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A. B. DUNCAN ⇤
AND G. A. PAVLIOTIS†2

Abstract. We study the problem of Brownian motion in a multiscale potential. The potential is3
assumed to have N +1 scales (i.e. N small scales and one macroscale) and to depend periodically on4
all the small scales. We show that for nonseparable potentials, i.e. potentials in which the microscales5
and the macroscale are fully coupled, the homogenized equation is an overdamped Langevin equation6
with multiplicative noise driven by the free energy, for which the detailed balance condition still holds.7
The calculation of the e↵ective di↵usion tensor requires the solution of a system of N coupled Poisson8
equations.9
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1. Introduction. The evolution of complex systems arising in chemistry and bi-13

ology often involve dynamic phenomena occuring at a wide range of time and length14

scales. Many such systems are characterised by the presence of a hierarchy of barriers15

in the underlying energy landscape, giving rise to a complex network of metastable16

regions in configuration space. Such energy landscapes occur naturally in macro-17

molecular models of solvated systems, in particular protein dynamics. In such cases18

the rugged energy landscape is due to the many competing interactions in the energy19

function [12], giving rise to frustration, in a manner analogous to spin glass models20

[13, 38]. Although the large scale structure will determine the minimum energy con-21

figurations of the system, the small scale fluctuations of the energy landscape will22

still have a significant influence on the dynamics of the protein, in particular the be-23

haviour at equilibrium, the most likely pathways for binding and folding, as well as24

the stability of the conformational states. Rugged energy landscapes arise in various25

other contexts, for example nucleation at a phase transition and solid transport in26

condensed matter.27

28

To study the influence of small scale potential energy fluctuations on the system29

dynamics, a number of simple mathematical models have been proposed which cap-30

ture the essential features of such systems. In one such model, originally proposed by31

Zwanzig [51], the dynamics are modelled as an overdamped Langevin di↵usion in a32

rugged two–scale potential V ✏,33

(1) dX✏
t = �rV ✏(Xt) dt+

p
2� dWt, � = ��1 = kBT,34

where T is the temperature and kB is Boltmann’s constant. The function V ✏(x) =35

V (x, x/✏) is a smooth potential which has been perturbed by a rapidly fluctuating36

function with wave number controlled by the small scale parameter ✏ > 0. See Figure37

1 for an illustration. Zwanzig’s analysis was based on an e↵ective medium approxima-38

tion of the mean first passage time, from which the standard Lifson-Jackson formula39

[31] for the e↵ective di↵usion coe�cient was recovered. In the context of protein40

dynamics, phenomenological models based on (1) are widespread in the literature,41

including but not limited to [5, 25, 33, 48]. Theoretical aspects of such models have42

⇤Department of Mathematics/Department of Chemical Engineering, Imperial College London
(a.duncan@imperial.ac.uk).

†Department of Mathematics, Imperial College London (g.pavliotis@imperial.ac.uk).

1

This manuscript is for review purposes only.

mailto:a.duncan@imperial.ac.uk
mailto:g.pavliotis@imperial.ac.uk


2 A. B. DUNCAN AND G. A. PAVLIOTIS

also been previously studied. More recent studies include [15] where the authors43

study di↵usion in a strongly correlated quenched random potential constructed from44

a periodically-extended path of a fractional Brownian motion, and [7] in which the45

authors perform a numerical study of the e↵ective di↵usivity of di↵usion in a potential46

obtained from a realisation of a stationary isotropic Gaussian random field.

Fig. 1: Example of a multiscale potential. The left panel shows the isolines of the
Mueller potential [46, 35]. The right panel shows the corresponding rugged energy
landscape where the Mueller potential is perturbed by high frequency periodic fluc-
tuations.

47
For the case where (1) possesses one characteristic lengthscale controlled by ✏ > 0,48

the convergence of X✏
t to a coarse-grained process X0

t in the limit ✏ ! 0 over a finite49

time interval is well-known. When the rapid oscillations are periodic, under a di↵u-50

sive rescaling this problem can be recast as a periodic homogenization problem, for51

which it can be shown that the process X✏
t converges weakly to a Brownian motion52

with constant e↵ective di↵usion tensor D (covariance matrix) which can be calculated53

by solving an appropriate Poisson equation posed on the unit torus, see for example54

[44, 9]. The analogous case where the rapid fluctuations arise from a stationary ergodic55

random field has been studied in [27, Ch. 9]. The case where the potential V ✏ pos-56

sesses periodic fluctuations with two or three well-separated characteristic timescales,57

i.e. V ✏(x) = V (x, x/✏, x✏2) follow from the results in [9, Ch. 3.7], in which case the58

dynamics of the coarse-grained model in the ✏ ! 0 limit are characterised by an Itô59

SDE whose coe�cients can be calculated in terms of the solution of an associated60

Poisson equation. A generalization of these results to di↵usion processes having N -61
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well separated scales was explored in Section 3.11.3 of the same text, but no proof of62

convergence is o↵ered in this case. Similar di↵usion approximations for systems with63

one fast scale and one slow scale, where the fast dynamics are not periodic have been64

studied in [40].65

66

Further properties of the homogenized dynamics, in addition to the calculation of67

the mean first passage time, have been investigated. For potentials of the form68

V ✏(x) = ↵V (x) + p(x/✏) for a smooth periodic function p(·) it was shown in [43] that69

the maximum likelihood estimator for the drift coe�cients of the homogenized equa-70

tion, given observations of the slow variable of the full dynamics (1) is asymptotically71

biased. Further results on inference of multiscale di↵usions including (1) can be found72

in [29, 28]. In [17], asymptotically optimal importance sampling schemes for studying73

rare events associated with (1) of the form V ✏(x) = V (x, x/✏) were constructed by74

studying the ✏ ! 0 limit of an associated Hamilton-Jacobi-Bellmann equation, the75

results were subsequently generalised to random stationary ergodic fluctuations in76

[49]. In [21], the authors study optimal control problems for two-scale systems. Small77

✏ asymptotics for the exit time distribution of (1) were studied in [3].78

79

A model for Brownian dynamics in a potential V possessing infinitely many character-80

istic lengthscales was studied in [8]. In particular, the authors studied the large-scale81

di↵usive behaviour of the overdamped Langevin dynamics in potentials of the form82

(2) V n(x) =
n
X

k=0

Uk

✓

x

Rk

◆

,83

obtained as a superposition of Hölder continuous periodic functions with period 1.
It was shown in [8] that the e↵ective di↵usion coe�cient decays exponentially fast
with the number of scales, provided that the scale ratios Rk+1

/Rk are bounded from
above and below, which includes cases where the is no scale separation. From this the
authors were able to show that the e↵ective dynamics exhibits subdi↵usive behaviour,
in the limit of infinitely many scales.

In this paper we study the dynamics of di↵usion in a rugged potential possessing
N well-separated lengthscales. More specifically, we study the dynamics of (1) where
the multiscale potential is chosen to have the form

V ✏(x) = V (x, x/✏, x/✏2, . . . , x/✏N ),

where V is a smooth function, which is periodic in all but the first variable. Clearly,84

V can always be written in the form85

(3) V (x
0

, x
1

, . . . , xN ) = V
0

(x
0

) + V
1

(x
0

, x
1

, . . . , xN ),86

where (x
0

, x
1

, . . . , xN ) 2 Rd ⇥ �Td
�N

. In this paper, we shall assume that the large87

scale component of the potential V
0

is smooth and confining on Rd, and that the88

perturbation V
1

is a smooth bounded function which is periodic in all but the first89

variable. Unlike [8], we work under the assumption of explicit scale separation, how-90

ever we also permit more general potentials than those of the form (2), allowing91

possibly nonlinear interactions between the di↵erent scales, and even full coupling92

between scales 1. To emphasize the fact that the potential (3) leads to a fully coupled93

1we will refer to potentials of the form V

✏(x) = V0(x) + V1(x/✏, . . . , x/✏N ) where V1 is periodic
in all variables as separable.
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system across scales, we introduce the auxiliary processes X(j)
t = Xt/✏j , j = 0, . . . , N .94

The SDE (1) can then be written as a fully coupled system of SDEs driven by the95

same Brownian motion Wt,96

dX(0)

t = �
N
X

i=0

✏�irx
i

V
⇣

X(0)

t , X(1)

t , . . . , X(N)

t

⌘

dt+
p
2� dWt(4a)97

dX(1)

t = �
N
X

i=0

✏�i+1rx
i

V
⇣

X(0)

t , X(1)

t , . . . , X(N)

t

⌘

dt+

r

2�

✏2
dWt(4b)98

...99

dX(N)

t = �
N
X

i=0

✏�i+Nrx
i

V
⇣

X(0)

t , X(1)

t , . . . , X(N)

t

⌘

dt+

r

2�

✏2N
dWt(4c)100

101

in which case X(0)

t is considered to be a “slow” variable, while X(1)

t , . . . X(N)

t are102

“fast” variables. In this paper, we first provide an explicit proof of the convergence of103

the solution of (1), X✏
t to a coarse-grained (homogenized) di↵usion process X0

t given104

by the unique solution of the following Itô SDE:105

(5) dX0

t = �M(X0

t )r (X0

t ) dt+ �r · M(X0

t ) dt+
q

2�M(X0

t ) dWt,106

where
 (x) = �� logZ(x),

denotes the free energy, for

Z(x) =

Z

Td

· · ·
Z

Td

e�V (x,y1,...,yN

)/� dy
1

. . . dyN ,

and where M(x) is a symmetric uniformly positive definite tensor which is indepen-
dent of ✏. The formula of the e↵ective di↵usion tensor is given in Section 2. The
multiplicative noise is due to the full coupling between the macroscopic and the N
microscopic scales.2 In particular, we show that although the noise in X✏

t is addi-
tive, the coarse-grained dynamics will exhibit multiplicative noise, arising from the
interaction between the microscopic fluctuations and the thermal fluctuations. For
one-dimensional potentials, we are able to obtain an explicit expression for M(x),
regardless of the number of scales involved. In higher dimensions, M(x) will be ex-
pressed in terms of the solution of a recursive family of Poisson equations which can be
solved only numerically. We also obtain a variational characterization of the e↵ective
di↵usion tensor, analogous to the standard variational characterisations for the e↵ec-
tive conductivity tensor for multiscale conductivity problems, see for example [26].
Using this variational characterisation, we are able to derive tight bounds on the ef-
fective di↵usion tensor, and in particular, show that as N ! 1, the eigenvalues of the
e↵ective di↵usion tensor will converge to zero, suggesting that di↵usion in potentials
with infinitely many scales will exhibit anomalous di↵usion. The focus of this paper
is the rigorous analysis of the homogenization problem for (1) with V ✏ given by (3).
In a companion paper, [16] we study in detail qualitative properties of the solution to

2For additive potentials of the form (2), i.e. when there is no interaction between the macroscale
and the microscales, the noise in the homogenized equation is additive.
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BROWNIAN MOTION IN AN N-SCALE PERIODIC POTENTIAL 5

the homogenized equation (5), including noise-induced transitions and noise-induced
hysteresis behaviour.

