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Abstract: It is well recognized that the mathematics underlying thermodynamics and statistical
mechanics has wide applicability. In the context of urban modelling, entropy maximization has
played an important role in deriving a family of spatial interaction models for flows in cities. Whilst
urban and regional structure can be modelled by a dynamical system, much less has been recognised
in connection with statistical mechanics. In this article, we develop a thermodynamic analogy
and connect a stochastic reformulation of the Harris and Wilson model with a maximum entropy
argument. That is, the probability distribution of the structural variables can be represented as a
gradient flow of a free energy functional, and that the energy functional satisfies a second law of
thermodynamics. We illustrate our model with the London retail system.
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1. Introduction

Thermodynamics and statistical mechanics provide valuable approaches for complex systems
modelling, and the underlying techniques have wide applicability. The principle of maximum entropy
has been used in a variety of domains, but has its origins in equilibrium thermodynamics. Its
development was motivated by the task of relating the macroscopic properties of a physical system
to behaviour at the atomistic level. Its wide applicability became apparent in the 1950s, when it was
discovered that the tools of information theory can be applied to complex systems [1]. Today, the
principle of maximum entropy is well-recognised by statisticians as a way of deriving probability
distributions from the exponential family [2], and the connection with equilibrium thermodynamics
and information theory provides a supporting heuristic.

For our purposes, there are two core elements of urban and regional systems: flows between
location, which involve spatial interaction, and the urban and regional structure that facilitates the
flows. The principle of maximum entropy has already been applied to the modelling of urban flows. In
the 1960s, it was recognised that the proceeding so-called gravity model can be reformulated using the
tools of the statistical mechanics [3]. The connection with statistical mechanics was developed by way
of analogy, and it was subsequently recognized that entropy maximization provides a more powerful
modelling framework [4]. A family of spatial interaction models has subsequently been derived from
the framework for locational analysis [5].

Whilst entropy maximization has been applied with much success to the modelling of flows in
cities, much less has been considered for urban or regional structure. Instead, non-linear dynamical
systems were developed in the 1970s to model the evolution of structure [6], and models of the like
have been used more recently in [7,8]. It has recently been acknowledged in the urban modelling
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literature that it is worthwhile to pursue the thermodynamic analogy, as done for spatial interaction,
but at the level of structure. It remains to connect the dynamical system approach with ideas from
statistical mechanics [9,10]. Recent progress was made in [11], in which it was shown that a stochastic
reformulation of the Harris and Wilson model yields an equilibrium distribution that is related to a
maximum entropy argument. It remains to fully develop an analogy between thermodynamics and
the modelling of urban and regional systems that considers the non-equilibrium case. The connection
between stochastic dynamical systems and the second law of thermodynamics have already been
made in [12], and have not been considered in an urban context. The two schools of thought between
dynamical systems and the principle of maximum entropy has also been connected in [13,14].

To this end, the contribution of this article is to establish a thermodynamic analogy for urban and
regional structure. We first outline the principle of maximum entropy, and show how its application
can be used to derive a model of urban and regional structure from the exponential family. We
second show that a stochastic reformulation of the Harris and Wilson model satisfies a second law of
thermodynamics, in that a free energy functional is monotonically decreasing until the corresponding
Fokker-Planck equation converges to the maximum entropy distribution. We illustrate the analogy
by studying the forward evolution of the London retail system [15]. We conclude with our research
agenda and possibilities for developing the thermodynamic analogy further.

2. Maximum Entropy Models for Urban and Regional Structure

In this section, we present a maximum entropy model of urban structure. We assume that there
are M competing urban zones of interest, and represent urban structure by the latent attractiveness
variables X = (X1, . . . , XM)T ∈ RM. The attractiveness variables are defined as the log-sizes so that

Xj = ln Wj. (1)

We represent the structural variables in terms of attractiveness, rather than size, to develop a
thermodynamic analogy. This way the stationary distribution of a related stochastic differential
equation model, defined in terms of attractiveness, coincides with the maximum entropy
distribution [11]. We first discuss the possible constraints for urban and regional systems, and then
connect the maximum entropy distribution with the related dynamics by a thermodynamic analogy in
the following section.

