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BROWNIAN MOTION IN AN N-SCALE PERIODIC POTENTIAL

A. B. DUNCAN * AND G. A. PAVLIOTISY

Abstract. We study the problem of Brownian motion in a multiscale potential. The potential is
assumed to have N +1 scales (i.e. N small scales and one macroscale) and to depend periodically on
all the small scales. We show that for nonseparable potentials, i.e. potentials in which the microscales
and the macroscale are fully coupled, the homogenized equation is an overdamped Langevin equation
with multiplicative noise driven by the free energy, for which the detailed balance condition still holds.
The calculation of the effective diffusion tensor requires the solution of a system of N coupled Poisson
equations.

Key words. Brownian dynamics, multiscale analysis, reiterated homogenization, reversible
diffusions, free energy.
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1. Introduction. The evolution of complex systems arising in chemistry and bi-
ology often involve dynamic phenomena occuring at a wide range of time and length
scales. Many such systems are characterised by the presence of a hierarchy of barriers
in the underlying energy landscape, giving rise to a complex network of metastable
regions in configuration space. Such energy landscapes occur naturally in macro-
molecular models of solvated systems, in particular protein dynamics. In such cases
the rugged energy landscape is due to the many competing interactions in the energy
function [12], giving rise to frustration, in a manner analogous to spin glass models
[13, 38]. Although the large scale structure will determine the minimum energy con-
figurations of the system, the small scale fluctuations of the energy landscape will
still have a significant influence on the dynamics of the protein, in particular the be-
haviour at equilibrium, the most likely pathways for binding and folding, as well as
the stability of the conformational states. Rugged energy landscapes arise in various
other contexts, for example nucleation at a phase transition and solid transport in
condensed matter.

To study the influence of small scale potential energy fluctuations on the system
dynamics, a number of simple mathematical models have been proposed which cap-
ture the essential features of such systems. In one such model, originally proposed by
Zwanzig [51], the dynamics are modelled as an overdamped Langevin diffusion in a
rugged two-scale potential V¢,

(1) dXf=-VVE(X,)dt +V20dW;, o=p8""=kgT,

where T is the temperature and kp is Boltmann’s constant. The function V¢(x) =
V(z,x/€) is a smooth potential which has been perturbed by a rapidly fluctuating
function with wave number controlled by the small scale parameter € > 0. See Figure
1 for an illustration. Zwanzig’s analysis was based on an effective medium approxima-
tion of the mean first passage time, from which the standard Lifson-Jackson formula
[31] for the effective diffusion coefficient was recovered. In the context of protein
dynamics, phenomenological models based on (1) are widespread in the literature,
including but not limited to [5, 25, 33, 48]. Theoretical aspects of such models have
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2 A. B. DUNCAN AND G. A. PAVLIOTIS

also been previously studied. More recent studies include [15] where the authors
study diffusion in a strongly correlated quenched random potential constructed from
a periodically-extended path of a fractional Brownian motion, and [7] in which the
authors perform a numerical study of the effective diffusivity of diffusion in a potential
obtained from a realisation of a stationary isotropic Gaussian random field.
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Fig. 1: Example of a multiscale potential. The left panel shows the isolines of the
Mueller potential [46, 35]. The right panel shows the corresponding rugged energy
landscape where the Mueller potential is perturbed by high frequency periodic fluc-
tuations.

For the case where (1) possesses one characteristic lengthscale controlled by € > 0,
the convergence of X§ to a coarse-grained process X; in the limit € — 0 over a finite
time interval is well-known. When the rapid oscillations are periodic, under a diffu-
sive rescaling this problem can be recast as a periodic homogenization problem, for
which it can be shown that the process X; converges weakly to a Brownian motion
with constant effective diffusion tensor D (covariance matrix) which can be calculated
by solving an appropriate Poisson equation posed on the unit torus, see for example
[44, 9]. The analogous case where the rapid fluctuations arise from a stationary ergodic
random field has been studied in [27, Ch. 9]. The case where the potential V¢ pos-
sesses periodic fluctuations with two or three well-separated characteristic timescales,
ie. Ve(x) = V(x,2/e, 2€%) follow from the results in [9, Ch. 3.7], in which case the
dynamics of the coarse-grained model in the ¢ — 0 limit are characterised by an Ito
SDE whose coefficients can be calculated in terms of the solution of an associated
Poisson equation. A generalization of these results to diffusion processes having N-
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BROWNIAN MOTION IN AN N-SCALE PERIODIC POTENTIAL 3

well separated scales was explored in Section 3.11.3 of the same text, but no proof of
convergence is offered in this case. Similar diffusion approximations for systems with
one fast scale and one slow scale, where the fast dynamics are not periodic have been
studied in [40].

Further properties of the homogenized dynamics, in addition to the calculation of
the mean first passage time, have been investigated. For potentials of the form
Ve(x) = aV(z) + p(z/e€) for a smooth periodic function p(-) it was shown in [43] that
the maximum likelihood estimator for the drift coefficients of the homogenized equa-
tion, given observations of the slow variable of the full dynamics (1) is asymptotically
biased. Further results on inference of multiscale diffusions including (1) can be found
in [29, 28]. In [17], asymptotically optimal importance sampling schemes for studying
rare events associated with (1) of the form V¢(z) = V(z,z/¢) were constructed by
studying the ¢ — 0 limit of an associated Hamilton-Jacobi-Bellmann equation, the
results were subsequently generalised to random stationary ergodic fluctuations in
[49]. In [21], the authors study optimal control problems for two-scale systems. Small
€ asymptotics for the exit time distribution of (1) were studied in [3].

A model for Brownian dynamics in a potential V' possessing infinitely many character-
istic lengthscales was studied in [8]. In particular, the authors studied the large-scale
diffusive behaviour of the overdamped Langevin dynamics in potentials of the form

n
n x
2) Vi) = 3 U (R) ,
k=0

obtained as a superposition of Holder continuous periodic functions with period 1.
It was shown in [8] that the effective diffusion coefficient decays exponentially fast
with the number of scales, provided that the scale ratios Ry11/Ry are bounded from
above and below, which includes cases where the is no scale separation. From this the
authors were able to show that the effective dynamics exhibits subdiffusive behaviour,
in the limit of infinitely many scales.

