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Abstract
We propose a novel method for drift estimation of multiscale diffusion processes when a sequence of discrete observations
is given. For the Langevin dynamics in a two-scale potential, our approach relies on the eigenvalues and the eigenfunctions
of the homogenized dynamics. Our first estimator is derived from a martingale estimating function of the generator of the
homogenized diffusion process. However, the unbiasedness of the estimator depends on the rate with which the observations
are sampled. We therefore introduce a second estimator which relies also on filtering the data, and we prove that it is
asymptotically unbiased independently of the sampling rate. A series of numerical experiments illustrate the reliability and
efficiency of our different estimators.
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1 Introduction

Learning models from data is a problem of fundamental
importance in modern applied mathematics. The abundance
of data in many application areas such as molecular dynam-
ics, atmosphere/ocean science makes it possible to develop
physics-informed data driven methodologies for deriving
models from data (Raissi et al. 2019; Yang et al. 2021; Zhang
et al. 2019). Naturally, most problems of interest are char-
acterised by a very high-dimensional state space and by the
presence ofmany characteristic length and time scales.When
it is possible to decompose the state space into the resolved

Dedicated to the memory of Assyr Abdulle.

B Grigorios A. Pavliotis
g.pavliotis@imperial.ac.uk

Assyr Abdulle
assyr.abdulle@epfl.ch

Andrea Zanoni
andrea.zanoni@epfl.ch

1 ANMC, Institute of Mathematics, École Polytechnique
Fédérale de Lausanne, 1015 Lausanne, Switzerland

2 Department of Mathematics, Imperial College London,
London SW7 2AZ, UK

and unresolved degrees of freedom, then one is usually inter-
ested in the derivation of a model for the resolved degrees
of freedom, while treating the unresolved scales as noise.
Clearly, these reduced models are stochastic, often described
by stochastic differential equations (SDEs). The goal of this
paper is to derive rigorous and systematic methodologies for
learning coarse-grained models that accurately describe the
dynamics at macroscopic length and time scales from noisy
observations of the full, unresolved dynamics. We apply the
proposed methodologies to simple models of fast/slow SDEs
for which the theory of homogenization exists, that enables
us to study the inference problem in a rigorous and systematic
manner.

In many applications, the available data are noisy, not
equidistant and certainly not compatible with the coarse-
grained model. The presence of observation noise and of
the model-data mismatch renders the problem of learning
macroscopic models frommicroscopic data highly ill-posed.
Several examples from econometrics (market microstruc-
ture noise) (Aït-Sahalia et al. 2006) and molecular dynamics
show that standard algorithms, e.g. maximum likelihood or
quadratic variation for the diffusion coefficient, are asymptot-
ically biased and they fail to estimate correctly theparameters
in the coarse-grained model. In a series of earlier works, this
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problem was studied using maximum likelihood techniques
with subsampled data (Pavliotis and Stuart 2007; Papavasil-
iou et al. 2009), methodologies based on the method of
moments (Krumscheid et al. 2013; Kalliadasis et al. 2015;
Krumscheid et al. 2015), quadratic programming approaches
(Crommelin and Vanden-Eijnden 2006a) as well as Bayesian
approaches (Abdulle and Di Blasio 2020; Abdulle et al.
2020). We also mention the pioneering work on estimating
the integrated stochastic volatility in the presence of market
microstructure noise (Aït-Sahalia et al. 2006; Zhang et al.
2005). In particular, in Aït-Sahalia and Jacod (2014) the
authors analyse the correct interplay between the intensity
of the microstructure noise and the optimal rates of conver-
gence.

The main observation in Pavliotis and Stuart (2007);
Papavasiliou et al. (2009) is that when the maximum like-
lihood estimator (MLE) of the fast/slow system is evaluated
at the full data, then theMLEbecomes asymptotically biased;
in fact, the original data are not compatible with the homog-
enized equation, and therefore data need to be preprocessed,
for instance under the form of subsampling. On the other
hand, when the MLE is evaluated at appropriately subsam-
pled data, then it becomes asymptotically unbiased.Although
this is an interesting theoretical observation (see also later
developments in Spiliopoulos and Chronopoulou (2013)), it
does not lead to an efficient algorithm. The reason for this
is that the performance of the estimator depends very sen-
sitively on the choice of the sampling rate. In addition, the
optimal sampling rate is not known and is strongly dependent
on the problem under investigation. Furthermore, subsam-
pling naturally leads to an increase in the variance, unless
appropriate variance reduction methodologies are used.

In a recent work (Abdulle et al. 2021), we addressed the
problem of lack of robustness of the MLE with subsampling
algorithm by introducing an appropriate filtering methodol-
ogy that leads to a stable and robust algorithm. In particular,
rather than subsampling the original trajectory, we smoothed
the data by applying an appropriate linear time-invariant fil-
ter from the exponential family and wemodified theMLE by
inserting the new filtered data. This new estimator was thus
independent of the subsampling rate and also asymptotically
unbiased and robust with respect to the parameters of the
filter.

However, the assumption that the full path of the solu-
tion is observed is not realistic in most applications. In fact,
in all real problems one can only obtain discrete measure-
ments of the diffusion process. Hence, in this paper we focus
on the problem of learning the coarse-grained homogenized
model assuming that we are given discrete observations from
the microscopic model. In this paper, we use the martin-
gale estimating functions that were introduced in Bibby and
Sø rensen (1995), where the authors study drift estimation
for discrete observations of one-scale processes and show

that estimators based on the discretized continuous-version
likelihood function can be strongly biased. They therefore
propose martingale estimating functions obtained by adjust-
ing the discretized continuous-version score function by its
compensator which leads to unbiased estimators. Moreover,
in Kessler and Sørensen (1999) a different type of martingale
estimating function, which is dependent on the eigenvalues
and eigenfunctions of the generator of the stochastic process,
is introduced and asymptotic unbiasedness and normality are
proved. Furthermore, another inference methodology that
uses spectral information is proposed in Crommelin and
Vanden-Eijnden (2006b). Their approach consists of infer-
ring the drift and diffusion functions of a diffusion process
by minimizing an objective function which measures how
close the generator is to having a reference spectrum which
is obtained from the time series through the construction of
a discrete-time Markov chain. This idea has been further
expanded in several directions in Crommelin and Vanden-
Eijnden (2011).

In this paper, we propose a new estimator for learning
homogenised SDEs from noisy discrete data that is based on
themartingale estimators that were introduced inKessler and
Sørensen (1999). Themain idea is to consider the eigenvalues
and eigenfunctions of the generator of the homogenized pro-
cess. This new estimator is asymptotically unbiased only if
the distance between two consecutive observations is not too
small compared with the multiscale parameter describing the
fastest scale, i.e. if data are compatible with the homogenized
model. Therefore, in order to obtain unbiased approximations
independently of the sampling rate with which the observa-
tions are obtained, we propose a second estimator which, in
addition to the original observations, relies also on filtered
data obtained following the filtering methodology presented
in Abdulle et al. (2021). We observe that smoothing the
original datamakes observations compatiblewith the homog-
enized process independently of the rate with which they are
sampled and hence this second estimator gives a black-box
tool for parameter estimation.

1.1 Our main contributions

The main goal of this paper is to propose new algorithms
based onmartingale estimating functions and filtered data for
which we can prove rigorously that they are asymptotically
unbiased and not sensitive with respect to, e.g. the sampling
rate and the observation error. In particular, we combine two
main ideas:

• the use of martingale estimating functions for discretely
observed diffusion processes based on the eigenvalues
and the eigenfunctions of the generator of the homoge-
nized process, which was originally presented for one-
scale problems in Kessler and Sørensen (1999);
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• the filtering methodology for smoothing the data in order
to make them compatible with the homogenized model,
which was introduced in Abdulle et al. (2021).

We prove theoretically and observe numerically that the esti-
mator without filtered data is asymptotically unbiased if:

• the observations are taken at the homogenized regime,
i.e. the sampling rate is independent of the parameter
measuring scale separation;

• the observations are taken at the multiscale regime, i.e.
the sampling rate is dependent on the fastest scale, and
the sampling rate is bigger than the multiscale parameter.

Moreover, we show that the estimator with filtered data cor-
rects the bias caused by a sampling rate smaller than the
multiscale parameter, and therefore, it is asymptotically unbi-
ased independently of the sampling rate.

Outline. The rest of the paper is organized as follows. In
Sect. 2, we present the Langevin dynamics and its corre-
sponding homogenized equation and we introduce the two
proposed estimators basedon eigenvalues and eigenfunctions
of the generator with and without filtered data. In Sect. 3,
we present the main results of this work, i.e. the asymptotic
unbiasedness of the two estimators, and in Sect. 4 we per-
form numerical experiments which validate the efficacy of
our methods. Section 4.1 is devoted to the proof of the main
results which are presented in Sect. 3. Finally, in Appendix,
we show some technical results which are employed in the
analysis and we explain some details about the implementa-
tion of the proposed methodology.

2 Problem setting

In this work, we study the following class of multiscale dif-
fusion processes. Consider the following two-scale SDE,
observed over the time interval [0, T ]

dXε
t = −α · V ′(Xε

t ) dt − 1

ε
p′
(
Xε
t

ε

)
dt + √

2σ dWt ,

(2.1)

where ε > 0 describes the fast scale, α ∈ R
M and σ > 0

are, respectively, the drift and diffusion coefficients and Wt

is a standard one-dimensional Brownian motion. The func-
tions V : R → R

M and p : R → R are the slow-scale and
fast-scale parts of the potential, and they are assumed to be
smooth. Moreover, we also assume p to be periodic with
period L > 0. We remark that our setting can be consid-
ered as a semi-parametric framework similar to the one of
Krumscheid et al. (2013). The components of the potential

function V , in fact, can be viewed as basis functions for a
truncated expansion (e.g. Taylor series or Fourier expansion)
of the unknown slow-scale potential V (·;α) : R → R, where
the components of the unknown drift term α contain the gen-
eralized Fourier coefficients, i.e.

V (x;α) =
M∑

m=1

αmVm(x).

We also mention that assuming a parametric form for the
potential V is a technique usually employed in the statistics
literature in order to regularize the likelihood function and
obtain a parametric approximation of the actual MLE of V ,
which does not exist in general (Pokern et al. 2009).

Remark 2.1 For clarity of the presentation, we focus our
analysis on scalar multiscale diffusions with a finite num-
ber of parameters in the drift that have to be learned from
data. Nevertheless, we remark that all the following theory
can be generalized to the case of multidimensional diffu-
sion processes in R

d , for which we provide further details in
Appendix C and an example in Sect. 4.5. However, the prob-
lem becomes more complex and computationally expensive
from a numerical viewpoint and it can be prohibitive if the
dimension d is too large, since the methodology proposed in
this paper requires the solution of the eigenvalue problem for
the generator of a d-dimensional diffusion process.

The theory of homogenization (see, for example, Bensoussan
et al. 2011, Chapter 3 or Pavliotis and Stuart 2008, Chapter
18) guarantees the existence of the following homogenized
SDE whose solution X0

t is the limit in law of the solutions
Xε
t of (2.1) as random variables in C0([0, T ]; R)

dX0
t = −A · V ′(X0

t ) dt + √
2� dWt , (2.2)

where A = Kα, � = Kσ . The coefficient 0 < K < 1 has
the explicit formula

K =
∫ L

0
(1 + �′(y))2 μ(dy) =

∫ L

0
(1 + �′(y)) μ(dy),

(2.3)

with

μ(dy) = 1

Cσ

e−p(y)/σ dy, where Cσ =
∫ L

0
e−p(y)/σ dy,

(2.4)

and where the function � is the unique solution with zero-
mean with respect to the measure μ of the differential
equation

− p′(y)�′(y) + σ�′′(y) = p′(y), 0 ≤ y ≤ L, (2.5)

123



   34 Page 4 of 33 Statistics and Computing            (2022) 32:34 

endowed with periodic boundary conditions. In particular,
for one-dimensional diffusion processes, we have

�′(y) = L

Ĉσ

ep(y)/σ − 1, where Ĉσ =
∫ L

0
ep(y)/σ dy,

which implies

K = L2

Cσ Ĉσ

.

Our goal is to derive estimators for the homogenized drift
coefficient A based onmultiscale data originating from (2.1).
In this work, we consider the same setting as Abdulle et al.
(2021), which is summarized by the following assumption.

Assumption 2.2 The potentials p and V satisfy

(i) p ∈ C∞(R)∩L∞(R) and is L-periodic for some L > 0,
(ii) V ∈ C∞(R; R

M ) and each component is polynomially
bounded from above and bounded frombelow, and there
exist b1, b2 > 0 such that

−b1 + b2x
2 ≤ α · V ′(x)x,

(iii) V ′ is Lipschitz continuous, i.e. there exists a constant
C > 0 such that

∥∥V ′(x) − V ′(y)
∥∥ ≤ C |x − y| .

Let us remark that, under Assumption 2.2, it has been proved
in Pavliotis and Stuart (2007) that both processes (2.1) and
(2.2) are geometrically ergodic and their invariant measure
has a density with respect to the Lebesguemeasure. In partic-
ular, let us denote by ϕε and ϕ0 the densities of the invariant
measures of Xε

t and X0
t , respectively, defined by

ϕε(x) = 1

Cϕε
exp

(
− 1

σ
α · V (x) − 1

σ
p
( x

ε

))
,

where Cϕε =
∫
R

exp

(
− 1

σ
α · V (x) − 1

σ
p
( x

ε

))
dx,

and

ϕ0(x) = 1

Cϕ0
exp

(
− 1

�
A · V (x)

)
,

where Cϕ0 =
∫
R

exp

(
− 1

�
A · V (x)

)
dx . (2.6)

Remark 2.3 The value of the initial condition Xε
0 in the SDE

(2.1) is important neither for the numerical experiments nor
for the following analysis and can be chosen arbitrarily. In
fact, the process Xε

t is geometrically ergodic and therefore it

converges to its invariant distribution with density ϕε expo-
nentially fast for any initial condition.

Drift estimation problem. Consider N + 1 uniformly dis-
tributed observation times 0 = t0 < t1 < t2 < . . . , < tN =
T , set� = tn−tn−1 and let (Xε

t )t∈[0,T ] be a realization of the
solution of (2.1). We then assume to know a sample {X̃ε

n}Nn=0
of the realization where X̃ε

n = Xε
tn , and we aim to estimate

the drift coefficient A of the homogenized equation (2.2).
First, since we deal with discrete observations of stochastic
processes, we employ martingale estimating functions based
on eigenfunctions, which have already been studied for prob-
lems without a martingale structure in Kessler and Sørensen
(1999). Second, by observing that if the time-step � is too
small with respect to the multiscale parameter ε, then the
data could be compatible with the full dynamics rather than
with the coarse-grained model, we also adopt the filtering
methodology presented in Abdulle et al. (2021), which has
been proved to be beneficial for correcting the behaviour of
the maximum likelihood estimator (MLE) in the setting of
continuous observations.

