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The problem of controlling and stabilizing solutions to the Kuramoto–Sivashinsky (KS) equation is stud-
ied in this paper. We consider a generalized form of the equation in which the effects of an electric field
and dispersion are included. Both the feedback and optimal control problems are studied. We prove that
we can control arbitrary non-trivial steady states of the KS equation, including travelling wave solutions,
using a finite number of point actuators. The number of point actuators needed is related to the number
of unstable modes of the equation. Furthermore, the proposed control methodology is shown to be robust
with respect to changing the parameters in the equation, e.g. the viscosity coefficient or the intensity of
the electric field. We also study the problem of controlling solutions of coupled systems of KS equations.
Possible applications to controlling thin film flows are discussed. Our rigorous results are supported by
extensive numerical simulations.
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1. Introduction

The Kuramoto–Sivashinsky (KS) equation on L-periodic domains

ut + uxxxx + uxx + uux = 0,

u(x, t) = u(x + L, t)
(1.1)

is a paradigm evolution equation that has received considerable attention in recent years due to its
wide applicability as well as the rich and complex dynamics that it supports. The KS equation arises
in many physical problems, including falling film flows (Benney, 1966; Sivashinsky & Michelson,
1980; Shlang & Sivashinsky, 1982; Hooper & Grimshaw, 1985), two-fluid core-annular flows (Papa-
georgiou et al., 1990; Coward et al., 1995), flame front instabilities and reaction–diffusion–combustion
dynamics (Sivashinsky, 1977, 1983), propagation of concentration waves in chemical physics applica-
tions (Kuramoto & Tsuzuki, 1975, 1976; Kuramoto, 1978) and trapped ion mode dynamics in plasma
physics (Cohen et al., 1976). The KS equation (1.1) is one of the simplest partial differential equations
(PDEs) that can produce complex dynamics including chaos; see, for example, the numerical experi-
ments in Hyman & Nicolaenko (1986), Hyman et al. (1986), Jolly et al. (1990), Kevrekidis et al. (1990),
Papageorgiou & Smyrlis (1991), Smyrlis & Papageorgiou (1991), Wittenberg (2002) and Wittenberg &
Holmes (1999). Routes to chaos have been shown numerically to follow a Feigenbaum period-doubling
cascade; see Smyrlis & Papageorgiou (1991) where the two universal Feigenbaum constants are also
computed for the KS with three-digit accuracy. A detailed knowledge of the stationary, travelling and
time-oscillatory solutions (typically chaotic) of (1.1) is significant in technological applications that
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and a description of the solution phase space is a crucial step in constructing relevant control strategies
that can access unstable states, for instance, that may be desirable in applications.

In many studies, equation (1.1) is scaled to 2π -periodic domains according to the rescaling

x∗ = 2π

L
x, t∗ =

(
2π

L

)2

t, u∗ = L

2π
u, δ∗ = 2π

L
δ, μ∗ = 2π

L
μ, (1.2)

to take the form (we drop the stars and use the same symbols for dependent and independent variables)

ut + νuxxxx + uxx + uux = 0,

u(x, t) = u(x + 2π , t),
(1.3)

where ν = (2π/L)2 is a positive parameter that decreases as the system size L increases. The mathemat-
ical interest in the KS equation (and related models, see below) resides in the fact that it is a simple,
1D equation exhibiting complex dynamics making it amenable to analysis and also a good case study
in the area of infinite-dimensional dynamical systems and their control. The equation is of the active-
dissipative type and instabilities are present depending on the value of ν. If ν > 1, it is well known
(Tadmor, 1986; Temam, 1988; Robinson, 2001; Sell & You, 2002) that the zero solution representing a
flat film is unique. However, when ν < 1, the zero solution is linearly unstable and bifurcates into non-
linear states, including steady states, travelling waves and solutions exhibiting spatiotemporal chaos—
the dynamical complexity increasing as ν decreases. Some of these solutions are stable, and others are
unstable Kevrekidis et al. (1990). In Frisch et al. (1986), Kevrekidis et al. (1990) and Papageorgiou
et al. (1993), one can find studies of the stability of steady states of the KS equation.

There is an extensive literature on the behaviour of the solutions to the KS equation. Well-posedness
of solutions is studied, for instance, in Robinson (2001), Tadmor (1986) and Temam (1988). It was
proved in Constantin et al. (1989) that the long-time dynamics of the KS equation are finite-dimensional
in the sense that they are governed by a dynamical system of finite dimension which is at least as
large as the number of linearly unstable modes (this number scales with L or ν−1/2 for (1.1) or (1.3),
respectively); these authors also proved that the solutions are attracted by a global attractor, a set of
finite dimension. Boundedness of solutions for general initial conditions was proved independently
and by using distinct methods by Collet et al. (1993b), Goodman (1994) and Il’yashenko (1992). These
studies also focussed on finding bounds for the dimension of the global attractor by estimating L2-norms
of the solutions, starting with the odd-parity results of Nicolaenko et al. (1985) and those for general
initial data by Collet et al. (1993b) along with more recent improvements in Bronski & Gambill (2006)
and Otto (2009). Analyticity of solutions in a strip in the complex plane around the real axis was also
proved in Collet et al. (1993a) and Akrivis et al. (2013) using different methods.

In the context of falling film flows, there have been several studies to extend the KS equation by
including additional physical effects. Of most interest to the present study are the derivations in Tseluiko
& Papageorgiou (2006, 2010) for film flow over flat walls in the presence of electric fields applied
perpendicular to the undisturbed interface. The resulting equation, which also incorporates the effects
of dispersion, is a generalization of (1.3) and takes the form

ut + νuxxxx + μH[uxxx] + δuxxx + uxx + uux = 0,

u(x, t) = u(x + 2π , t), u(x, 0) = u0(x),
(1.4)
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where μ � 0 measures the strength of the applied electric field and the parameter δ measures dispersive
effects. The linear operator H is the Hilbert transform operator and represents flow destabilization due
to the electric field. On 2π -periodic domains the definition of H is

H[u](x) = 1

2π
PV
∫ 2π

0
u(ξ) cot

(
x − ξ

2

)
dξ , (1.5)

where PV stands for the Cauchy principal value integral. In the model analysed, the electric field needs
to be found by solving a harmonic problem above the film and calculating the Dirichlet to Neumann
map of the solution to construct the Maxwell stresses that interact with the hydrodynamics; see Tseluiko
& Papageorgiou (2006, 2010) for the details. In fact, for the linearized problem the eigenvalues λ cor-
responding to the eigenfunctions exp(ikx) are

λ = k2 + μk2|k| − νk4 + iδk3, (1.6)

showing that the presence of the electric field destabilizes the flow and increases the number of linearly
unstable modes. Note that instability is possible if |k| < kc = (μ +

√
μ2 + 4ν)/2ν, and so there are

2l + 1 unstable modes, where l is the integer part of kc (this fact is used in Proposition 1 later). This
additional destabilization is important in what follows and makes the control problem more challenging.
The modified equation (1.4), in the absence of dispersion (δ = 0), has a similar dynamical behaviour to
the KS equation (1.3) but with chaotic dynamics appearing at higher values of ν as μ increases - see
Fig. 1. In fact, boundedness of solutions and an estimate of the dimension of the global attractor have
been proved in Tseluiko & Papageorgiou (2007) for a class of more general operators whose symbols
in Fourier space are such that the electric field term in (1.6) is |k|α with 3 � α < 4. On the other hand,
in the absence of an electric field but with dispersion present, it is established that dispersion acts
to regularize the dynamics (even chaotic ones) into non-linear travelling wave pulses; see Kawahara
(1983), Kawahara & Toh (1985) and Akrivis et al. (2012) as well as Pradas et al. (2012) and Tseluiko
& Kalliadasis (2014) for a weak interaction theory between pulses that are sufficiently separated.

More recently, Antoniades & Christofides (2001), Armaou & Christofides (2000b), Christofides
(1998, 2000); Christofides & Armaou (2000), Dubljevic (2010) and Lou & Christofides (2003) showed
how to stabilize the zero solution of the KS equation by using state feedback controls. They also proved
that using linear feedback controls, it is possible to stabilize the zero solution using only five point
actuated controls. In addition, they prove that the stabilization is possible using only a certain number
of observations of the solution instead of full knowledge of the solution at all times as long as the
number of observations is equal to or exceeds the number of unstable modes. In further work utilizing
non-linear feedback controls (Christofides, 2000; Antoniades & Christofides, 2001), Christofides and
co-workers formulated optimization techniques and computed possible optimal states by analysing a
large number of runs; a proof of the existence of these optimal positions was not given, however.

In this work, we use linear feedback controls and techniques similar to those in Armaou &
Christofides (2000b) and Christofides (2000) to stabilize non-uniform unstable steady states of gen-
eralized versions of the KS equation at small values of ν that have not been attempted yet. The mathe-
matical complication is due to the increase of the number of linearly unstable modes as ν decreases and
μ increases, see (1.6). We achieve stabilization of non-uniform states by stabilizing the zero solution of
a modified PDE that is satisfied by a perturbation to the desired steady state. The resulting equation to
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(a) (b)

(c) (d)

Fig. 1. Bifurcation diagram of the L2-norm of the steady-state solutions (solid curves—blue online) and travelling wave solutions
(dashed curves—red dashed online) to the gKS equation (1.4) (with δ = 0) in the presence of an electric field for 0.1 �ν �1, and
μ = 0 (a), μ = 0.2 (b), μ = 0.5 (c) and μ = 1 (d). Note that, for μ |= 0, only a few of the branches are shown in these diagrams.

be controlled is

ut + νuxxxx + μH[uxxx] + δuxxx + uxx + uux =
m∑

i=1

bi(x)fi(t).