In this paper we study the dynamics of diffusion in a rugged potential possessing
N well-separated lengthscales. More specifically, we study the dynamics of (1) where
the multiscale potential is chosen to have the form

Ve(x)=V(z,x/e,x/, ... x/eV),

where V' is a smooth function, which is periodic in all but the first variable. Clearly,
V' can always be written in the form

(3) V(l’o,l’l,...,x]\/):%($0)+V1(£E071’1,...,(EN),

where (xg,z1,...,2N) € RY x (Td)N. In this paper, we shall assume that the large
scale component of the potential Vj is smooth and confining on R?, and that the
perturbation V; is a smooth bounded function which is periodic in all but the first
variable. Unlike [8], we work under the assumption of explicit scale separation, how-
ever we also permit more general potentials than those of the form (2), allowing
possibly nonlinear interactions between the different scales, and even full coupling
between scales '. To emphasize the fact that the potential (3) leads to a fully coupled

Lwe will refer to potentials of the form Ve(z) = Vp(z) + Vi(z/e,...,x/elV) where Vi is periodic

in all variables as separable.
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4 A. B. DUNCAN AND G. A. PAVLIOTIS

system across scales, we introduce the auxiliary processes Xt(j ) = Xi/el, j=0,...,N.
The SDE (1) can then be written as a fully coupled system of SDEs driven by the
same Brownian motion W4,

N
(4a)  ax” ==Y v, v (X xV, XN dt+ Vaoaw,
1=0

N
A 2
4b)  dxM = -3ty v (X,fo), xM X,SN)) dt + \/?;’ AW,

=0

N
, 2
(10)  ax{V =3 etV v (X0, x M, xN) de+ \/;‘Vth
=0

in which case Xt(o) is considered to be a “slow” variable, while Xt(l), . ..Xt(N) are
“fast” variables. In this paper, we first provide an explicit proof of the convergence of
the solution of (1), X to a coarse-grained (homogenized) diffusion process X} given
by the unique solution of the following It6 SDE:

(5) dX) = —-M(XH)VU(XD)dt + oV - M(XD)dt + 1/ 20 M(X?) dW5,

where
U(z) = —olog Z(x),

denotes the free energy, for

Z(:c):/ / e*V(“”’yl""”’N)/Ualyl...dyN7
Td Td

and where M (x) is a symmetric uniformly positive definite tensor which is indepen-
dent of e. The formula of the effective diffusion tensor is given in Section 2. The
multiplicative noise is due to the full coupling between the macroscopic and the N
microscopic scales.? In particular, we show that although the noise in Xf is addi-
tive, the coarse-grained dynamics will exhibit multiplicative noise, arising from the
interaction between the microscopic fluctuations and the thermal fluctuations. For
one-dimensional potentials, we are able to obtain an explicit expression for M(x),
regardless of the number of scales involved. In higher dimensions, M(z) will be ex-
pressed in terms of the solution of a recursive family of Poisson equations which can be
solved only numerically. We also obtain a variational characterization of the effective
diffusion tensor, analogous to the standard variational characterisations for the effec-
tive conductivity tensor for multiscale conductivity problems, see for example [26].
Using this variational characterisation, we are able to derive tight bounds on the ef-
fective diffusion tensor, and in particular, show that as N — oo, the eigenvalues of the
effective diffusion tensor will converge to zero, suggesting that diffusion in potentials
with infinitely many scales will exhibit anomalous diffusion. The focus of this paper
is the rigorous analysis of the homogenization problem for (1) with V¢ given by (3).
In a companion paper, [16] we study in detail qualitative properties of the solution to

2For additive potentials of the form (2), i.e. when there is no interaction between the macroscale

and the microscales, the noise in the homogenized equation is additive.
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BROWNIAN MOTION IN AN N-SCALE PERIODIC POTENTIAL 5

the homogenized equation (5), including noise-induced transitions and noise-induced
hysteresis behaviour.

For the cases N = 1,2 the main result of this paper, namely the derivation of the
coarse grained dynamics, arises as a special case of [9, Chapter 3.7]. However, to our
knowledge, the results in this paper are the first which rigorously prove the existence
of this limit for arbitrarily many scales. A standard tool for the rigorous analysis of
periodic homogenization problems is two-scale convergence [1, 37]. This theory was
extended to study reiterated homogenization problems in [2]. The techniques devel-
oped in these papers do not seem to be directly applicable to the problem here for
several reasons: first, we work in an unbounded domain, second the operators that we
consider, i.e. the infinitesimal generator of the diffusion process (1) cannot be written
in divergence form. The application of two-scale convergence to our problem would
require extending two-scale convergence to weighted L2-spaces, that depend both on
the large and small scale parameters, something which does not seem to be straight-
forward. Our method for proving the homogenization theorem, Theorem 3 is based
on the well known martingale approach to proving limit theorems [9, 39, 40]. The
main technical difficulty in applying such well known techniques is the construction
of the corrector field/compensator. This turns out to be a very tedious task, since we
consider the case where all scales, the macroscale and the N— microscales, are fully
coupled.

Note that although we consider the homogenized process X7, the solution of (17)
to be a coarse grained version of the multiscale process X5, both processes have the
same configuration space. We must therefore distinguish this approach with other
coarse graining methodologies where effective dynamics are obtained for a lower di-
mensional set of coordinates of the original system, see for example [30, 11, 23, 45].
Nonetheless, one can still draw parallels between our approach and method described
in [30, 11]. Indeed, when writing (1) in the form (4) we can still view the limit ¢ — 0
as a form of dimension reduction, approximating the fast-slow system (4) of N + 1
processes (Xt(o), Xt(l), e 7Xt(N)) taking values in R?" by a single R% valued process
X? whose effective dynamics are characterised by the free energy Z(x) and an effec-
tive diffusion tensor

Our assumptions on the potential V¢ in (3) guarantee that the full dynamics (1) is
ergodic and reversible with invariant distribution 7¢. Furthermore, the coarse-grained
dynamics (5) is ergodic and reversible with respect to the equilibrium distribution

Indeed, the natural intepretation of ¥(xz) = —colog Z(x) is as the free energy cor-
responding to the coarse-grained variable X;. The weak convergence of Xf to X!
implies in particular that the distribution of X§ will converge weakly to that of X7,
uniformly over finite time intervals [0, T'], which does not say anything about the con-
vergence of the respective stationary distributions 7€ to 7%. In Section 4 we study the
equilibrium behaviour of X§ and X} and show that the long-time limit t — oo and the
coarse-graining limit e — 0 commute, and in particular that the equilibrium measure
7€ of X§ converges in the weak sense to 7. We also study the rate of convergence
to equilibrium for both processes, and we obtain bounds relating the two rates. This
question is naturally related to the study of the Poincaré constants for the full and
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6 A. B. DUNCAN AND G. A. PAVLIOTIS
coarse—grained potentials.

The rest of the paper is organized as follows. In Section 2 we state the assumptions
on the structure of the multiscale potential and state the main results of this paper.
In Section 3 we study properties of the effective dynamics, providing expressions for
the diffusion tensor in terms of a variational formula, and derive various bounds. In
Section 4 we study properties of the effective potential, and prove convergence of the

equilibrium distribution of X to the coarse-grained equilibrium distribution 7°.