2.1 Martingale estimating functions based on
eigenfunctions

We first remark that a general theory for martingale estimat-
ing functions exists and is thoroughly outlined in Bibby and
Sø rensen (1995). They appear to be appropriate for mul-
tiscale problems due to their robustness properties. In this
paper, we develop martingale estimating functions based on
the eigenfunctions of the generator of the process, since the
theory of the eigenvalue problem for elliptic differential oper-
ators and the multiscale analysis of this eigenvalue problem
are well developed. Let A ⊂ R

M be the set of admissible
drift coefficients for which Assumption 2.2(ii) is satisfied.
To describe ourmethodology, we consider the solution Xt (a)

of the homogenized process (2.2) with a generic parameter
a ∈ A instead of the exact drift coefficient A:

dXt (a) = −a · V ′(Xt (a)) dt + √
2� dWt , (2.7)

which, according to (2.6), has invariant measure

ϕa(x) = 1

Cϕa

exp

(
− 1

�
a · V (x)

)
,

where Cϕa =
∫
R

exp

(
− 1

�
a · V (x)

)
dx . (2.8)

The generator La of (2.7) is defined for all u ∈ C2(R) as:

Lau(x) = −a · V ′(x)u′(x) + �u′′(x), (2.9)
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where the subscript denotes the dependence of the genera-
tor on the unknown drift coefficient a. From the well-known
spectral theory of diffusion processes and under our assump-
tions on the potential V , we deduce that La has a countable
set of eigenvalues (see, for example, Hansen et al. 1998).
In particular, let {(λ j (a), φ j (·; a))}∞j=0 be the sequence of
eigenvalue-eigenfunction couples of the generator which
solve the eigenvalue problem

Laφ j (x; a) = −λ j (a)φ j (x; a), (2.10)

which, due to (2.9), is equivalent to

�φ′′
j (x; a) − a · V ′(x)φ′

j (x; a) + λ j (a)φ j (x; a) = 0,

(2.11)

and where the eigenvalues satisfy 0 = λ0(a) < λ1(a) <

· · · < λ j (a) ↑ ∞ and the eigenfunctions form an orthonor-
mal basis for the weighted space L2(ϕ0

a). We mention in
passing that, by making a unitary transformation, the eigen-
value problem for the generator of the Langevin dynamics
can be transformed to the standard Sturm–Liouville problem
for Schrödinger operators (Pavliotis 2014, Chapter 4). We
now state a formula, which has been proved in Kessler and
Sørensen (1999) and will be fundamental in the rest of the
paper

E
[
φ j (Xtn (a); a)|Xtn−1(a) = x

] = e−λ j (a)�φ j (x; a),

(2.12)

where � = tn − tn−1 is the constant distance between two
consecutive observations. We now discuss how this eigen-
value problem can be used for parameter estimation. Let
J be a positive integer and let {β j (·; a)}Jj=1 be J arbi-

trary functions β j (·; a) : R → R
M possibly dependent on

the parameter a, which satisfy Assumption 2.5(i)(ii) stated
below, and define for x, y, z ∈ R the martingale estimating
function

g j (x, y, z; a) = β j (z; a)
(
φ j (y; a) − e−λ j (a)�φ j (x; a)

)
.

(2.13)

Then, given a set of observations {X̃ε
n}Nn=0, we consider the

score function Ĝε
N ,J : A → R

M defined by

Ĝε
N ,J (a) = 1

�

N−1∑
n=0

J∑
j=1

g j (X̃
ε
n, X̃

ε
n+1, X̃

ε
n; a). (2.14)

This function can be seen as an approximation in terms of
eigenfunctions of the true score function, i.e. the gradient
of the log-likelihood function with respect to the unknown

parameter. The full derivation of a martingale estimating
function as an approximation of the true score function is
given in detail in Bibby and Rensen (1995, Sect. 2). The first
step is a discretization of the gradient of the continuous-time
log-likelihood, which yields a biased estimating function.
Hence, the next step is adjusting this function by adding
its compensator in order to obtain a zero-mean martingale.
Moreover, by using the eigenfunctions of the generator, it is
shown in Kessler and Sørensen (1999) that this approach
is suitable for scalar diffusion processes with no multi-
scale structure, i.e. processes with a single characteristic
length/time scale. In fact, by a classical result for ergodic
diffusion processes (Pavliotis 2014, Sect. 4.7), any function
in the L2 space weighted by the invariant measure can be
written as an infinite linear combination of the eigenfunc-
tions of the generator of the diffusion process.

Remark 2.4 In the construction of the martingale estimating
function Ĝε

N ,J (a), we omitted the first index j = 0 because,
for ergodic diffusion processes, the first eigenvalue is zero,
λ0(a) = 0, and its corresponding eigenfunction is constant,
φ0(a) = 1, and hence, they would give g0(x, y, z; a) = 0
independently of the function β0(z; a). Therefore, it would
not provide us with any information about the unknown
parameters in the drift.

The estimator Âε
N ,J . The first estimator we propose for the

homogenized drift coefficient A is given by the solution Âε
N ,J

of the M-dimensional nonlinear system

Ĝε
N ,J (a) = 0. (2.15)

An intuition on why Ĝε
N ,J is a good score function is given

by the following result. Let Ĝ0
N ,J be the score functionwhere

the observations of the slowvariable of themultiscale process
are replaced by the homogenized ones, then due to equation
(2.12)

E

[
Ĝ0

N ,J (A)
]

= 0,

which means that the zero of the expectation of the score
function with homogenized observations is exactly the drift
coefficient of the effective equation. In Algorithm 1, we sum-
marize the main steps for computing the estimator Âε

N ,J
and further details about the implementation can be found
in Appendix B. We finally introduce the following technical
assumption which will be employed in the analysis.

Assumption 2.5 The following hold for all a ∈ A and for all
j = 1, . . . , J :

(i) β j (z; a) is continuously differentiable with respect to a
for all z ∈ R;
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(ii) all components of β j (·; a), β ′
j (·; a),

.
β j (·; a),

.
β ′
j (·; a)

are polynomially bounded;
(iii) the slow-scale potential V is such that φ j (·; a), φ′

j (·; a),

φ′′
j (·; a), and all components of

.
φ j (·; a),

.
φ′
j (·; a),

.
φ′′
j (·; a) are polynomially bounded;

where the dot denotes either the Jacobian matrix or the gra-
dient with respect to a.

Remark 2.6 In Kessler and Sørensen (1999) the authors pro-
pose a method to choose the functions {β j (·; a)}Jj=1 in order
to obtain optimality in the sense of Godambe and Heyde
(1987): This optimal set of functions can be seen as the
projection of the score function onto the set of martin-
gale estimating functions obtained by varying the function
{β j (·; a)}Jj=1. For the class of diffusion processes for which
the eigenfunctions are polynomials, the optimal estimat-
ing functions can be computed analytically. In fact, they
are related to the moments of the transition density, which
can be computed explicitly. Moreover, another procedure
is to choose functions which depend only on the unknown
parameter andwhichminimize the asymptotic variance. This
approach is strongly related to the asymptotic optimality
criterion considered by Heyde and Gay (1989). For fur-
ther details on how to choose these functions we refer to
Kessler and Sørensen (1999), and we remark that their calcu-
lation requires additional computational cost. Nevertheless,
the theory we develop is valid for all functions which satisfy
Assumptions 2.5(i) and 2.5(ii) and we observed in practice
that choosing simple functions independent of the unknown
parameter, e.g. monomials of the form β j (z; a) = zk with
k ∈ N, is sufficient to obtain satisfactory estimations.We also
remark that in one dimensionwe can characterize completely
all diffusion processes whose generator has orthogonal poly-
nomials as eigenfunctions (Bakry et al. 2014, Sect. 2.7).
Partial results in this directions also exist in higher dimen-
sions.

2.2 The filtering approach

We now go back to our multiscale SDE (2.1) and, inspired
by Abdulle et al. (2021), we propose a second estimator for
the homogenized drift coefficient by filtering the data. In
particular, we modify Âε

N ,J by filtering the observations and

inserting the new data into the score function Ĝε
N ,J in order

to take into account the case when the step size� is too small
with respect to the multiscale parameter ε. Let us consider
the exponential kernel k : R

+ → R defined as

k(r) = e−r ,

for which a rigorous theory has been developed in Abdulle
et al. (2021). We remark that this exponential kernel is a low-

Algorithm 1: Estimation of A without filtered data

Input: Observations
{
X̃ε
n

}N
n=0.

Distance between two consecutive observations �.
Number of eigenvalues and eigenfunctions J .

Functions
{
β j (z; a)

}J
j=1.

Slow-scale potential V .
Diffusion coefficient �.

Output: Estimation Âε
N ,J of A.

1: Consider the eigenvalue problem
�φ′′

j (x; a) − a · V ′(x)φ′
j (x; a) + λ j (a)φ j (x; a) = 0.

2: Compute the first J eigenvalues
{
λ j (a)

}J
j=1 and

eigenfunctions
{
φ j (·; a)

}J
j=1.

3: Construct the function
g j (x, y, z; a) = β j (z; a)

(
φ j (y; a) − e−λ j (a)�φ j (x; a)

)
.

4: Construct the score function
Ĝε

N ,J (a) = 1
�

∑N−1
n=0

∑J
j=1 g j (X̃ε

n, X̃
ε
n+1, X̃

ε
n; a).

5: Let Âε
N ,J be the solution of the nonlinear

system Ĝε
N ,J (a) = 0.

pass filter, which cuts the high frequencies and highlights
the slowest components. We then define the filtered observa-
tions {Z̃ ε

n}Nn=0 choosing Z̃ ε
0 = 0 and computing the weighted

average for all n = 1, . . . , N

Z̃ ε
n = �

n−1∑
k=0

k(�(n − k))X̃ε
k , (2.16)

where the fast-scale component of the original multiscale
trajectory is eliminated, andwe define the new score function
as a modification of (2.14), i.e.

G̃ε
N ,J (a) = 1

�

N−1∑
n=0

J∑
j=1

g j (X̃
ε
n, X̃

ε
n+1, Z̃

ε
n; a). (2.17)

Remark 2.7 Notice that the filtered data only partially replace
the original data in the definition of the score function. This
idea is inspired by Abdulle et al. (2021) where the same
approach is used with the maximum likelihood estimator.
The importance of keeping also the original observations
becomes apparent in the proofs of the main results. How-
ever, a simple intuition is provided by equation (2.12). This
equation is essential in order to obtain the unbiasedness of
the estimators when the sampling rate � is independent of
the multiscale parameter ε, but it is not valid for the filtered
process.

The estimator Ãε
N ,J . The second estimator Ãε

N ,J is given
by the solution of the M-dimensional nonlinear system

G̃ε
N ,J (a) = 0. (2.18)
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The main steps to compute the estimator Ãε
N ,J are high-

lighted in Algorithm 2 and additional details about the
implementation can be found inAppendixB.Note that (2.16)
can be rewritten as

Z̃ ε
n = �

n−1∑
k=0

e−�(n−k) X̃ε
k . (2.19)

We introduce its continuous version Z ε
t which will be

employed in the analysis

Z ε
t =

∫ t

0
e−(t−s)Xε

s ds. (2.20)

We remark that the joint process (Xε
t , Z

ε
t ) satisfies the system

of multiscale SDEs

dXε
t = −α · V ′(Xε

t ) dt − 1

ε
p′
(
Xε
t

ε

)
dt + √

2σ dWt ,

dZ ε
t = (

Xε
t − Z ε

t

)
dt, (2.21)

and, using the theory of homogenization, when ε goes to zero
it converges in law as a random variable in C0([0, T ]; R

2) to
the two-dimensional process (X0

t , Z
0
t ), which solves

dX0
t = −A · V ′(X0

t ) dt + √
2� dWt ,

dZ0
t =

(
X0
t − Z0

t

)
dt .

Moreover, it has been proved in Abdulle et al. (2021) that
the two-dimensional processes (Xε

t , Z
ε
t ) and (X0

t , Z
0
t ) are

geometrically ergodic and their respective invariantmeasures
have densities with respect to the Lebesgue measure denoted
respectively by ρε = ρε(x, z) and ρ0 = ρ0(x, z). Let us
finally remark that given discrete observations X̃ε

n we can
only compute Z̃ ε

n , but the theory, which has to be employed
for proving the convergence results, has been studied for the
continuous-time process Z ε

t .

Remark 2.8 The only difference in the construction of the
estimators Âε

N ,J and Ãε
N ,J is the fact that the latter requires

filtered data, which are obtained from discrete observations,
and thus, it is computationally more expensive. Therefore,
when it is possible to use the estimator without filtered data,
it is preferable to employ it.

3 Main results

In this section, we present the main results of this work, i.e.
the asymptotic unbiasedness of the proposed estimators. We
first need to introduce the following technical assumption,
which is a nondegeneracy hypothesis related to the use of

Algorithm 2: Estimation of A with filtered data

Input: Observations
{
X̃ε
n

}N
n=0.

Distance between two consecutive observations �.
Number of eigenvalues and eigenfunctions J .

Functions
{
β j (z; a)

}J
j=1.

Slow-scale potential V .
Diffusion coefficient �.

Output: Estimation Ãε
N ,J of A.

1: Consider the eigenvalue problem
�φ′′

j (x; a) − a · V ′(x)φ′
j (x; a) + λ j (a)φ j (x; a) = 0.

2: Compute the first J eigenvalues
{
λ j (a)

}J
j=1 and eigenfunctions{

φ j (·; a)
}J
j=1.

3: Compute the filtered data
{
Z̃ ε
n

}N
n=0 as Z̃

ε
0 = 0 and

Z̃ ε
n = �

∑n−1
k=0 e

−�(n−k) X̃ε
k .

4: Construct the function
g j (x, y, z; a) = β j (z; a)

(
φ j (y; a) − e−λ j (a)�φ j (x; a)

)
.

5: Construct the score function
G̃ε

N ,J (a) = 1
�

∑N−1
n=0

∑J
j=1 g j (X̃ε

n, X̃
ε
n+1, Z̃

ε
n; a).

6: Let Ãε
N ,J be the solution of the nonlinear system G̃ε

N ,J (a) = 0.

the implicit function theorem for the functions (2.14) and
(2.17) in the limit as N → ∞.

Assumption 3.1 Let A be the homogenized drift coefficient
of equation (2.2). Then, the following hold

(i) det
(∑J

j=1 E
ρ̃0
[(

β j (Z̃0
0; A) ⊗ ∇a X�(A)

)
φ′
j (X

0
�; A)

])

= 0,

(ii) det
(∑J

j=1 E
ϕ0
[(

β j (X0
0; A) ⊗ ∇a X�(A)

)
φ′
j (X

0
�; A)

])

= 0,

(iii) det
(∑J

j=1 E
ρ0
[
(β j (Z0

0; A) ⊗ V ′(X0
0))φ

′
j (X

0
0; A)

])

= 0,

(iv) det
(∑J

j=1 E
ϕ0
[
(β j (X0

0; A) ⊗ V ′(X0
0))φ

′
j (X

0
0; A)

])

= 0,

where ρ̃0 is the invariant measure of the couple (X̃0
n, Z̃

0
n),

whose existence is guaranteed by Lemma A.2, and ∇a Xt (a)

is the gradient of the stochastic process Xt (a) in (2.7) with
respect to the drift coefficient a.

Remark 3.2 The nondegeneracy Assumption 3.1, which is
analogous to Condition 4.2(a) in Kessler and Sørensen
(1999), holds true in all nonpathological examples and does
not constitute an essential limitation on the range of validity
of the results proved in this paper. Further details about the
necessity of this assumption for the analysis of the proposed
estimator will be given in Sect. 5.2.

The proofs of the following two main theorems are the
focus of Sect. 5.

Theorem 3.3 Let J be a positive integer. Under Assumptions
2.2, 2.5, 3.1 and if � is independent of ε or � = εζ with
ζ ∈ (0, 1), there exists ε0 > 0 such that for all 0 < ε < ε0 ,
an estimator Âε

N ,J which solves the system Ĝε
N ,J ( Â

ε
N ,J ) = 0
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exists with probability tending to one as N → ∞. Moreover,

lim
ε→0

lim
N→∞ Âε

N ,J = A, in probability,

where A is the homogenized drift coefficient of equation (2.2).

Theorem 3.4 Let J be a positive integer. Under Assumptions
2.2, 2.5, 3.1 and if � is independent of ε or � = εζ with
ζ > 0 and ζ 
= 1, ζ 
= 2, there exists ε0 > 0 such that for
all 0 < ε < ε0 an estimator Ãε

N ,J which solves the system

G̃ε
N ,J ( Ã

ε
N ,J ) = 0 exists with probability tending to one as

N → ∞. Moreover,

lim
ε→0

lim
N→∞ Ãε

N ,J = A, in probability,

where A is the homogenized drift coefficient of equation (2.2).

Remark 3.5 Notice that in both Theorem 3.3 and Theorem
3.4 the order of the limits is important and they cannot be
interchanged. In fact, we first consider the large data limit, i.e.
the number of observations N tends to infinity, and then we
let the multiscale parameter ε vanish. Moreover, in Theorem
3.4 the values ζ = 1 and ζ = 2 are not allowed because of
technicalities in the proof, but we observe numerically that
the estimator works well also in these two particular cases.

These two theorems show that both estimators based on
the multiscale data from (2.1) converge to the homogenized
drift coefficient A of (2.2). Since the analysis is similar for the
two cases, we will mainly focus on the second score function
with filtered observations and at the end of each step we will
state the differences with respect to the estimator without
pre-processed data.