All our results are still valid in this as well as other cases as long as the linear operator of the PDE
has a self-adjoint part, a well-defined separation between stable and unstable modes, and a bounded
non-linearity N (u) in an appropriate functional space. Such conditions are fairly generic in physically
derived systems and pose little restriction to our methodology.

In applications, there may be some uncertainties in the estimation of the parameters of the equation,
for example, if the intensity of the electric field or the dispersion parameters are not known exactly. It is
important, therefore, that the controls applied are robust, that is they still work even when these uncer-
tainties are present. We use results from control theory (Kautsky & Nichols, 1985) to prove analytically
that the controls are robust to uncertainties in ν, δ and μ, as long as the error in the prediction of the
parameters is small enough, and present numerical simulations that demonstrate this point.

A natural question to address after robust stabilization of the zero solution to the modified PDE
is achieved is whether this can be done in an optimal manner. By this, we mean stabilization while
minimizing a cost functional that measures how close we are to the desired solution and how much
energy we are spending with the controls. This cost functional is of the form

C (u, F) = 1

2

∫ T

0

∥∥u(·, t) − ū
∥∥2

dt + 1

2

∥∥u(·, T) − ū
∥∥2+γ

2

∫ T

0

m∑
i=1

fi(t)
2 dt, (1.7)

161STABILIZING NON-TRIVIAL SOLUTIONS OF THE GKS EQUATION



where T is the final time of integration and ū is the desired steady state we are controlling. As our control
variables we will consider the positions of the control actuators, following Lou & Christofides (2003).
Note that the presence of a non-linearity in the PDE makes the problem non-convex and therefore we do
not expect an optimal control to be unique. However, we only wish to prove the existence of an optimal
control and to find computationally such optimal controls.

The methodology developed and implemented here can also be applied to systems of non-linear
coupled PDEs. Of particular interest are systems of coupled KS equations that arise in applications
to interfacial fluid dynamics problems. Such equations were derived systematically using asymptotic
methods in Papaefthymiou et al. (2013) to model the non-linear stability of three immiscible viscous
fluids of different properties flowing in a stratified arrangement in a plane channel under the action of
gravity and/or a driving pressure gradient. The ensuing dynamics is very rich and in fact instabilities
can emerge even in the absence of inertia, unlike analogous two-fluid flows. Coupled non-linear sys-
tems are mathematically significantly more challenging than scalar PDEs since analytical results on
global existence and estimates of solution norms, for example, are poorly understood. Detailed com-
putational results into the complexity of the solutions (especially their zero diffusion limits) of such
coupled systems of KS equations can be found in Papaefthymiou & Papageorgiou (2015). In the present
study, we consider the problem of feedback and of optimal control when the equations are coupled
through the second derivatives alone. This is a special case but arises in the derivation of the equations,
see Papaefthymiou et al. (2013); more generally, the non-linear terms are also coupled and can cause
hyperbolic–elliptic transitions by supporting complex eigenvalues of the non-linear flux functions, see
Papaefthymiou & Papageorgiou (2015). We find that solutions to such a system of coupled PDEs can
also be controlled through a linear feedback loop and also optimally.

The rest of the paper is organized as follows. In Section 2, we prove rigorously that non-trivial
solutions to the generalized KS (gKS) equation can be stabilized and analyse the robustness of the
proposed controls to variations in the parameters of the equation and in Section 3 we present numerical
experiments that confirm our results. In Section 4, we prove that there exist optimal distributed controls
for the KS equation, construct an algorithm to optimize the placement of the control actuators and show
our numerical results. Finally, in Section 5 we extend our results to a system of coupled KS equations.
We discuss our results in Section 6.

2. Stabilization of non-trivial unstable steady states using linear feedback controls

Our goal is to stabilize non-uniform unstable steady states or steady-state travelling wave solutions of
equation (1.4). For the theoretical analysis of the feedback control problem for the KS equation, we need
L∞ bounds on the solution and its derivatives. To establish such estimates, we will use well-known L2

bounds, together with the Sobolev embedding theorem. Optimal estimates for the solution of the KS
equation (1.1) in (0, L) were obtained by Otto (2009), and for the re-scaled 2π -periodic KS equation
(1.3) these estimates can be expressed in terms of ν = (2π/L)2 to find

lim sup
t→∞

‖u(·, t)‖ �O(ν−1/6
)
, (2.1a)

lim sup
t→∞

‖ux(·, t)‖ �O (ν1/2 ln5/3 (ν−1/2
))

, (2.1b)

lim sup
t→∞

‖uxx(·, t)‖ �O (ν ln5/3 (ν−1/2
))

, (2.1c)
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where ‖ · ‖ =
(∫ 2π

0 (·)2 dx
)1/2

denotes the L2-norm of the solution. For the generalized equation (1.4)

but in the absence of dispersion (δ = 0), Tseluiko & Papageorgiou (2007) use the background flow
method to obtain similar estimates in the presence of an electric field. Their estimates are of the form

‖u‖ � (‖u0‖ + ‖ϕ‖) e−Dt + C(ν, μ) + ‖ϕ‖, (2.2)

where C and D are constants depending on μ and ν, and ϕ is a constructed function with finite L2-norm
(we do not need to give it here). They also proved that, for u0 ∈ Ḣ1

p (0, 2π), the first and second deriva-
tives of the solution are bounded, and therefore u ∈ Ḣ2

p (0, 2π), where Ḣs
p is the Sobolev space of s-times

differentiable functions that are periodic and have zero mean.
It is also important to remark that in the case of the gKS equation (1.4), with both δ and μ non-zero,

it was proved in Frankel & Roytburd (2008a,b) that the L2-norm of the solution is also bounded. In fact,

lim sup
t→∞

‖u(·, t)‖ �
{
O (ν−17/4

)
if ν < ν0,

C if ν � ν0,
(2.3)

where ν0 depends on the symbol of the linear operator. Note that these are not optimal bounds. The
authors also prove boundedness in L2 of spatial derivatives of u up to order 4. The estimates (2.1–2.3)
imply (by use of the Sobolev embedding theorem) that there exist constants C1, C2 that depend only on
ν and μ such that

‖u‖∞ � C1‖u‖H2 , ‖ux‖∞ � C2‖ux‖H1 . (2.4)

The controlled gKS equation can now be introduced and will form the basis of our analysis and
computations. This consists of a forced version of (1.4) and reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut + νuxxxx + μH[uxxx] + δuxxx + uxx + uux =
m∑

i=1

bi(x)fi(t), x ∈ (0, 2π), t > 0,

u(x, 0) = u0(x), x ∈ (0, 2π),

∂ ju

∂xj
(x + 2π , t) = ∂ ju

∂xj
(x, t), x ∈ (0, 2π), t > 0,

fi(t) ∈ L2(0, T).

(2.5)

We assume that the initial condition satisfies u0 ∈ Ḣ2
p (0, 2π), m denotes the number of controls, bi(x),

i = 1, . . . , m are the control actuator functions and fi(t), i = 1, . . . , m are the controls. We will use point
actuator functions, which means that the functions bi(x) are delta functions centred at positions xi, i.e.
bi(x) = δ(x − xi), or a smooth approximation of such delta functions.

We use an argument similar to Armaou & Christofides (2000a), Christofides (1998) and Christofides
& Armaou (2000) to prove that it is possible to stabilize non-trivial steady states of the gKS
equation (1.4). Using the Galerkin representation of u,

u(x, t) = u0(t)√
2π

+
∞∑

n=1

us
n(t)

sin(nx)√
π

+
∞∑

n=1

uc
n(t)

cos(nx)√
π

, (2.6)

substituting into (2.5), and taking the inner product with the functions 1/
√

2π , sin(nx)/
√

π and
cos(nx)/

√
π , n = 1, . . . , ∞, we obtain the following infinite system of ordinary differential equations
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(ODEs) (dots denote time derivatives):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u̇s
n = (−νn4 + μn3 + n2

)
us

n + δn3uc
n + gs

n +
m∑

i=1

bs
infi(t) n = 1, . . . , ∞,

u̇c
n = (−νn4 + μn3 + n2

)
uc

n − δn3us
n + gc

n +
m∑

i=1

bc
infi(t) n = 0, . . . , ∞,

(2.7)

where bs
in = ∫ 2π

0 bi(x) sin(nx) dx and bc
in = ∫ 2π

0 bi(x) cos(nx) dx. The non-linearities gs
n and gc

n are given
by Akrivis et al. (2011)

gs
n = n

4
√

π

∑
j+k=n

(
uc

j uc
k − us

j u
s
k

)
+ n

2
√

π

∑
j−k=n

(
uc

j uc
k + us

j u
s
k

)
, n = 1, . . . , ∞,

gc
n = − n

2
√

π

∑
j+k=n

uc
j us

k + n

2
√

π

∑
j−k=n

(
uc

j us
k − us

j u
c
k

)
, n = 0, . . . , ∞.

In deriving the system (2.7), we used H[sin(x)](x) = − cos(x) and H[cos(x)](x) = sin(x); these formu-
las can be derived using contour integrations in the complex plane, for example.

We now define

zu =
[

zu
u

zu
s

]
,

where

zu
u = [uc

0 us
1 uc

1 · · · us
l uc

l

]	
, zu

s = [us
l+1 uc

l+1 · · · ]	 ,

where zu
u contains the coefficients of the (slow) unstable modes and zu

s those of the (fast) stable modes.
In addition,

G = [0 gs
1 gc

1 gs
2 gc

2 · · · ]	 , D = diag
(
0, δ, −δ, . . . , δn3, −δn3, . . .

)
,

F = [f1(t) f2(t) · · · fm(t)]	 .

Furthermore, we introduce the notation

A =
[

Au 0
0 As

]
and B =

[
Bu

Bs

]
, (2.8)

where

Au = diag
(
0, −ν + μ + 1, −ν + μ + 1, . . . , −l4ν + μl3 + l2, −l4ν + μl3 + l2

)
,

As = diag
(−(l + 1)4ν + μ(l + 1)3 + (l + 1)2, −(l + 1)4ν + μ(l + 1)3 + (l + 1)2, . . .