2.1. The Maximum Entropy Principle

The maximum entropy principle states that, amongst a family of probability distributions
satisfying some constraints, we should choose the one that maximizes an entropy function [1]. We let
X ⊂ RM be a finite domain with a smooth boundary ∂X . A finite domain is appropriate for an urban
system due to economic or geographical restrictions. We use the standard Boltzmann-Gibbs definition
of entropy

S(ρ) = −
∫
X

ρ(x) ln ρ(x)dx < ∞, (2)

where the integral is taken over the values in X for which ρ > 0. Here, ρ(x) denotes the probability
density function of the structural variables X. The entropy function is bounded above as X is a finite
domain, and an upper bound can always be obtained from Gibbs inequality

−
∫
X

ρ(x) ln ρ(x)dx ≤ −
∫
X

ρ(x) ln ρ′(x)dx, (3)

with equality if and only if the two density functions ρ and ρ′ coincide. We consider the case that the
urban system is constrained by the expected potential energy

〈
V
〉
=
∫
X

V(x)ρ(x)dx, (4)
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where V ∈ L∞(X ) is a suitably chosen potential function for an urban system. The Boltzmann-Gibbs
measure with the density function

ρ∗(x) = Z−1e−γV(x), Z =
∫
X

e−γV(x)dx, (5)

maximizes the Boltzmann-Gibbs entropy in (2) subject to the constraint in (4). The parameter γ is
determined implicitly from the constraint from (4). The claim can be verified using Gibbs inequality
in (3), since

H(ρ) ≤ −
∫
X

ρ(x) ln ρ∗(x)dx,

= H(ρ∗),
(6)

with equality if and only if ρ = ρ∗. We now consider some possibilities for the potential function in the
following subsection.

2.2. Constraints for Urban Systems

In this section we consider economic constraints for the distribution of the sizes of M urban zones,
for example, shopping centres. To account for spatial interaction, we assume that the destination
zones earn income from N origin zones. The origin zones are typically residential areas, and the origin
quantities may be taken to be the spending power1. A model of spatial interaction can be obtained by
maximizing an entropy function subject to benefit and cost constraints. The reader is referred to [3,16]
for further details. The spatial interaction model that we use is

Dj(X) =
N

∑
i=1

Oi
exp(αXj − βcij)

∑M
k=1 exp(αXk − βcik)

, j = 1, . . . , M. (7)

where α, β > 0 are scaling parameters, and cij represents the inconvenience of carrying out an activity
at zone j from i.

It is expected that profitable zones will reinvest profits to improve their attractiveness to
consumers, whilst loss-making zones will their attractiveness to a more sustainable level. A suitable
model that captures this evolutionary behaviour is a system of ordinary differential equations (ODE)s,
known as the Harris and Wilson model [6]

dWj

dt
= εWj(Dj − κWj), Wj(0) = wj. (8)

Here, Wj is the size of the respective zone and is connected to the attractiveness variables by (1). The
”Dj − κW ′′j term can be interpreted as the profitability of zone j, where we have assumed that the
incomes Dj are given by the spatial interaction model in (7), and that κ > 0 describes the linear cost per
unit size to run the zone. It can be shown that the ODE model will converge to a fixed point satisfying

Dj = κeXj . (9)

In fact, for 0 < α ≤ 1 there is a unique stable fixed point, otherwise there may be multiple fixed
points [17].

Equation (9) suggests a constraint at equilibrium. In the same way that the spatial interaction
model in (7) was obtained, we look towards the maximum entropy principle for a model of urban
structure. One approach, already considered in the literature, is to maximize an entropy function

1 Number of residents multiplied by the average earnings.
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subject to a constraint on the total profitability [9,10]. This approach yields the following potential
function

V(X) =
M

∑
j=1

(
Dj − κeXj

)
. (10)

As the total profit is equivalent to the total origin quantities less total capacity, the constraint is not
restrictive enough as individual zones may be far from satisfying the equilibrium condition in (9). An
alternative approach would be to constrain the total sum of squares, which gives a smooth potential
function

V(X) =
M

∑
j=1

(
Dj − κeXj

)2. (11)

Whilst an improvement, it lacks economic justification and another shortfall is that unstable fixed
points are assigned high probabilities. Our recent work in [11] unveils that a suitable constraint is the
total consumer surplus (benefit) less total capacity (cost)

V(X) = −α−1
N

∑
i=1

Oi ln
M

∑
j=1

exp
(
αXj − βcij

)
+ κ

M

∑
j=1

eXj . (12)

The potential function assigns highest probabilities to the most stable configurations, as desired. The
potential function and Harris and Wilson model are closely related as the minima of the potential
function coincide with the fixed points of the Harris and Wilson model.