Remark 3.6 Since themain goal of this work is the estimation
of the effective drift coefficient A, in the numerical experi-
ments and in the following analysis we will always assume
the effective diffusion coefficient � to be known. Never-
theless, we remark that our methodology can be slightly
modified in order to take into account the estimation of the
effective diffusion coefficient too. In fact, the parameter a can
be replaced by the parameter θ = (a, s) ∈ R

M+1 where a
stands for the drift and s stands for the diffusion, yieldingnon-
linear systems of dimension M + 1 corresponding to (2.15)
and (2.18). The proofs of the asymptotic unbiasedness of the
new estimators θ̂ ε

N ,J and θ̃ ε
N ,J can be adjusted analogously.

For completeness, we provide a more detailed explanation
and a numerical experiment illustrating this approach in Sect.
4.6.

3.1 A particular case

Before analysing the general framework, let us consider the
simple case of the Ornstein–Uhlenbeck process, i.e. let the

dimension of the parameter N = 1 and let V (x) = x2/2.
Then, the multiscale SDE (2.1) becomes

dXε
t = −αXε

t dt − 1

ε
p′
(
Xε
t

ε

)
dt + √

2σ dWt ,

and its homogenized version is

dX0
t = −AX0

t dt + √
2� dWt .

Letting a ∈ A, then the eigenfunctions φ j (·; a) and the
eigenvalues λ j (a) satisfy

φ′′
j (x; a) − a

�
xφ′(x) + λ(a)

�
φ(·; a) = 0.

The solution of the eigenvalue problem can be computed
explicitly (see Pavliotis 2014, Sect. 4.4); we have

λ j (a) = ja,

and φ j (·; a) satisfies the recurrence relation

φ j+1(x; a) = xφ j (x; a) − j
�

a
φ j−1(x; a),

with φ0(x; a) = 1 and φ1(x; a) = x . It is also possible to
prove by induction that

φ′
j (x; a) = jφ j−1(x).

Let us consider the simplest casewith onlyone eigenfunction,
i.e. J = 1, and β1(z; a) = z, which implies

g1(x, y, z; a) = z
(
y − e−a�x

)
.

Then, the score functions (2.14) and (2.17) become

Ĝε
N ,1(a) = 1

�

N−1∑
n=0

X̃ε
n

(
X̃ε
n+1 − e−a� X̃ε

n

)
,

G̃ε
N ,1(a) = 1

�

N−1∑
n=0

Z̃ ε
n

(
X̃ε
n+1 − e−a� X̃ε

n

)
.

The solutions of the equations Ĝε
N ,1(a) = 0 and G̃ε

N ,1(a) =
0 can be computed analytically and are given by

Âε
N ,1 = − 1

�
log

(∑N−1
n=0 X̃ε

n X̃
ε
n+1∑N−1

n=0 (X̃ε
n)

2

)
, (3.1)

and

Ãε
N ,1 = − 1

�
log

(∑N−1
n=0 Z̃ ε

n X̃
ε
n+1∑N−1

n=0 Z̃ ε
n X̃

ε
n

)
. (3.2)
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Comparing these estimators with the discrete MLE defined
in Pavliotis and Stuart (2007) without filtered data as

M̂LE
ε

N ,� = −
∑N−1

n=0 X̃ε
n(X̃

ε
n+1 − X̃ε

n)

�
∑N−1

n=0 (X̃ε
n)

2
,

and the discrete MLE with filtered data

M̃LE
ε

N ,� = −
∑N−1

n=0 Z̃ ε
n(X̃

ε
n+1 − X̃ε

n)

�
∑N−1

n=0 Z̃ ε
n X̃

ε
n

,

we notice that they coincide in the limit as � vanishes. We
remark that we are comparing our estimator with the discrete
MLE instead of the analytical formula for theMLE in contin-
uous time since we assume that we are observing our process
at discrete times. Therefore, the continuous time MLE has
to be approximated using the available discrete data (Pavli-
otis 2014, Sect. 5.3). In the following theorems we show the
asymptotic limit of the estimators. We do not provide a proof
for these results since Theorem 3.7 and Theorem 3.9 are par-
ticular cases of Theorem 3.3 and Theorem 3.4 respectively,
and Theorem 3.8 follows from the proof of Theorem 3.3 as
highlighted in Remark 5.11.

Theorem 3.7 Let � be independent of ε or � = εζ with
ζ ∈ (0, 1). Then, under Assumption 2.2, the estimator (3.1)
satisfies

lim
ε→0

lim
N→∞ Âε

N ,1 = A, in probability,

where A is the drift coefficient of the homogenized equation
(2.2).

Theorem 3.8 Let � be independent of ε or� = εζ with ζ >

2. Then, under Assumption 2.2, the estimator (3.1) satisfies

lim
ε→0

lim
N→∞ Âε

N ,1 = α, in probability,

where α is the drift coefficient of the homogenized equation
(2.1).

Theorem 3.9 Let � be independent of ε or � = εζ with
ζ 
= 1, ζ 
= 2. Then, under Assumption 2.2, the estimator
(3.2) satisfies

lim
ε→0

lim
N→∞ Ãε

N ,1 = A, in probability,

where A is the drift coefficient of the homogenized equation
(2.2).

Remark 3.10 Notice that it is possible to write different
proofs for Theorems 3.7, 3.8 and 3.9, which take into account
the specific form of the estimators, and thus show stronger

results. In fact, if the distance � between two consecutive
observations is independent of the multiscale parameter ε,
then the convergences in the statements do not only hold in
probability, but also almost surely. We expect that almost
sure convergence can be proved for a larger class of equa-
tions, but are neither aware of related literature showing such
a stronger result, nor have been able to prove it.

4 Numerical experiments

In this section, we present numerical experiments which
confirm our theoretical results and show the power of the
martingale estimating functions based on eigenfunctions and
filtered data to correct the unbiasedness caused by discretiza-
tion and the fact that we are using multiscale data to fit
homogenized models. Moreover, we present a sensitivity
analysis with respect to the number N of observations and
the number J of eigenvalues and eigenfunctions taken into
account. In the experiments that we present data are gen-
erated employing the Euler–Maruyama method with a fine
time step h, in particular we set h = ε3. Letting �, T > 0,
we generate data Xε

t for 0 ≤ t ≤ T and we select a sequence
of observations {X̃ε

n}Nn=0, where N = T /� and X̃ε
n = Xε

tn
with tn = n�. In view of Remark 2.3, we do not require
stationarity of the multiscale dynamics; hence, we always
set the initial condition to be Xε

0 = 0. Notice that the time
step h is only used to generate numerically the original data
and has to be chosen sufficiently small in order to have a
reliable approximation of the continuous path. However, the
distance between two consecutive observations � is the rate
at which we sample the data, whichwe assume to know, from
the original trajectory. In order to compute the filtered data
{Z̃ ε

n}Nn=1, we employ equation (2.19). We repeat this proce-
dure for M = 15 different realizations of Brownian motion
and we plot the average of the drift coefficients computed by
the estimators.We finally remark that in order to compute our
estimators we need the value of the diffusion coefficient� of
the homogenized equation. In all the numerical experiments,
we compute it exactly using the formula for the coefficient K
given by the theory of homogenization, but we also remark
that its value could be estimated employing the subsampling
technique presented in Pavliotis and Stuart (2007) or modi-
fying the estimating function as explained in Remark 3.6.

4.1 Sensitivity analysis with respect to the number
of observations

We consider the multiscale Ornstein–Uhlenbeck process, i.e.
equation (2.1) with V (x) = x2/2, and we take p(y) =
cos(y), the multiscale parameter ε = 0.1, the drift coeffi-
cient α = 1 and the diffusion coefficient σ = 1. Notice
that for this choice of the slow-scale potential the technical
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Fig. 1 Sensitivity analysis with respect to the number N of observations for different values of � ≤ 1, for the estimator Ãε
N ,J with J = 1

Fig. 2 Sensitivity analysis with respect to the number N of observations for different values of � > 1, for the estimator Ãε
N ,J with J = 1

assumptions required in the main Theorems 3.3, 3.4 can be
easily checked. We plot the results computed by the estima-
tor Ãε

N ,J with J = 1 and β(x; a) = x and we then divide
the analysis in two cases: � “small” and � “big”.

Let us first consider � “small”, i.e. � = εζ with ζ =
0, 0.5, 1, 1.5, and take T = 400. In Fig. 1, we plot the results
of the estimator as a function of the number of observations
N . We remark that in this case the number of observa-
tions needed to reach convergence is strongly dependent
and inversely proportional to the distance � between two
consecutive observations. This means that in order to reach
convergence we need the final time T to be sufficiently large

independently of �. In fact, when the distance � is small,
the discrete observations are a good approximation of the
continuous trajectory and therefore what matters most is the
length T of the original path rather than the number N of
observations.

In order to study the case � “big”, i.e. � > 1, we set
� = 2ζ with ζ = 1, 2, 3, 4, and take T = 215. Figure 2
shows that in this case the number of observations needed to
reach convergence is an increasing function of�. Therefore,
in order to have a reliable approximation of the drift coef-
ficient of the homogenized equation, the final time T has
to be chosen depending on �. This is justified by the fact
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Fig. 3 Sensitivity analysis with respect to the number J of eigenvalues and eigenfunctions for different slow-scale potentials, for the estimators
Âε
N ,J and Ãε

N ,J

that, differently from the previous case, the discrete data are
less correlated and therefore they do not well approximate
the continuous trajectory. In particular, when the distance
� between two consecutive observations is very large, then
in practice we need a huge amount of data because a good
approximation of the unknown coefficient is obtained only if
the final time T is very large.

4.2 Sensitivity analysis with respect to the number
of eigenvalues and eigenfunctions

Let us now consider equation (2.1) with four different slow-
scale potentials

V1(x) = x2

2
, V2(x) = x4

4
,

V3(x) = x6

6
, V4(x) = x4

4
− x2

2
. (4.1)

The other functions and parameters of the SDE are chosen as
in the previous subsection, i.e. p(y) = cos(y), α = 1, σ = 1
and ε = 0.1. Moreover, we set � = ε and T = 500 and
we vary J = 1, . . . , 10. The functions {β j }10j=1 appearing
in the estimating function are given by β j (x; a) = x for all
j = 1, . . . , J .
In Fig. 3, where we plot the values computed by Âε

N ,J

and Ãε
N ,J , we observe that the number J of eigenvalues and

eigenfunctions slightly improve the results, in particular for
the fourth potential, but the estimation stabilizes when the
number of eigenvalues J is still small, e.g. J = 3. Therefore,
in order to reduce the computational cost, it seems to be

preferable not to take large values of J . This is related to how
quickly the eigenvalues grow and, therefore, how quickly the
corresponding exponential terms decay. The rigorous study
of the accuracy of the spectral estimators as a function of the
number of eigenvalues and eigenfunctions that we take into
account will be investigated elsewhere.

4.3 Verification of the theoretical results

We consider the same setting as in the previous subsection,
i.e. equation (2.1) with slow-scale potentials given by (4.1)
and p(y) = cos(y), α = 1, σ = 1 and ε = 0.1. Moreover,
we set J = 1, β(x; a) = x and T = 500, and we choose the
distance between two successive observations to be � = εζ

with ζ = 0, 0.1, 0.2, . . . , 2.5.
In Fig. 4, we compare our martingale estimator Âε

N ,J
without filtered data with the discrete maximum likelihood
estimator denoted M̂LE

ε

N ,�. TheMLEdoes not provide good
results for two reasons:

• if � is small, more precisely if � = εζ with ζ > 1,
sampling the data does not completely eliminate the fast-
scale components of the original trajectory; therefore,
since we are employing data generated by the multiscale
model, the estimator is trying to approximate the drift
coefficient α of the multiscale equation, rather than the
one of the homogenized equation;

• if � is relatively big, in particular if � = εζ with ζ ∈
[0, 1), then we are taking into account only the slow-
scale components of the original trajectory, but a bias is
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Fig. 4 Comparison between the discrete maximum likelihood estimator M̂LE
ε

N ,� presented in Pavliotis and Stuart (2007) and our estimator Âε
N ,J

with J = 1 without filtered data as a function of the distance � between two successive observations for different slow-scale potentials

still introduced because we are discretizing an estimator
which is usually used for continuous data.

Nevertheless, as observed in these numerical experiments
and investigated in greater detail in Pavliotis and Stuart
(2007), there exists an optimal value of� such that M̂LE

ε

N ,�

workswell, but this value is not known a priori and is strongly
dependent on the problem, hence this technique is not robust.
Figure 4 shows that the second issue, i.e. when � is rela-
tively big, can be solved employing Âε

N ,J , an estimator for
discrete observations, and that filtering the data is not needed
as proved in Theorem 3.3.

Then, in order to solve also the first problem, in Fig. 5
we compare Âε

N ,J with our martingale estimator Ãε
N ,J with

filtered data. We observe that inserting filtered data in the
estimator allows us to disregard the fast-scale components of
the original trajectory and to obtain good approximations of
the drift coefficient A of the homogenized equation indepen-
dently of �, as already shown in Theorem 3.4. In particular,
we notice that the results still improve even for big values of
� if we employ the estimator based on filtered data. Finally,
as highlighted in Remark 5.11, we observe that the limiting
value of the estimator Âε

N ,J as the number of observations
N goes to infinity and the multiscale parameter ε vanishes is
strongly dependent on the problem and cannot be computed
theoretically. However, if we consider the slow-scale poten-
tial V1(x) = x2/2, i.e. the multiscale Ornstein-Uhlenbeck
process, then the limit, as proved in Theorem 3.8, is the drift
coefficient α of the multiscale equation.

4.4 Multidimensional drift coefficient

In this experiment, we consider a multidimensional drift
coefficient, in particular we set N = 2. We then consider
the bistable potential, i.e.

V (x) =
(
x4
4 − x2

2

)�
,

and the fast-scale potential p(y) = cos(y). We choose the
exact drift coefficient of the multiscale equation (2.1) to be

α = (
1.2 0.7

)�
and the diffusion coefficient to be σ = 0.7.

We also set the number of eigenfunctions J = 1, the function

β(x; a) = (
x3 x

)�
, the distance between two consecutive

observations � = 1 and the final time T = 1000. We then
compute the estimator Âε

N ,J after N = 100, 200, . . . , 1000
observations and in Fig. 6we plot the result of the experiment
for the cases ε = 0.1 and ε = 0.05. Since we are analysing
the case � independent of ε, filtering the data is not neces-
sary and therefore we consider the estimator Âε

N ,J which is
computationally less expensive to compute.

We observe that the estimation is approaching the exact
value A of the drift coefficient of the homogenized equation
as the number of observations increases, until it starts oscil-
lating around the true value A = (

0.48 0.28
)�

. Moreover,
we notice that the time needed to reach a neighbourhood of
A is smaller when the multiscale parameter ε is closer to its
vanishing limit. In Table 1, we report the absolute error êε

N
defined as
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Fig. 5 Comparison between our two estimators Âε
N ,J without filtered data and Ãε

N ,J with filtered data with J = 1 as a function of the distance �

between two successive observations for different slow-scale potentials

Fig. 6 Evolution in time of the estimator Âε
N ,J with J = 1 for a two-dimensional drift coefficient

Table 1 Absolute error êε
N

defined in (4.2) between the
homogenized drift coefficient A
and the estimator Âε

N ,J with
J = 1 for a two-dimensional
drift coefficient

N 100 200 300 400 500 600 700 800 900 1000

ε = 0.1 0.742 0.395 0.215 0.201 0.093 0.036 0.011 0.027 0.034 0.028

ε = 0.05 0.086 0.031 0.019 0.031 0.018 0.049 0.081 0.085 0.055 0.053

êε
N = ∥∥A − Âε

N ,J

∥∥
2
, (4.2)

where ‖·‖2 denotes the Euclidean norm, varying the num-
ber of observations N for the two values of the multiscale
parameter.