2. Setup and Statement of Main Results. In this section we provide con-
ditions on the multiscale potential which are required to obtain a well-defined ho-
mogenization limit. In particular, we shall highlight assumptions necessary for the
ergodicity of the full model as well as the coarse-grained dynamics.

We will consider the overdamped Langevin dynamics
(6) dX; = -VV(X;)dt + V20 dWy,

where V¢(z) is of the form

T x x
7 V)=V (2,5, 5,...,
@ @=v(ns2 %)

and where V : R? x T¢ x ... x T — R is a smooth function which is assumed to
be periodic with period 1 in all but its first argument. The multiscale potentials we
consider in this paper can be viewed as a smooth confining potential perturbed by
smooth, bounded fluctuations which become increasingly rapid as ¢ — 0, see Figure
1 for an illustration. More specifically, we will assume that the multiscale potential
V satisfies the following assumptions.®

ASSUMPTION 1. The potential V is given by

(8) V(zo,z1,...,2n) = Vo(2o) + Vi(zo,21,...,2N),
where:
1. Vp is a smooth confining potential, i.e. e="0®) ¢ LY(R?) and Vy(z) — oo as
|x] — oo.
2. The perturbation Vi (xo,x1,...,2N) is smooth and bounded uniformly in x,

independently of €.

3. There exists C' > 0 such that ||V2V0 <C.

| ey <

REMARK 2. We note that Assumption 3 quite stringent, since it implies that Vy
is quadratic to leading order. This assumption is also made in [40]. In cases where
the process X§ ~ 7€, i.e. the process is started in stationary, this condition can be
relaxed considerably.

The infinitesimal generator £¢ of X7 is the selfadjoint extension of
(9) Lf(x) = =VV<(x) - V() +oAf(x), [eCFRY).
Since Vj is confining, it follows that the corresponding overdamped Langevin equation

(10) dZt = —V‘/()(Zt) dt + Vv 20'th,

3We remark that we can always write (3) in the form (8) where Vp(z) =
Jpa - Jra Ve 1, zn)dey ... day.
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BROWNIAN MOTION IN AN N-SCALE PERIODIC POTENTIAL 7

is ergodic with unique stationary distribution

1
Trep (@) =  exp(~Vo(@) /o), Z = / T gy,

Since V; is bounded uniformly, by Assumption 1, it follows that the potential V¢ is
also confining, and therefore X7 is ergodic, possessing a unique invariant distribution
given by 7¢(z) = %, where Z¢ = fRd e~V @)/ Moreover, noting that the
generator £L¢ of X can be written as

Lf(z) =0 @Y. (eiVﬁ(I)Vf(a:)) . feCRY.
it follows that 7€ is reversible with respect to the dynamics X5, c.f. [42, 19].

Our main objective in this paper is to study the dynamics (6) in the limit of infi-
nite scale separation ¢ — 0. Having introduced the model and the assumptions we
can now present the main result of the paper.

THEOREM 3 (Weak convergence of X{ to X;). Suppose that Assumption 1 holds
and let T > 0, and the initial condition Xg is distributed according to some probability
distribution v on RY. Then as € — 0, the process X converges weakly in (C[0, T]; R9)
to the diffusion process X? with generator defined by

(11) Cof(x)=%VI-(Z(CE)M(%)VJ(X)), f € C3RY,
and where

(12) Z(z) = /T e /T e V@@LmN) /o g dry

and

(13)

1
M(I) = 7/ / (1+V$N9]—\r/)...(1+VIlei)er(z,ml,‘..,zN)/U dry -+ -dx.
Z(l’) Td Td

The correctors are defined recursively as follows: define On_y, to be the weak solution
of the PDE

(14) Vmek . (ICN—k(xO, e ,xN_k)(Vfo,ﬁfok(xo, R 7$N—k) + I)) =0,

where On_ (20, - -, TN_p—1,°) € HY(T?) and where
(15)
Kn-x(z0,. -, Nk

)
:/d--~/d(I+VN9;\r,)~--(I+VN,k+191—\r,7k+1)e_V/U dSL'N...dl'N,kJrl,
T Td
fork=1,..., N —1, and
(16) Kn(z,21,...,2n5) = e V(@Ten)/og

where I denotes the identity matriz in R¥?.  Provided that Assumptions 1 hold,
Proposition 16 guarantees existence and uniqueness (up to a constant) of solutions to
the coupled Poisson equations (14). Furthermore, the solutions will depend smoothly
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8 A. B. DUNCAN AND G. A. PAVLIOTIS

on the slow variable x as well as the fast variables y1,...,yn. The process X} is the
unique solution to the Ito SDE

(17) dXY) = ~M(X))VU(XD)dt + oV - M(XP) dt + /20 M(XD) AW,

where
U(z) = —clog Z(x) = —olog (/ / eV @yyn)/7 gy ..dyN> .
Td Td

The proof, which closely follows that of [40] is postponed to Section 5. Theorem 3
confirms the intuition that the coarse-grained dynamics is driven by the free energy.
On the other hand, the corresponding SDE has multiplicative noise given by a space
dependent diffusion tensor M(z). We can show that the homogenized process (17) is
ergodic with unique invariant distribution

Z 1 _
70(x) = EE) =—e @/ where Z :/ Z(x)d.
VA A Rd
It is important to note that the reversibility of Xy with respect to 7€ is preserved
under the homogenization procedure. In particular, the homogenized SDE (17) will
be reversible with respect to the Gibbs measure 7°(x). Indeed, (17) has the form of

the most general diffusion process that is reversible with respect to 7%(z), see [42,
Sec. 4.7].

While Theorem 3 only characterises the convergence of X§ to X! over finite time
intervals, quite often we are interested in the equilibrium behaviour and in the rate
of convergence to equilibrium for the coarse—grained process. In Section 4 we study
the properties of the invariant distributions 7¢ and 7% of Xf and X}, respectively.
In particular, we show that 7€ converges to 7 in the sense of weak convergence of
probability measures, and moreover characterise the rate of convergence to equilib-
rium for both X{ and X in terms of €, the parameter which measures scale separation.

As is characteristic with homogenization problems, when d = 1 we can obtain, up to
quadratures, an explicit expression for the homogenized SDE. In this case, we obtain
explicit expressions for the correctors 64, ...,0y, so that the intermediary coefficients
K1i,...,Kn can be expressed as

—1
]Ci(x07gr1’ RV (pl) B </ eV(%O»ﬂl;-4-7$7;7$i+17-..;13N)/0' d$i+1 o d.’L’N> . i= 1, s N.