2.3. An Additional Constraint on the Attractiveness

Lastly, we specify an additional constraint on the first moment of attractiveness at equilibrium,
following our previous work [11]. We therefore obtain the potential function

V(X) = −α−1
N

∑
i=1

Oi ln
M

∑
j=1

exp
(
αXj − βcij

)
+ κ

M

∑
j=1

eXj − δ
M

∑
j=1

Xj, (13)

where the additional constraint is captured by the right-most term. Our initial justification was that the
potential function needs to be confining on an unbounded domain. Whilst this is no longer necessary,
as we are working on a bounded domain, the additional constraint provides an improved model. For
instance, the constraint means that X can be chosen to contain a local minima of V, and the model is
less sensitive to the choice of boundary.

3. The Thermodynamic Analogy

Whilst the maximum entropy principle provides a way of obtaining a probability distribution
for urban structure, there are some philosophical and practical arguments against its use. We
may alternatively take a more mechanistic approach, and describe stochastic dynamics that has
a well-defined equilibrium distribution. In the next section we describe a stochastic differential
equation whose associated Fokker-Planck equation satisfies a second law of thermodynamics.

3.1. The Fokker-Planck equation

In this section we study the Fokker-Planck equation for a time-homogeneous process, which can
be written in divergence form as

∂ρ

∂t
= −∇ · J,

J = −∇Vρ− γ−1∇ρ,
(14)
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for x ∈ X . Here, ρ(x, t) denotes the probability density of a process X(t) at time t ≥ 0, and J is the
probability flux. We assume that (14) is equipped with a reflecting boundary condition

J · n = 0, x ∈ ∂X , (15)

so that the total probability is conserved in X . It is well known that the stochastic differential equation
(SDE) underlying (14) is

dX = −∇V(X)dt +
√

2γ−1dB, X(0) = x0, (16)

with reflection at the boundaries, and where B is a standard M-dimensional Brownian motion. We
refer the reader to [18] for a more mathematical description of reflecting SDEs. In other words, the
Fokker-Planck equation is describing a process that experiences drift, diffusion and reflection. After
having specified the potential function via a maximum entropy argument in the proceeding section,
the SDE that we study is

dXj = ε

[
Dj − κeXj + δ

]
dt +

√
2γ−1dBj, j = 1, . . . , M. (17)

This is a version of the Harris and Wilson model, with an additional constant in the drift function, and
with a diffusion term. The diffusion term describing random fluctuations in order for the model to
converge to the equilibrium distribution obtained under constrained entropy maximization. Otherwise
the process will be deterministic and its long term behaviour is determined by the initial conditions.

3.2. The Trend To Equilibrium

We now show that (14) satisfies a second law of thermodynamics, and evolves towards the
maximum entropy distribution given by (5). The relevant form of entropy of a second law of
thermodynamics is proportional to a relative entropy, known as the free energy functional

F(ρ) =
∫
X

V(x)ρ(x)dx + γ−1
∫
X

ρ(x) ln ρ(x)dx. (18)

Here, γ has the interpretation as an inverse temperature. The free energy functional may be written as
the difference of an energy functional and an entropy functional. It follows by Gibbs’ inequality that

F(ρ) ≥
∫
X

V(x)ρ(x)dx + γ−1
∫
X

ρ(x) ln ρ∗(x)dx.,

= F(ρ∗),
(19)

with equality if and only if ρ = ρ∗. Therefore the minimization of free energy yields the same
probability distribution as constrained entropy maximization does. At equilibrium, the free energy
functional becomes what is known as the Helmholtz free energy in the thermodynamics literature:

F(ρ∗) = γ−1 ln Z. (20)

We can reformulate the Fokker-Planck equation in terms of the free energy functional that we would
like to minimize. We deduce that the evolution of ρ(x, t) is a gradient flow of the free energy functional

∂ρ

∂t
= ∇ ·

(
ρ∇ δF

δρ

)
, x ∈ X . (21)
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Moreover, it can be shown that free energy functional is monotonically decreasing along the flow
lines

d
dt

F(ρ) = −
∫
X

ρ

∣∣∣∣∇ δF
δρ

∣∣∣∣2dx,

≤ 0,

(22)

which we show in Appendix. A. The result is the second law of thermodynamics for an open system. A
key observation for our purposes is that the free energy is only decreasing when the system undergoes
an irreversible change. For this reason, the free energy of the deterministic system with γ→ ∞ is as
specified by the initial condition, and there is no thermodynamic analogy to be made. This is because
the diffusion term vanishes in the Fokker-Planck equation, and it becomes Liouville’s equation.