)
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and

Bu =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bc
10 bc

20 · · · bc
m0

bs
11 bs

21 · · · bs
m1

bc
11 bc

21 · · · bc
m1

...
... · · · ...

bs
1l bc

2l · · · bc
ml

bs
1l bs

2l · · · bs
ml

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Bs =

⎡
⎢⎢⎣

bs
1(l+1) bs

2(l+1) · · · bs
m(l+1)

bc
1(l+1) bc

2(l+1) · · · bc
m(l+1)

...
... · · · ...

⎤
⎥⎥⎦. (2.9)

We can rewrite the infinite-dimensional system of ODEs (2.7) as

żu = Azu + Dzu + G + BF. (2.10)

We have the following result.

Proposition 1 Let ū be a linearly unstable steady state or travelling wave solution of (1.4) and let
2l + 1 be the number of unstable eigenvalues of the system

ut = −νuxxxx − μH[uxxx] − uxx, (2.11)

i.e. l + 1 > (μ +
√

μ2 + 4ν)/2ν > l. If m = 2l + 1 and there exists a matrix K ∈ R
m×m such that all of

the eigenvalues of the matrix Au + BuK have negative real part, then the state feedback controls

[ f1 · · · fm]	 = F = K
(

zu
u − zū

u

)
(2.12)

stabilize ū.

Proof. Let u = ū + v be a solution to (1.4). Substituting into (1.4) and using the fact that ū is a steady
state or travelling wave solution of (2.5), we obtain the following PDE for the perturbation v:

vt + νvxxxx + μH[vxxx] + δvxxx + vxx + vvx + (ūv
)

x = 0, (2.13)

and in controlled form we have

vt + νvxxxx + μH[vxxx] + δvxxx + vxx + vvx + (ūv
)

x
=

m∑
i=1

bi(x) fi(t). (2.14)

First, we will prove that the given controls stabilize the zero solution of

vt = −νvxxxx + μH[vxxx] + vxx. (2.15)

Note that the dispersion term does not affect instability and it is not necessary to include it in this part
of the analysis. After applying a Galerkin truncation and the controls given by (2.12), we obtain

żv =
[

Au + BuK 0

BsK As

]
zv = Czv. (2.16)

Since the eigenvalues of Au + BuK have negative real part and the matrix multiplying zv is triangular, it
follows that the zero solution to (2.16) is exponentially stable.
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Next, following Armaou & Christofides (2000a), Christofides (1998) and Christofides & Armaou
(2000), we use a Lyapunov argument to show that these controls stabilize the zero solution to
equation (2.13). We first use the fact that exponential stability of the system (2.16) implies that there
exists a positive constant a such that the operator A(v) = −νvxxxx − μH[vxxx] − vxx +∑m

i=1 bi(x)Ki·zv
u,

where Ki· denotes the ith row of the matrix K, satisfies

(Av, v) � −a‖v‖2. (2.17)

Defining V(v) = ∫ 2π

0 (v2/2) dx, it is easy to verify that V(0) = 0 and V(v) > 0, ∀v > 0. Multiplying
(2.13) by v and integrating gives

d

dt

∫ 2π

0

v2

2
dx =

∫ 2π

0
vvt dx = (Av, v) − δ

∫ 2π

0
vxxxv dx −

∫ 2π

0
v2vx dx −

∫ 2π

0
v
(
ūv
)

x dx. (2.18)

Integration by parts and use of periodicity show that the first two integrals on the right-hand side of
(2.18) are zero. It remains to obtain an estimate for the third integral. Again, using integration by parts
and periodicity gives

−
∫ 2π

0

(
ūv
)

xv dx = −
∫ 2π

0
ūvxv dx −

∫ 2π

0
ūxv2 dx = −1

2

∫ 2π

0
ūxv2 dx

� − inf ūx

2

∫ 2π

0
v2 dx = − inf ūx

2
‖v‖2 .

Adding everything up, we obtain

1

2

d

dt
‖v‖2 � −

(
a + inf ūx

2

)
‖v‖2 . (2.19)

If the eigenvalues of the matrix Au + BuK are chosen such that 2a + inf ūx � 0, we obtain that
(d/dt)V(v(t)) � 0, which proves that V is a Lyapunov function for the system and therefore the zero
solution is stable.

Using controls (2.12), we can therefore stabilize the non-trivial steady state ū of the original
equation. �

Using Proposition 1, we can conclude that in order to stabilize the steady state ū of equation (1.4),
we should solve the PDE

ut + νuxxxx + μH[uxxx] + δuxxx + uxx + uux =
m∑

i=1

bi(x)Ki·
(
zu

u − zū
u

)
. (2.20)

Remark 1 Since the solutions to the gKS equation are taken to be periodic with mean zero, it follows
that inf ūx < 0. Therefore, the constant a in (2.19) must be chosen large enough so that a + inf ūx/2 is
positive. In the case when δ > 0, we also need to account for the fact that the amplitude of the solutions
(and therefore the absolute value of their derivatives) grows with δ (Kawahara & Toh, 1998; Akrivis
et al., 2012). Further details can be found in Section 3.
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Remark 2 The above proposition is clearly valid for the case when ū = 0, in which case the controls
are fi(t) = Ki·zu

u, as presented in Armaou & Christofides (2000a), Christofides (1998) and Christofides
& Armaou (2000). In the case when ū is a travelling wave, the result follows using a time-dependent zū.
See Section 3 and in particular equation (3.6).

Remark 3 From estimates (2.1), it follows that the value inf |ūx| is finite and therefore we can con-
clude (2.19).

Remark 4 Armaou & Christofides (2000a), Christofides (1998) and Christofides & Armaou (2000)
argued that due to the multiplicity of the eigenvalues of the KS equation being � 4, one would only need
five controls to stabilize the zero solution of that equation. The same holds in our case: the multiplicity
of the eigenvalues of the linear operator in (2.15) is also �4, but numerical results suggest that we need
to use m = 2l + 1 controls, or at best m = 2l − 1 controls, see Fig. 2 and the discussion below.

Remark 5 The fact that we are separating the system between stable and unstable modes implies that
the matrix Bu is square (Bu ∈ R

m×m), and using bi(x) = δ(x − xi) means that Bu has full rank. It follows
that the Kalman rank condition (Zabczyk, 1992) is automatically verified and the matrix K needed for
the stabilization will always exist.

2.1 Robustness of controls

A natural and important question is whether the proposed control methodology is robust with respect to
changes (or uncertainty) in the parameters ν, μ and δ that appear in the equation. The robustness of our
method can be proved rigorously using techniques from control theory, e.g. Kautsky & Nichols (1985,
Theorem 6), and we take this up next.

Proposition 2 Let λi, i = 1, . . . , N be the eigenvalues of the matrix C appearing in (2.16), and X be
the matrix of eigenvectors of C and let κ(·) denote its condition number. Then, we have

‖K‖2 �
(‖A‖2 + maxj

(|λj|
)
κ(X )

)
σm(B)

, (2.21)

where σm(B) is the mth smallest singular value of B, which is defined in equations (2.8) and (2.9), and
the solution zv to equation (2.16) satisfies

‖zv(t)‖ � κ(X ) max
j

(∣∣eλj t
∣∣) ‖zv(0)‖ . (2.22)

Proposition 3 If the feedback matrix K is such that equation (2.16) is exponentially stable, then the
perturbed closed-loop system matrix A + BK + Δ remains stable for all disturbances Δ which satisfy

‖Δ‖2 < min
s=iω

σN (sI − (A + BK)) = : ζ(K), (2.23)

where

ζ(K) � min
j

Re

( −λj

κ(X )

)
,

and Re(·) denotes the real part.

In particular, if there is an error in the estimation of the parameters ν and μ, then the feedback
matrix K will still stabilize the zero solution as long as the error in the parameter estimation is bounded
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Snapshots of the time evolution of the stabilized travelling wave solution in Fig. 5(b) using m = 19 controls instead of
m = 21 at different times. The full line is the controlled solution, dashed lines are the desired travelling wave and the dots represent
the controls and their intensity. (a) t = 1, (b) t = 3, (c) t = 5, (d) t = 7, (e) t = 13, (f) t = 20.

by ζ(K). We have studied the robustness of the controls for stabilizing steady states and travelling waves
by combining Propositions 2 and 3. We now present a summary of our results.

Variations in δ. As seen from the dispersion relation (1.6), variations in δ do not affect the stability
of the solutions and consequently they do not affect the matrix K. This implies that the matrix Δ is
zero, and the zero solution to system (2.16) is still stable. In the case when we are interested in stabi-
lizing travelling waves, we need to take into account the fact that the amplitude of the travelling waves
increases with δ; see, for example, Kawahara & Toh (1998, Fig. 1). Hence, if we overestimate the value
of inf ūx and take this into account when choosing the new eigenvalues, the stabilized solution should
remain close to the desired travelling wave as demonstrated by our numerical experiments in Fig. 3.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Snapshots of the time evolution of a stabilized travelling wave solution for μ = 0, ν = 0.01 and assuming uncertainty in
the parameter δ. The dashed lines is the desired travelling wave (which is the correct solution for δ = 0.03) and the full lines is
the controlled solution assuming δ = 0.04. (a) t = 5, (b) t = 20, (c) t = 30, (d) t = 60, (e) t = 90, (f) t = 200.

Variations in ν and μ. As seen from (1.6) variations in ν and μ can affect the stability of the solutions
and the number of unstable modes. An increase in unstable modes in turn affects the number of controls
needed since our theoretical results support that we need the same number of controls as unstable modes
as stated in Remark 4. However, we have performed numerical experiments (see Fig. 2) that show that
using two less controls than predicted theoretically does not affect the stability of the solutions.