PROPOSITION 4 (Effective Dynamics in one dimension). When d = 1, the effective
diffusion coefficient M(x) in (17) is given by

1
Zl(l')Zl(iL')
where
Zi(x) = /uo/efvl("”’”“"“’wm/" dzy...dxy,
and
él(x) = / . o/evl(m’wl"“’mN)/" dzry...dzy.
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BROWNIAN MOTION IN AN N-SCALE PERIODIC POTENTIAL 9

Equation (18) generalises the expression for the effective diffusion coefficient for
a two-scale potential that was derived in [51] without any appeal to homogenization
theory. In higher dimensions we will not be able to obtain an explicit expression
for M(z), however we are able to obtain bounds on the eigenvalues of M(z). In
particular, we are able to show that (18) acts as a lower bound for the eigenvalues of

PROPOSITION 5. The effective diffusion tensor M is uniformly positive definite
over R%. In particular,

1
(19) 0<e oMo — <o M(z)e<1,
Zl(I)Zl(I)
for all e € R? such that |e| = 1, where
OSC(Vl) = sup Vl(xayla'“ayN)_ il’lfd Vl(xayla'“ayN)
z€R?, z€R®,
Y1, yn ET? Yt yn €T

This result follows immediately from Lemmas 10 and 11 which are proved in Section
3.

REMARK 6. The bounds in (19) highlight the two extreme possibilities for fluctu-

ations occurring in the potential V. The inequality m < e-M(x)e is altained
1 1
when the multiscale fluctuations Vi(xo,...,xN) are constant in all but one dimension

(e.g. the analogue of a layered composite material, [1/, Sec 5.4], [14, Sec 12.6.2]).
In the other extreme, the inequality e - M(x)e = 1 is altained in the abscence of
fluctuations, i.e. when V; = 0.

REMARK 7. Clearly, the lower bound in (19) becomes exponentially small in the
limit as o0 — 0.

While Theorem 3 guarantees weak convergence of X§ to X in C([0,T]; R?) for
fixed T, it makes no claims regarding the convergence at infinity, i.e. of 7€ to 7V.
However, under the conditions of Assumption 1 we can show that 7€ converges weakly
to 70, so that the T — oo and € — 0 limits commute, in the sense that:

lim lim E[f(X%)] = lim lim E[f(X%)],

e—=0T—o00 T—o00 €0

for all f € L?(Tyes).

PROPOSITION 8 (Weak convergence of 7€ to n°).  Suppose that Assumption 1
holds. Then for all f € L*(yer),

(20) fl@)m(dz) = [ f(z)n°(d),
]Rd Rd

as € — 0.

If Assumption 1 holds, then for every € > 0, the potential V¢ is confining, so that
the process X7 is ergodic. If the “unperturbed” process defined by (10) converges to
equilibrium exponentially fast in L?(m,.y), then so will X{ and X?. Moreover, we can
relate the rates of convergence of the three processes.

PROPOSITION 9. Suppose that Assumptions 1 holds and let P, be the semigroup
associated with the dynamics (10) and suppose that mpep(x) = Zioe*VO(‘”)/" satisfies

This manuscript is for review purposes only.
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10 A. B. DUNCAN AND G. A. PAVLIOTIS

Poincaré’s inequality with constant p/o, i.e.

o
(21) Varr, () < 2 [194@F 7res(da), f € H )
or equivalently
(22) Varﬂ'ref (Ptf) < 6_2pt/a Va’rﬂref (f)v f € Lz(ﬂ-ref)a

for allt > 0. Let Pf and P denote the semigroups associated with the full dynamics
(6) and homogenized dynamics (17), respectively. Then for all f € L*(myey),

(23) Varg (P f) < e 27 Varg (f),
and

(24) Vargo (PLf) < e~ Varo(f).
for vy = pe205e(Vi)/o gnq 5 = peBose(Vi)/o

The proofs Propositions 8 and 18 will be deferred to Section 4.

3. Properties of the Coarse—Grained Process. In this section we study the
properties of the coefficients of the homogenized SDE (17) and its dynamics.

3.1. Separable Potentials. Consider the special case where the potential V¢
is separable, in the sense that the fast scale fluctuations do not depend on the slow
scale variable, i.e.

V(zo,z1,...,2n) = Vo(xo) + Vi(z1,22,...,2N).

Then, it is clear from the construction of the effective diffusion tensor (13) that M(x)
will not depend on x € R?. Moreover, since

(2)+ V7 (Y1, s ) 1
Z(z) = / 3 / — Vo)t Vi (wy.oouy dyy ... dyx = E67VO(I)/U7
Td Td

where K = [, [raexp(=Vi(y1,...,yn)/0)dys ... dyn, then it follows that the
coarse—grained stationary distribution 7° equals the stationary distribution o
exp(—Vo(z)/c) of the process (10). For general multiscale potentials however, 70 will
be different from 7,.;. Indeed, introducing multiscale fluctuations can dramatically
alter the qualitative equilibrium behaviour of the process, including noise-inductioned
transitions and noise induced hysteresis, as has been studied for various examples in
[16].

3.2. Variational bounds on M (xz). A first essential property is that the con-
structed matrices Ky, ...,/ ; are uniformly elliptic with respect to all their parame-
ters, which is shown in the following lemma. For convenience, we shall introduce the
notation

k
(25) X = R4 x X T¢

K2

for k = 1,...,N, and set Xo = R? for consistency. First we require the following
existence and regularity result for a uniformly elliptic Poisson equation on T¢.

This manuscript is for review purposes only.
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LEMMA 10. Fork=1,...,N, the tensor Ki(xo,...,Tk—1,") is uniformly positive
definite and in particular satisfies, for all unit vectors e € R?,
1
(26) = <e-Kp(wo,x1,...,25-1,71)€, Zp € T¢
Zk(mOvrla v 7xk71)
where

Zk(xo,xl,...,xk_l) :/.../ev(xo’xl""’mk71’$k""’IN)/GdJZNde_l...dl‘k,

which is independent of xx. Moreover, the tensor Ky, satisfies (Ky), ; € C5°(Xy), for
alli,je{1,...d}.

Proof. We prove the result by induction on k starting from k = N. For k = N the

tensor Kp is clearly uniformly positive definite for fixed xg,...,xny_1 € Xy_1. The
existence of the solution 6y of (14) is then ensured by the Lemma 10, and moreover
it follows that Ky _; is well defined. To show that Kn_1(zg,...,2N_2,-) is uniformly

elliptic on T? we first note that

/ (I +VaorOn) (I + Vo On)e V7 dey

27 '™

_ / (I + Vo On + Var 0 + Van 05 Vo On) e V/7day,
Td

where V = V(zg,21,...,2n), for zg,...,2ny-1 € Xy_1 fixed, and where T denotes
the transpose. From the Poisson equation for 6 we have

/eN Vay - (V7 (Vanbn +1))e”V/ 7 dzy =0,
from which we obtain, after integrating by parts:

VorOnVarOne V7 doy = — / VarnOne V7 day,
Td

so that

Kn-1 =/ (I +VarnOn) (I + Vi 0n)e™ V7 day.
Td

We note that
/ (I+VnON)dey =1,
’H‘d

therefore, it follows by Holder’s inequality that

2
lv|? < |v / (I+VnOn)v| <w- (ICN_l)U/ V7 dzy,
Td Td
so that
|v]?