It is straightforward to check that ρ∞ is a steady state solution of (21), however, it remains to show
that

lim
t→∞

ρ(x, t) = ρ∞(x), (23)

irrespective of how the system is prepared. Moreover, ρ∞ is the unique steady solution of (21). To
show this, we rewrite the Fokker-Planck equation in operator form

∂ρ

∂t
= L∗ρ, (24)

again with reflecting boundary conditions

D(L∗) =
{

ρ ∈ H2(X )

∣∣∣∣ (γ−1∇ρ + ρ∇V
)
· n = 0 on ∂X

}
. (25)

It can be shown that the eigenvalues of −L∗ are real, nonnegative and can be ordered 0 = λ0 < λ1 <

λ2 < · · · . The corresponding eigenfunctions {ψn}∞
n=0 form a complete orthonormal basis of D(L∗),

and the zero eigenvalue is associated with the steady state solution ψ0 = ρ∞. The reader is referred
to Lemma 3.1 in [19] for a proof of these results. Now if we consider (24) for an initial condition
ρ0(x) = cψ(x), where ψ is an eigenfunction of −L∗ and c ∈ R, we can deduce that

ρ(x, t) = ce−λtψ(x). (26)

Therefore, by expanding an initial condition in terms of its eigenfunctions

ρ0(x) =
∞

∑
n=0

cnψ(x), cn =
∫
X

ψn(x)ρ0(x)dx. (27)

we obtain

ρ(x, t) =
∞

∑
n=0

cne−λntψn(x). (28)

Then convergence to equilibrium as described by (23) can be seen by noting that c0 > 0, and recalling
that λ0 = 0 is the only non-positive eigenvector. Lastly, the free energy converges to the unique
minimum:

lim
t→∞

F(ρ(·, t)) = F(ρ∞), (29)

thereby completing the thermodynamic analogy.

4. The London Retail System

We demonstrate our model on the London retail system [11,20–22], with N = 625 residential
wards and M = 49 shopping centres. We only include Metropolitan or International town centres
in our analysis, as the smaller town centres carry a different type of retail activity and are better
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modelled separately. For computationally efficient model calibration we let γ→ ∞ and assume that
the process is confined to a domain X containing a single minima, denoted x∗, of V. This approach
is particularly efficient, since as γ → ∞, ρ∞ collapses to a Dirac mass located at x∗, and we avoid
the need to estimate the normalizing constant Z. Moreover, x∗ can be found with a single run of a
gradient-based optimization algorithm.

In this setting, we can find a suitable value for δ by noting that a zone with no inward flows
satisfies

δ = κWmin, (30)

where Wmin is the smallest size the system will support. Then by assuming all sizes sum to K, at
equilibrium, we can obtain the following expression for κ

κ = K−1
[

δM +
N

∑
i=1

Oi

]
. (31)

Lastly, we calibrate α and β values from the observation data comprising of log-transformed sizes
y = (y1, . . . , yM)T . The observation data is illustrated in Appendix (B). We assume that the logarithm of
each size is given by a realization of ρ∞, plus independent and identically centred Gaussian observation
noise. The maximum likelihood values for α and β can then be obtained by solving the least squares
optimization problem

α̂, β̂ = argmin
α,β

∣∣y− x∗a,β
∣∣2. (32)

We solve (32) via a 2D grid search to obtain α̂ = 1.14 and β̂ = 0.54. We provide further output of the
calibration procedure in Appendix B.