Now we consider the case where we have some uncertainty of amplitude ε1 and ε2 in the values of
ν and μ, respectively,

ut = −(ν + ε1)uxxxx − (μ + ε2)H[uxxx] − uxx − uux +
m∑

i=1

bi(x)Ki·
(
zu − zū

)
. (2.24)
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The controls have been chosen so that the solution to the equation is stabilized when ε1 = ε2 = 0.
Multiplying (2.24) by u, integrating by parts and using Young’s inequality, we find

1

2

d

dt
‖u(·, t)‖2 � −κ‖u‖2 − ε1‖uxx‖2 + ε2

2

(‖ux‖2 + ‖uxx‖2
)

,

where κ = a + inf ūx/2 is a constant. On the other hand, the perturbation −ε1uxxxx − ε2H[uxxx] can be
discretized and written as

Δ = diag(0, −ε1k4 + ε2k3, −ε1k4 + ε2k3), (2.25)

k = 1, . . . , N/2, and it follows that its Fröbenius norm is given by

‖Δ‖2
2 = 2

N/2∑
k=1

k6 (−ε1k + ε2)
2 = 2

N/2∑
k=1

k6
(
ε2

1k2 − 2ε1ε2k + ε2
2

)
. (2.26)

For stability, we need (2.26) to satisfy estimate (2.23), see Proposition 3. Therefore, we have the fol-
lowing proposition.

Proposition 4 Let K be a matrix such that Au + BuK has the prescribed (negative real part) eigenval-
ues, λ1, . . . , λm, with m = 2l + 1, and let

BK =
[

BuK 0
BsK 0

]
.

Then the perturbed system A + BK + Δ, where Δ is given by (2.25), is stable, provided that

(
2

N/2∑
k=1

k6
(
ε2

1k2 − 2ε1ε2k + ε2
2

))1/2

� min
s=iω

σN (sI − (A + BK)) .

We have performed numerical experiments to test the robustness of the controls, and in particular
we focussed on robustness with respect to the parameters δ and ν. Numerical results are presented in
Figs 2–4 (results in these figures as well as in Fig. 5 are shown in the original unscaled domain of length
L, see (1.2) for the transformations). In Fig. 2, we use the same parameter values as in Fig. 5(b), but we
use 19 controls instead of 21, i.e. two controls less than the number of unstable eigenvalues. The dashed
curve is the desired travelling wave solution and the solid curve (red online) is the controlled solution
with 19 controls. We conclude, therefore, that our control methodology is robust with respect to a slight
decrease in the number of controls. Note, however, that the number of controls cannot be significantly
smaller than the number of unstable eigenvalues—for example, running the same numerical experiment
with 17 controls did not yield satisfactory results in the sense that wavy perturbations observed in panels
(b) and (c) were not suppressed.

A robustness test with respect to changes in ν (with δ = μ = 0) is depicted in Fig. 4. We begin with
an unstable travelling wave at ν = 0.013 and wish to control it but by solving the KS equation with a
reduced value of ν = 0.01, i.e. we impose an uncertainty in the value of the parameter ν or equivalently
in the shape of the desired solution. The results again show robust behaviour with the two solutions being
almost indistinguishable. Finally, in Fig. 3 we present robustness experiments for μ = 0, ν = 0.01 and
changes in the dispersion parameter δ from 0.03 to 0.04, with equally accurate performance as before.
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Fig. 4. Snapshots of the time evolution of a stabilized travelling wave solution for δ = μ = 0 and assuming uncertainty in the
parameter ν. The dashed lines is the desired travelling wave (which is the correct solution for ν = 0.013 ⇔ L ≈ 55) and the full
lines is the controlled solution assuming ν = 0.01 ⇔ L ≈ 62. (a) t = 5, (b) t = 20, (c) t = 30, (d) t = 60, (e) t = 90, (f) t = 200.

3. Numerical results

Section 2 was devoted to proving rigorously that steady states and steady-state travelling wave solu-
tions of the gKS equation can be stabilized using linear feedback controls. The number of controls is
predicted to be at least as large as the number of linearly unstable modes, and robustness with respect to
uncertainty in the parameters ν and δ was also proved. In this section, we implement the linear feedback
controls numerically and undertake an extensive computational study of the stabilization and control in
practical situations.

3.1 Computation of non-uniform steady states and travelling waves

One of the main objectives of the present work is the stabilization of unstable solutions of the gKS
equation. To obtain steady-state solutions ū(x) (in the absence of dispersion), we need to solve the
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equation
νūxxxx + μH[ūxxx] + ūxx + ūūx = 0, (3.1)

in the interval [0, 2π ], subject to periodic boundary conditions. Travelling waves of speed c are found
by looking for solutions of the form ū(x, t) = U(x − ct) = U(ξ) and solving

− cU ′ + νU ′′′′ + μH[U ′′′]+ δU ′′′ + U ′′ + UU ′ = 0, (3.2)

subject to periodic boundary conditions, where primes denote differentiation with respect to ξ . We note
that equation (3.1) is a particular case of (3.2). Expressing the solutions in Fourier series

U(ξ) =
∞∑

n=1

Us
n sin(nξ) + Uc

n cos(nξ), (3.3)

and substituting into (3.1) and (3.2), we obtain an infinite system of non-linear algebraic equations for
the coefficients Us

n, Uc
n , n = 1, . . . , ∞, or for the coefficients and the velocity c, in the case of travelling

waves. The resulting system of equations for steady states is(
νn4 − μn3 − n2

)
Uc

n + gc
n = 0, n = 1, . . . , ∞, (3.4a)(

νn4 − μn3 − n2
)
Us

n + gs
n = 0, n = 1, . . . , ∞. (3.4b)

For travelling waves we can assume, without loss of generality due to translation invariance, that Us
1 = 0,

to obtain

−(cn + δn3
)
Us

n + (νn4 − μn3 − n2
)
Uc

n + gc
n = 0, n = 1, . . . , ∞, (3.5a)(

cn + δn3
)
Uc

n + (νn4 − μn3 − n2
)
Us

n + gs
n = 0, n = 2, . . . , ∞, (3.5b)

(c + δ)Uc
1 + gs

1 = 0. (3.5c)

The systems were truncated and solved using a non-linear solver (e.g. Matlab’s fsolve) to find solutions
to system (3.4) by first setting μ = 0 and carrying out a numerical continuation on ν, and secondly by
fixing the desired value of ν and varying μ. Additional computations were done using the continuation
software AUTO-07p (Doedel & Oldman, 2009). For travelling waves, we used continuation on ν, μ

and δ. Without loss of generality, we also impose c > 0: if U(x − ct) is a solution of (3.2) with c < 0,
then −U(−x − (−c)t) is also a solution with c > 0.

Given the Fourier coefficients and the velocity of a travelling wave, we can write the solution of the
KS equation as

ū(x, t) = U(x − ct) =
∞∑

n=1

(
Us

n cos(nct) + Uc
n sin(nct)

)
sin(nx)

+
∞∑

n=1

(
Uc

n cos(nct) − Us
n sin(nct)

)
cos(nx). (3.6)

Our computational results are presented in the bifurcation diagram in Fig. 1 that depicts the variation
of the L2-norm with ν of the steady states and travelling wave solutions of the gKS equation (1.4) in
the absence of dispersion (δ = 0). Panels (a)–(d) correspond to μ = 0, 0.2, 0.5, 1.0; steady states are
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plotted with solid curves (blue online) and travelling waves with dashed curves (red dashed online).
We observe that the presence of the Hilbert transform increases the value of ν for which instability
arises (Tseluiko & Papageorgiou, 2006), but it does not change the shape of the bifurcation diagram.
This is because the Hilbert transform term acts as a negative diffusion, see equation (1.6), and therefore
its presence acts to shift the bifurcation diagram to higher ν, i.e. lower α = 4/ν as seen in the figure.
We emphasize the fact that the bifurcation diagrams in Fig. 1 are not complete and we expect additional
unstable branches, in analogy with known results for the KS equation (Kevrekidis et al., 1990). This
is not a restriction here, since we are interested in demonstrating the stabilization of unstable steady or
travelling wave solutions, rather than the stabilization of all such branches. For the branches computed
here, we analysed their stability numerically by adding a small perturbation to the initial condition
(about 10% or smaller of the amplitude of the steady-state solution) and studied the time evolution to
ensure that we identified unstable steady solutions to be stabilized using linear feedback controls.

3.2 Time-dependent simulations and feedback control

We used a Galerkin truncation (Trefethen, 2000) for the spatial discretization of the PDE, with the
number of modes varying between 32, 64 and 128 depending on the number of unstable modes.
Time integration is carried out using second-order implicit–explicit backward differentiation formulae
schemes (Akrivis et al., 2011, 2012).

To construct the matrix K necessary for the stabilization of the steady states, we used Matlab’s
command place. Given the matrices A and B, we sought a matrix K such that the eigenvalues of the
matrix A + BK were:

• −1 if it is the eigenvalue corresponding to the constant eigenfunction 1/
√

2π ;

• ±λ if λ is an eigenvalue of A with negative/positive real part;

• −10δλ instead of −λ if δ > 0. We do this because the amplitude of the solutions grows with
δ—Kawahara & Toh (1998), so we need to account for this when building the controls.

We begin by presenting numerical results in the absence of electric fields and dispersion (μ = 0, δ = 0)
and for two values of ν = 0.2 and ν = 0.4 (note that the number of unstable eigenvalues is 2l + 1, where
l = [ν−1/2], where [·] denotes the integer part). The number of controls used is 5 and 3, respectively, i.e.
equal to 2l + 1; these are placed equidistantly and the initial condition is

u0(x) = 1√
2π

+ 1√
π

5∑
n=1

(sin(nx) + cos(nx)) .

The results are presented in Fig. 6 and clearly show that the system is controlled to the zero solution long
before the final computed time of t = 5; our results are also in good agreement with those in Christofides
& Armaou (2000).