= gv-KN,1($0,...,l‘N,1)U, V(xo,xl,...,le).

ZN(l‘O7 - ,J,‘N_l)
Since V7 is uniformly bounded over xg,...,xn_1 it follows that 7z N is strictly posi-

tive, so that K _; is uniformly elliptic, and arguing as above we obtain existence of
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a unique On_1, up to a constant, solving (42) for k = 2.

Now, assume that the correctors have been constructed for i = N,..., N — k+ 1
and consider the tensor

/' o /(I + vi—i—lai-',-l)T ce (I + Vk+19k+1)T
K

(L + Vig10p1) - (I + Vig1bip1) doy .. daiq.

(28)

Integrating by parts the cell equation for 041 we see that

/(l—i- Vk+19k+1)T Ki (I 4+ Vig10k41) degrr = Ki—1.

Continuining this approach by induction, it follows that (28) equals ;4 1, thus proving
the representation (27), as required. We now verify (26). First we note that

/-”/(I—FVNGN)'"(I+Vi+19i+1)d$]v...dl‘i+1 =1.

Therefore, for any vector v € R%:
2

|U|2 < '</"'/(I-‘rVNQN)"'(I+Vi+19i+1)d$N...d$i+1) v

<w- (/"'/(I+Vi+19i+l>T (T4 Vig10ip1)e™ 7 day . --dfﬂiﬂ) ,U/eV/ade condwig

~

= (v Kipa(z1,. .., 2)v) Z(21, ..., 25).
The fact that we have strict positivity for fixed x1,...z; then follows immediately. O

To obtain upper bounds for the effective diffusion coefficient, we will express the
intermediary diffusion tensors K; as solutions of a quadratic variational problem. This
variational formulation of the diffusion tensors can be considered as a generalisation
of the analogous representation for the effective conductivity coefficient of a two-scale
composite material, see for example [26, 32, 9].

LEmMMA 11. Forit=1,..., N, the tensor IC; satisfies
29)
€- i(xOP"axi)e

= inf )/ le + Vo1 (i) + ...+ Voy(zn)|? eV @m0 g day,
(THN

Vit1,...,uny EH (T

for all e € RY.

Proof. For i = 1,..., N, from the proof of Lemma 10 we can express the inter-
mediary diffusion tensor K;_; in the following recursive manner,

e-lCi,l(:ro, ey "Ei,1)€

= / (6 +e- Vxﬁi(xo, N ,xi))TlCi(xo, ce ,xi)(e +e- inﬁi(xo, e ,.’EZ)) d(El
Td

For fixed o, ...,2zi—1 € X;_1 and e € R, consider the tensor K;_; defined by the
following quadratic minimization problem

(30) e-Ki1(zo,...,xi_1)e= inf / (e+Vu(z;))-Ki(zo, ..., x:)(e+Vu(x;)) de,.
vEHY(T?) Jra
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Since KC; is a symmetric tensor, the corresponding Euler-Lagrange equation for the
minimiser is given by

Ve, (Ki(zoy .., 2:)(Va,x(T0,...,2;) +€)) =0, z€ ']Td,

287 with periodic boundary conditions. This equation has unique mean zero solution given
288 by x(xo,...,x;) = b;(xg,...,z;) e, where 0; is the unique mean-zero solution of (14).
289 It thus follows that e - IC;_1e = e - Izi,la where I?i,l is given by (30). Expanding KC;
290 in a similar fashion, we obtain

291 e-lCi,l(xo,...,xi,l)e

00 = inf / / (e 4+ Vvi(z:) + Voir1(zis1)) - Kisa(@o, .- ziga) (e + Vi(i) + Voigr (Tig1)) daigada;.
293 vivit 1 €HY(T) Jpd J1d !

294 Proceeding recursively, we arrive at

205 e Ki—1(zg, ..., Ti—1)e
. 2
206 = inf / le + Vi (2;) + ... + Von (zy) [P eV @m0/ do o day,
207 ViyeoN €HL(T) J ()N
208 as required. O

REMARK 12. Proposition 5 follows immediately from Lemma 11 by choosing
1)1:7)2:...:1}]\{:0,
299 in (29) in the case where i = 1.

)0 4. Properties of the Equilibrium Distributions. In this section we study
)1 in more detail the properties of the equilibrium distributions 7¢ and 7° of the full (6)
)2 and homogenized (17) dynamics, respectively. We first provide a proof of Proposition
)3 8. The approach we follow in this proof is based on properties of periodic functions,
)4 in a manner similar to [14, Sec. 2.

Proof of Proposition 8. First we note that, by Assumptions 1, there existsa C' > 0
independent of €, such that

J.

It follows that there exists A € L?*(R%e~"0/?) and a subsequence (e,), oy Where
€, — 0 such that

e Vilwa/e,..x/eN) /o 2 e Vo@/7 gy < O < 0.

/d eV e/ en™) [ (0 =Vo(@) 7 g M2, /d A@)g(@)e= @17 gy
R R

for all g € L?(mycf). To identify the limit, we choose g = 1lg where 2 is an open
bounded subset of R? where 0f) is smooth; noting that the span of such functions is
dense in L?(mycy).