4.5 Multidimensional stochastic process: interacting
particles

In this section, we consider a system of d interacting parti-
cles in a two-scale potential, a problem with a wide range of
applications which has been studied in Gomes and Pavliotis
(2018). For t ∈ [0, T ] and for all i = 1, . . . , d, consider the
system of SDEs
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Fig. 7 Evolution in time of the estimator Âε
N ,J with J = 1 for a d-dimensional system of interacting particles with sampling rate � = 1

Fig. 8 Evolution in time of the estimator Ãε
N ,J with J = 1 for a d-dimensional system of interacting particles with sampling rate � = ε

dXε
i (t) = −αXε

i (t) dt − 1

ε
p′
(
Xε
i (t)

ε

)

− θ

d

d∑
j=1

(
Xε
i (t) − Xε

j (t)
)
dt + √

2σ dWi (t).

(4.3)

In this paper we fix the number of particles and study the
performance of our estimators as ε vanishes. The very inter-
esting problem of inference for mean field SDEs, obtained
in the limit as d → ∞, will be investigated elsewhere. It
can be shown (see, for example, Gomes and Pavliotis 2018,
Sect. 2.1 and Duncan and Pavliotis (2016); Delgadino et al.
(2021)) that (Xε

1, . . . X
ε
d) converges in law as ε goes to zero

to the solution (X0
1, . . . , X

0
d) of the homogenized system

dX0
i (t) = −AX0

i (t) dt − �

d

d∑
j=1

(
X0
i (t) − X0

j (t)
)
dt

+√
2� dWi (t). (4.4)

where � = K θ and K is defined in (2.3). Moreover, the
first eigenvalue and eigenfunction of the generator of the
homogenized system can be computed explicitly and they
are given, respectively, by

φ1(x1, . . . , xd) =
d∑

i=1

xi and λ1 = A.

Hence, letting � > 0 independent of ε, given a sequence
of observations ((X̃ε

1)n, . . . (X̃
ε
d)n)

N
n=0, we can express the

estimators analytically

Âε
N ,1 = − 1

�
log

⎛
⎜⎝
∑N−1

n=0

(∑d
i=1(X̃

ε
i )n

) (∑d
i=1(X̃

ε
i )n+1

)
∑N−1

n=0

(∑d
i=1(X̃

ε
i )n

)2
⎞
⎟⎠ ,

Ãε
N ,1 = − 1

�
log

⎛
⎝
∑N−1

n=0

(∑d
i=1(Z̃

ε
i )n

) (∑d
i=1(X̃

ε
i )n+1

)
∑N−1

n=0

(∑d
i=1(Z̃

ε
i )n

) (∑d
i=1(X̃

ε
i )n

)
⎞
⎠ .

Let us now set p(y) = cos(y), α = 1, σ = 1 and
θ = 1. We then simulate system (4.3) for different final
times T = 100, 200, . . . , 1000 and approximate the drift
coefficient A of the homogenized system (4.4) for d = 2
and d = 5. In Figs. 7 and 8, we plot the results, respectively,
of the estimators Âε

N ,J with � = 1 and Ãε
N ,J with � = ε

for two different values of ε = 0.1, 0.05. As expected, we
observe that our estimator provides a better approximation
of the unknown coefficient A when the time T increases and
that this value stabilizes after approximately T = 500.

4.6 Simultaneous inference of drift and diffusion
coefficients

As highlighted by Remark 3.6, a small modification of
our methodology allows us to estimate the diffusion coef-
ficient, in addition to drift coefficients. Define the parameter
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Fig. 9 Simultaneous inference of drift and diffusion coefficient for the estimator Âε
N ,J with J = 2

θ = (
a� s

)� ∈ R
M+1, whose exact value is given by

θ0 = (
A� �

)� ∈ R
M+1, where A and � are the drift and

diffusion coefficients of the homogenized equation, respec-
tively. Then, the eigenvalue problem reads for all j ∈ N

sφ′′
j (x; θ) − a · V ′(x)φ′

j (x; θ) + λ j (θ)φ j (x; θ) = 0,

where the eigenvalues and eigenfunctions are now depen-
dent on the new parameter θ . Accordingly, also the functions
{β j }Jj=1 can be chosen dependent on both the drift and diffu-
sion coefficients and, moreover, they have to take values in
R

M+1, i.e. β j (·; θ) : R → R
M+1. Therefore, the new score

functions Ĝε
N ,J and G̃ε

N ,J are defined from � = A × S ⊂
R

M+1, which is the set of admissible parameters θ , to R
M+1

and thus give nonlinear systems of dimensionM+1. Finally,
the solutions θ̂ ε

N ,J and θ̃ ε
N ,J of the systems are the estimators

of both the drift and diffusion coefficients of the homog-
enized equation. In fact, small modifications in the proofs
of the main results, in particular in the notation, yield the
asymptotic unbiasedness of the estimators under the same
conditions, i.e.

lim
ε→0

lim
N→∞ θ̂ ε

N ,J = lim
ε→0

lim
N→∞ θ̃ ε

N ,J

= θ0 = (
A� �

)�
, in probability.

Consider now the same setting of Sect. 4.1, i.e. the mul-
tiscale Ornstein–Uhlenbeck potential with V (x) = x2/2,
p(y) = cos(y), α = 1, σ = 1 and let us assume that both
the drift and diffusion coefficients are unknown. We remark
that in this case we have M = 1. Then, set the final time
T = 1000, the sampling rate � = 1 and the number of
eigenfunctions and eigenvalues J = 2.Moreover, we choose

the functions β1(x; θ) = β2(x; θ) = (
x2 x

)�
. Since the dis-

tance between two consecutive observations is independent
of themultiscale parameter ε, we consider the estimator Âε

N ,J
without filtered data. In Fig. 9, we plot the evolution of our

estimator varying the number of observations N for two dif-
ferent values of ε, in particular ε = 0.1 and ε = 0.05. We
observe that if the multiscale parameter is smaller, then the
number of observations needed to obtain a reliable approxi-
mation of the unknown parameters is lower.

5 Asymptotic unbiasedness

In this section, we prove our main results. The plan of the
proof is the following:

• we first study the limiting behaviour of the score func-
tions Ĝε

N ,J and G̃ε
N ,J defined in (2.14) and (2.17) as the

number of observations N goes to infinity, i.e. as the final
time T tends to infinity;

• we then show the continuity of the limit of the score
functions obtained in the previous step and we compute
their limits as the multiscale parameter ε vanishes (Sect.
5.1);

• wefinally proveourmain results, i.e. the asymptotic unbi-
asedness of the drift estimators (Sect. 5.2).

Wefirst define the Jacobianmatrix of the function g j intro-
duced in (2.13) with respect to a:

h j (x, y, z; a) = .
β j (z; a)

(
φ j (y, a) − e−λ j (a)�φ j (x; a)

)

+ β j (z; a) ⊗
( .
φ j (y; a) − e−λ j (a)�

( .
φ j (x; a) − �

.
λ j (a)φ j (x, a)

))
,

(5.1)

whichwill be employed in the following andwhere⊗denotes
the outer product in R

M and the dot denotes either the Jaco-
bian matrix or the gradient with respect to a, e.g. h j = .

g j .
Then note that, under Assumption 2.2, due to ergodicity and
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stationarity and by Bibby and Rensen (1995, Lemma 3.1) we
have

lim
N→∞

1

N
Ĝε

N ,J (a) = 1

�

J∑
j=1

E
ϕε [

g j
(
Xε
0, X

ε
�, Xε

0; a
)]

=: ĜJ (ε, a),

and

lim
N→∞

1

N
G̃ε

N ,J (a) = 1

�

J∑
j=1

E
ρ̃ε [

g j
(
Xε
0, X

ε
�, Z̃ ε

0; a
)]

=: G̃J (ε, a), (5.2)

where E
ϕε

and E
ρ̃ε

denotes, respectively, that Xε
0 and

(Xε
0, Z̃

ε
0) are distributed according to their invariant distri-

bution. We remark that the invariant distribution ρ̃ε exists
due to Lemma A.2. By equation (5.1) the Jacobian matrices
of ĜJ (ε, a) and G̃J (ε, a) with respect to a are given by

ĤJ (ε, a) := ∂

∂a
ĜJ (ε, a)

= 1

�

J∑
j=1

E
ϕε [

h j
(
Xε
0, X

ε
�, Xε

0; a
)]

,

and

H̃J (ε, a) := ∂

∂a
G̃J (ε, a)

= 1

�

J∑
j=1

E
ρ̃ε [

h j
(
Xε
0, X

ε
�, Z̃ ε

0; a
)]

. (5.3)

5.1 Continuity of the limit of the score function

In this section, we first prove the continuity of the functions
ĜJ , G̃J : (0,∞) ×A → R

M and ĤJ , H̃J , : (0,∞) ×A →
R

M×M . We then study the limit of these functions for ε → 0.
As the proof for the filtered and the non-filtered are similar,
we will concentrate on the filtered case and comment on the
non-filtered case. Before entering into the proof, we give two
preliminary technical lemmas which will be used repeatedly
and whose proof can be found, respectively, in Appendix A.1
and Appendix A.3.

Lemma 5.1 Let Z̃ ε be defined in (2.16) and distributed
according to the invariant measure ρ̃ε of the process
(X̃n, Z̃n). Then, for any p ≥ 1 there exists a constant C > 0
uniform in ε such that

E
ρ̃ε ∣∣Z̃ ε

∣∣p ≤ C .

Lemma 5.2 Let f : R → R be a C∞(R) function which is
polynomially bounded along with all its derivatives. Then,

f (Xε
�) = f (Xε

0) − A · V ′(Xε
0) f

′(Xε
0)� + � f ′′(Xε

0)�

+√
2σ

∫ �

0
f ′(Xε

t )(1 + �′(Y ε
t )) dWt + R(ε,�),

where R(ε,�) satisfies for all p ≥ 1 and for a constant
C > 0 independent of � and ε

(
E

ϕε |R(ε,�)|p
)1/p ≤ C(ε + �3/2).

We start here with a continuity result for the score func-
tion and its Jacobian matrix with respect to the unknown
parameter.

Proposition 5.3 Under Assumption 2.5, the functions G̃J :
(0,∞)×A → R

M and H̃J , : (0,∞)×A → R
M×M defined

in (5.2) and (5.3), where � can be either independent of ε or
� = εζ with ζ > 0, are continuous.

Proof We only prove the statement for G̃J , then the argument
is similar for H̃J . Letting ε∗ ∈ (0,∞) and a∗ ∈ A, we want
to show that

lim
(ε,a)→(ε∗,a∗)

∥∥G̃J (ε, a) − G̃J (ε
∗, a∗)

∥∥ = 0.

By the triangle inequality, we have

∥∥G̃J (ε, a) − G̃J (ε
∗, a∗)

∥∥ ≤ ∥∥G̃J (ε, a) − G̃J (ε, a
∗)
∥∥

+ ∥∥G̃J (ε, a
∗) − G̃J (ε

∗, a∗)
∥∥ =: Q1(ε, a) + Q2(ε),

then we divide the proof in two steps and we show that the
two terms vanish.

Step 1: Q1(ε, a) → 0 as (ε, a) → (ε∗, a∗).
Since β j and φ j are continuously differentiable with

respect to a for all j = 1, . . . , J , respectively, due to
Assumption 2.5 andLemmaA.4, then also g j is continuously
differentiable with respect to a. Therefore, by themean value
theorem for vector-valued functions, we have

Q1(ε, a) ≤ 1

�

J∑
j=1

∥∥∥E
ρ̃ε [

g j (X
ε
0, X

ε
�, Z̃ ε

0; a)
]

−E
ρ̃ε [

g j (X
ε
0, X

ε
�, Z̃ ε

0; a∗)
]∥∥∥

= 1

�

J∑
j=1

∥∥∥∥
∫ 1

0
E

ρ̃ε [
h j (X

ε
0, X

ε
�, Z̃ ε

0; a∗

+t(a − a∗))
]
dt (a − a∗)

∥∥ .
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Then, letting C > 0 be a constant independent of ε, since
β j and φ j are polynomially bounded still by Assumption 2.5
and Xε

0, X
ε
� and Z̃ ε

0 have bounded moments of any order by
Pavliotis and Stuart (2007, Corollary 5.4) and Lemma 5.1,
we obtain

Q1(ε, a) ≤ C

�

∥∥a − a∗∥∥ ,

which implies that Q1(ε, a) vanishes as (ε, a) goes to
(ε∗, a∗) both if � is independent of ε and if � = εξ .

Step 2: Q2(ε) → 0 as ε → ε∗.
If � is independent of ε, then we have

lim
ε→ε∗ Q2(ε) = lim

ε→ε∗

∥∥∥∥∥∥
1

�

J∑
j=1

E
ρ̃ε [

g j (X
ε
0, X

ε
�, Z̃ ε

0; a∗)
]

− 1

�

J∑
j=1

E
ρ̃ε∗ [

g j (X
ε∗
0 , Xε∗

� , Z̃ ε∗
0 ; a∗)

]∥∥∥∥∥∥
≤ lim

ε→ε∗
1

�

J∑
j=1

∥∥∥E
ρ̃ε [

g j (X
ε
0, X

ε
�, Z̃ ε

0; a∗)
]

−E
ρ̃ε∗ [

g j (X
ε∗
0 , Xε∗

� , Z̃ ε∗
0 ; a∗)

]∥∥∥ ,

and the right-hand side vanishes due to the continuity of g j

for all j = 1, . . . , J and the continuity of the solution of a
stochastic differential equation with respect to a parameter
(see Krylov 2009, Theorem 2.8.1). Let us now consider the
case � = εζ with ζ > 0 and let us assume, without loss of
generality, that ε > ε∗. Denoting �∗ = (ε∗)ζ and applying
Itô’s lemma we have for all j = 1, . . . , J

φ j (X
ε
�; a∗) = φ j (X

ε
�∗ ; a∗)

− α ·
∫ �

�∗
V ′(Xε

t )φ
′
j (X

ε
t ; a∗) dt

− 1

ε

∫ �

�∗
φ′
j (X

ε
t ; a∗)p′

(
Xε
t

ε

)
dt

+ σ

∫ �

�∗
φ′′
j (X

ε
t ; a∗) dt

+ √
2σ

∫ �

�∗
φ′
j (X

ε
t ; a∗) dWt ,

then we can write

G̃J (ε, a
∗) = 1

�

J∑
j=1

(
E

ρ̃ε [
β j (Z̃

ε
0; a∗)φ j (X

ε
�∗ ; a∗)

]

−e−λ(a∗)�
E

ρ̃ε [
β j (Z̃

ε
0; a∗)φ j (X

ε
0; a∗)

])+ R(ε),

where R(ε) is given by

R(ε) = − 1

�

J∑
j=1

∫ �

�∗
E

ρ̃ε
[
β j (Z̃

ε
0; a∗)φ′

j (X
ε
t ; a∗)α · V ′(Xε

t )
]
dt

− 1

ε�

J∑
j=1

∫ �

�∗
E

ρ̃ε

[
β j (Z̃

ε
0; a∗)φ′

j (X
ε
t ; a∗)p′

(
Xε
t

ε

)]
dt

+ σ

�

∫ �

�∗
E

ρ̃ε
[
β j (Z̃

ε
0; a∗)φ′′

j (X
ε
t ; a∗)

]
dt

+
√
2σ

�

J∑
j=1

E
ρ̃ε

[∫ �

�∗
β j (Z̃

ε
0; a∗)φ′

j (X
ε
t ; a∗) dWt

]
.

Let C > 0 be independent of ε and notice that since p′ is
bounded, β j , φ

′
j , φ

′′
j , V

′ are polynomially bounded and Xε
t

and Z̃ ε
0 have bounded moments of any order by Pavliotis

and Stuart (2007, Corollary 5.4) and Lemma 5.1, applying
Hölder’s inequality we obtain

|R(ε)| ≤ C

�

(
‖α‖ + σ + 1

ε

)
(� − �∗)

+C

�

√
2σ(� − �∗)1/2. (5.4)

Therefore, by the continuity of the solution of a stochastic
differential equationwith respect to a parameter (seeMishura
et al. 2010) and due to the bound (5.4), we deduce that

lim
ε→ε∗ G̃J (ε, a

∗) = 1

�∗
J∑

j=1

E
ρ̃ε∗ [

β j (Z̃
ε∗
0 ; a∗)

(
φ j (X

ε∗
�∗ ; a∗)

−e−λ(a∗)�∗
φ j (X

ε∗
0 ; a∗)

)]

= G̃J (ε
∗, a∗),

which implies that Q2(ε) vanishes as ε goes to ε∗ and con-
cludes the proof.