Results analogous to those presented in Fig. 6 were found regarding the stabilization of the zero
solution to the KS equation in the presence of an electric field. In what follows, we use the following
initial condition unless stated otherwise:

u0(x) = 1√
π

(sin(x) + cos(x)) . (3.7)
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(a) (b)

(c) (d)

Fig. 5. Solution to the KS equation for ν = 0.01 (a) with no controls, and controlled to (b) one solitary pulse, (c) two solitary
pulses and (d) three solitary pulses.

Note that the number of unstable modes is 2l + 1, where l = [(μ +
√

μ2 + 4ν)/2ν]: see Proposi-
tion 1 and this is the number of controls used in the numerical experiments. The numerical results for
ν = 0.2 and μ = 0.5 with five equidistant controls are shown in Fig. 7, where we again clearly observe
stabilization to the zero solution.

Having shown the stabilization of zero states for relatively small values of ν, we turn next to
the stabilization of non-trivial steady states of the gKS equation (1.4), in the absence of dispersion.
We illustrate the feasibility of our control methodology for two typical cases that yield unstable steady
states as computed in the bifurcation diagram of Fig. 1. In the first case, we use ν = 0.1115, μ = 0,
and in the second ν = 0.35, μ = 0.3. In both cases, we used 2l + 1 equidistant controls, i.e. the same
as the number of unstable eigenvalues of the system. The results of our numerical experiments are pre-
sented in Figs 8 and 9, respectively. When ν = 0.1115, μ = 0, i.e. α ≈ 35.87, both stable and unstable
steady states coexist and the solution of the PDE with a given initial condition, e.g. (3.7), evolves to
the most attracting stable state. This is shown in Fig. 8(a) where it is seen that the solution evolves
to a stable bimodal steady state, marked with a circle in Fig. 10. We are interested in using feedback
control to stabilize one of the coexisting unstable steady states, and the results of achieving this are
presented in Fig. 8(b,c); Fig. 8(b) shows the evolution of the initial condition (3.7) using 2l + 1 = 5
equidistant controls and stabilization of the steady state marked with a + in Fig. 10 is achieved rel-
atively quickly after ∼ 2 time units. The evolution of the amplitudes of the five applied controls is
shown in Fig. 8(c), and we see that the required energy tends to values very close to zero as time
evolves. Note that the control amplitudes remain small and close to zero once the unstable controlled
state is reached, but they cannot be identically zero due to the unstable nature of the controlled solu-
tion. Figure 9 shows the results for ν = 0.35, μ = 0.3. The solution we choose to stabilize at these
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(a) (b)

Fig. 6. Spatiotemporal evolution showing stabilization to the zero solution of the KS equation for (a) ν = 0.2 (α = 20), and (b)
ν = 0.4 (α = 10).

Fig. 7. Spatiotemporal evolution showing stabilization to the zero solution of the KS equation in the presence of an electric field
with μ = 0.5 and ν = 0.2 (α = 20).

values is an unstable bimodal steady state and Fig. 9 shows how it is stabilized using 2l + 1 = 5
controls.

Our last task is to stabilize travelling wave solutions of the equation with and without dispersion and
electric field. Figure 5 illustrates the stabilization of three different travelling wave solutions to the KS
equation (1.4) with no dispersion or electric field (δ = μ = 0) and for a small value of ν (ν = 0.01) which
corresponds to a very large domain (L = 20π ≈ 62) that enables the existence of single pulse travelling
waves as well as two- or three-pulse bound states. However, due to the small value of ν, when solving
the PDE, the initial condition evolves to a solution that exhibits the spatiotemporal chaotic behaviour
that is characteristic of this equation. Figure 5(a) shows this chaotic behaviour while Figure 5(b–d) show
the evolution of the controlled solution to 1, 2 and 3 pulses, respectively. We used m = 21 equidistant
controls in each case.

The control algorithms presented and analysed here also apply to the gKS equation with δ > 0. The
findings are similar and for brevity we do not present them here. Detailed results and animations can be
found in Gomes et al. (2015) and its supplemental material.

4. Optimal control for the gKS equation

In practical applications, it is important to apply controls that minimize the cost associated with their
use, and this leads to considerations of an optimal control problem based on some measure of the energy
cost of the controls. In what follows, we consider the energy of the controls given by their L2-norm.
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(a) (b)

(c)

Fig. 8. Control of non-uniform solutions of the KS equation for ν = 0.1115; (a) spatiotemporal evolution without controls (the
solution belongs to branch 1 of the bifurcation diagram in Fig. 1(a)); (b) controlled to the steady state in branch 4 of the bifurcation
diagram in Fig. 1(a); (c) evolution of the amplitude of the five applied controls.

Fig. 9. Spatiotemporal evolution of the stabilized steady state of the KS equation for ν = 0.35 (α ≈ 11.43), μ = 0.3.
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Fig. 10. Zoom in of Figur 1(a) with ν ∈ [0.1, 1]. Branches are labelled as used in Tables 4–6 in Section 4.2: Branch 1–unimodal
steady states; branch 2—bimodal steady states; branch 3—trimodal steady states; branch 4—tetramodal steady states. The cross
and open circle symbols indicate the steady states (stable and unstable, respectively) that are shown in the Fig. 8.

Since the controls decay to almost zero relatively fast in time (see Fig. 9, for instance), we expect that
minimizing their L2-norm should decrease their amplitude.

The objective, then, is to achieve control of the zero solution or other unstable steady-state or travel-
ling wave solutions of the gKS, and to do this while spending the least energy possible. To that end, we
consider a cost functional that includes the distance between the solution and the desired state as well as
the L2-norm of the controls used. Different distance norms ‖u − ū‖ can be used and in our computations
we employ the L2-, H1- or H2-norms. The reason we consider different norms is that the solutions are
expected to belong to H2(0, 2π), and we wish to analyse the effects of the regularity and the oscillations
of the solutions on the cost functional.

In flow control, it is possible to use point actuator functions (Christofides, 2000; Christofides
& Armaou, 2000; Antoniades & Christofides, 2001; Dubljevic, 2010), implying that we can take
bi(x) = δ(x − xi). Assuming that the cost of placing a control at xi is the same for all actuator posi-
tions x ∈ (0, 2π), it makes sense to seek a solution that minimizes the norms of the control functions fi(t).
Since the delta functions in the feedback controls are not L2 functions, the standard results of constrained
optimization for PDEs (Lions, 1971; Troltzsch, 2010) do not apply. Because of this hurdle, we will first
prove existence of optimal controls for the case of general controls, f (x, t) ∈ L2(0, T ; L̇2(0, 2π)), i.e.
mean zero spatially periodic controls in L2(0, 2π) that are also L2 functions of time, and focus on the
case of feedback controls where we can apply standard optimization techniques.

We consider cost functionals of the form

C(u, F) = 1

2

∫ T

0

∥∥u(·, t) − ū
∥∥2

dt + 1

2

∥∥u(·, T) − ū
∥∥2 + γ

2

∫ T

0

m∑
i=1

fi(t)
2 dt, (4.1)

where ū is the desired steady state, F = [f1 · · · fm] and the norm (e.g. L2, H1 or H2) is left unspecified.
The choice of the parameter γ depends on how large we are willing to allow the norm of the controls
to become: if we need to maintain a small norm of the controls while allowing the solution to be
considerably different from the steady state, then we use γ > 1. If, on the other hand, we have a very
large amount of energy to spend on the controls and want the solution to be as close as possible to
the desired steady state, then we choose γ � 1 so that the weight of the controls does not influence
significantly the value of the cost functional. The terminal time term 1

2‖u(·, T) − ū‖2 is introduced to
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provide us with a condition for the final-value problem obtained when solving the adjoint equation for
the optimization problem. Before proceeding to the optimization problem, it is useful to introduce the
following definitions.

Definition 1 The space of admissible controls, Fad, is a bounded convex subset of L2(0, T ; L̇2(0, 2π)).

Definition 2 A control f ∗ ∈ Fad is said to be optimal, and u∗ = u(f ∗) is the associated optimal state, if
C(u(f ∗), ū, f ∗) � C(u(f ), ū, f ) ∀f ∈ Fad.

Our numerical experiments presented in Section 4.2 suggest that, given an initial condition and a
desired steady state, there exists at least one optimal placement of the control actuators for every value
of ν and μ. However, here we prove existence of an optimal control in the case of an open-loop control
using the quadratic cost functional

C (u, f ) = 1

2

∫ T

0

∥∥u(·, t) − ū
∥∥2

L2 dt + 1

2

∥∥u(·, T) − ū
∥∥2

L2 + γ

2

∫ T

0

∫ 2π

0
f (x, t)2 dx dt. (4.2)

The point actuated controls in the form of delta functions are not in L2 and hence an analogous proof in
this case requires distribution theory which is beyond the scope of the present study. The optimization
problem is

minimize C (u, f ) (4.3a)

subject to ut + νuxxxx + uxx + uux = f (x, t), (4.3b)

u(x, 0) = u0(x) ∈ Ḣ2
p (0, 2π), (4.3c)

∂ ju

∂xj
(x + 2π) = ∂ ju

∂xj
(x), j = 0, 1, 2, 3, (4.3d)

f ∈ Fad. (4.3e)

The main result of this section is the following theorem.

Theorem 1 Assume that Fad ⊂ L2(0, T ; L̇2(0, 2π)). Then (4.3) has at least one optimal control f ∗ with
associated optimal state u∗.

Remark 6 Since the Hilbert transform and third derivative terms are linear functionals of u, Theorem 1
can be easily generalized to the case when μ, δ > 0.

Remark 7 The presence of the Burgers non-linearity in the PDE makes the optimization problem no
longer convex. Consequently, we do not expect the solution of the optimal control problem to be unique.