We initialize the system at the calibrated value, so that x0 = x∗
α̂,β̂

and ρ(x, 0) = δ(x − x0). We
then investigate two noise regimes with σ = 0.02 and σ = 0.04. For each regime, we simulate
1 000 trajectories by approximating (17) using the tamed Euler method [23,24]. We assume that the
simulations take place on a larger domain where reflection does not occur within the finite simulation
times. We compute Monte Carlo expectations to estimate the 5th and 95th percentiles and present
the results in Figure. 1. We see that for σ = 0.02, the urban system does not escape the initial well
within the simulation time. The percentiles at t = 10 are indicative of the equilibrium distribution
providing there is a reflective boundary surrounding the well. For σ = 0.04, the additional noise
provides enough energy for the system sometimes escape the initial well, and there is much greater
uncertainty at t = 10. In this case the simulation is sensitive to the choice of domain. For both cases,
the increase in uncertainty over time is a result of the second law of thermodynamics, which says
that uncertainty must increase over time except for when there is a spontaneous decrease in potential
energy.
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t = 0

σ = 0.02 σ = 0.04

t = 1

t = 10

Figure 1. Forward evolution of the London retail system for two noise regimes. Each column shows a
different noise regime, and each row shows a different time. The inner and outer red rings show 5%
and 95% percentiles, respectively. The light blue circles show the residential areas.

5. Further Work

In this article we have established a connection between the Fokker-Planck equation of a stochastic
reformulation of the Harris and Wilson model and entropy maximization. The connection is made by
way of a thermodynamic analogy. Whilst we have described a stochastic process that satisfies a second
law of thermodynamics and has the desired equilibrium distribution, there are infinitely many other
processes that we could have chosen from. A much broader question is the inverse problem: for a
given equilibrium distribution, which process best describes the dynamics? So far we have considered
the case that the first-order moment is constrained at equilibrium, however, enforcing the constraint
for all times may lead to an improved model. The constrained Fokker-Planck equation is non-linear
and non-local, and can allow for phase transitions [25,26]. In our future work we will investigate the
constrained Fokker-Planck equations in the context of urban modelling.

Supplementary Materials: The code and data used for the case study in this manuscript can be found at the
following repository: https://github.com/lellam/cities_and_regions.
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Appendix Decreasing Free Energy Functional

The free energy functional can be rewritten in terms of a function h that satisfies ρ = hρ∞. By
substituting the definition of ρ into the Fokker-Planck equation, we obtain the backward Kolmogorov
equation for h

∂h
∂t

= −∇V · ∇h + γ−1∆h, x ∈ X (A1)

with the pure Neumann boundary condition

∇h · n = 0, x ∈ δX , (A2)

and the initial condition h(x, 0) = ρ0(x)ρ−1
∞ (x). Then starting with the definition of F(h), we can

substitute the time derivative for the backward Kolmogorov equation, integrate by parts and make
use of the no flux boundary condition to see the claimed result:

d
dt

F(h) = γ−1 d
dt

∫ (
h ln h− h + 1

)
ρ∞dx,

= γ−1
∫

ln h
∂h
∂t

ρ∞dx,

= γ−1
∫

ln h
[
−∇V · ∇h + γ−1∆h

]
ρ∞dx,

= γ−1
∫

ln h
(
−∇V · ∇h

)
ρ∞dx + γ−1

∫
ln h(∆h)ρ∞dx,

= γ−1
∫

ln h
(
−∇V · ∇h

)
ρ∞dx + γ−1

∫
ln h(∇h · n)dx− γ−1

∫
∇(ρ∞ ln h) · ∇hdx,

= −γ−1
∫ (
∇ ln h · ∇h

)
ρ∞dx,

= −γ−1
∫

h−1∣∣∇h
∣∣2ρ∞dx,

= −
∫

ρ

∣∣∣∣∇ δF
δρ

∣∣∣∣2dx,

≤ 0.

(A3)

Appendix Model Calibration

We determine α and β values by solving the maximum likelihood problem in (32) using a
1, 000× 1, 000 grid search. We use an appropriate scaling of the cost matrix so that it is reasonable to
perform the grid search over [0, 2]2. We specify K = 1 and normalize the observation data so that the
sizes sum to 1. We then specify κ = 1.44 and δ = 0.009 in accordance with (30)- (31). The results of the
grid search are shown in Figure. A1, for which it can be seen that the likelihood is maximized in the
region 1 < α < 2. The fitted values are α̂ = 1.53 and β̂ = 0.66. The discontinuities in the parameter
space are in line with those discussed in [7]. We plot the value of y against x∗

α̂,β̂
in Figure. A2 from

which we conclude that the model gives a reasonable fit.
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Figure A1. Evaluations of the log-likelihood, given by the negative of the objective function in (32),
over a grid of 1, 000× 1, 000 values of α and β.
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Figure A2. The observed values y, comprising of log-transformed sizes, against the predicted value
x∗α,β.
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