Remark 5.4 Notice that the proof of Proposition 5.3 can be
repeated analogously for the functions ĜJ : (0,∞) × A →
R

M and ĤJ : (0,∞)×A → R
M×M without filtered data in

order to prove their continuity.

Next we study the limit as ε vanishes and we divide the
analysis in two cases. In particular, we consider � indepen-
dent of ε and� = εζ with ζ > 0. In thefirst case (Proposition
5.5), data are sampled at the homogenized regime ignor-
ing the fact that the they are generated by a multiscale
model, while in the second case (Proposition 5.7) the dis-
tance between two consecutive observations is proportional
to the multiscale parameter and thus, data are sampled at the
multiscale regime preserving the multiscale structure of the
full path.
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Proposition 5.5 Let the functions G̃J : (0,∞) × A → R
M

and H̃J , : (0,∞) × A → R
M×M be defined in (5.2) and

(5.3) and let � be independent of ε. Under Assumption 2.5
and for any a∗ ∈ A, we have

(i) lim
(ε,a)→(0,a∗)

G̃J (ε, a)

= 1

�

J∑
j=1

E
ρ̃0
[
g j

(
X0
0, X

0
�, Z̃0

0; a∗)] ,

(i i) lim
(ε,a)→(0,a∗)

H̃J (ε, a)

= 1

�

J∑
j=1

E
ρ̃0
[
h j

(
X0
0, X

0
�, Z̃0

0; a∗)] .

Proof We only prove the statement for G̃J , then the argument
is similar for H̃J . By the triangle inequality, we have

∥∥∥∥∥∥G̃J (ε, a) − 1

�

J∑
j=1

E
ρ̃0
[
g j

(
X0
0, X

0
�, Z̃0

0; a∗)]
∥∥∥∥∥∥

≤ Q1(ε, a) + Q2(ε),

where

Q1(ε, a) = ∥∥G̃J (ε, a) − G̃J (ε, a
∗)
∥∥ ,

which vanishes due to the first step of the proof of Proposition
5.3 and

Q2(ε) =
∥∥∥∥∥∥
1

�

J∑
j=1

E
ρ̃ε [

g j
(
Xε
0, X

ε
�, Z̃ ε

0; a∗)]

− 1

�

J∑
j=1

E
ρ̃0
[
g j

(
X0
0, X

0
�, Z̃0

0; a∗)]
∥∥∥∥∥∥ .

Let us remark that the convergence in law of the joint process
{(X̃ε

n, Z̃
ε
n)}Nn=0 to the joint process {(X̃0

n, Z̃
0
n)}Nn=0 by Lemma

A.2 implies the convergence in lawof the triple (Xε
0, X

ε
�, Z̃ ε

0)

to the triple (X0
0, X

0
�, Z̃0

0) since X̃ε
0 = Xε

0, X̃
ε
1 = Xε

� and
X̃0
0 = X0

0, X̃
0
1 = X0

�. Therefore, we have

lim
ε→0

Q2(ε) ≤ lim
ε→0

1

�

J∑
j=1

∥∥∥E
ρ̃ε [

g j
(
Xε
0, X

ε
�, Z̃ ε

0; a∗)]

−E
ρ̃0
[
g j

(
X0
0, X

0
�, Z̃0

0; a∗)]∥∥∥ = 0,

which implies the desired result.

Remark 5.6 Similar results to Proposition 5.3 and Proposi-
tion 5.5 can be shown for the estimator without filtered data.

In particular we have that ĜJ (ε, a) and ĤJ (ε, a) are contin-
uous in (0,∞) × A and

(i) lim
(ε,a)→(0,a∗)

ĜJ (ε, a)

= 1

�

J∑
j=1

E
ϕ0
[
g j

(
X0
0, X

0
�, X0

0; a∗)] ,

(i i) lim
(ε,a)→(0,a∗)

ĤJ (ε, a)

= 1

�

J∑
j=1

E
ϕ0
[
h j

(
X0
0, X

0
�, X0

0; a∗)] .

Since the proof is analogous,we do not report here the details.

Proposition 5.7 Let the functions G̃J : (0,∞) × A → R
M

and H̃J , : (0,∞) × A → R
M×M be defined in (5.2) and

(5.3) and let � = εζ with ζ > 0 and ζ 
= 1, ζ 
= 2. Under
Assumption 2.5 and for any a∗ ∈ A, we have

(i) lim(ε,a)→(0,a∗) G̃J (ε, a) = g̃0J (a
∗), where

g̃0J (a) :=
J∑

j=1

E
ρ0 [

β j (Z
0
0; a)

(LAφ j (X
0
0; a) + λ j (a)φ j (X

0
0; a)

)]
,

(ii) lim(ε,a)→(0,a∗) H̃J (ε, a) = h̃0J (a
∗), where

h̃0J (a) :=
J∑

j=1

E
ρ0
[ .
β j (Z

0
0; a)

(
LAφ j (X

0
0; a) + λ j (a)φ j (X

0
0; a)

)]

+
J∑

j=1

E
ρ0
[
β j (Z

0
0; a) ⊗

(
LA

.
φ j (X

0
0; a) + λ j (a)

.
φ j (X

0
0; a)

)]

+
J∑

j=1

E
ρ0
[
β j (Z

0
0; a)φ j (X

0
0; a)

]
⊗ .

λ j (a),

where the generator LA is defined in (2.9).

Proof We only prove the statement for G̃J , then the argument
is similar for H̃J . By the triangle inequality, we have
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∥∥∥G̃J (ε, a) − g̃0J (a
∗)
∥∥∥

≤ ∥∥G̃J (ε, a) − G̃J (ε, a
∗)
∥∥

+
∥∥∥G̃J (ε, a

∗) − g̃0J (a
∗)
∥∥∥ =: Q1(ε, a) + Q2(ε),

then we need to show that the two terms vanish and we dis-
tinguish two cases.

Case 1: ζ ∈ (0, 1).
Applying Lemma 5.2 to the functions φ j (·; a∗) for all

j = 1, . . . , J and noting that

E
ρ̃ε

[
β j (Z̃

ε
0; a∗)

∫ �

0
φ′
j (X

ε
t ; a∗)(1 + �′(Y ε

t )) dWt

]
= 0,

since

Ms :=
∫ s

0
φ′
j (X

ε
t ; a∗)(1 + �′(Y ε

t )) dWt

is a martingale with M0 = 0, we have

G̃J (ε, a
∗) = 1

�

J∑
j=1

E
ρ̃ε
[
β j (Z̃

ε
0; a∗)

(
φ j (X

ε
�; a∗) − e−λ j (a∗)�φ j (X

ε
0; a∗)

)]

= 1 − e−λ j (a∗)�

�

J∑
j=1

E
ρ̃ε [

β j (Z̃
ε
0; a∗)φ j (X

ε
0; a∗)

]

+
J∑

j=1

1

�
E

ρ̃ε [
β j (Z̃

ε
0; a∗)R(ε,�)

]+
J∑

j=1

E
ρ̃ε
[
β j (Z̃

ε
0; a∗)

(
�φ′′

j (X
ε
0; a∗) − A · V ′(Xε

0)φ
′
j (X

ε
0; a∗)

)]

=: I ε
1 + I ε

2 + I ε
3 ,

where R(ε,�) satisfies for a constant C > 0 independent of
ε and � and for all p ≥ 1

(
E

ρ̃ε |R(ε,�)|p
)1/p ≤ C(ε + �3/2). (5.5)

We now study the three terms separately. First, by Cauchy–
Schwarz inequality, sinceβ j (·; a∗) is polynomially bounded,
Z̃ ε
0 has bounded moments of any order by Lemma 5.1 and

due to (5.5) we obtain

∥∥I ε
2

∥∥ ≤ C
(
ε�−1 + �1/2

)
. (5.6)

Let us now focus on I ε
1 for which we have

I ε
1 = 1 − e−λ j (a∗)�

�

J∑
j=1

(
E

ρε [
β j (Z

ε
0; a∗)φ j (X

ε
0; a∗)

]

+E
[(

β j (Z̃
ε
0; a∗) − β j (Z

ε
0; a∗)

)
φ j (X

ε
0; a∗)

])
,

where Z ε
0 is distributed according to the invariant measure

ρε of the continuous process (Xε
t , Z

ε
t ) and

lim
ε→0

1 − e−λ j (a∗)�

�
= λ j (a

∗). (5.7)

By the mean value theorem for vector-valued functions, we
have

E
[
(β j (Z̃

ε
0; a∗) − β j (Z

ε
0; a∗))φ j (X

ε
0; a∗)

]

= E

[∫ 1

0
β ′
j (Z

ε
0 + t(Z̃ ε

0 − Z ε
0); a∗) dt (Z̃ ε

0 − Z ε
0)φ j (X

ε
0; a∗)

]
,

and since β ′
j (·; a∗), φ j (·; a∗) are polynomially bounded, Xε

0,

Z ε
0, Z̃

ε
0 have bounded moments of any order, respectively,

by Pavliotis and Stuart (2007, Corollary 5.4), Abdulle et al.
(2021, Lemma C.1) and Lemma 5.1 and applying Hölder’s
inequality and Corollary A.3 we obtain

∥∥E
[(

β j (Z̃
ε
0; a∗) − β j (Z

ε
0; a∗)

)
φ j (X

ε
0; a∗)

]∥∥
≤ C

(
�1/2 + ε

)
. (5.8)

Moreover, notice that byhomogenization theory (seeAbdulle
et al. 2021, Sect. 3.2) the joint process (Xε

0, Z
ε
0) converges

in law to the joint process (X0
0, Z

0
0) and therefore

lim
ε→0

E
ρε [

β j (Z
ε
0; a∗)φ j (X

ε
0; a∗)

]

= E
ρ0
[
β j (Z

0
0; a∗)φ j (X

0
0; a∗)

]
,

which together with (5.7) and (5.8) yields

lim
ε→0

I ε
1 =

J∑
j=1

λ j (a
∗)Eρ0

[
β j (Z

0
0; a∗)φ j (X

0
0; a∗)

]
. (5.9)
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We now consider I ε
3 and we follow an argument similar

to I ε
2 . We first have

I ε
3 =

J∑
j=1

E
ρε
[
β j (Z

ε
0; a∗)

(
�φ′′

j (X
ε
0; a∗)

−A · V ′(Xε
0)φ

′
j (X

ε
0; a∗)

)]

+
J∑

j=1

E
[(

β j (Z̃
ε
0; a∗) − β j (Z

ε
0; a∗)

)
(
�φ′′

j (X
ε
0; a∗) − A · V ′(Xε

0)φ
′
j (X

ε
0; a∗)

)]

=: I ε
3,1 + I ε

3,2,

where the first term in the right-hand side converges due to
homogenization theory and the second one is bounded by

∥∥I ε
3,2

∥∥ ≤ C
(
�1/2 + ε

)
.

Therefore, we obtain

lim
ε→0

I ε3 =
J∑

j=1

E
ρ0
[
β j (Z

0
0; a∗)

(
�φ′′

j (X
0
0; a∗)−A · V ′(X0

0)φ
′
j (X

0
0; a∗)

)]
,

which together with (5.6) and (5.9) implies

lim
ε→0

G̃J (ε, a∗) =
J∑

j=1

E
ρ0
[
β j (Z

0
0; a)

(
�φ′′

j (X
0
0; a∗)

−A · V ′(X0
0)φ

′
j (X

0
0; a∗) +λ j (a

∗)φ j (X
0
0; a∗)

)]
, (5.10)

which shows that Q2(ε) vanishes as ε goes to zero. Let us
now consider Q1(ε, a). Following the first step of the proof
of Proposition 5.3, we have

Q1(ε, a) ≤ 1

�

J∑
j=1

∥∥∥E
ρ̃ε [

g j (X
ε
0, X

ε
�, Z̃ ε

0; a)
]

−E
ρ̃ε [

g j (X
ε
0, X

ε
�, Z̃ ε

0; a∗)
]∥∥∥

≤
J∑

j=1

∥∥∥∥ 1

�
E

ρ̃ε [
h j (X

ε
0, X

ε
�, Z̃ ε

0; ã)
]∥∥∥∥

∥∥(a − a∗)
∥∥ ,

where ã assumes values in the line connecting a and a∗, and
repeating the same computation as above we obtain

Q1(ε, a) ≤ C
∥∥a − a∗∥∥ ,

which together with (5.10) gives the desired result.
Case 2: ζ ∈ (1, 2) ∪ (2,∞).
Let Z ε

0 be distributed according to the invariant measure
ρε of the continuous process (Xε

t , Z
ε
t ) and define

R̃(ε,�) := 1

�

J∑
j=1

E
ρ̃ε [

g j (X
ε
0, X

ε
�, Z̃ ε

0; a∗)
]

− 1

�

J∑
j=1

E
ρε [

g j (X
ε
0, X

ε
�, Z ε

0; a∗)
]

= 1

�

J∑
j=1

E
[(

β j (Z̃
ε
0; a∗) − β j (Z

ε
0; a∗)

)
(
φ j (X

ε
�; a∗) − e−λ j (a∗)�φ j (X

ε
0; a∗)

)]
.

Then, we have

G̃J (ε, a
∗) =

J∑
j=1

1

�
E

ρε [
g j (X

ε
0, X

ε
�, Z ε

0; a∗)
]

+R̃(ε,�) =:
J∑

j=1

Qε
j + R̃(ε,�), (5.11)

and we first bound the remainder R̃(ε,�). Applying Itô’s
lemma to the process Xε

t with the functions φ j (·; a∗) for
each j = 1, . . . , J we have

φ j (X
ε
�; a∗) = φ j (X

ε
0; a∗) −

∫ �

0
α · V ′(Xε

t )φ
′
j (X

ε
t ; a∗) dt

−
∫ �

0

1

ε
p′
(
Xε
t

ε

)
φ′
j (X

ε
t ; a∗) dt

+ σ

∫ �

0
φ′′
j (X

ε
t ; a∗) dt

+ √
2σ

∫ �

0
φ′
j (X

ε
t ; a∗) dWt ,

(5.12)

and observing that

E

[(
β j (Z̃

ε
0; a∗)−β j (Z

ε
0; a∗)

) ∫ �

0
φ′
j (X

ε
t ; a∗) dWt

]
= 0,

(5.13)

since

Ms =
∫ s

0
φ′
j (X

ε
t ; a∗) dWt
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is a martingale with M0 = 0, we obtain

R̃(ε,�) =
J∑

j=1

1 − e−λ j (a∗)�

�
E
[(

β j (Z̃
ε
0; a∗) − β j (Z

ε
0; a∗)

)
φ j (X

ε
0; a∗)

]

+
J∑

j=1

1

�

∫ �

0
E

[(
β j (Z̃

ε
0; a∗) − β j (Z

ε
0; a∗)

) (
σφ′′

j (X
ε
t ; a∗) − α · V ′(Xε

t )φ
′
j (X

ε
t ; a∗)

)]
dt

−
J∑

j=1

1

ε�

∫ �

0
E

[ (
β j (Z̃

ε
0; a∗) − β j (Z

ε
0; a∗)

)
p′
(
Xε
t

ε

)
φ′
j (X

ε
t ; a∗)

]
dt

=: R̃1(ε,�) + R̃2(ε,�) + R̃3(ε,�).