For the cases N = 1, 2 the main result of this paper, namely the derivation of the
coarse grained dynamics, arises as a special case of [9, Chapter 3.7]. However, to our
knowledge, the results in this paper are the first which rigorously prove the existence
of this limit for arbitrarily many scales. A standard tool for the rigorous analysis of
periodic homogenization problems is two-scale convergence [1, 37]. This theory was
extended to study reiterated homogenization problems in [2]. The techniques devel-
oped in these papers do not seem to be directly applicable to the problem here for
several reasons: first, we work in an unbounded domain, second the operators that we
consider, i.e. the infinitesimal generator of the di↵usion process (1) cannot be written
in divergence form. The application of two-scale convergence to our problem would
require extending two-scale convergence to weighted L2-spaces, that depend both on
the large and small scale parameters, something which does not seem to be straight-
forward. Our method for proving the homogenization theorem, Theorem 3 is based
on the well known martingale approach to proving limit theorems [9, 39, 40]. The
main technical di�culty in applying such well known techniques is the construction
of the corrector field/compensator. This turns out to be a very tedious task, since we
consider the case where all scales, the macroscale and the N– microscales, are fully
coupled.

Note that although we consider the homogenized process X0

t , the solution of (17)
to be a coarse grained version of the multiscale process X✏

t , both processes have the
same configuration space. We must therefore distinguish this approach with other
coarse graining methodologies where e↵ective dynamics are obtained for a lower di-
mensional set of coordinates of the original system, see for example [30, 11, 23, 45].
Nonetheless, one can still draw parallels between our approach and method described
in [30, 11]. Indeed, when writing (1) in the form (4) we can still view the limit ✏ ! 0
as a form of dimension reduction, approximating the fast-slow system (4) of N + 1

processes (X(0)

t , X(1)

t , . . . , X(N)

t ) taking values in RdN by a single Rd–valued process
X0

t whose e↵ective dynamics are characterised by the free energy Z(x) and an e↵ec-
tive di↵usion tensor

Our assumptions on the potential V ✏ in (3) guarantee that the full dynamics (1) is
ergodic and reversible with invariant distribution ⇡✏. Furthermore, the coarse-grained
dynamics (5) is ergodic and reversible with respect to the equilibrium distribution

⇡0(x) = Z(x)/Z.

Indeed, the natural intepretation of  (x) = �� logZ(x) is as the free energy cor-107

responding to the coarse-grained variable Xt. The weak convergence of X✏
t to X0

t108

implies in particular that the distribution of X✏
t will converge weakly to that of X0

t ,109

uniformly over finite time intervals [0, T ], which does not say anything about the con-110

vergence of the respective stationary distributions ⇡✏ to ⇡0. In Section 4 we study the111

equilibrium behaviour of X✏
t and X0

t and show that the long-time limit t ! 1 and the112

coarse-graining limit ✏ ! 0 commute, and in particular that the equilibrium measure113

⇡✏ of X✏
t converges in the weak sense to ⇡0. We also study the rate of convergence114

to equilibrium for both processes, and we obtain bounds relating the two rates. This115

question is naturally related to the study of the Poincaré constants for the full and116
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6 A. B. DUNCAN AND G. A. PAVLIOTIS

coarse–grained potentials.117

118

The rest of the paper is organized as follows. In Section 2 we state the assumptions119

on the structure of the multiscale potential and state the main results of this paper.120

In Section 3 we study properties of the e↵ective dynamics, providing expressions for121

the di↵usion tensor in terms of a variational formula, and derive various bounds. In122

Section 4 we study properties of the e↵ective potential, and prove convergence of the123

equilibrium distribution of X✏
t to the coarse-grained equilibrium distribution ⇡0.124

2. Setup and Statement of Main Results. In this section we provide con-125

ditions on the multiscale potential which are required to obtain a well-defined ho-126

mogenization limit. In particular, we shall highlight assumptions necessary for the127

ergodicity of the full model as well as the coarse-grained dynamics.128

129

We will consider the overdamped Langevin dynamics130

dX✏
t = �rV ✏(X✏

t ) dt+
p
2� dWt,(6)131132

where V ✏(x) is of the form133

(7) V ✏(x) = V
⇣

x,
x

✏
,
x

✏2
, . . . ,

x

✏N

⌘

,134

and where V : Rd ⇥ Td ⇥ . . . ⇥ Td ! R is a smooth function which is assumed to135

be periodic with period 1 in all but its first argument. The multiscale potentials we136

consider in this paper can be viewed as a smooth confining potential perturbed by137

smooth, bounded fluctuations which become increasingly rapid as ✏ ! 0, see Figure138

1 for an illustration. More specifically, we will assume that the multiscale potential139

V satisfies the following assumptions.3140

Assumption 1. The potential V is given by141

(8) V (x
0

, x
1

, . . . , xN ) = V
0

(x
0

) + V
1

(x
0

, x
1

, . . . , xN ),142

where:143

1. V
0

is a smooth confining potential, i.e. e�V0(x) 2 L1(Rd) and V
0

(x) ! 1 as144

|x| ! 1.145

2. The perturbation V
1

(x
0

, x
1

, . . . , xN ) is smooth and bounded uniformly in x,146

independently of ✏.147

3. There exists C > 0 such that
�

�r2V
0

�

�

L1
(Rd

)

 C.148

Remark 2. We note that Assumption 3 quite stringent, since it implies that V
0

149

is quadratic to leading order. This assumption is also made in [40]. In cases where150

the process X✏
0

⇠ ⇡✏, i.e. the process is started in stationary, this condition can be151

relaxed considerably.152

The infinitesimal generator L✏ of X✏
t is the selfadjoint extension of153

(9) L✏f(x) = �rV ✏(x) ·rf(x) + ��f(x), f 2 C1
0

(Rd).154

Since V
0

is confining, it follows that the corresponding overdamped Langevin equation155

(10) dZt = �rV
0

(Zt) dt+
p
2�dWt,156

3We remark that we can always write (3) in the form (8) where V0(x) =R
Td

· · ·
R
Td

V (x, x1, . . . , xN ) dx1 . . . dxN .
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is ergodic with unique stationary distribution

⇡ref (x) =
1

Z
exp(�V

0

(x)/�), Z =

Z

Rd

e�V0(x)/� dx.

Since V
1

is bounded uniformly, by Assumption 1, it follows that the potential V ✏ is
also confining, and therefore X✏

t is ergodic, possessing a unique invariant distribution

given by ⇡✏(x) = e�V

✏(x)/�

Z✏

, where Z✏ =
R

Rd

e�V ✏

(x)/�. Moreover, noting that the
generator L✏ of X✏

t can be written as

L✏f(x) = � eV
✏

(x)r ·
⇣

e�V ✏

(x)rf(x)
⌘

, f 2 C2

0

(Rd).

it follows that ⇡✏ is reversible with respect to the dynamics X✏
t , c.f. [42, 19].157

158

Our main objective in this paper is to study the dynamics (6) in the limit of infi-159

nite scale separation ✏ ! 0. Having introduced the model and the assumptions we160

can now present the main result of the paper.161

Theorem 3 (Weak convergence of X✏
t to X0

t ). Suppose that Assumption 1 holds162

and let T > 0, and the initial condition X
0

is distributed according to some probability163

distribution ⌫ on Rd. Then as ✏ ! 0, the process X✏
t converges weakly in (C[0, T ];Rd)164

to the di↵usion process X0

t with generator defined by165

(11) L0f(x) =
�

Z(x)
rx · (Z(x)M(x)rxf(X)) , f 2 C2

0

(Rd),166

and where167

(12) Z(x) =

Z

Td

· · ·
Z

Td

e�V (x,x1,...,xN

)/� dxN . . . dx
1

168

and169

(13)

M(x) =
1

Z(x)

Z

Td

· · ·
Z

Td

(1 +rx
N

✓>N ) · · · (1 +rx1✓
>
1

)e�V (x,x1,...,xN

)/� dxN · · · dx
1

.170

The correctors are defined recursively as follows: define ✓N�k to be the weak solution171

of the PDE172

(14) rx
N�k

· (KN�k(x0

, . . . , xN�k)(rx
N�k

✓x
N�k

(x
0

, . . . , xN�k) + I)) = 0,173

where ✓N�k(x0

, . . . , xN�k�1

, ·) 2 H1(Td) and where174

(15)
KN�k(x0

, . . . , xN�k)

=

Z

Td

· · ·
Z

Td

(I +rN✓>N ) · · · (I +rN�k+1

✓>N�k+1

)e�V/� dxN . . . dxN�k+1

,
175

for k = 1, . . . , N � 1, and176

(16) KN (x, x
1

, . . . , xN ) = e�V (x,x1,...,xN

)/�I177

where I denotes the identity matrix in Rd⇥d. Provided that Assumptions 1 hold,178

Proposition 16 guarantees existence and uniqueness (up to a constant) of solutions to179

the coupled Poisson equations (14). Furthermore, the solutions will depend smoothly180
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8 A. B. DUNCAN AND G. A. PAVLIOTIS

on the slow variable x as well as the fast variables y
1

, . . . , yN . The process X0

t is the181

unique solution to the Itô SDE182

(17) dX0

t = �M(X0

t )r (X0

t ) dt+ �r · M(X0

t ) dt+
q

2�M(X0

t ) dWt,183

where

 (x) = �� logZ(x) = �� log

✓

Z

Td

· · ·
Z

Td

e�V (x,y1,...,yN

)/� dy
1

. . . dyN

◆

.