The non-linearity in our problem, defined by N (u) = uux, is twice Fréchet differentiable with respect
to u but is neither an increasing functional of u, nor is it globally Lipschitz continuous. Furthermore, it
depends explicitly on the derivative ux. Consequently, the well-developed theory of optimal control for
systems of reaction–diffusion equations (Lions, 1971; Troltzsch, 2010) does not apply to our problem;
see equation (4.3).
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Proof of Theorem 1. Let X = H1(0, T ; Ḣ2
p (0, 2π)) × Fad and e(·, ·) be a functional defined in X by

e(u, f ) =
[

ut + νuxxxx + uxx + uux − f

u(·, 0) − u0(x)

]
. (4.4)

Our optimization problem is that of minimizing the cost functional C subject to e(u, f ) = 0, periodic
boundary conditions and (u, f ) ∈ X ; see equation (4.3).

Let (u, f ) ∈ X satisfy e(u, f ) = 0. Since C is a function of the sum of the norms of u and f , it is clear
that C is non-negative and

C(u, f ) → ∞ for ‖(u, f )‖X → ∞. (4.5)

Therefore, there exists a constant c � 0 such that c = infe(u,f )=0 C(u, f ) = limn→∞ C(un, f n), where
(un, f n) is a minimizing sequence in X , which exists due to the reflexivity of L2. From equation (4.5), we
can conclude that {(un, f n)}n∈N is bounded, and therefore there exists (u∗, f ∗) ∈ X such that (un, f n) ⇀

(u∗, f ∗) for n → ∞. This means that all the linear functionals of un and f n, and in particular their deriva-
tives, also converge weakly to the same functionals of u∗ and f ∗ in the appropriate space. Hence, we
only need to prove the convergence of the non-linearity.

Following an argument similar to that in Volkwein (2000) for the Burgers equation, we note that
since, for every t ∈ [0, T], we have u∗(·, t) ∈ Ḣ2

p (0, 2π); then u∗(·, t) ∈ C([0, 2π ]) and therefore if ϕ ∈ X ,
(u∗ϕ)(·, t) ∈ L2([0, 2π ]). Hence, u∗ϕ ∈ H1(0, T ; L2(0, 2π)) and

∫ T

0

∫ 2π

0

(
un − u∗)

xu∗ϕ dx dt −→n→∞ 0 ∀ϕ ∈ H1
(
0, T ; Ḣ2

p (0, 2π)
)
. (4.6)

Finally, from the estimates (2.1) we know that ‖un
x‖ is bounded, and since H2(Ω) is compactly

embedded in L2(Ω), we deduce that

∫ T

0

∫ 2π

0

(
un − u∗)un

xϕ dx dt � ‖un − u∗‖‖un
x‖‖ϕ‖L∞(0,2π) −→n→∞ 0 ∀ϕ ∈ Ḣ2

p (0, 2π). (4.7)

Hence, by adding and subtracting appropriate terms we have

∫ T

0

∫ 2π

0

(
unun

x − u∗u∗
x

)
ϕ dx dt

=
∫ 2π

0

(
un − u∗)un

xϕ + (un − u∗)
xu∗ϕ dx −→n→∞ 0 ∀ϕ ∈ Ḣ2

p (0, 2π), (4.8)

and therefore the non-linearity unun
x is weakly convergent to u∗u∗

x in X . Now, noting that u∗ and u∗
x are

continuous in [0, 2π ] × [0, T], we observe that u∗ satisfies the periodic boundary conditions and the
initial condition. If we now consider ϕ ∈ X satisfying ϕ(x, T) = 0, and use the weak convergence of the
derivatives of u and equation (4.8), we conclude that (u∗, f ∗) is a weak solution of the state equation.
The optimality of the pair (u∗, f ∗) follows from the weak lower semi-continuity of C (cf. proof of
Theorem 4.15 in Troltzsch (2010)). �
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4.1 Algorithm and numerical experiments

We note that the dependence of the cost functional on the positions xi, i = 1, . . . , m is in the controls,
since the matrix K necessary to define them depends on the positions chosen. However, when defining
the Lagrangian, we will assume that only the functions bi(x) depend on xi, and treat the controls fi(t)
as if they were independent of the positions xi. Under this assumption, we are able to obtain very
satisfactory results, as evidenced by the results presented in the tables below. We begin by introducing
the Lagrangian

L (u, p, [x1, x2, . . . , xm]	
)= 1

2

∫ T

0

∥∥u(·, t) − ū
∥∥2

dt + 1

2

∥∥u(·, T) − ū
∥∥2 + γ

2

∫ T

0

m∑
i=1

fi(t)
2 dt

−
∫ T

0

∫ 2π

0
(ut + νuxxxx + uxx + uux) p(x, t) dx dt

+
∫ T

0

∫ 2π

0

m∑
i=1

δ(x − xi)i fi(t)p(x, t) dx dt. (4.9)

Integrating by parts in space and time and computing the Fréchet derivative with respect to u (with test
functions h(x, t) satisfying h(x, 0) = 0), we obtain the adjoint equation⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−pt + νpxxxx + pxx − upx =
m∑

i=1

δ(x − xi)Ki·zp + u − ū,

p(x, T) = u(x, T),

∂ jp

∂xj
(x + 2π) = ∂ jp

∂xj
(x),

(4.10)

where x ∈ [0, 2π ] and t ∈ [0, T]. This PDE is backwards in time but is well-posed since it is a final-value
problem. To solve it, we obtain the discretized ODE system −żp =Azp + Gadj(zp, zu) + zu − zū, where
the elements of Gadj(zp, zu) are given by

gs
n,adj =

1

2
√

π

∑
j+k=n

k
(
us

j p
s
k − uc

j pc
k

)+ 1

2
√

π

∑
j−k=n

(
k
(
us

j p
s
k + uc

j pc
k

)− j
(
us

kps
j + uc

kpc
j

))
,

gc
n,adj =

1

2
√

π

∑
j+k=n

k
(
uc

j ps
k + us

j p
c
k

)+ 1

2
√

π

∑
j−k=n

(
k
(
uc

j ps
k − us

j p
c
k

)+ j
(
uc

kps
j − us

kpc
j

))
,

and we have used the Fourier series representation p(x, t) = pc
0/

√
2π +∑∞

n=1 ps
n(t)
(
sin(nx)/

√
π
)+∑∞

n=1 pc
n(t)
(
cos(nx)/

√
π
)
.

Differentiating with respect to the positions of the control actuators, we also obtain a descent direc-
tion using the variational inequality, or first variation∫ T

0
[ f1(t)px(x̄1, t) · · · fm(t)px(x̄m, t)]	 · (x − x̄) dt � 0 ∀x = [x1 · · · xm]	, (4.11)

where x̄ = [x̄1, . . . , x̄m] are the optimal positions. To proceed with the optimization, we will use a
gradient descent method, see Troltzsch (2010, Section 5.9), Borzi & Schulz (2012), and consider
Fad = (0, 2π)m. The algorithm is as follows.
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Fig. 11. Algorithm for optimal control of the KS equation.

Note that as mentioned earlier we consider the following three different cost functionals:

C1 (u, ū, f ) = 1

2

∫ T

0

∥∥u(·, t) − ū
∥∥2

dt + 1

2

∥∥u(·, T) − ū
∥∥2 + γ

2

m∑
i=1

∥∥ fi(t)
∥∥

L2(0,T)
, (4.12)

C2 (u, ū, f ) = 1

2

∫ T

0

(∥∥u(·, t) − ū
∥∥2 + ∥∥ux(·, t) − ūx

∥∥2
)

dt

+ 1

2

(∥∥u(·, T) − ū
∥∥2 + ∥∥ux(·, T) − ūx

∥∥2
)

+ γ

2

m∑
i=1

∥∥ fi(t)
∥∥

L2(0,T)
, (4.13)

C3 (u, ū, f ) = 1

2

∫ T

0

(∥∥u(·, t) − ū
∥∥2 + ∥∥ux(·, t) − ūx

∥∥2 + ∥∥uxx(·, t) − ūxx

∥∥2
)

dt

+ 1

2

(∥∥u(·, T) − ū
∥∥2 + ∥∥ux(·, T) − ūx

∥∥2 + ∥∥uxx(·, T) − ūxx

∥∥2
)

+ γ

2

m∑
i=1

∥∥ fi(t)
∥∥

L2(0,T)
.

(4.14)
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Table 1 Optimal positions and value of the cost functional considered in the L2-norm for different
values of ν when stabilizing the zero solution to the KS equation

ν Cost C1 Cost of controls Iterations Optimal positions

0.9 8.9647 0.5592 3
0.8 6.5012 1.1274 6
0.7 5.5760 1.7204 4
0.6 5.2803 2.3018 3
0.5 5.2230 2.8204 5
0.4 5.9339 3.8404 5
0.3 6.2152 3.9813 2
0.2 6.3127 4.5261 2
0.1 7.1652 5.5759 2

4.2 Numerical experiments

Computations were carried out using the algorithm presented in Fig. 11 for various values of ν and μ.
The number of controls used was equal to the number of unstable eigenvalues, and m equidistant points
were used as an initial guess for the position of the controls. In all the computations the initial condition
is u0(x) = sin(x)/

√
π + cos(x)/

√
π , and the final time is T = 10. Numerical results are presented in

Tables 1–3 for the stabilization of the zero solution of the KS equation, and in Tables 4–6 for the
stabilization on non-trivial unstable steady states as computed in the bifurcation diagram of Fig. 1(a).
Each entry in Tables 1–3 contains the value of ν, the value of the cost functional (C1, C2 and C3 for
Tables 1–3, respectively), the cost of the controls

∑m
i=1 ‖fi(t)‖L2(0,T), the number of iterations required

to obtain an optimal state and in the last column the spatial distribution of the controls over the domain
[0, 2π ]—a heavy dot is placed where a control acts. Tables 4–6 are presented in an analogous manner,
with the difference that the first column provides information on the unstable solution that is being
controlled, and in particular the branch on Fig. 1(a) where the solution was taken from is stated along
with the value of ν. As the results indicate, several distinct unstable solutions at a given value of ν are
controlled (e.g. for ν = 0.1, three solutions are stabilized coming from branches 1, 3 and 4, respectively).