By the mean value theorem for vector-valued functions, we
have

E
[
(β j (Z̃

ε
0; a∗) − β j (Z

ε
0; a∗))φ j (X

ε
0; a∗)

]

= E

[∫ 1

0
β ′
j (Z

ε
0 + t(Z̃ε

0 − Zε
0); a∗) dt (Z̃ε

0 − Zε
0)φ j (X

ε
0; a∗)

]
,

and since β ′
j (·; a∗), φ j (·; a∗) are polynomially bounded, Xε

0,

Z ε
0, Z̃

ε
0 have bounded moments of any order, respectively, by

Pavliotis and Stuart (2007, Corollary 5.4), Abdulle (2021,
Lemma C.1) and Lemma 5.1 and applying Hölder’s inequal-
ity, we obtain

∥∥R̃1(ε,�)
∥∥ ≤ C

(
E
∣∣Z̃ ε

0 − Z ε
0

∣∣2)1/2 , (5.14)

for a constant C > 0 independent of ε and �. We repeat a
similar argument for R̃2(ε,�) and R̃3(ε,�) to get

∥∥R̃2(ε,�)
∥∥ ≤ C

(
E
∣∣Z̃ ε

0 − Z ε
0

∣∣2)1/2 and

∥∥R̃3(ε,�)
∥∥ ≤ Cε−1

(
E
∣∣Z̃ ε

0 − Z ε
0

∣∣2)1/2 ,

which together with (5.14) yield

∥∥R̃(ε,�)
∥∥ ≤ C

(
E
∣∣Z̃ ε

0 − Z ε
0

∣∣2)1/2 (1 + ε−1
)

. (5.15)

Moreover, applying Lemma 5.2 and proceeding similarly to
the first part of the first case of the proof, we have

∥∥R̃(ε,�)
∥∥ ≤ C

(
E
∣∣Z̃ ε

0 − Z ε
0

∣∣2)1/2 (1 + ε�−1 + �1/2
)

,

which together with (5.15) and Corollary A.3 implies

∥∥R̃(ε,�)
∥∥ ≤ C

(
E
∣∣Z̃ ε

0 − Z ε
0

∣∣2)1/2 (1 + min{ε−1, ε�−1 + �1/2}
)

≤ C
(
�1/2 + min{ε, ε−1�}

)
(
1 + min{ε−1, ε�−1 + �1/2}

)
.

(5.16)

Let us now consider Qε
j . Replacing equation (5.12) into the

definition of Qε
j in (5.11) and observing that similarly to

(5.13), it holds

E
ρε

[
β j (Z

ε
0; a∗)

∫ �

0
φ′
j (X

ε
t ; a∗) dWt

]
= 0,

we obtain

Qε
j = 1 − e−λ j (a∗)

�
E

ρε [
β j (Z

ε
0; a∗)φ j (X

ε
0; a∗)

]

− 1

�

(∫ �

0
E

ρε
[(

β j (Z
ε
0; a∗) ⊗ V ′(Xε

t )
)
φ′
j (X

ε
t ; a∗)

]
dt

)
α

− 1

�

∫ �

0
E

ρε

[
β j (Z

ε
0; a∗)1

ε
p′
(
Xε
t

ε

)
φ′
j (X

ε
t ; a∗)

]
dt

+ σ

�

∫ �

0
E

ρε
[
β j (Z

ε
0; a∗)φ′′

j (X
ε
t ; a∗)

]
dt .

We rewrite β j (Z ε
0; a∗) inside the integrals employing equa-

tion (2.21) and Itô’s lemma

β j (Z
ε
0; a∗) = β j (Z

ε
t ; a∗) −

∫ t

0
β ′
j (Z

ε
s ; a∗)

(
Xε
s − Z ε

s

)
ds,

hence due to stationarity we have

Qε
j = Qε

j,1 + Qε
j,2, (5.17)
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where

Qε
j,1 = 1 − e−λ j (a∗)

�
E

ρε [
β j (Z

ε
0; a∗)φ j (X

ε
0; a∗)

]

− E
ρε
[(

β j (Z
ε
0; a∗) ⊗ V ′(Xε

0)
)
φ′
j (X

ε
0; a∗)

]
α

− E
ρε

[
β j (Z

ε
0; a∗)1

ε
p′
(
Xε
0

ε

)
φ′
j (X

ε
0; a∗)

]

+ σE
ρε
[
β j (Z

ε
0; a∗)φ′′

j (X
ε
0; a∗)

]

and

Qε
j,2 = 1

�

(∫ �

0

∫ t

0
E

ρε
[
(β ′

j (Z
ε
s ; a∗) ⊗ V ′(Xε

t ))φ
′
j (X

ε
t ; a∗)(Xε

s − Z ε
s )
]
ds dt

)
α

+ 1

�

∫ �

0

∫ t

0
E

ρε

[
β ′
j (Z

ε
s ; a∗)1

ε
p′
(
Xε
t

ε

)
φ′
j (X

ε
t ; a∗)(Xε

s − Z ε
s )

]
ds dt

− σ

�

∫ �

0

∫ t

0
E

ρε
[
β ′
j (Z

ε
s ; a∗)φ′′

j (X
ε
t ; a∗)(Xε

s − Z ε
s )
]
ds dt .

Since φ′
j (·; a∗), φ′′

j (·; a∗) and β ′
j (·; a∗) are polynomi-

ally bounded, p′ is bounded and Xε
t and Z ε

t have bounded
moments of any order, respectively, by Pavliotis and Stuart
(2007, Corollary 5.4) and Abdulle et al. (2021, Lemma C.1),
Qε

j,2 is bounded by

∥∥∥Qε
j,2

∥∥∥ ≤ C
(
� + ε−1�

)
. (5.18)

Let us now move to Qε
j,1 and let us define the functions

ηε(x, z) := ρε(x, z)

ϕε(x)
and η0(x, z) := ρ0(x, z)

ϕ0(x)
,

where ρε and ρ0 are, respectively, the densities with respect
to the Lebesgue measure of the invariant distributions of the
joint processes (Xε

t , Z
ε
t ) and (X0

t , Z
0
t ) andϕε andϕ0 are their

marginals with respect to the first component. Integrating by
parts we have

E
ρε

[
β j (Z

ε
0; a∗)1

ε
p′
(
Xε
0

ε

)
φ′
j (X

ε
0; a∗)

]
=
∫
R

∫
R

β j (z; a∗)1
ε
p′ ( x

ε

)
φ′
j (x; a∗)ρε(x, z) dx dz

= −σ

∫
R

∫
R

1

Cϕε
β j (z; a∗) d

dx

(
e− 1

σ
p( x

ε )
)

φ′
j (x; a∗)e− 1

σ
α·V (x)ηε(x, z) dx dz

= σ

∫
R

∫
R

1

Cϕε
β j (z; a∗) ∂

∂x

(
φ′
j (x; a∗)e− 1

σ
α·V (x)ηε(x, z)

)
e− 1

σ
p( x

ε ) dx dz,

which implies

E
ρε

[
β j (Z

ε
0; a∗)1

ε
p′
(
Xε
0

ε

)
φ′
j (X

ε
0; a∗)

]

= σE
ρε
[
β j (Z

ε
0; a∗)φ′′

j (X
ε
0; a∗)

]

− E
ρε
[
(β j (Z

ε
0; a∗) ⊗ V (Xε

0))φ
′
j (X

ε
0; a∗)

]
α

+ σ

∫
R

∫
R

β j (z; a∗)φ′
j (x; a∗)ϕε(x)

∂

∂x
ηε(x, z) dx dz.

Employing the last equation in the proof of Lemma 3.5
in Abdulle et al. (2021) with δ = 1 and f (x, z) =
β j (z; a∗)φ′

j (x; a∗), we have

σ

∫
R

∫
R

β j (z; a∗)φ′
j (x; a∗)ϕε(x)

∂

∂x
ηε(x, z) dx dz

= E
ρε
[
β ′
j (Z

ε
0; a∗)φ j (X

ε
0; a∗)(Xε

0 − Z ε
0)
]
, (5.19)

and thus we obtain

Qε
j,1 = 1 − e−λ j (a∗)

�
E

ρε [
β j (Z

ε
0; a∗)φ j (X

ε
0; a∗)

]

−E
ρε
[
β ′
j (Z

ε
0; a∗)φ j (X

ε
0; a∗)(Xε

0 − Z ε
0)
]
.

Letting ε go to zero and due to homogenization theory, it
follows
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lim
ε→0

Qε
j,1 = λ j (a

∗)Eρ0
[
β j (Z

0
0; a∗)φ j (X

0
0; a∗)

]

−E
ρ0
[
β ′
j (Z

0
0; a∗)φ j (X

0
0; a∗)(X0

0 − Z0
0)
]
,

then applying formula (5.19) for the homogenized equation,
i.e. with p(y) = 0 and α and σ replaced by A and �, and
integrating by parts we have

E
ρ0
[
β ′
j (Z

0
0; a∗)φ j (X

0
0; a∗)(X0

0 − Z0
0)
]

= �

∫
R

∫
R

β j (z; a∗)φ′
j (x; a∗)ϕ0(x)

∂

∂x
η0(x, z) dx dz

= −�

∫
R

∫
R

β j (z; a∗) d

dx

(
φ′
j (x; a∗)ϕ0(x)

)
η0(x, z) dx dz

= E
ρ0
[
β j (Z

0
0; a∗)

(
�φ′′

j (X
0
0; a∗) − A · V ′(X0

0)φ
′
j (X

0
0; a∗)

)]
.

Therefore, we obtain

lim
ε→0

Qε
j,1 = E

ρ0
[
β j (Z

0
0; a∗)

(
�φ′′

j (X
0
0; a∗)

−A · V ′(X0
0)φ

′
j (X

0
0; a∗) + λ j (a

∗)φ j (X
0
0; a∗)

)]
,

which together with (5.11), (5.17) and bounds (5.16) and
(5.18) implies that Q2(ε) vanishes as ε goes to zero. Finally,
analogously to the first case we can show that also Q1(ε, a)

vanishes, concluding the proof.

Remark 5.8 A similar result to Proposition 5.7 can be shown
for the estimator without filtered data only if ζ ∈ (0, 1), i.e.
the first case in the proof. In particular, we have

(i) lim(ε,a)→(0,a∗) ĜJ (ε, a) = ĝ0J (a
∗), where

ĝ0J (a) :=
J∑

j=1

E
ϕ0
[
β j (X

0
0; a)

(
LAφ j (X

0
0; a) + λ j (a)φ j (X

0
0; a)

)]
,

(ii) lim(ε,a)→(0,a∗) ĤJ (ε, a) = ĥ0J (a
∗), where

ĥ0J (a) :=
J∑

j=1

E
ϕ0
[ .
β j (X

0
0; a)

(
LAφ j (X

0
0; a) + λ j (a)φ j (X

0
0; a)

)]

+
J∑

j=1

E
ϕ0
[
β j (X

0
0; a) ⊗

(
LA

.
φ j (X

0
0; a)

+ λ j (a)
.
φ j (X

0
0; a)

)]

+ E
ϕ0
[
β j (X

0
0; a)φ j (X

0
0; a)

]
⊗ .

λ j (a),

where the generator LA is defined in (2.9). Since the proof
is analogous, we do not report here the details. On the other
hand, if ζ > 2, we can show that

(i) lim(ε,a)→(0,a∗) ĜJ (ε, a) = g0J (a
∗), where

g0J (a) :=
J∑

j=1

E
ϕ0
[
β j (X

0
0; a)

(
σφ′′

j (X
0
0; a) − α · V ′(X0

0)φ
′
j (X

0
0; a)

+λ j (a)φ j (X
0
0; a)

)]
, (5.20)

(ii) lim(ε,a)→(0,a∗) ĤJ (ε, a) = h0J (a
∗), where

h0J (a) :=
J∑

j=1

E
ϕ0
[ .
β j (X

0
0; a)

(
σφ′′

j (X
0
0; a)

−α · V ′(X0
0)φ

′
j (X

0
0; a) + λ j (a)φ j (X

0
0; a)

)]

+
J∑

j=1

E
ϕ0
[
β j (X

0
0; a) ⊗

(
σ
.
φ′′
j (X

0
0; a)

−α · V ′(X0
0)
.
φ′
j (X

0
0; a) + λ j (a)

.
φ j (X

0
0; a)

)]

+
J∑

j=1

E
ϕ0
[
β j (X

0
0; a)φ j (X

0
0; a)

]
⊗ .

λ j (a).

The proof is omitted since it is similar to the second case of
the proof of Proposition 5.7.

5.2 Proof of themain results

Let us remark that we aim to prove the asymptotic unbi-
asedness of the proposed estimators, i.e. their convergence to
the homogenized drift coefficient A as the number of obser-
vations N tends to infinity and the multiscale parameter ε

vanishes. Therefore, we study the limit of the score func-
tions and their Jacobian matrices as N → ∞ and ε → 0
evaluated in the desired limit point A.

We first analyse the case � independent of ε and we con-
sider the limit of Proposition 5.5 and Remark 5.6 evaluated
in a∗ = A. Then, due to equation (2.12) we get

1

�

J∑
j=1

E
ρ̃0
[
g j

(
X0
0, X

0
�, Z̃0

0; A
)]

= 1

�

J∑
j=1

E
ρ̃0
[
β j (Z̃

0
0; A)

(
φ j (X

0
�; A)

−e−λ j (A)�φ j (X
0
0; A)

)]

= 1

�

J∑
j=1

E
ρ̃0
[
β j (Z̃

0
0; A)

(
E

[
φ j (X

0
�; A)

∣∣∣ (X0
0, Z̃

0
0)
]

−e−λ j (A)�φ j (X
0
0; A)

)]
= 0, (5.21)
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and similarly we obtain

1

�

J∑
j=1

E
ϕ0
[
g j

(
X0
0, X

0
�, X0

0; A
)]

= 0.

On the other hand, if � is a power of ε, we study the limit of
Proposition 5.7 and Remark 5.8 evaluated in a∗ = A and by
(2.10) we have

g̃0J (A) = 0 and ĝ0J (A) = 0. (5.22)

Moreover, differentiating equation (2.12) with respect to a,
we get

E

[ .
φ j (Xtn (a); a)|Xtn−1(a) = x

]

= e−λ j (a)�
.
φ j (x; a) − .

λ j (a)�e−λ j (a)�φ j (x; a)

− E

[
φ′
j (Xtn (a); a)∇a Xtn (a)|Xtn−1(a) = x

]
,

(5.23)

where the process ∇a Xt (a) satisfies

d (∇a Xt (a)) = −V ′(Xt ) dt − a · V ′′(Xt )∇a Xt (a) dt .

Therefore, due to (2.12) and (5.23), we have

1

�

J∑
j=1

E
ρ̃0
[
h j

(
X0
0, X

0
�, Z̃0

0; A
)]

= −
J∑

j=1

E
ρ̃0
[(

β j (Z̃
0
0; A) ⊗ ∇a X�(A)

)
φ′
j (X

0
�; A)

]
,

(5.24)

and

1

�

J∑
j=1

E
ϕ0
[
h j

(
X0
0, X

0
�, X0

0; A
)]

= −
J∑

j=1

E
ϕ0
[(

β j (X
0
0; A) ⊗ ∇a X�(A)

)
φ′
j (X

0
�; A)

]
.

Then, due to LemmaA.4, we can differentiate the eigenvalue
problem (2.11) with respect to a and deduce that

�
.
φ′′
j (x; a) − a · V ′(x)

.
φ′
j (x; a) + λ j (a)

.
φ j (x; a)

= V ′(x)φ′
j (x; a) − .

λ jφ j (x; a),

where the dot denotes the gradient with respect to a and
which together with (2.11) implies

h̃0J (A) =
J∑

j=1

E
ρ0
[
(β j (Z

0
0; A) ⊗ V ′(X0

0))φ
′
j (X

0
0; A)

]
,

(5.25)

and

ĥ0J (A) =
J∑

j=1

E
ϕ0
[
(β j (X

0
0; A) ⊗ V ′(X0

0))φ
′
j (X

0
0; A)

]
.

Before showing the main results, we need two auxiliary
lemmas, which in turn rely on the technical Assumption 3.1,
which can now be rewritten as:

(i) det
(

1
�

∑J
j=1 E

ρ̃0 [
h j
(
X0
0, X

0
�, Z̃0

0; A
)]) 
= 0,

(ii) det
(

1
�

∑J
j=1 E

ϕ0 [
h j
(
X0
0, X

0
�, X0

0; A
)]) 
= 0,

(iii) det
(̃
h0J (A)

) 
= 0,

(iv) det
(̂
h0J (A)

) 
= 0.

Since the proofs of the two lemmas are similar, we only write
the details of the first one.

Lemma 5.9 Under Assumption 2.5 and Assumption 3.1,
there exists ε0 > 0 such that for all 0 < ε < ε0 there
exists γ̃ = γ̃ (ε) such that if� is independent of ε or� = εζ

with ζ > 0 and ζ 
= 1, ζ 
= 2

G̃J (ε, A+γ̃ (ε))=0 and det
(
H̃J (ε, A+γ̃ (ε))

) 
= 0.