The proof, which closely follows that of [40] is postponed to Section 5. Theorem 3
confirms the intuition that the coarse-grained dynamics is driven by the free energy.
On the other hand, the corresponding SDE has multiplicative noise given by a space
dependent di↵usion tensor M(x). We can show that the homogenized process (17) is
ergodic with unique invariant distribution

⇡0(x) =
Z(x)

Z
=

1

Z
e� (x)/�, where Z =

Z

Rd

Z(x) dx.

It is important to note that the reversibility of X✏
t with respect to ⇡✏ is preserved

under the homogenization procedure. In particular, the homogenized SDE (17) will
be reversible with respect to the Gibbs measure ⇡0(x). Indeed, (17) has the form of
the most general di↵usion process that is reversible with respect to ⇡0(x), see [42,
Sec. 4.7].

While Theorem 3 only characterises the convergence of X✏
t to X0

t over finite time
intervals, quite often we are interested in the equilibrium behaviour and in the rate
of convergence to equilibrium for the coarse–grained process. In Section 4 we study
the properties of the invariant distributions ⇡✏ and ⇡0 of X✏

t and X0

t , respectively.
In particular, we show that ⇡✏ converges to ⇡0 in the sense of weak convergence of
probability measures, and moreover characterise the rate of convergence to equilib-
rium for bothX✏

t andX0

t in terms of ✏, the parameter which measures scale separation.

As is characteristic with homogenization problems, when d = 1 we can obtain, up to
quadratures, an explicit expression for the homogenized SDE. In this case, we obtain
explicit expressions for the correctors ✓

1

, . . . , ✓N , so that the intermediary coe�cients
K

1

, . . . ,KN can be expressed as

Ki(x0

, x
1

, . . . , xi) =

✓

Z

eV (x0,x1,...,xi

,x
i+1,...,xN

)/� dxi+1

. . . dxN

◆�1

, i = 1, . . . , N.

Proposition 4 (E↵ective Dynamics in one dimension). When d = 1, the e↵ective184

di↵usion coe�cient M(x) in (17) is given by185

(18) M(x) =
1

Z
1

(x) bZ
1

(x)
,186

where

Z
1

(x) =

Z

· · ·
Z

e�V1(x,x1,...,xN

)/� dx
1

. . . dxN ,

and
bZ
1

(x) =

Z

· · ·
Z

eV1(x,x1,...,xN

)/� dx
1

. . . dxN .
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BROWNIAN MOTION IN AN N-SCALE PERIODIC POTENTIAL 9

Equation (18) generalises the expression for the e↵ective di↵usion coe�cient for187

a two-scale potential that was derived in [51] without any appeal to homogenization188

theory. In higher dimensions we will not be able to obtain an explicit expression189

for M(x), however we are able to obtain bounds on the eigenvalues of M(x). In190

particular, we are able to show that (18) acts as a lower bound for the eigenvalues of191

M(x).192

Proposition 5. The e↵ective di↵usion tensor M is uniformly positive definite193

over Rd. In particular,194

(19) 0 < e�osc(V1)/�  1

Z
1

(x) bZ
1

(x)
 e · M(x)e  1,195

for all e 2 Rd such that |e| = 1, where

osc(V
1

) = sup
x2Rd,

y1,...,yN

2Td

V
1

(x, y
1

, . . . , yN )� inf
x2Rd,

y1,...,yN

2Td

V
1

(x, y
1

, . . . , yN )

This result follows immediately from Lemmas 10 and 11 which are proved in Section196

3.197

Remark 6. The bounds in (19) highlight the two extreme possibilities for fluctu-198

ations occurring in the potential V ✏. The inequality 1

Z1(x)bZ1(x)
 e ·M(x)e is attained199

when the multiscale fluctuations V
1

(x
0

, . . . , xN ) are constant in all but one dimension200

(e.g. the analogue of a layered composite material, [14, Sec 5.4], [44, Sec 12.6.2]).201

In the other extreme, the inequality e · M(x)e = 1 is attained in the abscence of202

fluctuations, i.e. when V
1

= 0.203

Remark 7. Clearly, the lower bound in (19) becomes exponentially small in the204

limit as � ! 0.205

While Theorem 3 guarantees weak convergence of X✏
t to X0

t in C([0, T ];Rd) for
fixed T , it makes no claims regarding the convergence at infinity, i.e. of ⇡✏ to ⇡0.
However, under the conditions of Assumption 1 we can show that ⇡✏ converges weakly
to ⇡0, so that the T ! 1 and ✏ ! 0 limits commute, in the sense that:

lim
✏!0

lim
T!1

E[f(X✏
T )] = lim

T!1
lim
✏!0

E[f(X✏
T )],

for all f 2 L2(⇡ref ).206

Proposition 8 (Weak convergence of ⇡✏ to ⇡0). Suppose that Assumption 1207

holds. Then for all f 2 L2(⇡ref ),208

(20)

Z

Rd

f(x)⇡✏(dx) !
Z

Rd

f(x)⇡0(dx),209

as ✏ ! 0.210

If Assumption 1 holds, then for every ✏ > 0, the potential V ✏ is confining, so that211

the process X✏
t is ergodic. If the “unperturbed” process defined by (10) converges to212

equilibrium exponentially fast in L2(⇡ref ), then so will X✏
t and X0

t . Moreover, we can213

relate the rates of convergence of the three processes.214

Proposition 9. Suppose that Assumptions 1 holds and let Pt be the semigroup215

associated with the dynamics (10) and suppose that ⇡ref (x) = 1

Z0
e�V0(x)/� satisfies216
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10 A. B. DUNCAN AND G. A. PAVLIOTIS

Poincaré’s inequality with constant ⇢/�, i.e.217

(21) Var⇡
ref

(f)  �

⇢

Z

|rf(x)|2 ⇡ref (dx), f 2 H1(⇡ref ),218

or equivalently219

(22) Var⇡
ref

(Ptf)  e�2⇢t/�Var⇡
ref

(f), f 2 L2(⇡ref ),220

for all t � 0. Let P ✏
t and P 0

t denote the semigroups associated with the full dynamics221

(6) and homogenized dynamics (17), respectively. Then for all f 2 L2(⇡ref ),222

(23) Var⇡✏(P ✏
t f)  e�2�t/�Var⇡✏(f),223

and224

(24) Var⇡0(P 0

t f)  e�2e�t/�Var⇡0(f).225

for � = ⇢ e�2osc(V1)/� and e� = ⇢e�3osc(V1)/�.226

The proofs Propositions 8 and 18 will be deferred to Section 4.227

3. Properties of the Coarse–Grained Process. In this section we study the228

properties of the coe�cients of the homogenized SDE (17) and its dynamics.229

3.1. Separable Potentials. Consider the special case where the potential V ✏

is separable, in the sense that the fast scale fluctuations do not depend on the slow
scale variable, i.e.

V (x
0

, x
1

, . . . , xN ) = V
0

(x
0

) + V
1

(x
1

, x
2

, . . . , xN ).

Then, it is clear from the construction of the e↵ective di↵usion tensor (13) that M(x)
will not depend on x 2 Rd. Moreover, since

Z(x) =

Z

Td

· · ·
Z

Td

e�
V0(x)+V1(y1,...,y

N

)
� dy

1

. . . dyN =
1

K
e�V0(x)/�,

where K =
R

Td

· · · RTd

exp(�V
1

(y
1

, . . . , yN )/�) dy
1

. . . dyN , then it follows that the230

coarse–grained stationary distribution ⇡0 equals the stationary distribution ⇡ref /231

exp(�V
0

(x)/�) of the process (10). For general multiscale potentials however, ⇡0 will232

be di↵erent from ⇡ref . Indeed, introducing multiscale fluctuations can dramatically233

alter the qualitative equilibrium behaviour of the process, including noise-inductioned234

transitions and noise induced hysteresis, as has been studied for various examples in235

[16].236

3.2. Variational bounds on M(x). A first essential property is that the con-237

structed matrices KN , . . . ,K
1

are uniformly elliptic with respect to all their parame-238

ters, which is shown in the following lemma. For convenience, we shall introduce the239

notation240

(25) Xk = Rd ⇥
k

"
i=1

Td241

for k = 1, . . . , N , and set X
0

= Rd for consistency. First we require the following242

existence and regularity result for a uniformly elliptic Poisson equation on Td.243
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Lemma 10. For k = 1, . . . , N , the tensor Kk(x0

, . . . , xk�1

, ·) is uniformly positive244

definite and in particular satisfies, for all unit vectors e 2 Rd,245

(26)
1

bZk(x0

, x
1

, . . . , xk�1

)
 e · Kk(x0

, x
1

, . . . , xk�1

, xk) e, xk 2 Td246

where

bZk(x0

, x
1

, . . . , xk�1

) =

Z

. . .

Z

eV (x0,x1,...,xk�1,xk

,...,x
N

)/� dxNdxN�1

. . . dxk,

which is independent of xk. Moreover, the tensor Kk satisfies (Kk)i,j 2 C1
b (Xk), for247

all i, j 2 {1, . . . , d}.248

Proof. We prove the result by induction on k starting from k = N . For k = N the249

tensor KN is clearly uniformly positive definite for fixed x
0

, . . . , xN�1

2 XN�1

. The250

existence of the solution ✓N of (14) is then ensured by the Lemma 10, and moreover251

it follows that KN�1

is well defined. To show that KN�1

(x
0

, . . . , xN�2

, ·) is uniformly252

elliptic on Td we first note that253

(27)

Z

Td

(I +rx
N

✓N )>(I +rx
N

✓N )e�V/� dxN

=

Z

Td

�

I +rx
N

✓N +rx
N

✓>N +rx
N

✓>Nrx
N

✓N
�

e�V/�dxN ,
254

where V = V (x
0

, x
1

, . . . , xN ), for x
0

, . . . , xN�1

2 XN�1

fixed, and where > denotes
the transpose. From the Poisson equation for ✓N we have

Z

✓N ·rx
N

· (e�V/�(rx
N

✓N + I))e�V/� dxN = 0,

from which we obtain, after integrating by parts:
Z

Td

rx
N

✓>Nrx
N

✓Ne�V/� dxN = �
Z

rx
N

✓>Ne�V/� dxN ,

so that255

KN�1

=

Z

Td

(I +rx
N

✓N )>(I +rx
N

✓N )e�V/� dxN .256
257

We note that
Z

Td

(I +rN✓N ) dxN = I,

therefore, it follows by Hölder’s inequality that

|v|2 
�

�

�

�

v ·
Z

Td

(I +rN✓N )v

�

�

�

�

2

 v · (KN�1

) v

Z

Td

eV/� dxN ,

so that

|v|2
bZN (x

0

, . . . , xN�1

)
 v · KN�1

(x
0

, . . . , xN�1

)v, 8(x
0

, x
1

, . . . , xN1).