As expected we observe that the value of the cost functionals C1, C2, C3 given by (4.12–4.14)
increases as ν decreases. Furthermore, the value of the cost functional also increases as we increase the
desired regularity of the solution from L2- to H1- to H2-norms. Comparing the results and in particular
the positions of the optimal controls for the three different cost functionals in Tables 1–3, we can con-
clude that, for the stabilization of the zero steady states, the optimal control problem is more robust (in
the sense that the optimal positions of the controls do not change much as ν is reduced) when the L2

cost functional C1 is used.
Turning now to the results of Tables 4–6 that deal with the stabilization of unstable non-uniform

steady states, we observe once again that there is an increase in the cost functionals as ν decreases. We
also observe that in this case (and in contrast to the stabilization of the zero solution) the higher-order
norms give optimal controls that are more robust, with respect to changing ν, in comparison to utilizing
the L2 cost functional.

Similar numerical experiments were performed for the optimal control problem for the KS equation
in the presence of an electric field, μ > 0. The results are quite similar to the ones already presented in
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Table 2 Optimal positions and value of the cost functional considered in the H1-norm for different
values of ν when stabilizing the zero solution to the KS equation

ν Cost C2 Cost of controls Iterations Optimal positions

0.9 17.6354 0.9698 3
0.8 12.2553 1.5486 6
0.7 10.8270 2.0016 2
0.6 10.2340 4.0181 6
0.5 10.1517 4.5407 4
0.4 9.3345 4.2298 2
0.3 10.9671 4.8110 2
0.2 10.7154 5.5308 3
0.1 9.7088 5.6463 1

Table 3 Optimal positions and value of the cost functional considered in the H2-norm for different
values of ν when stabilizing the zero solution to the KS equation

ν Cost C3 Cost of controls Iterations Optimal positions

0.9 27.2098 1.1313 3
0.8 19.3431 2.3490 5
0.7 15.8522 2.5815 4
0.6 14.0865 3.3384 5
0.5 17.0462 6.4166 1
0.4 20.7720 8.3217 1
0.3 14.4393 5.3865 3
0.2 21.5856 6.1456 1
0.1 21.1636 5.6463 1

Table 4 Optimal positions and value of the cost functional considered in the L2-norm for different
values of ν when stabilizing some of the non-trivial steady states from the bifurcation diagram 1(a)

ν Cost C1 Cost of controls Iterations Optimal positions

0.3 14.3164 9.7419 5
0.2, br.1 30.0588 21.8691 1
0.2, br.3 24.0520 16.2832 2
0.1, br.1 28.5591 32.9859 2
0.1, br.3 37.8902 32.4264 1
0.1, br.4 62.3916 51.6820 4
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Table 5 Optimal positions and value of the cost functional considered in the H1-norm for different
values of ν when stabilizing some of the non-trivial steady states from the bifurcation diagram 1(a)

ν Cost C2 Cost of controls Iterations Optimal positions

0.3 24.6922 9.6582 3
0.2, br.1 53.7672 17.9929 2
0.2, br.3 52.2630 15.4089 3
0.1, br1 87.1636 35.2169 1
0.1, br.3 83.9787 33.7581 2
0.1, br.4 171.6040 62.1381 2

Table 6 Optimal positions and value of the cost functional considered in the H2-norm for different
values of ν when stabilizing some of the non-trivial steady states from the bifurcation diagram 1(a)

ν Cost C3 Cost of controls Iterations Optimal positions

0.3 54.5441 13.8436 2
0.2, br.1 262.7363 21.1679 3
0.2, br.3 266.0515 32.4603 3
0.1, br.1 702.4697 35.2169 1
0.1, br.3 745.6007 32.4264 1
0.1, br.4 1384.6689 63.1272 2

this section and we omit providing additional graphs and tables. However, we summarize the conclu-
sions drawn from the non-zero electric field numerical experiments as follows: with few exceptions, an
increase in the intensity of the electric field parameter μ increases the cost of the controls. In addition,
it is found that the optimal controls for stabilizing zero steady states are more robust, with respect to
changes in μ, when using the L2 cost functional. Similarly, when stabilizing non-trivial steady states,
more robust optimal positions for the controls arise when the H1 and H2 cost functionals are used. Both
of these findings are analogous to those for the non-electrified control problem.

A more detailed comparison of the energy required to control different solutions using equidistant
actuators or optimally computed positions as described above is provided in Figs. 12 and 13. Figure 12
shows the stabilization of a non-uniform steady state for the KS equation, ν = 0.3 and μ = 0, while
Fig. 13 shows analogous results but for the electrified problem with parameters ν = 0.5 and μ = 0.4 (in
both cases dispersion is absent, δ = 0). Figure 13(a) shows the spatiotemporal evolution to the desired
state in the presence of controls, while Fig. 13(b,c) depict the evolution of the control amplitudes (there
are three controls in each case) for equidistant or optimally positioned actuators, respectively. The results
show that the amplitudes of optimally placed controls decay to zero faster than those of the equidistantly
placed ones.

4.2.1 Optimal control of travelling waves We also performed similar numerical experiments to find
the optimal position of the control actuators when stabilizing travelling waves. We found that in most
cases, we cannot do better than equidistant controls.
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(a)

(b) (c)

Fig. 12. Controlled steady state of the KS equation for ν = 0.3 (a) and controls applied: (b) equidistant and (c) optimal.

We believe that this is due to the following reasons. First, the length of the domain needed for the
existence of (unstable) travelling waves is long, and therefore the number of unstable modes (and hence
of the number of controls) is large (e.g. in the example of Fig. 5 we are using m = 21 controls); thus,
shifting the position of the controls in a relatively large domain should not have a big effect on their
amplitudes. Secondly, solitary pulses on long domains necessarily have large flat regions which are
susceptible to linear instabilities leading to the non-linear wavy perturbations seen in panels (b) and
(c) in Fig. 2. It is interesting to note that there are 10 wavy structures corresponding to the number of
linearly unstable modes; thus, we expect optimality when the controls are approximately equally spaced,
thus guaranteeing one control under each wavy structure. Shifting the controls can introduce instability
and non-linear growth to a different state.

5. Feedback and optimal control for coupled KS equations

In Sections 2–4, we studied analytically and computationally the feedback control and optimal con-
trol problems for the gKS equation. In applications, systems of equations emerge with two or more
non-linear coupled PDEs, and this section is concerned with the control of such systems. As an exam-
ple, we refer to the system of two coupled KS equations that arises in the weakly non-linear asymp-
totic analysis of a three-layer flow of immiscible viscous fluids stratified in a channel and driven
by gravity and/or a stream wise pressure gradient, see Papaefthymiou et al. (2013). The fully cou-
pled system is a challenging PDE problem and questions such as the existence and uniqueness of
solutions, steady states and bifurcation theory are still poorly understood. Such problems are cur-
rently under investigations and our findings will be reported elsewhere. In this section, we consider
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(a)

(b) (c)

Fig. 13. Controlled steady state of the KS equation for ν = 0.5, μ = 0.4 (a) and controls applied: (b) equidistant and (c) optimal.

the problem of feedback and of optimal control for a system of KS equations that are coupled only
through the second derivatives. Such a coupling is special but can arise in the application of three-
layer flow. More generally, the non-linearities are also coupled and in fact the non-linear flux functions
can generically have real or complex eigenvalues implying hyperbolic elliptic transitions, thus com-
plicating the analysis significantly; see Papaefthymiou & Papageorgiou (2015) for a detailed study of
such effects.

In what follows, we consider the following coupled system of KS equations:{
u1,t = −νu1,xxxx − u1,xx − u1u1,x − α1u2,xx,

u2,t = −νu2,xxxx − u2,xx − u2u2,x − α2u1,xx.
(5.1)

We consider the equations in the interval (0, 2π) with periodic boundary conditions and initial condi-
tions u1(x, 0) = u10(x) and u2(x, 0) = u20(x) and u10, u20 ∈ Ḣ2

p (0, 2π).
We can prove using the background flow method (Collet et al., 1993b; Nicolaenko et al., 1985;

Tseluiko & Papageorgiou, 2007) that the solutions to the system are bounded.

Proposition 5 Assume that u10, u20 ∈ Ḣ2
p (0, 2π). Then there exists a constant C = C(ν, α1, α2)

such that
‖u1‖L2 + ‖u2‖L2 � C. (5.2)
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Similar bounds can be obtained for the H1- and H2-norm, and we can therefore conclude that the
solutions to system (5.1) are in L∞(0, 2π).

The proof is not included here due to space constraints and will appear elsewhere. A similar result
can be proved for the case when the coupling comes only through the fourth-order derivatives (i.e. there
is a non-diagonal negative definite fourth-order viscosity matrix), and we believe that similar results can
also be proved for the fully coupled system with non-diagonal second- as well as fourth-order viscosity
matrices.

5.1 Feedback control for the coupled KS equations

Since equations (5.1) are coupled linearly, analogous results to the ones presented earlier for the single
KS are obtained. First, we can prove that it is possible to stabilize any steady-state solution (either the
zero solution or any non-trivial steady state) for this system. We proceed in the same way as for the
single KS equation and write the controlled system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1,t = −νu1,xxxx − u1,xx − u1u1,x − α1u2,xx +
m∑

j1=1

δ(x − xj1)fj1(t),

u2,t = −νu2,xxxx − u2,xx − u2u2,x − α2u1,xx +
m∑

j2=1

δ(x − xj2)fj2(t).