Following [36] and [14, Sec. 2.3], given Q and € > 0, let {Yz}x—1,... n(c) be a collection
of pairwise disjoint translations of T?, such that ¢¥Y, C Q, for k = 1,..., N(e) and
for all 6 > 0, there exists €y such that

Ae\uYe ) <o,
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14 A. B. DUNCAN AND G. A. PAVLIOTIS

for all € < ¢, where A(-) denotes the Lebesgue measure on RY. Given § > 0, there
exists €y such that for € < ¢,

N (e)

—V2)/0 gy = —Vi(z)/eo g 5
/Qe x Z/N e x + 0(9)

k=1 "€ Ve
N(e)

_ Z/ e—V(w,aj/Q...,x/eNﬁl,I/eN)/a d$+0(5)
k=1 (zr+T%)
N (e)

(N Z / (¥ (@) € (@) el ) /7 gy 1 O(5)

N(E)

Nd Z / (N xp,eN Ly, exr,y) /o dy + 0(5)
/ / (/e R0 gy 4+ O(6)
N( )y Td

/ / V(z,xz/e,..., z/e 7179)/0 dydﬁC"‘O((s)v
Td

where we use the fact that V is smooth with bounded derivatives on ). Proceeding
iteratively in the above manner, we obtain that for all § > 0, there exists €y such that

/e_vf@)/"dm:// / e V@ yn)/o gy dyy dae 4 O(6),
Q Q Jra T4

for all € < €y. Thus it follows that

A(x) :/ / e—V1($7yl7---,yN)/U dyn dyn—1 ... dy;.
Td Td

In particular,

ZEZ/ V@ gy — 70 = / / / Vi@ yi,yn /"dyN...dyldx,
R Rd JTd Td

and thus, for all h € L?(R%; e~ "o(®)/7)

/h(x)ﬂe(x) dx — /h )7

as € — 0, as required. 0
Proof of Proposition 9. Since Vi is bounded uniformly by Assumption 1, it is
straightforward to check that

(31) Tpef ()€ 207 V/7 < () < rpep(a) o0V

It thus follows directly from (21), or alternatively from [6, Lemma 5.1.7], that 7€
satisfies Poincaré’s inequality with constant

N = Be—zosc(vl)/a7
o
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BROWNIAN MOTION IN AN N-SCALE PERIODIC POTENTIAL 15

which implies (23). An identical argument follows for the coarse—grained density
7%(z). Finally, using the fact that
‘2 —osc(Vh) /o < |U|2

v|%e —— < v M(z)v,
| = Zwaw =M

for all v € R%, we obtain
Varo(f) < Zeto ) / V1 ()P n(z) di
< Lo/ / Vf(x) - M(@)Vf(z) n(x) dz,

from which (24) follows. d

REMARK 13. Note that one can similarly relate the constants in the Logarithmic
Sobolev inequalities for the measures mer, 7 and 7 in an almost identical manner,
based on the Holley-Stroock criterion [24].

REMARK 14. Proposition 9 requires the assumption that the multiscale perturba-
tion V1 is bounded uniformly. If this is relaxed, then it is no longer guaranteed that
m¢ will satisfy a Poincaré inequality, even though ..y does. For example, consider
the potential

Ve(z) = 22(1 + acos(2mx/e)),

then the corresponding Gibbs distribution 7¢(x) will not satisfy Poincaré’s inequality
for any e > 0. Following [22, Appendiz A] we demonstrate this by checking that this
choice of w¢ does not satisfy the Muckenhoupt criterion [3/, 4] which is necessary and
sufficient for the Poincaré inequality to hold, namely that sup, cp B+ (1) < 0o, where

= ([ rom) (1 zie)

Given n € N, we set r/e = 2mn + w/2. Then we have that

e(2mn+4m/3) ) 1/2 e(2mn+m/3)
B.(r) > / o l2l?(-a/2)/ g / (el ta/2)/o g
e(2mn+27/3) (2mrn—m/3)
- 27e exp |me(2n +4/3)? (1 B g) L Ime@n—1/3)] |me(2n —1/3)”
3 20 2 20
_ ((2me exp _ [2men|*(1 4+ 2/3n)? (179) N |2men|? (1—1/6n) <1+7>
3 20 2 20 2

2me |27en|? 4
~ |5 ) exp 5 (@+o(n )] =00, asn— oo,

so that Poincaré’s inequality does not hold for w€.

A natural question to ask is whether the weak convergence of 7€ to 7° holds
true in a stronger notion of distance such as total variation. The following simple
one-dimensional example demonstrates that the convergence cannot be strengthened
to total variation.
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16 A. B. DUNCAN AND G. A. PAVLIOTIS

ExAaMPLE 15. Consider the one dimensional Gibbs distribution

1 e
71'6(.%‘) — Ee—v (ac)/a7

where
2

Ve(z) = % + asin (2%%) ,

and where Z¢ is the normalization constant and o # 0. Then the measure ™€ converges
weakly to 70 given by
(z) = L e /20
2o

From the plots of the stationary distributions in Figure 2a it becomes clear that the
density of ¢ exhibits rapid fluctuations which do not appear in ©°, thus we do not
expect to be able to obtain convergence in a stronger metric. First we consider the
distance between w¢ and 7° in total variation *

7932/20' _a COS(27T;E/E)
¢ — 70 e 0 e o2
o7 = T\r) — 1T (X dx = d1-7
It =y = [ 1n*(0) =@l do = [ e -
where K¢ = Ze/\/%. It follows that
e@mn+n/3) —2%/20 s
||7TE_7TOHTVZZ SR 26 ‘
n>0 Y €(2mn—m/3) 2mo K
> Z 26771' 6752(2n7r+7r/3)2/20 B e
n>0 3 2ro Ke
% o o2 (v+¢/6)% /o e~
> / I B
o 3 2mo Ke

where we use the fact that e=*/?7 /K¢ < 1. In the limit ¢ — 0, we have K¢ — Iy(a /o),
where I,(+) is the modified Bessel function of the first kind of order n. Therefore, as
e —0,

00 9 6727r2(:r+6/6)2/0' 67% 1 67%
(32) ||7T6*7T0||TVZ/ - 1- =—|1-—,
o 3 2no Ke 6 Iy(a/o)
which converges to % as = — oo. Since relative entropy controls total variation

distance by Pinsker’s theorem, it follows that ©¢ does not converge to w° in relative
entropy, either. Nonetheless, we shall compute the distance in relative entropy between
7€ and m° to understand the influence of the parameters o and a. Since both 7° and
¢ have strictly positive densities with respect to the Lebesque measure on R, we have
that

M gy = YT (V@) o+ §a? o
dm0 A '

4we are using the same notation for the measure and for its density with respect to the Lebesgue

measure on R<.
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BROWNIAN MOTION IN AN N-SCALE PERIODIC POTENTIAL 17
Then, for Z° = \2roly(1/0),

1 1 .
H (71'6 | 7r0) — ?/ <2 10g(2ﬂ'0’) _ log Ze> e*V (z)/o dx
i Ve 2 —V(z)/o
+ o [ (Ve@)fo+a?j20) e i
=% —log Io(a/o) + %li_{;%/COS(QFI/E)e—wz/ZJ—acos(27rx/e)/o do
ali(a/o)
= —log I - =K .
og lo(a/o) + o Ip(a/o) (a/o)

and it is straightfoward to check that K(s) > 0, and moreover

_>
K(s) = {—i—oo as s = 0,
0 as s — Q.

In Figure 2b we plot the value of K(s) as a function of s. From this result, we see
that for fired o > 0, the measure w¢ will converge in relative entropy only in the limit
as o — 00, while the measures will become increasingly mutually singular as o — 0.