Since V
1

is uniformly bounded over x
0

, . . . , xN�1

it follows that bZN is strictly posi-258

tive, so that KN�1

is uniformly elliptic, and arguing as above we obtain existence of259
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12 A. B. DUNCAN AND G. A. PAVLIOTIS

a unique ✓N�1

, up to a constant, solving (42) for k = 2.260

261

Now, assume that the correctors have been constructed for i = N, . . . , N � k + 1262

and consider the tensor263

(28)

Z

· · ·
Z

(I +ri+1

✓i+1

)> · · · (I +rk+1

✓k+1

)>

Kk(I +rk+1

✓k+1

) · · · (I +ri+1

✓i+1

) dxN . . . dxi+1

.
264

Integrating by parts the cell equation for ✓k+1

we see that
Z

(I +rk+1

✓k+1

)> Kk (I +rk+1

✓k+1

) dxk+1

= Kk�1

.

Continuining this approach by induction, it follows that (28) equals Ki+1

, thus proving
the representation (27), as required. We now verify (26). First we note that

Z

· · ·
Z

(I +rN✓N ) · · · (I +ri+1

✓i+1

)dxN . . . dxi+1

= I.

Therefore, for any vector v 2 Rd:265

|v|2 
�

�

�

�

✓

Z

· · ·
Z

(I +rN✓N ) · · · (I +ri+1

✓i+1

)dxN . . . dxi+1

◆

v

�

�

�

�

2

266

 v ·
✓

Z

· · ·
Z

(I +ri+1

✓i+1

)> · · · (I +ri+1

✓i+1

)e�V/�dxN . . . dxi+1

◆

v

Z

eV/�dxN . . . dxi+1

267

= (v · Ki+1

(x
1

, . . . , xi)v) bZ(x
1

, . . . , xi).268269

The fact that we have strict positivity for fixed x
1

, . . . xi then follows immediately.270

To obtain upper bounds for the e↵ective di↵usion coe�cient, we will express the271

intermediary di↵usion tensors Ki as solutions of a quadratic variational problem. This272

variational formulation of the di↵usion tensors can be considered as a generalisation273

of the analogous representation for the e↵ective conductivity coe�cient of a two-scale274

composite material, see for example [26, 32, 9].275

Lemma 11. For i = 1, . . . , N , the tensor Ki satisfies276

(29)
e · Ki(x0

, . . . , xi)e

= inf
v
i+1,...,vN2H1

(Td

)

Z

(Td

)

N

|e+rvi+1

(xi) + . . .+rvN (xN )|2 e�V (x0,...,xN

)/� dxN . . . dxi+1

,
277

for all e 2 Rd.278

Proof. For i = 1, . . . , N , from the proof of Lemma 10 we can express the inter-279

mediary di↵usion tensor Ki�1

in the following recursive manner,280

e·Ki�1

(x
0

, . . . , xi�1

)e281

=

Z

Td

(e+ e ·rx
i

✓i(x0

, . . . , xi))
>Ki(x0

, . . . , xi)(e+ e ·rx
i

✓i(x0

, . . . , xi)) dxi.282
283

For fixed x
0

, . . . , xi�1

2 Xi�1

and e 2 Rd, consider the tensor eKi�1

defined by the284

following quadratic minimization problem285

(30) e· eKi�1

(x
0

, . . . , xi�1

)e = inf
v2H1

(Td

)

Z

Td

(e+rv(xi))·Ki(x0

, . . . , xi)(e+rv(xi)) dxi.286
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Since Ki is a symmetric tensor, the corresponding Euler-Lagrange equation for the
minimiser is given by

rx
i

· (Ki(x0

, . . . , xi)(rx
i

�(x
0

, . . . , xi) + e)) = 0, x 2 Td,

with periodic boundary conditions. This equation has unique mean zero solution given287

by �(x
0

, . . . , xi) = ✓i(x0

, . . . , xi) · e, where ✓i is the unique mean-zero solution of (14).288

It thus follows that e · Ki�1

e = e · eKi�1

e, where eKi�1

is given by (30). Expanding Ki289

in a similar fashion, we obtain290

e · Ki�1

(x
0

, . . . , xi�1

)e291

= inf
v
i

,v
i+12H1

(Td

)

Z

Td

Z

Td

(e+rvi(xi) +rvi+1

(xi+1

)) · Ki+1

(x
0

, . . . , xi+1

)(e+rvi(xi) +rvi+1

(xi+1

)) dxi+1

dxi.292
293

Proceeding recursively, we arrive at294

e · Ki�1

(x
0

, . . . , xi�1

)e295

= inf
v
i

,...,v
N

2H1
(Td

)

Z

(Td

)

N

|e+rvi(xi) + . . .+rvN (xN )|2 e�V (x0,...,xN

)/� dxN . . . , dxi,296

297

as required.298

Remark 12. Proposition 5 follows immediately from Lemma 11 by choosing

v
1

= v
2

= . . . = vN = 0,

in (29) in the case where i = 1.299

4. Properties of the Equilibrium Distributions. In this section we study300

in more detail the properties of the equilibrium distributions ⇡✏ and ⇡0 of the full (6)301

and homogenized (17) dynamics, respectively. We first provide a proof of Proposition302

8. The approach we follow in this proof is based on properties of periodic functions,303

in a manner similar to [14, Sec. 2].304

Proof of Proposition 8. First we note that, by Assumptions 1, there exists a C > 0
independent of ✏, such that

Z

Rd

�

�

�

e�V1(x,x/✏,...,x/✏
N

)/�
�

�

�

2

e�V0(x)/� dx  C < 1.

It follows that there exists ⇤ 2 L2(Rd; e�V0/�) and a subsequence (✏n)n2N where
✏n ! 0 such that

Z

Rd

e�V1(x,x/✏n,...,x/✏n
N

)/�g(x)e�V0(x)/� dx
n!1����!

Z

Rd

⇤(x)g(x)e�V0(x)/� dx,

for all g 2 L2(⇡ref ). To identify the limit, we choose g = 1
⌦

where ⌦ is an open
bounded subset of Rd where @⌦ is smooth; noting that the span of such functions is
dense in L2(⇡ref ).

Following [36] and [14, Sec. 2.3], given ⌦ and ✏ > 0, let {Yk}k=1,...,N(✏) be a collection
of pairwise disjoint translations of Td, such that ✏NYk ⇢ ⌦, for k = 1, . . . , N(✏) and
for all � > 0, there exists ✏

0

such that

�
⇣

⌦ \ [N(✏)
k=1

✏NYk

⌘

< �,
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14 A. B. DUNCAN AND G. A. PAVLIOTIS

for all ✏ < ✏
0

, where �(·) denotes the Lebesgue measure on Rd. Given � > 0, there305

exists ✏
0

such that for ✏ < ✏
0

,306

Z

⌦

e�V ✏

(x)/� dx =

N(✏)
X

k=1

Z

✏NY
k

e�V ✏

(x)/� dx+O(�)307

=

N(✏)
X

k=1

Z

✏N (x
k

+Td

)

e�V (x,x/✏,...,x/✏N�1,x/✏N )/� dx+O(�)308

= ✏Nd

N(✏)
X

k=1

Z

Td

e�V (✏N (x
k

+y),✏N�1
(x

k

+y),...,✏(x
k

+y),y)/� dy +O(�)309

= ✏Nd

N(✏)
X

k=1

Z

Td

e�V (✏Nx
k

,✏N�1x
k

,...,✏x
k

,y)/� dy +O(�)310

=

Z

[N(✏)
k=1 Y

k

Z

Td

e�V (x,x/✏,...,x/✏N�1,y)/� dy dx+O(�)311

=

Z

⌦

Z

Td

e�V (x,x/✏,...,x/✏N�1,y)/� dy dx+O(�),312
313

where we use the fact that V is smooth with bounded derivatives on ⌦. Proceeding
iteratively in the above manner, we obtain that for all � > 0, there exists ✏

0

such that

Z

⌦

e�V ✏

(x)/� dx =

Z

⌦

Z

Td

· · ·
Z

Td

e�V (x,y1,...,yN

)/� dyN . . . dyN dx+O(�),

for all ✏ < ✏
0

. Thus it follows that

⇤(x) =

Z

Td

· · ·
Z

Td

e�V1(x,y1,...,yN

)/� dyN dyN�1

. . . dy
1

.

In particular,

Z✏ =

Z

Rd

e�V ✏

(x)/� dx ! Z0 =

Z

Rd

Z

Td

· · ·
Z

Td

e�V (x,y1,...,yN

)/� dyN . . . dy
1

dx,

and thus, for all h 2 L2(Rd; e�V0(x)/�)

Z

h(x)⇡✏(x) dx !
Z

h(x)⇡0(x) dx,

as ✏ ! 0, as required.314

Proof of Proposition 9. Since V
1

is bounded uniformly by Assumption 1, it is315

straightforward to check that316

(31) ⇡ref (x)e
�2osc(V1)/�  ⇡✏(x)  ⇡ref (x)e

2osc(V1)/�.317

It thus follows directly from (21), or alternatively from [6, Lemma 5.1.7], that ⇡✏

satisfies Poincaré’s inequality with constant

� =
⇢

�
e�2osc(V1)/�,
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which implies (23). An identical argument follows for the coarse–grained density
⇡0(x). Finally, using the fact that

|v|2e�osc(V1)/�  |v|2
Z(x) bZ(x)

 v · M(x)v,

for all v 2 Rd, we obtain318

Var⇡0(f)  �

⇢
e2osc(V1)/�

Z

Rd

|rf(x)|2 ⇡0(x) dx319

 �

⇢
e3osc(V1)/�

Z

rf(x) · M(x)rf(x)⇡0(x) dx,320
321

from which (24) follows.322

Remark 13. Note that one can similarly relate the constants in the Logarithmic323

Sobolev inequalities for the measures ⇡ref , ⇡✏ and ⇡0 in an almost identical manner,324

based on the Holley-Stroock criterion [24].325

Remark 14. Proposition 9 requires the assumption that the multiscale perturba-
tion V

1

is bounded uniformly. If this is relaxed, then it is no longer guaranteed that
⇡✏ will satisfy a Poincaré inequality, even though ⇡ref does. For example, consider
the potential

V ✏(x) = x2(1 + ↵ cos(2⇡x/✏)),

then the corresponding Gibbs distribution ⇡✏(x) will not satisfy Poincaré’s inequality
for any ✏ > 0. Following [22, Appendix A] we demonstrate this by checking that this
choice of ⇡✏ does not satisfy the Muckenhoupt criterion [34, 4] which is necessary and
su�cient for the Poincaré inequality to hold, namely that supr2R B±(r) < 1, where

B±(r) =

✓

Z ±1

r

⇡✏(x) dx

◆

1
2
 

Z

[0,±r]

1

⇡✏(x)
dx

!