(5.3)

Defining

U(x, t) =
[

u1(x, t)

u2(x, t)

]
=

∞∑
n=1

[
us

1n(t)

us
2n(t)

]
sin(nx) +

∞∑
n=0

[
uc

1n(t)

uc
2n(t)

]
cos(nx), (5.4)

and taking the inner product with the functions 1/
√

2π , sin(nx)/
√

π and cos(nx)/
√

π yields the fol-
lowing infinite system of ODEs:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u̇s
in = (−νn4 + n2

)
us

in + αin2us
jn + gs

in +
m∑

ji=1

bs
jinfji(t), n = 1, . . . , ∞,

u̇c
in = (−νn4 + n2

)
uc

in + αin2uc
jn + gc

n +
m∑

ji=1

bc
jinfji(t), n = 0, . . . , ∞,

(5.5)

where i, j = 1, 2, i |= j, and the functions b and g are defined as in the single KS case. We truncate the
system at N modes and define

zU = [uc
10 us

11 uc
11 · · · us

1N uc
1N uc

20 us
21 uc

21 · · · us
2N uc

2N

]	
,

G = [0 gs
11 gc

11 · · · gs
1N gc

1N 0 gs
21 gc

21 · · · gs
2N gc

2N

]	
,

F = [f11(t) f12(t) · · · f1m(t) f21(t) f22(t) · · · f2m(t)]	 .

Next we write

A =
[

A0 A1

A2 A0

]
, B =

[
B1

B2

]
,
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Fig. 14. Uncontrolled solution (vi, i = 1, 2) and controlled zero solution (ui, i = 1, 2) of the system of coupled KS equations for
ν = 0.5, α1 = 0.8 and α2 = 0.5.

where A0 = diag(0, −ν + 1, −ν + 1, . . . , −νn4 + n2, −νn4 + n2, . . .), Ai = diag(0, αi, αi, . . . , αin2, αi

n2, . . .) and

Bi =

⎡
⎢⎢⎢⎢⎣

bc
1i0 bc

2i0 · · · bc
mi0

bs
1i1 bs

2i1 · · · bs
mi1

bc
1i1 bc

2i1 · · · bc
mi1

...
... · · · ...

⎤
⎥⎥⎥⎥⎦ ,

for i = 1, 2. Hence the infinite system of ODEs can be written as

żU = AzU + G + BF. (5.6)

We can prove a result similar to Proposition 1.

Proposition 6 Let Ū = [ ū1
ū2

]
be a non-trivial (unstable) steady-state solution of (5.1), and let l = l1 + l2

be the number of unstable eigenvalues of the linearized system, i.e. l2
1 < (1 + √

α1α2)/ν < (l1 + 1)2

and l2
2 < (1 − √

α1α2)/ν < (l2 + 1)2. If m = 2(l + 1) and there exists a matrix K such that all of the
eigenvalues of the matrix A + BK have negative real part, then the state feedback controls

[
f11(t) f12(t) · · · f1m(t) f21(t) f22(t) · · · f2m(t)

]	 = F = K
(

zU − zŪ
)

, (5.7)

stabilize this non-trivial steady-state solution of system (5.1).

The proof of this result follows the same argument as the proof of Proposition 1.
We present in Figs 14 and 15 the numerical results of the stabilization of the zero solution and

a steady-state solution, respectively, for system (5.1) with ν = 0.5, α1 = 0.8 and α2 = 0.5. We used
m = 4 equidistant controls to control each solution, corresponding physically to applying four controls
in each wall. Upper panels correspond to the uncontrolled solution, and lower panels correspond to the
stabilized solution. We clearly observe in both figures the stabilization of the desired steady state.
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Fig. 15. Uncontrolled solution (vi, i = 1, 2) and stabilized steady-state solution (ui, i = 1, 2) of the system of coupled KS equations
for ν = 0.5, α1 = 0.8 and α2 = 0.5.

5.2 Optimal control of the system of coupled KS equations

We consider next the problem of controlling an arbitrary steady state Ū = [ ū1
ū2

]
in an optimal way. We

introduce the cost functional

C (U , F) = 1

2

∫ T

0

(∥∥u1(·, t) − ū1

∥∥2
L2 + ∥∥u2(·, t) − ū2

∥∥2
L2

)
dt

+ 1

2

(∥∥u1(·, T) − ū1

∥∥2
L2 + ∥∥u2(·, T) − ū2

∥∥2
L2

)

+ γ

2

∫ T

0

(∥∥f1(x, t)
∥∥2

L2 + ∥∥f2(x, t)
∥∥2

L2

)
dt. (5.8)

The optimization problem that we have to solve takes the form

minimize C (U , F) (5.9a)

subject to u1,t + νu1,xxxx + u1,xx + u1u1,x + α1u2,xx = f1(x, t), (5.9b)

u2,t + νu2,xxxx + u2,xx + u2u2,x + α2u1,xx = f2(x, t), (5.9c)

ui(x, 0) = u0,i(x), i = 1, 2, (5.9d)

∂ jui

∂xj
(x + 2π) = ∂ jui

∂xj
(x), j = 0, 1, 2, 3, i = 1, 2, (5.9e)

fi ∈ Fad, i = 1, 2. (5.9f)

Here, u0,i ∈ Ḣ2
p (0, 2π) and Fad is a bounded, closed and convex subset of L2((0, 2π) × (0, T)).

We can prove the following theorem.
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Theorem 2 If Fad ⊂ L2((0, T); L̇2(0, 2π)), the optimal control problem (5.9a)–(5.9f) has at least one

optimal control F∗ =
[

f ∗
1

f ∗
2

]
with associated optimal state U∗ =

[
u∗

1

u∗
2

]
.

Sketch of the proof. The proof follows the same steps as that of Theorem 1 for the single KS equation.
For the coupled system, we need to consider a different state space X = (H1(0, T ; Ḣ2

p (0, 2π)))2 ×
(Fad)

2, and redefine e(·, ·; ·, ·):

e(u1, u2; f1, f2) =

⎡
⎢⎢⎢⎣

u1,t + νu1,xxxx + u1,xx + u1u1,x + α1u2,xx − f1(x, t)

u2,t + νu2,xxxx + u2,xx + u2u2,x + α2u1,xx − f2(x, t)

u1(·, 0) − u0,1(x)

u2(·, 0) − u0,2(x)

⎤
⎥⎥⎥⎦ . (5.10)

The rest of the proof follows Theorem 1, but accounting for the fact that, for every t ∈ [0, T], we
have U∗(·, t) ∈ (Ḣ2

p (0, 2π))2, and then U∗(·, t) ∈ (C([0, 2π ]))2 and therefore if ϕi ∈ X , (u∗
i ϕi)(·, t) ∈

L2([0, 2π ]) for i = 1, 2.
Finally, we also need the estimates in Proposition 5 to establish that ‖un

i,x‖L2 is bounded, and since
H2 is compactly embedded in L2, we deduce that

∫ T

0

∫ 2π

0

(
un

i − u∗
i

)
un

i,xϕi dx dt

�
∥∥un

i − u∗
i

∥∥
L2

∥∥un
i,x

∥∥
L2

∥∥ϕi

∥∥
L∞ −→n→∞ 0 ∀ϕi ∈ Ḣ2

p (Ω). (5.11)

�

6. Conclusions

In this paper, we studied the problem of controlling and stabilizing solutions to the gKS equation. We
studied both feedback and optimal control problems. For the optimal control problem, we proved exis-
tence of an optimal control and we investigated numerically the problem of optimal actuator placement.
By extending earlier work by Armaou & Christofides (2000a,b), Christofides (1998) and Christofides &
Armaou (2000), we showed rigorously that we can control arbitrary non-trivial steady states of the KS
equation, including travelling wave solutions, using only a finite number of point actuators. The number
of point actuators needed is related to the number of unstable modes. We also investigated the robust-
ness of the controllers with respect to changing the parameters in the equation. In particular, we showed
that our proposed control methodology can be used in the presence of uncertainty. Our results can be
extended to coupled systems of KS equations.

We have not discussed about the practical implementation of the control methodologies studied
in this paper. For example, we have assumed that complete information about the solution of the KS
equation is available. This and other issues related to the implementation of the control algorithm are
discussed in Thompson et al. (0000).

We considered the case where the entire solution to the KS equation is available to us. It is straight-
forward, however, to apply our results to the case when only a finite number of observations is available,
using the techniques presented in Armaou & Christofides (2000a). For brevity of exposition we have not
done this for the KS equation. In a forthcoming paper Thompson et al. (0000), we study the feedback
control problem when only a finite number of observations is available to us for a more complicated
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PDE, the quasilinear Benney equation arising in falling film problems (see Kalliadasis et al., 2012 and
references therein).

There are several directions in which the results presented in this paper can be extended. First, the
KS equation is a simplified model for thin film flows obtained using weakly non-linear analysis and
valid close to criticality (Craster & Matar, 2009; Kalliadasis et al., 2012). We can apply the control
methodologies studied in this paper to other simplified models that are closer to the full 2D Navier–
Stokes dynamics, such as the Benney equation and the weighted residual model. These equations are
more complicated since they are quasilinear and they can include additional degrees of freedom. It
is possible to extend our results to such models (Thompson et al., 0000). Furthermore, the control of
unstable travelling waves for the KS equation with dispersion can be analysed in detail, leading to
an efficient and robust algorithm. This problem is studied further in Gomes et al. (2015). Finally, our
techniques can be extended so that they apply to the noisy KS equation. Given that the noise itself
can sometimes stabilize linearly unstable solutions (Pradas et al., 2011, 2012), the interaction between
noise and controls can lead to very interesting dynamic phenomena. We think that this is a particularly
interesting direction for further research, since the noisy KS equation is closely related to the noisy
Kardar–Parisi–Zhang equation, which is a universal model for weakly asymmetric processes (Hairer,
2013).
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