Moreover

lim
ε→0

γ̃ (ε) = 0.

Proof Let us first extend the functions G̃J and H̃J by conti-
nuity in ε = 0 with their limit given by Proposition 5.5 and
Proposition 5.7 depending on � and note that due to (5.21)
if � is independent of ε and (5.22) otherwise, we have

G̃J (0, A) = 0.

Moreover, by (5.24), (5.25) and Assumption 3.1, we know
that

det
(
H̃J (0, A)

) 
= 0.

Therefore, since the functions G̃J and H̃J are continuous by
Proposition 5.3, the implicit function theorem (see Hurwicz
and Richter 2003, Theorem 2) gives the desired result.
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Lemma 5.10 Under Assumption 2.5 and Assumption 3.1,
there exists ε0 > 0 such that for all 0 < ε < ε0 there
exists γ̂ = γ̂ (ε) such that if� is independent of ε or� = εζ

with ζ ∈ (0, 1)

ĜJ (ε, A + γ̂ (ε)) = 0 and det
(
ĤJ (ε, A + γ̂ (ε))

) 
= 0.

Moreover,

lim
ε→0

γ̂ (ε) = 0.

We are now ready to prove the asymptotic unbiasedness
of the estimators, i.e. Theorems 3.3 and 3.4. We only prove
Theorem 3.4 for the estimator Ãε

N ,J with filtered data. The

proof of Theorem 3.3 for the estimator Âε
N ,J without filtered

data is analogous and is omitted here.

Proof of Theorem 3.4 We need to show for a fixed 0 < ε <

ε0:

(i) the existence of the solution Ãε
N ,J of the system G̃ε

N ,J (a)

= 0 with probability tending to one as N → ∞;
(ii) limN→∞ Ãε

N ,J = A + γ̃ (ε) in probability with limε→0

γ̃ (ε) = 0.

We first note that by Lemma 5.9 we have

lim
ε→0

γ̃ (ε) = 0.

We then follow the steps of the proof of Bibby and
Rensen (1995, Theorem 3.2). Due to Barndorff–Nielsen and
Sorensen (1994, Theorem A.1), claims (i) and (ii) hold true
if we verify that

lim
N→∞ sup

a∈Bε
C,N

∥∥∥∥ 1

N

.
G̃ε

N ,J (a) − H̃J (ε, A + γ̃ (ε))

∥∥∥∥
= 0, in probability, (5.26)

and as N → ∞

1√
N
G̃ε

N ,J (A + γ̃ (ε)) → N
(
0,�ε

)
, in law, (5.27)

where �ε is a positive definite covariance matrix and

Bε
C,N =

{
a ∈ A : ‖a − (A + γ̃ (ε))‖ ≤ C√

N

}
,

for C > 0 small enough such that BC,1 ⊂ A. Result (5.27)
is a consequence of Florens–Zmirou (1989, Theorem 1). We

then have

sup
a∈Bε

C,N

∥∥∥∥ 1

N

.̃
Gε

N ,J (a) − H̃J (ε, A + γ̃ (ε))

∥∥∥∥

≤ sup
a∈Bε

C,1

∥∥∥∥∥∥
1

N�

N−1∑
i=0

J∑
j=1

h j (X̃
ε
n, X̃

ε
n+1, Z̃

ε
n; a) − H̃J (ε, a)

∥∥∥∥∥∥
+ sup

a∈Bε
C,N

∥∥H̃J (ε, a) − H̃J (ε, A + γ̃ (ε))
∥∥ ,

where the right-hand side vanishes by Bibby and Rensen
(1995, Lemma 3.3) and the continuity of H̃ (Proposition 5.3),
implying result (5.26). Hence, we proved (i) and (ii), which
conclude the proof of the theorem.

Remark 5.11 Notice that if� = εζ with ζ > 2 andwe do not
employ the filter, in view of (5.20) and following the same
proof of Theorem3.4, we could compute the asymptotic limit
of Âε

N ,J as N goes to infinity and ε vanishes if we knew a∗
such that

J∑
j=1

E
ϕ0
[
β j (X

0
0; a∗)

(
σφ′′

j (X
0
0; a∗)

−α · V ′(X0
0)φ

′
j (X

0
0; a∗) + λ j (a

∗)φ j (X
0
0; a∗)

)]
= 0.

The value of a∗ cannot be found analytically since it is, in
general, different from the drift coefficients α and A of the
multiscale and homogenized equations (2.1) and (2.2). Nev-
ertheless,we observe that in the simple scale of themultiscale
Ornstein–Uhlenbeck process we have a∗ = α.

6 Conclusion

In this work, we presented new estimators for learning
the effective drift coefficient of the homogenized Langevin
dynamics when we are given discrete observations from the
original multiscale diffusion process. Our approach relies on
a martingale estimating function based on the eigenvalues
and eigenfunctions of the generator of the coarse-grained
model and on a linear time-invariant filter from the expo-
nential family, which is employed to smooth the original
data. We studied theoretically the convergence properties of
our estimators when the sample size goes to infinity and the
multiscale parameter describing the fastest scale vanishes. In
Theorem 3.3 and Theorem 3.4, we proved, respectively, the
asymptotic unbiasedness of the estimators with and without
filtered data. We remark that the former is not robust with
respect to the sampling rate at finite multiscale parameter,
while the estimator with filtered data is robust independently
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of the sampling rate. We analysed numerically the depen-
dence of our estimators on the number of observations and
the number of eigenfunctions employed in the estimating
function noticing that the first eigenvalues in magnitude are
sufficient to approximate the drift coefficient. Moreover, we
performed several numerical experiments, which highlighted
the effectiveness of our approach and confirmed our theoret-
ical results. We believe that eigenfunction estimators can be
very useful in applications, for example to multiparticle sys-
tems and their mean field limit (Gomes and Pavliotis 2018),
since the eigenvalue problem for the generator of a reversible
Markov process is a very well-studied problem. This means,
in particular, that it is possible to study rigorously the pro-
posed estimators and to prove asymptotic unbiasedness and
asymptotic normality. Furthermore, in order to be able to
assess the accuracyof the estimators,we could analyse its rate
of convergence with respect to both the number of observa-
tions and the fastest scale. This is a highly nontrivial problem
since it first requires the development of a fully quantita-
tive periodic homogenization theory and we will return to
this problem in future work. Finally, we think that it would
be interesting to extend our estimators to the nonparametric
framework and consider more general multiscale models.
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A Technical results

In this section, we prove some technical results which are
used to show the unbiasedness of the estimators Âε

N ,J and

Ãε
N ,J . We first study the properties of the filter applied to

discrete data, and then, we focus on the regularity of the
eigenfunctions and eigenvalues of the generator. We finally

prove a formulawhich can be interpreted as an approximation
of the Itô’s lemma.

A.1 Application of the filter to discrete data

The following result quantifies the expected distance among
the continuous process Z ε

t and the filtered observations Z̃ ε
n .

Lemma A.1 Let 0 < � < 1, N be a positive integer and let
Z̃ ε
n and Z ε

t be defined, respectively, in (2.16) and (2.20) with
X̃ε
0 = Xε

0 distributed according to its invariant measure ϕε.
Then, there exists a constant C > 0 independent of ε, � and
N such that for all n = 0, . . . , N and for all p ≥ 1

(
E

ϕε ∣∣Z ε
n� − Z̃ ε

n

∣∣p)1/p ≤ C
(
�1/2 + min

{
ε,�ε−1

})
,

whereE
ϕε

denotes the expectation with respect to theWiener
measure and the fact that Xε

0 is distributed according to ϕε.

Proof In order to simplify the notation, let us define the quan-
tity

E := E
ϕε ∣∣Z ε

n� − Z̃ ε
n

∣∣p ,

which is equivalent to

E = E
ϕε

∣∣∣∣∣
n−1∑
k=0

∫ (k+1)�

k�

(
e−(n�−s)Xε

s − e−�(n−k) X̃ε
k

)
ds

∣∣∣∣∣
p

.

Then, by Jensen’s inequality applied to the convex function
y �→ |y|p and since Xε

k� = X̃ε
k , we have

E ≤ 2p−1
E

ϕε

(
n−1∑
k=0

∫ (k+1)�

k�
e−(n�−s)

∣∣Xε
s − Xε

k�

∣∣ ds
)p

+ 2p−1
E

ϕε

(
n−1∑
k=0

∫ (k+1)�

k�

(
e−(n�−s) − e−�(n−k)

)
ds
∣∣X̃ε

k

∣∣
)p

=: 2p−1 (E1 + E2) .

(A.1)

We now study the two terms separately. Applying Abdulle et
al. (2021, Lemma B.1), we first get

E1 = E
ϕε

(∫ n�

0
e−(n�−s)

∣∣∣∣∣Xε
s −

n−1∑
k=0

Xε
k�χ[k�,(k+1)�)(s)

∣∣∣∣∣ ds
)p

≤
∫ n�

0
e−(n�−s)

E
ϕε

∣∣∣∣∣Xε
s −

n−1∑
k=0

Xε
k�χ[k�,(k+1)�)(s)

∣∣∣∣∣
p

ds,

(A.2)

and, in order to bound the term inside the integral, we can
follow two different procedures. Either we employ (Pavliotis
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and Stuart 2007, Lemma 6.1), which gives

E
ϕε

∣∣∣∣∣X ε
s −

n−1∑
k=0

X ε
k�χ[k�,(k+1)�)(s)

∣∣∣∣∣
p

≤ C
(
�p + �p/2 + ε p) ,

(A.3)

where C > 0 is a constant independent of ε and � or we
notice that, since Xε

t has bounded moments of any order by
Pavliotis and Stuart (2007, Corollary 5.4) and p is bounded,
it holds for all s ∈ [k�, (k + 1)�)

E
ϕε ∣∣Xε

s − Xε
k�

∣∣p
= E

ϕε
∣∣∣∣−α

∫ s

k�
Xε
r dr − 1

ε

∫ s

k�
p′
(
Xε
r

ε

)
dr + √

2σWs

∣∣∣∣
p

≤ C
(
�p + �pε−p + �p/2

)
.

(A.4)

Therefore, due to (A.2), (A.3) and (A.4), we obtain

E1 ≤ C
(
�p/2 + min

{
ε p,�pε−p}) . (A.5)

Let us now consider E2, which can be first bounded by

E2 ≤ �p
E

ϕε

(
n−1∑
k=0

(
e−�(n−1−k) − e−�(n−k)

) ∣∣X̃ε
k

∣∣
)p

,

and note that

n−1∑
k=0

(
e−�(n−1−k) − e−�(n−k)

)

=
n−1∑
k=0

(
e−�k − e−�(k+1)

)
= 1 − e−�n .

Therefore, applying Jensen’s inequality and due to the fact
that X̃ε

k has bounded moments of any order by Pavliotis and
Stuart (2007, Corollary 5.4) we have

E2 ≤ �p(1 − e−�n)p−1
n−1∑
k=0

(
e−�(n−1−k) − e−�(n−k)

)

E
ϕε ∣∣X̃ε

k

∣∣p ≤ C�p,

which, togetherwith (A.1) and (A.5), gives the desired result.

We now show the ergodicity of the process (X̃ε
n, Z̃

ε
n),

where the first component is a sample from the continuous-
time process, i.e. X̃ε

n = Xε
n�, while the second component

is computed starting from the discrete observations X̃ε
n .

Lemma A.2 Let � > 0 and let Assumption 2.2 hold. Then,
the couple (X̃ε

n, Z̃
ε
n), where X̃ε

n is a sample from the con-
tinuous process (2.1) and Z̃ ε

n is defined in (2.16), admits a
unique invariant measure with density with respect to the
Lebesgue measure denoted by ρ̃ε = ρ̃ε(x, z). Moreover, if�
is independent of ε, it converges in law to the two-dimensional
process (X̃0

n, Z̃
0
n)with ρ̃0 = ρ̃0(x, z) as density of the invari-

ant measure.

Proof By definition (2.19), we obtain the following stochas-
tic difference equation

Z̃ ε
n+1 = e−� Z̃ ε

n + �e−� X̃ε
n,

where X̃ε
n is a stationary and ergodic sequence. Observing

that log e−� = −� < 0, applying Theorem 1 and in view
of Remark 1.3 in Brandt (1986) we deduce the existence of
a unique invariant measure for the couple (X̃ε

n, Z̃
ε
n). Let us

notice that in the theorem the sequence X̃ε
n must be defined

for all n ∈ Z while in our framework n ∈ N, but let us
also remark that any stationary process indexed by N can
be extended to one indexed by Z in an essentially unique
way. Moreover, if � is independent of ε, the same reason-
ing can be repeated to get the existence of a unique invariant
measure for the couple (X̃0

n, Z̃
0
n). Finally, standard homog-

enization theory implies the weak convergence of ρ̃ε to ρ̃0,
which concludes the proof.

Let us now denote the marginal invariant distributions of
Z ε, Z̃ ε and Z0, Z̃0, respectively, by ψε = ψε(z), ψ̃ε =
ψ̃ε(z) and ψ0 = ψ0(z), ψ̃0 = ψ̃0(z).

Corollary A.3 Let Z ε and Z̃ ε be distributed, respectively,
according toψε and ψ̃ε. Then, there exists a constant C > 0
independent of ε and � such that

(
E
∣∣Z ε − Z̃ ε

∣∣p)1/p ≤ C
(
�1/2 + min

{
ε,�ε−1

})
.

Proof The result follows directly fromLemmaA.1 by letting
n go to infinity, noting that the constant C is independent of
n and employing ergodicity given by Lemma A.2.

It directly follows that Z̃ ε
n has bounded moments of all

order and, in particular, we can prove Lemma 5.1.

Proof of Lemma 5.1 Applying Jensen’s inequality to the func-
tion x �→ |x |p, we have

E
ρ̃ε ∣∣Z̃ ε

∣∣p ≤ 2p−1
E

ρε ∣∣Z ε
∣∣p + 2p−1

E
∣∣Z̃ ε − Z ε

∣∣p ,

then bounding the two terms in the right-hand side, respec-
tively, with Abdulle et al. (2021, Lemma C.1) and Corollary
A.3 gives the desired result.
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A.2 Properties of eigenfunctions and eigenvalues of
the generator

Let us now consider the eigenvalue and the eigenfunctions
of the generator of SDE (2.7).

Lemma A.4 Let {(λ j (a), φ j (·; a))}∞j=0 be the solutions of the
eigenvalue problem (2.10). Then, φ j (x; a) and λ j (a) are
continuously differentiable with respect to a for all x ∈ R

and for all j ∈ N. Moreover, φ j (·; a) and
.
φ j (·; a) belong to

C∞(R).

Proof The first result follows from Sects. 2 and 6 in Schef-
fler (1974). Let us remark that the fact that the spectrum is
discrete and non-degenerate is guaranteed by Pavliotis and
Stuart (2014, Sect. 4.7). Finally, the second result in the state-
ment is a direct consequence of the elliptic regularity theory.

A.3 Approximation of the Itô formula

In this section, we prove Lemma 5.2, which is an approxi-
mation of the Itô’s lemma applied to the stochastic process
Xε
t . Let us introduce the process S

ε
t defined by the following

SDE with initial condition Sε
0 = Xε

0

dSε
t =−αV ′(Xε

t )(1+�′(Y ε
t ))dt+√

2σ(1+�′(Y ε
t ))dWt ,

(A.6)

where Y ε
t = Xε

t /ε and � is the cell function which solves
equation (2.5), and notice that

Sε
� = Xε

0 − α

∫ �

0
V ′(Xε

t )(1 + �′(Y ε
t )) dt

+√
2σ

∫ �

0
(1 + �′(Y ε

t )) dWt .

Therefore, due to Eq. (5.7) in Pavliotis and Stuart (2007),
we have

∣∣Xε
� − Sε

�

∣∣ = ε
∣∣�(Y ε

�) − �(Y ε
0 )
∣∣ ,

and, since � is bounded by Pavliotis and Stuart (2007,
Lemma 5.5), we get for a constant C > 0 independent of �

and ε

∣∣Xε
� − Sε

�

∣∣ ≤ Cε. (A.7)

Before showing the main formula, we need two prelimi-
nary estimates which will be employed later in the analysis.
The proofs of Lemma A.5 and Lemma A.6 are inspired by
the proof of Proposition 5.8 in Pavliotis and Stuart (2007).