1
2

.

Given n 2 N, we set r/✏ = 2⇡n+ ⇡/2. Then we have that326

B
+

(r) �
 

Z ✏(2⇡n+4⇡/3)

✏(2⇡n+2⇡/3)

e�|x|2(1�↵/2)/� dx

!

1/2 
Z ✏(2⇡n+⇡/3)

✏(2⇡n�⇡/3)

e|x|
2
(1+↵/2)/� dx

!

1/2

327

�
✓

2⇡✏

3

◆

exp

✓

� |⇡✏(2n+ 4/3)|2
2�

⇣

1� ↵

2

⌘

+
|⇡✏(2n� 1/3)|2

2�

⇣

1 +
↵

2

⌘

◆

328

=

✓

2⇡✏

3

◆

exp

✓

� |2⇡✏n|2(1 + 2/3n)2

2�

⇣

1� ↵

2

⌘

+
|2⇡✏n|2(1� 1/6n)2

2�

⇣

1 +
↵

2

⌘

◆

329

⇡
✓

2⇡✏

3

◆

exp

✓ |2⇡✏n|2
2�

�

↵+ o(n�1)
�

◆

! 1, as n ! 1,330
331

so that Poincaré’s inequality does not hold for ⇡✏.332

A natural question to ask is whether the weak convergence of ⇡✏ to ⇡0 holds333

true in a stronger notion of distance such as total variation. The following simple334

one-dimensional example demonstrates that the convergence cannot be strengthened335

to total variation.336
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Example 15. Consider the one dimensional Gibbs distribution

⇡✏(x) =
1

Z✏
e�V ✏

(x)/�,

where

V ✏(x) =
x2

2
+ ↵ sin

⇣

2⇡
x

✏

⌘

,

and where Z✏ is the normalization constant and ↵ 6= 0. Then the measure ⇡✏ converges
weakly to ⇡0 given by

⇡0(x) =
1p
2⇡�

e�x2/2�.

From the plots of the stationary distributions in Figure 2a it becomes clear that the337

density of ⇡✏ exhibits rapid fluctuations which do not appear in ⇡0, thus we do not338

expect to be able to obtain convergence in a stronger metric. First we consider the339

distance between ⇡✏ and ⇡0 in total variation 4340

k⇡✏ � ⇡0kTV =

Z

Rd

|⇡✏(x)� ⇡0(x)| dx =

Z

Rd

e�x2/2�

p
2�

�

�

�

�

1� e�
↵

�

cos(2⇡x/✏)

K✏

�

�

�

�

dx,341
342

where K✏ = Z✏/
p
2⇡�. It follows that343

k⇡✏ � ⇡0kTV �
X

n�0

Z ✏(2⇡n+⇡/3)

✏(2⇡n�⇡/3)

e�x2/2�

p
2⇡�

dx

�

�

�

�

1� e�
↵

2�

K✏

�

�

�

�

344

�
X

n�0

2✏⇡

3

e�✏2(2n⇡+⇡/3)2/2�

p
2⇡�

�

�

�

�

1� e�
↵

2�

K✏

�

�

�

�

345

�
Z 1

0

2⇡

3

e�2⇡2
(x+✏/6)2/�

p
2⇡�

�

�

�

�

1� e�
↵

2�

K✏

�

�

�

�

,346
347

where we use the fact that e�↵/2�/K✏  1. In the limit ✏ ! 0, we have K✏ ! I
0

(↵/�),348

where In(·) is the modified Bessel function of the first kind of order n. Therefore, as349

✏ ! 0,350

(32) k⇡✏ � ⇡0kTV �
Z 1

0

2⇡

3

e�2⇡2
(x+✏/6)2/�

p
2⇡�

�

�

�

�

1� e�
↵

2�

K✏

�

�

�

�

=
1

6

�

�

�

�

1� e�
↵

2�

I
0

(↵/�)

�

�

�

�

,351

which converges to 1

6

as ↵
� ! 1. Since relative entropy controls total variation

distance by Pinsker’s theorem, it follows that ⇡✏ does not converge to ⇡0 in relative
entropy, either. Nonetheless, we shall compute the distance in relative entropy between
⇡✏ and ⇡0 to understand the influence of the parameters � and ↵. Since both ⇡0 and
⇡✏ have strictly positive densities with respect to the Lebesgue measure on R, we have
that

d⇡✏

d⇡0

(x) =

p
2⇡�

Z✏
e�V ✏

(x)/�+ 1
2x

2/�.

4we are using the same notation for the measure and for its density with respect to the Lebesgue
measure on Rd.
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Then, for Z0 =
p
2⇡�I

0

(1/�),352

H
�

⇡✏ |⇡0

�

=
1

Z✏

Z

✓

1

2
log(2⇡�)� logZ✏

◆

e�V ✏

(x)/� dx353

+
1

Z✏

Z

��V ✏(x)/� + x2/2�
�

e�V ✏

(x)/� dx354

✏!0���! � log I
0

(↵/�) +
↵

�Z0

lim
✏!0

Z

cos(2⇡x/✏)e�x2/2��↵ cos(2⇡x/✏)/� dx355

= � log I
0

(↵/�) +
↵

�

I
1

(↵/�)

I
0

(↵/�)
=: K(↵/�).356

357

and it is straightfoward to check that K(s) > 0, and moreover

K(s) !
(

+1 as s ! 0,

0 as s ! 1.

In Figure 2b we plot the value of K(s) as a function of s. From this result, we see358

that for fixed ↵ > 0, the measure ⇡✏ will converge in relative entropy only in the limit359

as � ! 1, while the measures will become increasingly mutually singular as � ! 0.360

-2 -1 1 2

0.1

0.2

0.3

0.4

πϵ (x)

π0(x)

(a) Plot of ⇡✏
and ⇡0

with ✏ = ↵ = 0.1
and � = 1.0

1 10 100 1000 104 105 106
α/σ

0.5

1

5

10

K(α/σ)

(b) Plot of K(↵/�) as a function of ↵/�.

Fig. 2: Error between ⇡✏(x) / exp(�V ✏(x)/�) and e↵ective distribution ⇡0.

5. Proof of weak convergence. In this section we show that over finite time361

intervals [0, T ], the process X✏
t converges weakly to a process X0

t which is uniquely362

identified as the weak solution of a coarse-grained SDE. The approach we adopt is363

based on the classical martingale methodology of [9, Section 3]. The proof of the364

homogenization result is split into three steps.365

1. We construct an appropriate test function which is used to decompose the366

fluctuations of the process X✏
t into a martingale part and a term which goes367

to zero as ✏ ! 0.368

2. Using this test function, we demonstrate that the path measure P✏ corre-369

sponding to the family
n

(X✏
t )t2[0,T ]

o

0<✏1

is tight in C([0, T ];Rd).370

3. Finally, we show that any limit point of the family of measures must solve a371

well-posed martingale problem, and is thus unique.372

The test functions will be constructed by solving a recursively defined sequence373

of Poisson equations on Rd. We first provide a general well-posedness result for this374

class of equations.375
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18 A. B. DUNCAN AND G. A. PAVLIOTIS

Proposition 16. For fixed (x
0

, . . . , xk�1

) 2 Xk�1

, let Sk be the operator given376

by377

(33)

Sk =
1

⇢(x
0

, . . . , xk)
rx

k

·(⇢(x
0

, . . . , xk)D(x
0

, . . . , xk)rx
k

u(x
0

, . . . , xk)) , f 2 C2(Td),378

and suppose that ⇢ is smooth and uniformly positive and bounded, and the tensor379

D(x
0

, . . . , xk) is smooth and uniformly positive definite on Xk. Given a function h380

which is smooth with bounded derivatives, such that for each (x
0

, . . . , xk�1

) 2 Xk�1

:381

(34)

Z

h(x
0

, . . . , xk)⇢(x0

, . . . , xk) dxk = 0.382

Then there exists a unique, mean-zero solution u 2 H1(Td), to the Poisson equation383

on Td given by384

(35) Sku(x0

, . . . , xk) = h(x
0

, . . . , xk),385

which is smooth and bounded with respect to the variable xk 2 Td as well as the386

parameters x
0

, . . . , xk�1

2 Xk�1

.387

Proof. Since ⇢(·) andD(·) are strictly positive, for fixed values of x
0

, . . . , xk�1

, the
operator Sk is uniformly elliptic, and since Td is compact, Sk has compact resolvent
in L2(Td), see [18, Ch. 6] and [44, Ch 7]. The nullspace of the adjoint S⇤ is spanned
by a single function ⇢(x

0

, . . . , xk�1

, ·). By the Fredholm alternative, a necessary and
su�cient condition for the existence of u is (34) which is assumed to hold. Thus, there
exists a unique solution u(x

0

, . . . , xk�1

, ·) 2 H1(Td) having mean zero with respect
to ⇢(x

0

, . . . , xk). By elliptic estimates and Poincaré’s inequality, it follows that there
exists C > 0 satisfying

ku(x
0

, . . . , xk�1

, ·)kH1
(Td

)

 Ckh(x
0

, . . . , xk�1

, ·)kL2
(Td

)