K(a/o)

10

~ alo

1 10 100 1000  10% 10° 108

(a) Plot of 7€ and 7°with ¢ = a = 0.1
and o = 1.0 (b) Plot of K(a/c) as a function of /.

Fig. 2: Error between 7¢(z) o exp(—V¢(x)/o) and effective distribution 7°.

5. Proof of weak convergence. In this section we show that over finite time
intervals [0, 7], the process X{ converges weakly to a process X; which is uniquely
identified as the weak solution of a coarse-grained SDE. The approach we adopt is
based on the classical martingale methodology of [9, Section 3]. The proof of the
homogenization result is split into three steps.

1. We construct an appropriate test function which is used to decompose the
fluctuations of the process X| into a martingale part and a term which goes
to zero as € — 0.

2. Using this test function, we demonstrate that the path measure P¢ corre-

sponding to the family {(Xf)te[o T]}o _, s tight in C((0, T]: 7).
? <e

3. Finally, we show that any limit point of the family of measures must solve a
well-posed martingale problem, and is thus unique.
The test functions will be constructed by solving a recursively defined sequence
of Poisson equations on R%. We first provide a general well-posedness result for this
class of equations.

This manuscript is for review purposes only.



379
380
381

382

383
384

386
387

388
389
390
391
392
393
394
395

18 A. B. DUNCAN AND G. A. PAVLIOTIS

PROPOSITION 16. For fized (xo,...,xp—1) € Xg—1, let S be the operator given
by
(33)

1
Sk == 7vxk '(P(x07 e ,l'k)D(l'o, e ,xk)kau(xo, e ,l'k)) ) f € 02(Td)v
p(xo, ..., Tk)

and suppose that p is smooth and uniformly positive and bounded, and the tensor
D(xg,...,zx) is smooth and uniformly positive definite on Xy. Given a function h
which is smooth with bounded derivatives, such that for each (zo,...,Tk—1) € Xg_1:
(34) /h(xo,...,xk)p(xo,...,xk) dxy = 0.

Then there exists a unique, mean-zero solution u € H'(T4), to the Poisson equation
on T given by

(35) Sku(xo,...mk) = h(xo,...7xk)7

which is smooth and bounded with respect to the variable x), € T¢ as well as the
parameters xg,...,Tp_1 € Xp_1.

Proof. Since p(-) and D(-) are strictly positive, for fixed values of zg, ..., zy_1, the
operator Sy is uniformly elliptic, and since T¢ is compact, S;, has compact resolvent
in L2(T?), see [18, Ch. 6] and [44, Ch 7]. The nullspace of the adjoint S* is spanned
by a single function p(zo,...,Zk-1,). By the Fredholm alternative, a necessary and
sufficient condition for the existence of u is (34) which is assumed to hold. Thus, there
exists a unique solution u(xo,...,7r_1,) € H'(T?) having mean zero with respect
to p(xo, ..., xr). By elliptic estimates and Poincaré’s inequality, it follows that there
exists C' > 0 satisfying

lu(zo, .-\ Tr—1, ')HHI(Td) < CHh(an'~-7=Tk—1>‘)||L2(’]I‘d)a

for all (zg,...,zx—1) € Xg—1. Since the components of D and p are smooth
with respect to xy, standard interior regularity results [20] ensure that, for fixed
Zoy ..., Th—1 € Xp_1, the function u(xg, ..., zr—1,-) is smooth. To prove the smooth-
ness and boundedness with respect to the other parameters xy, ..., zx_1, we can apply
an approach either similar to [9], by showing that the finite differences approximation
of the derivatives of u with respect to the parameters has a limit, or otherwise, by
directly differentiating the transition density of the semigroup associated with the
generator Sy, , see for example [40, 50, 41] as well as [20, Sec 8.4].

REMARK 17. Suppose that the function h in Proposition 16 can be expressed as
h(,’Eo, e ,xk) = a(.%‘(),fL‘l, . ,LL‘k) . V(b()(xo)

where a is smooth with all derivatives bounded. Then the mean-zero solution of (35)
can be written as

w(xo, 1, ..., xk) = xX(To,21,.-.,2k) - Vio(xo),

where x is the classical mean-zero solution to the following Poisson equation

SkX(x(h e axk) = (l(l’o, e ,fl'k), (112'0, e 71'16) € Xk
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In particular, x is smooth and bounded over xg, ..., xy, so that for some C > 0,
ag
IVu(@o, ..., i)llr < CY IV go(zo)lry  Vao, o1,z
k=0

for all multi-indices & = (ao,...,qr) on the indices (0,...,k), where ||-||F denotes
the Frobenius norm. A similar decomposition is possible for

g(xo,...,x1) = A(zo,x1,...,71) : Vio(xo),

where V2 denotes the Hessian.

5.1. Contructing the test functions. It is clear that we can rewrite (6) as
N
36 dX¢=— VLV, ..., dt + V20 dW,.
(36) = VeVl o), L de VA

The generator of X; denoted by £ can be decomposed into powers of € as follows

N
LO==) "V, V-V, +0A,.
n=0
For functions of the form f¢(z) = f(x, /e, ..., x/eV) we write

2N
Lf(x) = anﬁnf(ﬂfowl N
n=0

zi=x /e’

where
Lomelle 30 Va (eI
i,je{l,..N}
i+j=n

Given ¢q, our objective is to construct a test function ¢ such that

¢ (x) =o(x) + e (z,xfe) + ...+ Moy (z, /e ... x /)

+ N oy (zafe, . xfeN) 4+ ENpon(z, /e, . /€N,
where ¢1, ..., pan satisfy
(37) L¢(x) = F(z) + O(e),

for some F' which is independent of €. This is equivalent to the following sequence of
N + 1 equations.

