ ′(q)

)〉
ρ

]
. (76)

A somewhat more compact formula can be obtained by defining the L2(ρ) adjoint of L,
which can be computed as:

L̂ = L̂0 − Fa− + 2γ
(
p + β−1∂p lnρβ

)
a−, (77)

where L̂0 is defined at the end of Proposition 3.1, so that

D = β−1 dU

dF
+ 1

2γ

〈((
L−1 + L̂−1

)
Pp

)
Pψ ′(q)

〉
ρ
. (78)

In both of these expressions, we note that Pp = p − U , from Eq. (15).
Inspecting expression (76) for the correction to the Einstein relation, we see that beyond

computing ρβ as the stationary solution of the Fokker-Planck equation (14), we must solve
a Poisson equation of the form (17) as well as a second Poisson equation of the form

−Lψ = Pψ ′.

In the expression (78), we must solve a stationary Fokker-Planck equation (14), a Poisson
equation of the form (17), as well as an adjoint-Poisson equation of the form

−L̂η = Pp.

In both cases, it seems that an additional equation would need to be solved beyond the sta-
tionary Fokker-Planck equation (14) and a single Poisson equation (17) necessary in the
homogenization approach. On the other hand, computing the mobility dU

dF
at general values

of the tilt F from the nonperturbative homogenization equations would require a differen-
tiation between different values of F . The direct formula (75) would generally of course
need to be evaluated through Monte Carlo averages involving a large number of sample
trajectories run for sufficiently long.

The perturbation theory with respect to F developed for the homogenization equations in
Sect. 3 has the virtue of allowing the simultaneous numerical computation of the diffusivity
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and drift for a range of values of tilt F , rather than one value at a time. One could introduce
similar perturbation expansions with respect to tilt F into the formulas (76) and (78). We
attempted to examine whether this would give equivalent results, but found this effort frus-
trating. On the one hand, computing Eq. (76) perturbatively would introduce the perturbative
series solution to a second Poisson equation completely absent from the homogenization the-
ory, so it would be difficult to relate the results. Expression (78) has more promise because
to leading order, L̂−1 is identical to the simple operator L̂−1

0 , which is just a time reversal of
the operator L−1

0 . However, implementing the perturbation expansion on Eq. (78), even to
first order, produced considerably more unwieldy equations than emerged from the homog-
enization equations, and again how to relate the resulting expressions was unclear. The main
complication is the propagation of the perturbation expansion (32) for the invariant density
through the adjoint operator L̂ (77). Perhaps a more clever analysis would provide a linkage
between the formula for the correction (75) to the Einstein relation from [1] and the per-
turbative expansion we have developed in Proposition 3.1, but it appears that computations
are considerably simpler by conducting the perturbation expansion on the homogenization
equations as we have done in Sect. 3.
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