,

for all (x
0

, . . . , xk�1

) 2 Xk�1

. Since the components of D and ⇢ are smooth388

with respect to xk, standard interior regularity results [20] ensure that, for fixed389

x
0

, . . . , xk�1

2 Xk�1

, the function u(x
0

, . . . , xk�1

, ·) is smooth. To prove the smooth-390

ness and boundedness with respect to the other parameters x
0

, . . . , xk�1

, we can apply391

an approach either similar to [9], by showing that the finite di↵erences approximation392

of the derivatives of u with respect to the parameters has a limit, or otherwise, by393

directly di↵erentiating the transition density of the semigroup associated with the394

generator Sk , see for example [40, 50, 41] as well as [20, Sec 8.4].395

Remark 17. Suppose that the function h in Proposition 16 can be expressed as

h(x
0

, . . . , xk) = a(x
0

, x
1

, . . . , xk) ·r�
0

(x
0

)

where a is smooth with all derivatives bounded. Then the mean-zero solution of (35)
can be written as

u(x
0

, x
1

, . . . , xk) = �(x
0

, x
1

, . . . , xk) ·r�
0

(x
0

),

where � is the classical mean-zero solution to the following Poisson equation

Sk�(x0

, . . . , xk) = a(x
0

, . . . , xk), (x
0

, . . . , xk) 2 Xk.
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In particular, � is smooth and bounded over x
0

, . . . , xk, so that for some C > 0,

kr↵u(x
0

, . . . , xk)kF  C
↵0
X

k=0

krk+1�
0

(x
0

)kF , 8x
0

, x
1

, . . . , xk,

for all multi-indices ↵ = (↵
0

, . . . ,↵k) on the indices (0, . . . , k), where k·kF denotes
the Frobenius norm. A similar decomposition is possible for

g(x
0

, . . . , xk) = A(x
0

, x
1

, . . . , xk) : r2�
0

(x
0

),

where r2 denotes the Hessian.396

5.1. Contructing the test functions. It is clear that we can rewrite (6) as397

(36) dX✏
t = �

N
X

i=0

✏�irx
i

V (x
1

, . . . , xN )
�

�

�

x
j

=X✏

t

/✏j
dt+

p
2� dWt.398

The generator of X✏
t denoted by L✏ can be decomposed into powers of ✏ as follows

L✏ = �
N
X

n=0

✏�nrx
n

V ·rx + ��x.

For functions of the form f ✏(x) = f(x, x/✏, . . . , x/✏N ) we write

L✏f ✏(x) =
2N
X

n=0

✏�nLnf(x0

, x
1

. . . , xN )
�

�

x
i

=x/✏i
,

where
Ln = eV/�

X

i,j2{1,...N}
i+j=n

rx
i

·
⇣

�e�V/�rx
j

·
⌘

Given �
0

, our objective is to construct a test function �✏ such that399

�✏(x) =�
0

(x) + ✏�
1

(x, x/✏) + . . .+ ✏N�N (x, x/✏, . . . , x/✏N )400

+ ✏N+1�N+1

(x, x/✏, . . . , x/✏N ) + . . .+ ✏2N�
2N (x, x/✏, . . . , x/✏N ),401402

where �
1

, . . . ,�
2N satisfy403

(37) L✏�✏(x) = F (x) +O(✏),404

for some F which is independent of ✏. This is equivalent to the following sequence of405

N + 1 equations.406

L
2N�N + L

2N�1

�N�1

+ . . .LN�
0

= 0,(38a)407

L
2N�N+1

+ L
2N�1

�N + . . .LN�1

�
0

= 0,(38b)408

...409

L
2N�

2N�1

+ . . .+ L
1

�
0

= 0,(38c)410

L
2N�

2N + . . .+ L
0

�
0

= F (x),(38d)411412
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20 A. B. DUNCAN AND G. A. PAVLIOTIS

where F (x) is a function of x only. This generalizes the analogous expansion found in
[9, III-11.3], written for three scales. These N+1 equations correspond to the di↵erent
powers of ✏ in an expansion of L✏�✏, from O(✏�N ) to O(1). For k = 1, . . . , N , we note
that each term in (38a), (38b) to (38c) has the form

�eV (x0,...,xN

)/�rx
s

·
⇣

e�V (x0,...,xN

)/�rt�r

⌘

,

where k = s + t � r 2 {1, . . . , N}. Suppose that s = 0, so that t = k + r, where
t 2 {1, . . . , N} and r 2 {0, . . . , N � 1}. Thus r < t, which is a contradiction. It
follows necessarily that s � 1, for every term in the first N equations. In particular,
since we have

V (x
0

, . . . , xN ) = V
0

(x
0

) + V
1

(x
0

, . . . , xN ),

we can rewrite the first N equations as413

A
2N�N +A

2N�1

�N�1

+ . . .AN�
0

= 0,(39a)414

A
2N�N+1

+A
2N�1

�N + . . .AN�1

�
0

= 0,(39b)415

...416

A
2N�

2N�1

+ . . .+A
1

�
0

= 0,(39c)417418

where
Anf = �eV1(x0,...,xN

)/�
X

i2{1,...,N}
j2{0,...,N�1}

i+j=n

rx
i

·
⇣

e�V1(x0,...,xN

)/�rx
j

f
⌘

Before constructing the test functions, we first we introduce the sequence of spaces
on which the sequence of correctors will be constructed. Define H to be the space of
functions on the extended state space, i.e. H = L2(Xk), where Xk is defined by (25).
We construct the following sequence of subspaces of H. Let

HN =

⇢

f 2 H :

Z

f(x
0

, . . . , xN )e�V1/� dxN = 0

�

,

Then clearly H = HN �H?
N . Suppose we have defined HN�k+1

then we can define
HN�k inductively by

HN�k =

⇢

f 2 HN�k+1

:

Z

f(x
0

, . . . , xN�k)ZN�k(x0

, . . . , xN�k) dxN�k = 0

�

,

where Zi(x0

, . . . , xi) =
R

. . .
R

e�V1(x0,...,xN

)/� dxi+1

dxi+2

. . . dxN = 0. Clearly, we
have that H

1

�H?
1

� . . .�H?
N = H. We now construct a series of correctors ✓

1

, . . . , ✓N
which are used to define the test functions. Define

KN (x
0

, x
1

, . . . , xN ) = e�V1(x0,x1,...,xN

)/�2

I.

We note that the matrix KN is uniformly positive definite over XN . Fixing419

x
0

, x
1

, . . . , xN�1

, let ✓N be the solution of the vector–valued Poisson equation420

(40) rx
N

· (KN (rx
N

✓N + I)) = 0, xN 2 Td,421

where the notation (rx✓)i,j = @x
j

✓i, i, j 2 {1, . . . , d} is used. By Proposition 16, for422

each (x
0

, . . . , xN�1

) there exists a unique smooth solution ✓N (x
0

, . . . , xN�1

, ·) which423
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is also smooth with respect to the parameters x
0

, . . . , xN�1

. Now, suppose that Ki424

and ✓i have been defined for i 2 {N, . . . , N � k + 1}, define425

(41)
KN�k(x0

, x
1

, . . . , xN�k)

=

Z

(I +rN✓>N ) · · · (I +rN�k+1

✓>N�k+1

)e�V1/�
2

dxN . . . dxN�k+1

.
426

Then by Lemma 10 the matrix KN�k is strictly positive definite over (x
0

, . . . , xN�k)427

and so there exists a unique vector–valued solution ✓N�k in
�

H1(Td) \HN�k

�d
to428

the Poisson equation:429

(42) rx
N�k

· �KN�k(rx
N�k

✓N�k + I)
�

= 0, xN�k 2 Td.430

Proposition 18. Given �
0

2 C1(Rd), there exist smooth functions �i for i =431

1, . . . , 2N � 1 such that equations (39a)-(39c) are satisfied, and moreover we have the432

following pointwise estimates, which hold uniformly on x
0

, . . . , xk 2 Xk:433

(43) kr↵�i(x0

, . . . , xk)kF  C
↵0+2

X

l=1

krl
x0
�
0

(x
0

)kF ,434

for some constant C > 0, and all multiindices ↵ on (0, . . . , k), and all 0  k  i 435

2N � 1. Finally, equation (38d) is satisfied with436

(44) F (x) =
1

Z(x)
rx0 (K1

(x)rx0�0

(x)) .437

Proof. We start from theO(✏�N ) equation. Since the operatorA
2N has a compact

resolvent in L2(Td), by the Fredholm alternative a necessary and su�cient condition
for �N in (38a) to have a solution is that

Z

(A
2N�1

�N�1

+A
2N�2

�N�2

+ . . .+AN�
0

) e�V/� dxN = 0.

We can check that the only non-zero terms in the above summation are:

Ai�i = �eV/�rx
N

·
⇣

e�V/�rx
N�i

�i

⌘

,

for i = 1, . . . , N , so that the compatibility condition holds, by the periodicity of the
domain. Then ✓N defined by (40) is the unique mean–zero solution of

A
2N✓N = rx

N

· e�V/�,

then the solution �N to (38a) can be written as438

(45) �N = ✓N · �rx
N�1�N�1

+ . . .+rx0�0

�

+ r(1)N (x
0

, . . . , xN�1

),439

where
✓N · (rx

N

�1

�N�1

+ . . .+rx0�0

) 2 HN

and r(1)N 2 H?
N has not yet been specified. A su�cient condition for �N+1

to have a440

solution in (38b) is that441

(46)

Z

(A
2N�1

�N + . . .+AN�2

�
1

+AN�1

�
0

) e�V/� dxN = 0.442
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Since r(1)N does not depend on xN it follows that:
Z

e�V/�A
2N�1

�N dxN = rx
N�1 ·

✓

Z

e�V/�rx
N

✓N
�rx

N�1�N�1

. . .+rx0�0

�

dxN

◆

,

thus (46) can be written as443

0 =rx
N�1 ·

✓

Z

e�V/�rx
N

✓N
�rx

N�1�N�1

. . .+rx0�0

�

dxN

◆

444

+rx
N�1 ·

✓

Z

e�V/� dxN

�rx
N�1�N�1

+ . . .+rx0�0

�

◆

,445
446

resulting in the following equation for �N�1

:447

(47) rx
N�1 ·

�KNrx
N�1�N�1

�

= �rx
N�1 · KN

�rx
N�2�N�2

+ . . .+rx0�0

�

= 0,448

where

KN =

Z

(I +rx
N

✓N ) e�V/� dxN .