Lemma A.5 Let f : R → R be a continuously differentiable
function such that f , f ′ are polynomially bounded. Then,

∫ �

0
α · V ′(Xε

t ) f (X
ε
t )(1 + �′(Y ε

t )) dt

= A · V ′(Xε
0) f (X

ε
0)� + R1(ε,�), (A.8)

where the remainder satisfies for all p ≥ 1 and for a constant
C > 0 independent of � and ε

(
E

ϕε |R1(ε,�)|p
)1/p ≤ C(ε2 + �1/2ε + �3/2).

Proof To obtain the remainder R1(ε,�) we decompose
suitably the difference between the left-hand side and the
right-hand side of (A.8). Applying Jensen’s inequality to the
function z �→ |z|p, we have

E
ϕε |R1(ε,�)|p ≤ 3p−1

E
ϕε

∣∣∣∣
∫ �

0
α · (V ′(Xε

t ) − V ′(Xε
0)
)
f (Xε

t )(1 + �′(Y ε
t )) dt

∣∣∣∣
p

+ 3p−1
E

ϕε

∣∣∣∣α · V ′(Xε
0)

∫ �

0

(
f (Xε

t ) − f (Xε
0)
)
(1 + �′(Y ε

t )) dt

∣∣∣∣
p

+ 3p−1
E

ϕε

∣∣∣∣ f (Xε
0)V

′(Xε
0) ·

∫ �

0

(
α(1 + �′(Y ε

t )) − A
)
dt

∣∣∣∣
p

=: I1(ε,�) + I2(ε,�) + I3(ε,�).

(A.9)

Letting C > 0 be a constant independent of ε and δ, we
now bound the three terms separately. First, applying Hölder
inequality and since V ′ is Lipschitz, �′ is bounded, f is
polynomially bounded and Xε

t has bounded moments of any
order by Pavliotis and Stuart (2007, Corollary 5.4), we have

I1(ε,�) ≤ C�p−1
∫ �

0
E

ϕε ∣∣Xε
t − Xε

0

∣∣p dt,

then applying Pavliotis and Stuart (2007, Lemma 6.1) we
obtain

I1(ε,�) ≤ C
(
�2p + �3p/2 + ε p�p

)
. (A.10)
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We then rewrite I2(ε,�) employing the mean value theorem

I2(ε, �)=3p−1
E

ϕε

∣∣∣∣∣α · V ′(Xε
0)

∫ �

0
f ′(X̃ε

t )(X
ε
t − Xε

0)(1 + �′(Y ε
t )) dt

∣∣∣∣∣
p

,

where X̃ε
t assumes values between Xε

0 and Xε
t , and we repeat

the same reasoning as for I1(ε,�) to get

I2(ε,�) ≤ C
(
�2p + �3p/2 + ε p�p

)
. (A.11)

We now consider the function

H(y) =: α(1 + �′(y)) − A,

which by definition of A and due to (2.3) has zero mean with
respect to μ defined in (2.4). Therefore, since f and V ′ are
polynomially bounded and Xε

0 has bounded moments of any
order by Pavliotis and Stuart (2007, Corollary 5.4), applying
Pavliotis and Stuart (2007, Lemma 5.6) we obtain

I3(ε,�) ≤ C
(
ε2p + ε p�p + ε p�p/2

)
. (A.12)

Finally, for ε and � sufficiently small, the desired result
follows from (A.9) and from estimates (A.10), (A.11) and
(A.12).

Lemma A.6 Let f : R → R be a continuously differentiable
function such that f , f ′ are polynomially bounded. Then,

∫ �

0
σ f (Xε

t )(1 + �′(Y ε
t ))2 dt = � f (Xε

0)� + R2(ε,�),

(A.13)

where the remainder satisfies for all p ≥ 1 and for a constant
C > 0 independent of � and ε

(
E

ϕε |R2(ε,�)|p
)1/p ≤ C(ε2 + �1/2ε + �3/2).

Proof To obtain the remainder R2(ε,�), we decompose
suitably the difference between the left-hand side and the
right-hand side of (A.13). Applying Jensen’s inequality to
the function z �→ |z|p, we have

E
ϕε |R2(ε, �)|p ≤ 2p−1

E
ϕε

∣∣∣∣
∫ �

0
σ
(
f (Xε

t ) − f (Xε
0)
)
(1 + �′(Y ε

t )2) dt

∣∣∣∣
p

+ 2p−1
E

ϕε

∣∣∣∣ f (Xε
0)

∫ �

0

(
σ(1 + �′(Y ε

t ))2 − �
)
dt

∣∣∣∣
p

=: I1(ε, �) + I2(ε, �).

(A.14)

LettingC > 0 be a constant independent of ε and�, we now
bound the two terms separately. First, we rewrite I1(ε,�)

employing the mean value theorem

I1(ε,�) = 2p−1
E

ϕε

〈∫ �

0
σ f ′(X̃ε

t )(X
ε
t − Xε

0)(1 + �′(Y ε
t ))2 dt

〉p
,

where X̃ε
t assumes values between Xε

0 and Xε
t , then applying

Hölder inequality and since �′ is bounded, f ′ is polynomi-
ally bounded and Xε

t has bounded moments of any order by
Pavliotis and Stuart (2007, Corollary 5.4), we have

I1(ε,�) ≤ C�p−1
∫ �

0
E

ϕε ∣∣Xε
t − Xε

0

∣∣p dt,

and applying Pavliotis and Stuart (2007, Lemma 6.1) we
obtain

I1(ε,�) ≤ C
(
�2p + �3p/2 + ε p�p

)
. (A.15)

We now consider the function

H(y) =: σ(1 + �′(y))2 − �,

which by definition of� and due to (2.3) has zero mean with
respect toμ defined in (2.4). Therefore, since f is polynomi-
ally bounded and Xε

0 has bounded moments of any order by
Pavliotis and Stuart (2007, Corollary 5.4), applying Pavliotis
and Stuart (2007, Lemma 5.6) we obtain

I2(ε,�) ≤ C
(
ε2p + ε p�p + ε p�p/2

)
. (A.16)

Finally, for ε and � sufficiently small, the desired result fol-
lows from (A.14) and from estimates (A.15) and (A.16).

We can now prove the main formula, which is employed
repeatedly in the proof of the asymptotic unbiasedness of the
drift estimators.

Proof of Lemma 5.2 Applying Itô’s lemma to the process Sε
t

defined in (A.6) with the function f , we have

f (Sε
�) = f (Xε

0) −
∫ �

0
α · V ′(Xε

t ) f
′(Xε

t )(1 + �′(Y ε
t )) dt

+
∫ �

0
σ f ′′(Xε

t )(1 + �′(Y ε
t ))2 dt

+ √
2σ

∫ �

0
f ′(Xε

t )(1 + �′(Y ε
t )) dWt ,

and due to Lemma A.5 and Lemma A.6 we obtain

f (Sε
�) = f (Xε

0) − A · V ′(Xε
0) f

′(Xε
0)� + � f ′′(Xε

0)�

+ √
2σ

∫ �

0
f ′(Xε

t )(1 + �′(Y ε
t )) dWt

− R1(ε,�) + R2(ε,�).
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Then, we write

f (Xε
�)= f (Sε

�)+ [
f (Xε

�)− f (Sε
�)
] =: f (Sε

�)+R3(ε,�),

and, in order to conclude, it only remains to bound the expec-
tation of R3(ε,�). Applying the mean value theorem and the
Cauchy-Schwarz inequality and due to (A.7), the hypotheses
on f and the fact that Xε

t has bounded moments of any order
by Pavliotis and Stuart (2007, Corollary 5.4), we obtain

E
ϕε |R3(ε,�)|p ≤

(
E

ϕε ∣∣ f ′(X̃)
∣∣2p)1/2

(
E

ϕε ∣∣Xε
� − Sε

�

∣∣2p)1/2 ≤ Cε p,

where X̃ takes values between Xε
� and Sε

�, and which
together with the estimates for R1 and R2 implies the desired
result.

B Implementation details

In this section, we present the main techniques that we
employed in the implementation of the proposed method.
The most important steps in the algorithm are the computa-
tion of the eigenvalues and eigenfunctions of the eigenvalue
problem (2.11)

�φ′′
j (x; a) − a · V ′(x)φ′

j (x; a) + λ j (a)φ j (x; a) = 0,

and the solution of the nonlinear system (2.15) or (2.18)
with filtered data. Let us first focus on the eigenvalue prob-
lem. We note that the domain of the eigenfunctions is the
whole real line R and need to be truncated for numerical
computations. We first consider the variational formulation
of equation (2.11), i.e. we multiply it by vϕa , where v is a
test function and ϕa is the invariant distribution defined in
(2.8), and integrating by parts we obtain for all j ∈ N the
following eigenvalue problem

�

∫
R

φ′
j (x; a)v′(x)ϕa(x) dx = λ j (a)

∫
R

φ j (x; a)v(x)ϕa(x) dx .

Since ϕa decays to zero exponentially fast, for all δ > 0 there
exists r > 0 such that

|ϕa(x)| < δ for all x /∈ [−r , r ].

Hence, letting R > 0 we assume that ϕa(±R) � 0 and we
solve the truncated problem

�

∫ +R

−R
φ′
j (x; a)v′(x)ϕa(x) dx = λ j (a)

∫ +R

−R
φ j (x; a)v(x)ϕa(x) dx .

(B.1)

Notice that R must be chosen big enough and such that

R ≥ max
n=0,...,N

max
{∣∣X̃ε

n

∣∣ , ∣∣Z̃ ε
n

∣∣} =: R̄,

and we take R = max{R̄ + 0.1, 1.7}. Moreover, in order to
have a unique solution for the eigenvectorφ j (·; a)we impose
the additional conditions

φ j (R; a) > 0 and
∫ +R

−R
φ j (x; a)2ϕa(x) dx = 1.

(B.2)

We then introduce a partition Th of [−R, R] in Nh subinter-
vals Ki = [xi−1, xi ] with

−R = x0 < x1 < · · · < xNh < xNh = +R,

and h = 2R/Nh , and we construct the discrete space

X1
h =

{
vh ∈ C0([−R,+R]) : vh |Ki ∈ P

1 ∀ Ki ∈ Th
}

,

which is constituted by continuous piecewise linear func-
tions. Note that the discretization parameter h is chosen to be
h = 0.1 or h = 0.05. We pick the characteristic Lagrangian
basis {ψk}Nh

k=0 of X
1
h characterized by the following property

ψk(xi ) = δik for all i, k = 0, . . . , Nh,

where δik is the Kronecker delta. We want to find φ j (·; a) ∈
X1
h such that equation (B.1) holds true for all v ∈ X1

h . There-
fore, in equation (B.1) we substitute

φ j (x; a) =
Nh∑
k=0

θ
(k)
j (a)ψk(x)

and v(x) = ψi (x) for all i = 0, . . . , Nh,

and we obtain the discrete formulation

S� j (a) = λ j (a)M� j (a), (B.3)

where � j (a) ∈ R
Nh+1 is such that (� j (a))k = θ

(k−1)
j (a)

and the components of the matrices S, M ∈ R
Nh+1×Nh+1
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are given by

Sik = �

∫ +R

−R
ψ ′
i−1(x)ψ

′
k−1(x)ϕa(x) dx,

and Mik =
∫ +R

−R
ψi−1(x)ψk−1(x)ϕa(x) dx,

where the integrals are approximated through the composite
Simpson’s quadrature rule. Equation (B.3) is a general-
ized eigenvalue problem which can be solved in Matlab
using the function eigs or in Phython using the function
scipy.sparse.linalg.eigsh. Then, we normalize
� j (a) or change its sign in order to impose the conditions
(B.2), which can be rewritten as:

θ
(Nh)
j (a) > 0 and � j (a)�M� j (a) = 1.

Once we compute λ j (a) and � j (a), we have an approxi-
mation of the eigenvalues and eigenfunctions and we can
construct the function Ĝε

N ,J (a) in (2.14) or G̃ε
N ,J (a) in (2.17)

with filtered data. Hence, it only remains to solve systems
(2.15) or (2.18), i.e.

Ĝε
N ,J (a) = 0, or G̃ε

N ,J (a) = 0.

To solve these equations, we can follow two approaches:

• find the zero of Ĝε
N ,J (a) or G̃ε

N ,J (a);

• find the minimum of
∥∥∥Ĝε

N ,J (a)

∥∥∥ or
∥∥∥G̃ε

N ,J (a)

∥∥∥.
In practice, for the first approach the function fsolve in
Matlab or the function scipy.optimize.fsolve in
Python can be used, while for the second one the function
fmincon inMatlab or the functionscipy.optimize.
minimize in Python can be used. Finally, note that the
functions implemented in Matlab or Python have been
employed with their default parameters.

C Multidimensional diffusion processes

In this section, we present how our methodology for estimat-
ing the drift coefficient of the homogenized equation can be
extended to the case ofmultidimensionalmultiscale diffusion
processes in R

d . In the d-dimensional case, the multiscale
SDE (2.1) reads

dXε
t = −

M∑
m=1

αm∇Vm(Xε
t ) dt − 1

ε
∇ p

(
Xε
t

ε

)
dt

+√
2σ dWt ,

where Wt is a standard d-dimensional Brownian motion.
The theory of homogenization (see, for example, Bensoussan
et al. 2011, Chapter 3) or Pavliotis and Stuart (2008, Chapter
18) then guarantees the existence of the homogenized SDE

dX0
t = −

M∑
m=1

Am∇Vm(X0
t ) dt + √

2� dWt ,

where Am, � ∈ R
d×d are given by Am = αmK and � =

σK . The matrix K ∈ R
d×d is defined by

K =
∫

[0,L]d
(I + ∇�(y))(I + ∇�(y))Tμ(dy)

=
∫

[0,L]d
(I + ∇�(y))μ(dy),

where

μ(dy) = 1

Cσ

e−p(y)/σ dy with Cσ =
∫

[0,L]d
e−p(y)/σ dy,

and where the function� : [0, L]d → R
d is the unique solu-

tion with zero-mean with respect to the measureμ of the cell
problem in [0, L]d

−∇�∇ p + σ�� = ∇ p,

endowed with periodic boundary conditions. Using the ten-
sor notation, we can then define the drift coefficient A ∈
R

M×d×d , which collects together the M matrices Am for
m = 1, . . . , M . Our goal is now to estimate the tensor A
and thus we need to define the score functions. First, the
d-dimensional eigenvalue problem for j = 1, . . . , J corre-
sponding to (2.11) is

� : ∇2φ j (x; a) −
(

M∑
m=1

am∇Vm(x)

)
· ∇φ j (x; a)

+λ j (a)φ j (x; a) = 0,

where : denotes the Frobenius inner product, ∇2 the Hessian
matrix and the parameter a ∈ R

M×d×d collects together the
Mmatricesam form = 1, . . . , M . Then, in order to define the
martingale estimating functions g j for j = 1, . . . , J , we take
a collection {β j }Jj=1 of functions β j (·; a) : R

d → R
M×d×d

and we use equation (2.13). Finally, we construct the score
functions Ĝε

N ,J and G̃ε
N ,J in the same way as we did in the

one dimensional case, i.e. employing equations (2.14) and
(2.17). We remark that the filtered data are obtained as in
equation (2.16) by applying the filter component-wise. We
can now compute the estimators Âε

N ,J and Ãε
N ,J by solving
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the nonlinear systems

Ĝε
N ,J (a) = 0 and G̃ε

N ,J (a) = 0,

which have dimensionMd2. Froma theoretical point of view,
slightmodifications of the proofs allow to conclude that anal-
ogous results to the main theorems hold true, i.e. that the
estimators are asymptotically unbiased in the limit of infinite
observations and when the multiscale parameter vanishes.
However, the problem becomes more complex and computa-
tionally expensive from a numerical viewpoint, in particular
when the dimension d is large. In fact, the final nonlinear
system, which has to be solved, has dimension Md2 instead
of M and, most importantly, it is required to solve the eigen-
value problem for the generator of a diffusion process in d
dimensions.
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