By Lemma 10, for fixed x
0

, x
1

, . . . , xN�1

the tensor KN is uniformly positive definite
over xN�1

2 Td. As a consequence, the operator defined in (47) is uniformly elliptic,
with adjoint nullspace spanned by ZN (x

0

, x
1

, . . . , xN�1

). Since the right hand side
has mean zero, this implies that a solution �N�1

exists. Indeed, we can write �N�1

as
�N�1

= ✓N�1

· �rx
N�2�N�2

+ . . .+rx0�0

�

+ r(1)N�1

(x
0

, . . . , xN�2

),

where r(1)N�1

2 H?
N�1

is still unspecified. Since (46) has been satisfied, it follows from
Proposition 16 that there exists a unique decomposition of �N+1

into

�N+1

(x
0

, x
1

, . . . , xN ) = e�N+1

(x
0

, x
1

, . . . , xN ) + r1N+1

(x
0

, x
1

, . . . , xN�1

),

where e�N+1

2 HN and r(1)N+1

2 H?
N , such that r(1)N+1

is still unspecified. For the sake

of illustration we now consider the O(✏�(N�2)) equation in (39). This equation for
�N+2

has a solution if and only if
Z

(A
2N�1

�N+1

+A
2N�2

�N + . . .+AN�2

�
0

) e�V/�dxN = 0.

Fixing the variables x
0

, . . . , xN�2

, we can rewrite the above equation as:449

(48) eA
2N�2

r(1)N := rN�1

·
⇣

ZN�1

rN�1

r(1)N

⌘

= �RHS,450

where the RHS contains all the remaining terms. We note that all the functions
of xN�1

in the RHS are known, so that all the remaining undetermined terms can
be viewed as constants for fixed x

0

, . . . , xN�2

2 XN�2

. A necessary and su�cient
condition for a unique mean zero solution to exist to (48) is that the RHS has integral
zero with respect to xN�1

, which is equivalent to:

rN�2

·
✓

Z Z

(rN�N +rN�1

�N�1

+ . . .+r
0

�
0

) e�V/� dxNdxN�1

◆

= 0,

or equivalently:

rN�2

· (KN�2

(rN�2

�N�2

+ . . .+r
0

�
0

)) = 0.
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Once again, this implies that

�N�2

= ✓N�2

· (rN�3

�N�3

+ . . .+r
0

�
0

) + r(1)N�2

(x
0

, . . . , xN�3

),

where r(1)N�2

2 H?
N�2

is unspecified. Since the compatibility condition holds, by
Proposition 16 equation (48) has a solution, so that we can write

r(1)N (x
0

, . . . , xN�1

) = er(1)N (x
0

, . . . , xN�1

) + r(2)N (x
0

, . . . , xN�2

),

where er(1)N 2 HN�1

is the unique smooth solution of (48) and for some r(2)N 2 H?
N�1

.

For the inductive step, suppose that for some k < N , the functions �N , . . .�N±(k�1)

have all been determined. We shall consider the case when k is even, noting that the
k odd case follows mutatis mutandis. From the previous steps, each term in

�N+k�2

,�N+k�4

, . . . ,�N�k�2

,

admits a decomposition such that in each case we can write:

�N+k�2i = e�N+k�2i + r(k/2�i)
N+k�2i,

where
e�N+k�2i 2 Hk/2�i,

has been uniquely specified, and the remainder term

r(k/2�i)
N+k�2i 2 H?

k/2�i,

remains to be determined. The O(✏N�k) equation is given by451

(49) A
2N�N+k +A

2N�1

�N+k�1

+ . . .+AN�k�0

= 0.452

Following the example of the O(✏N�2) step. In descending order we successively453

apply the compatibility conditions which must be satisfied for the equations involving454

r(1)N+k, . . . , r
(k�1)

N�k�2

of the form455

(50) eA
2N�2k�2ir

(k/2�i)
N+k�2i = RHS,456

where in (50), all terms dependent on the variable xk/2�i have been specified uniquely
and where

eA
2N�2k�2iu = rx

N�k�i

· �ZN�k�irx
N�k�i

u
�

.

This results in (49) being integrated with respect to the variables N, . . . , N � k + 1.457

In particular, all terms A
2N�j� for j = 0, . . . , k � 1 will have integral zero, and thus458

vanish. The resulting equation is then459

(51)

Z

. . .

Z

(A
2N�k�N + . . .+AN�k�0

) e�V/� dxN . . . dxN�k+1

= 0.460

Moreover, since the function �N�i depends only on the variables x
0

, . . . , xN�i , then
(51) must be of the form

rN�k·
✓

Z

. . .

Z

�rx
N

�N + . . .rx
N�1�N�1

+ . . .rx0�0

�

e�V/� dxN . . . dxN�k+1

◆

= 0.
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We now apply the inductive hypothesis to see that461

Z

(rx
N

�N + . . .r
0

�
0

) e�V/� dxN · · · dxN�k+1

462

=

Z Z

(rx
N

✓N + I) dxN (rN�1

�N�1

+ . . .+rx0�0

) e�V/� dxN�1

· · · dxN�k+1

463

=

Z Z Z

(rx
N

✓N + I) dxN

�rx
N�1✓N�1

+ I
�

dxN�1

�rx
N�2�N�2

+ . . .+rx0�0

�

e�V/� dxN�2

· · · dxN�k+1

464

...465

= KN�k+1

�rx
N�k

�N�k + . . .rx0�0

�

.466467

Thus, the compatibility condition for the O(✏N�k) equation reduces to the elliptic
PDE

rx
k

· �Kx
N�k

�rN�k�x
N�k

+ . . .rx0�0

��

= 0,

so that �N�k can be written as

�N�k = ✓N�k

�rx
N�k�1�x

N�k�1 + . . .rx0�0

�

+ r(1)N�k,

where r(1)N�k is an element of H?
N�k, which is yet to be determined. Moreover, each

remainder term r(k/2�i)
N+k�2i can be further decomposed as

r(k/2�i)
N+k�2i = er

(k/2�i)
N+k�2i + r(k/2�i+1)

N+k�2i ,

where
er(k/2�i)
N+k�2i 2 Hk/2�i+1

,

is uniquely determined and

r(k/2�i+1)

N+k�2i 2 H?
k/2�i+1

,

is still unspecified. Continuing the above procedure inductively, starting from a468

smooth function �
0

we construct a series of correctors �
1

, . . . ,�
2N�1

.469

470

We now consider the final equation (38d). Arguing as before, we note that we can471

rewrite (53) as472

(52) A
2N�

2N + . . .AN+1

�N+1

= F (x)�
N
X

i=1

Li�i.473

A necessary and su�cient condition for �
2N to have a solution is that474

(53)

Z

Td

(A
2N�1

�
2N�1

+ . . .+AN+1

�N+1

) e�V/� dxN

=

Z

Td

 

F (x)�
N
X

i=1

Li�i

!

e�V/� dxN .

475

At this point, the remainder terms will be of the form

r(1)
2N�2

, r(2)
2N�4

, . . . r(k)
2N�2k, . . . , r

(1)

2

,
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such that r(i)
2N�2i 2 H?

i , is unspecified. Starting from r(1)
2N�2

a necessary and su�cient476

condition for the remainder r(i)
2N�2i to exist is that the integral of the equation with477

respect to dxN�i vanishes, i.e.478

(54)

F (x)Z(x) =

Z

(Td

)

N

(A
2N�1

�
2N�1

+ . . .AN+1

�N+1

) e�V/� dxNdxN�1

. . . dx
1

+

Z

(Td

)

N

(LN�N + . . .L
1

�
1

) e�V/� dxNdxN�1

. . . dx
1

479

where

Z(x) =

Z

Td

. . .

Z

Td

e�V/� dxN . . . dx
1

.

As above, after simplification, (54) becomes

rx0 · (rx
N

�N + . . .+rx0�0

) = Z(x)F (x),

which can be written as

�

Z(x)
rx0 ·

 

Z

(Td

)

N

(I +rx
N

✓N ) · . . . · (I +rx1✓1) e
�V/� dxN . . . dx

1

rx0�0

!

= F (x),

or more compactly

F (x) =
�

Z(x)
rx0 · (K1

(x)rx0�0

(x)) ,

where the terms in the right hand side have been specified and are unique. Thus,
the O(1) equation (54) provides a unique expression for F (x). Moreover, for each

i = 1, . . . , N�1, there exists a smooth unique solution r(i)
2N�2i 2 Hi�1

and �
2N 2 H

2N

by Proposition 16.

Note that we have not uniquely identified the functions �
1

, . . . ,�
2N , since after the

above N steps there will be remainder terms which are still unspecified. However,
conditions (39a)-(39c) will hold for any choice of remainder terms which are still un-
specified. In particular, we can set all the remaining unspecified remainder terms to
0. Moreover, every Poisson equation we have solved in the above steps has been of
the form:

Sku(x0

, . . . , xk) = a(x
0

, . . . , xk) ·rx0�0

(x
0

) +A(x
0

, . . . , xk) : r2

x0
�
0

(x
0

),

where Sk is of the form (33), and a and A are uniformly bounded with bounded480

derivatives. In particular, from the remark following Proposition 16 the pointwise481

estimates (43) hold.482

Remark 19. Although we do not have an explicit formula for the test functions,
for i = 1, . . . , N , we have that an expression for the gradient of �i in terms of the
correctors ✓i:

rx
i

�i = rx
i

✓i(1 +rx
i�1✓xi�1) · · · · · (1 +rx1✓x1)rx0�0

.

As we shall see, these are the only terms that are required for the calculation of the483

homogenized di↵usion tensor, thus we can obtain an explicit characterisation of the484

e↵ective coe�cients.485
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5.2. Tightness of Measures. In this section we establish the weak compactness486

of the family of measures corresponding to {X✏
t : 0  t  T}

0<✏1} in C([0, T ];Rd)487

by establishing tightness. Following [40], we verify the following two conditions which488

are a slight modification of the su�cient conditions stated in [10, Theorem 8.3].489

Lemma 20. The collection {X✏
t : 0  t  T}{0<✏1} is relatively compact in490

C([0, T ];Rd) if it satisfies:491

1. For all � > 0, there exists M > 0 such that

P
✓

sup
0tT

|X✏
t | > M

◆

 �, 0 < ✏  1.

2. For any � > 0, M > 0, there exists ✏
0

and � such that

��1 sup
0<✏<✏0

sup
0t0T

P
 

sup
t2[t0,t0+�]

�

�X✏
t �X✏

t0

�

� � � ; sup
0sT

|X✏
s |  M

!

 �.

To verify condition 1 we follow the approach of [40] and consider a test function492

of the form �
0

(x) = log(1 + |x|2). The motivation for this choice is that while �
0

(x)493

is increasing, we have that494

(55)
3

X

k=1

(1 + |x|)lkrl
x�0

(x)kF  C.495

Let �
1

, . . . ,�
2N�1

be the first 2N � 1 test functions constructed in Proposition 18.496

Consider the test function497

(56) �✏(x) = �
0

(x) + ✏�
1

(x, x/✏) + . . .+ ✏2N�1�
2N�1

(x, x/✏, . . . , x/✏2N�2, x/✏2N�1).498

Applying Itô’s formula, we have that

�✏(X✏
t ) = �✏(x) +

Z t

0

G(X✏
s) ds+

N
X

i=0

2N�1

X

k=0

✏i

Z t

0

rx
i

�j dWs,

where G(x) is a smooth function consisting of terms of the form:499

(57) ✏i+j�keV/�rx
i

·
⇣

e�V/�rj�k

⌘

(x, x/✏, . . . , x/✏N ),500

To obtain relative compactness we need to individually control the terms arising in501

the drift. More specifically, we must show that502

(58) E sup
0tT

Z t

0

�

�

�

eV/�rx
i

·
⇣

e�V/�rj�k

⌘

(X✏
s , X

✏
s/✏, . . . , X

✏
s/✏

N ) ds
�

�

�

< 1,503

where i+ j � k � 0, and moreover, for terms arising from the martingale part,504

(59) E
�

�

�

�

sup
0tT

Z t

0

rx
j

�k(X
✏
s , X

✏
s/✏, . . . , X

✏
s/✏

N ) dWs

�

�

�

�

2

< 1,505

together with506

(60) sup
0tT

|�j(X
✏
t )| < 1.507
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Terms of the type (58) can be bounded above by:508

E sup
0tT

Z t

0

�

�

�rx
i

V ·rx
j

�k

�

(X✏
s , . . . , X

✏
s/✏

N )
�

�+
�

��rx
i

·rx
j

�k(X
✏
s , . . . , X

✏
s/✏

N )
�

� ds.509

510

If i > 0, then rx
i

V is uniformly bounded, and so the above expectation is bounded511

above by512

C E
Z T

0

|rx
j

�k(X
✏
s , . . . , X

✏
s/✏

N )|+ |rx
i

·rx
j

�k(X
✏
s , . . . , X

✏
s/✏

N )| ds513

=CE
Z T

0

3

X

m=1

�

�rm
x0
�
0

(X✏
s)
�

�

F
ds  KT,514

515

using (55), for some constant K > 0. For the case when i = 0, an additional term516

arises from the derivative rx0V0

and we obtain an upper bound of the form517

(61)

E
Z T

0

3

X

m=1

�

�rm
x0
�
0

(X✏
t )
�

� (1 + |rx0V0

(X✏
t )|) dt

 E
Z T

0

3

X

m=1

�

�rm
x0
�
0

(X✏
t )
�

� (1 + krrV
0

kL1 |X✏
t |) dt

518

and which is bounded by Assumption 1 and (55). For (59), we have519

E
�

�

�

�

sup
0tT

Z t

0

rx
j

�k(X
✏
s , X

✏
s/✏, . . . , X

✏
s/✏

N ) dWs

�

�

�

�

2

 4E
Z T

0

|rx
j

�k(X
✏
s , X

✏
s/✏, . . . , X

✏
s/✏

N )|2 ds520

 C E
Z T

0

3

X

m=1

�

�rm
x0
�
0

(X✏
s)
�

�

F
ds,521

522

which is again bounded. Terms of the type (60) follow in a similar manner. Condition523

1 then follows by an application of Markov’s inequality.524

525

To prove Condition 2, we set �
0

(x) = x and let �
1

, . . . ,�
2N�1

be the test func-526

tions which exist by Proposition 18. Applying Itô’s formula to the corresponding527

multiscale test function (56), so that for t
0

2 [0, T ] fixed,528

(62) X✏
t �X✏

t0 =

Z t

t0

Gds+
N
X

i=0

2N�1

X

k=0

✏i
Z t

t0

rx
i

�j dWs,529

where G is of the form given in (57). Let M > 0, and let530

(63) ⌧ ✏M = inf{t � 0 ; |X✏
t | > M}.531

Following [40], it is su�cient to show that532

(64)

E
"

sup
t0tT

Z t^⌧✏

M

t0^⌧✏

M

�

�

�

eV/�rx
i

·
⇣

e�V/�rj�k

⌘

(X✏
s , X

✏
s/✏, . . . , X

✏
s/✏

N ) ds
�

�

�

1+⌫
#

< 1533
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and534

(65) E

0

@ sup
t0tt0+�

�

�

�

�

�

Z t^⌧✏

M

t0^⌧✏

M

rx
i

�j(X
✏
s , X

✏
s/✏, . . . , X

✏
s/✏

N ) dWs

�

�

�

�

�

2+2⌫
1

A < 1535

for some fixed ⌫ > 0. For (64), when i > 0, the term rx
i

V is uniformly bounded.536

Moreover, since r�
0

is bounded, so are the test functions �
1

, . . . ,�
2N+1

. Therefore,537

by Jensen’s inequality one obtains a bound of the form538

C�⌫E
Z t0+�

t0

�

�

�

eV/�rx
i

·
⇣

e�V/�rj�k

⌘

(X✏
s , X

✏
s/✏, . . . , X

✏
s/✏

N )
�

�

�

1+⌫

ds539

C�⌫

Z t0+�

t0

|K|1+⌫ ds  K 0�1+⌫ .540
541

When i = 0, we must control terms involving rx0V0

of the form,

E
"

sup
t0tt0+�

Z t^⌧✏

M

t0^⌧✏

M

�

�rV
0

·rx
j

�k

�

�

1+⌫
ds

#

where ⌧ ✏M is given by (63). However, applying Jensen’s inequality,542

E
"

sup
t0tt0+�

Z t^⌧✏

M

t0^⌧✏

M

�

�rV
0

·rx
j

�k

�

�

1+⌫
ds

#

 C�⌫

Z

(t0+�)^⌧✏

M

t0^⌧✏

M

E
�

�rV
0

·rx
j

�k

�

�

1+⌫
ds543

 C�⌫

Z

(t0+�)^⌧✏

M

t0^⌧✏

M

E |rV
0

(X✏
s)|1+⌫ ds544

 C�⌫
�

�r2V
0

�

�

1+⌫

1

Z

(t0+�)^⌧✏

M

t0^⌧✏

M

E|X✏
s |1+⌫ ds545

 CM�1+⌫
�

�r2V
0

�

�

1+⌫

L1 ,(66)546547

as required. Similarly, to establish (65) we follow a similar argument, first using the548

Burkholder-Gundy-Davis inequality to obtain:549

E
✓

sup
t0tt0+�

Z t

t0

|rx
i

�j dWs|2+2⌫

◆

 E
✓

Z t0+�

t0

|rx
i

�j |2 ds

◆

1+⌫

550

 �⌫

Z t0+�

t0

E |rx
i

�j |2+2� ds551

 C�1+⌫ .552553

We note that Assumption 1 (3) is only used to obtain the bounds (61) and (66).554

A straightforward application of Markov’s inequality then completes the proof of555

condition 2. It follows from Prokhorov’s theorem that the family {X✏
t ; t 2 [0, T ]}

0<✏1

556

is relatively compact in the topology of weak convergence of stochastic processes557

taking paths in C([0, T ];Rd). In particular, there exists a process X0 whose paths lie558

in C([0, T ];Rd) such that {X✏
n ; t 2 [0, T ]} ) {X0; t 2 [0, T ]} along a subsequence ✏n.559
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5.3. Identifying the Weak Limit. In this section we uniquely identify any
limit point the set {X✏

t ; t 2 [0, T ]}
0<✏1

. Given �
0

2 C1
c (Rd) define �✏ to be

�✏(x) = �
0

(x)+✏�
1

(x/✏)+. . . ✏N�N (x, x/✏, . . . , x/✏N )+. . .+✏2N�
2N (x, x/✏, . . . , x/✏N ),

where �
1

, . . . ,�N are the test functions obtained from Proposition 18. Since each test
function is smooth, we can apply Itô’s formula to �✏(X✏

t ) to see that

E


�
0

(X✏
t )�

Z t

s

�

Z(X✏
u)

rx0 · (Z(X✏
u)M(X✏

u)r�
0

(X✏
u)) du+ ✏R✏

�

�

�

Fs

�

= �
0

(X✏
s),

where R✏ is a remainder term which is bounded in L2(⇡✏) uniformly with respect to
✏, and where the homogenized di↵usion tensor M(x) is defined in Theorem 3. Taking
✏ ! 0 we see that any limit point is a solution of the martingale problem

E


�
0

(X0

t )�
Z t

s

�

Z(X0

u)
rx0 ·

�

Z(X0

u)M(X0

u)r�
0

(X0

u)
�

du
�

�

�

Fs

�

= �
0

(X0

s ).

This implies that X0 is a solution to the martingale problem for L0 given by

L
0

f(x) =
�

Z(x)
r · (Z(x)M(x)rf(x)).

From Lemma 10, the matrix M(x) is smooth, strictly positive definite and has560

bounded derivatives. Moreover,561

Z(x) =

Z

Td

· · ·
Z

Td

e�V (x,x1,...,xN

)/� dx
1

. . . dxN562

= e�V0(x)/�

Z

Td

· · ·
Z

Td

e�V1(x,x1,...,xN

)/� dx
1

. . . dxN ,563
564

where the term in the integral is uniformly bounded. It follows from Assumption 1,
that for some C > 0,

|M(x)r (x)|  C(1 + |x|), 8x 2 Rd,

where  = � logZ. Therefore, the conditions of the Stroock-Varadhan theorem565

[47, Theorem 24.1] holds, and therefore the martingale problem for L0 possesses a566

unique solution. Thus X0 is the unique (in the weak sense) limit point of the family567

{X✏}
0<✏1

. Moreover, by [47, Theorem 20.1], the process {X0

t ; t 2 [0, T ]} will be the568

unique solution of the SDE (17), completing the proof.569
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