(38a) Longn + Lon-1¢N-1+ ... Lnpo =0,
(38b) Londnt1 + Lon—1On + ... Ln—1¢0 = 0,
(38¢) Lonpan-1+ ...+ L1¢o =0,

(38d) Longan + ...+ Logo = F(z),
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where F'(x) is a function of z only. This generalizes the analogous expansion found in
[9, ITI-11.3], written for three scales. These N+ 1 equations correspond to the different
powers of € in an expansion of £L¢¢, from O(e~") to O(1). For k =1,..., N, we note
that each term in (38a), (38b) to (38¢c) has the form

o'eV(JJO""JN)/UVIS : (eiv(wo""’IN)/avtqﬁr) )

where k = s+t —r € {1,...,N}. Suppose that s = 0, so that ¢t = k + r, where
te{l,...,N}and r € {0,...,N —1}. Thus r < ¢, which is a contradiction. It
follows necessarily that s > 1, for every term in the first N equations. In particular,
since we have

Vi(xg,...,xn) = Vo(xzo) + Vi(zo, - .., zN),

we can rewrite the first NV equations as

(39a) Aonon + Aon—1dn-1+ ... Ando = 0,
(39b) Aanodny1 + Aon—10N8 + ... An—1¢9 =0,
(39¢) Aondan—1+ ...+ A1do =0,
where
Anf — aeVl(ZEo ..... zN)/o Z V. (erl(:co ..... IN)/UV f)
i€{1,...,N}
j€{0,....N—1}
i+j=n

Before constructing the test functions, we first we introduce the sequence of spaces
on which the sequence of correctors will be constructed. Define H to be the space of
functions on the extended state space, i.e. H = L*(X},), where X}, is defined by (25).
We construct the following sequence of subspaces of H. Let

HN:{fEH : /f(mo,---,ﬂfN)e_Vl/UdﬂfN20}7

Then clearly H = Hy @ Hﬁ Suppose we have defined Hy_j41 then we can define
Hn_r inductively by

Hyn—k = {f € HN_k+1 : /f(l’o, oy TN-R)ZIN-k(T0s -, TN _k) TN = 0}7

where Z;(zq,...,2;) = [...[e Vil@omn)/o gy, da; o, .. dzy = 0. Clearly, we
have that H; ®H{ @...®H5x = H. We now construct a series of correctors 61, .. ., 0y
which are used to define the test functions. Define

2
Kn(zo,z1,...,2n) = e~ Vi(woz1,xN) /o7

We note that the matrix pu is uniformly positive definite over Xp. Fixing
To,T1,---,TN_1, let O be the solution of the vector—valued Poisson equation

where the notation (Vxﬁ)i)j = 0y,0;, i,j€{l,...,d}isused. By Proposition 16, for
each (zg,...,xn_1) there exists a unique smooth solution On(xg,...,xN_1, ) which
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is also smooth with respect to the parameters zg,...,zxy_1. Now, suppose that K;
and 0; have been defined for i € {N,..., N — k + 1}, define

Kn_k(wo,21,..., 2N )
(41) T T -Vi/o?
= (I+VN9N)--~(I+VN,k+19N7k+1)e 1 dl’N...di,kJrl.
Then by Lemma 10 the matrix K_j is strictly positive definite over (xg,...,xNn—_k)

and so there exists a unique vector—valued solution 6y_j in (Hl(Td) N ”HN,k)d to
the Poisson equation:

(42) Vszk . (’Cka(VIkangk + I)) =0, any_k € Te.

PROPOSITION 18. Given ¢y € C°(R?), there exist smooth functions ¢; for i =
1,...,2N —1 such that equations (39a)-(39¢) are satisfied, and moreover we have the

following pointwise estimates, which hold uniformly on xq, ...,z € Xi:
ap+2
(43) IV $i(@o, - sar)llr < C Y [V, do(@o)ll s

=1

for some constant C' > 0, and all multiindices « on (0,...,k), and all 0 < k < i <
2N — 1. Finally, equation (38d) is satisfied with

(44) F(z) = %vm (K (2) Vg o (1))

Proof. We start from the O(e~) equation. Since the operator A,y has a compact
resolvent in L2(T%), by the Fredholm alternative a necessary and sufficient condition
for ¢ in (38a) to have a solution is that

/(AzN—1¢N—1 + Asn_20N_2+ ...+ Axdo) e/ duy = 0.
We can check that the only non-zero terms in the above summation are:
-Ai¢i = O'ev/avazw ' (e_V/UVwai(bi) s

for i =1,..., N, so that the compatibility condition holds, by the periodicity of the
domain. Then 6y defined by (40) is the unique mean-zero solution of

AonOn = Vg eV,
then the solution ¢y to (38a) can be written as
(45) ON =0N - (Vay 1 ON-1+ ...+ Vo) + r$ (2o, o),

where
On - (Vay—10N-1+ ...+ Vo) € Hn

and rg\}) € My has not yet been specified. A sufficient condition for ¢ 1 to have a
solution in (38b) is that

(46) / (Aon—10ON + ...+ An—201 + AN_1¢0) e V17 dxn = 0.
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Since r](\}) does not depend on zy it follows that:

/e_V/UAzNA(bN dry = VmN_1'</ eV 0N (Var_ dN—1 .-+ Vo) de) ,I

thus (46) can be written as
0=Vyy_ .- (/ e_V/UVINeN (va71¢5N71 oot Vm0¢0) de>

+ VQTN_l . (/ er/U dry (va_1¢N—l + ...+ vmg¢0)) R

resulting in the following equation for ¢n_1:

(47) VIN71 : (KNV$N71¢N71) = _VIN71 : ICN (VIN72¢N72 + e + vw0¢0) = 07

where
Ky :/(I-i-vaeN) e_v/”de.

By Lemma 10, for fixed zg,z1,...,zx_1 the tensor I is uniformly positive definite
over zy_1 € T?. As a consequence, the operator defined in (47) is uniformly elliptic,
with adjoint nullspace spanned by Zy(zg,21,...,Zn—1). Since the right hand side
has mean zero, this implies that a solution ¢ny_; exists. Indeed, we can write ¢n_1
as
1
¢N71 = 9]\]71 : (VIN72¢N72 +...+ vzo¢0) + 7‘5\]),1(‘%0; e 7xN72)7

where 7“5\})_1 € My, is still unspecified. Since (46) has been satisfied, it follows from

Proposition 16 that there exists a unique decomposition of ¢ 1 into
Y 1
¢N+1($0,$1, s 71"N) = ¢N+1(I07$15 cee a'rN) + TN+1($0,1'1, s axN—l)a

where QENH € Hy and 7"](\})“ S HJJ\‘,, such that rj(\})ﬂ is still unspecified. For the sake

N—2))

of illustration we now consider the O (e~ equation in (39). This equation for

¢nN+2 has a solution if and only if

/(A2N71¢N+1 + Aoy apn + ...+ An_adp) e V/7dzy = 0.

Fixing the variables g, ...,z y_2, we can rewrite the above equation as:
(48) AVQNngE\}) = VN,1 . (ZNflval’l“;\})) = —RHS,

where the RHS contains all the remaining terms. We note that all the functions
of zxy_1 in the RHS are known, so that all the remaining undetermined terms can
be viewed as constants for fixed zg,...,zny_2 € Xy_2. A necessary and sufficient
condition for a unique mean zero solution to exist to (48) is that the RHS has integral
zero with respect to x_1, which is equivalent to:

Vin_2- (//(VN¢N + VN_1dN-1+ ...+ Vodg)e v/ dﬂ?Ndl‘N—1> =0,

or equivalently:

Vn_2 - (Kn—2(VN_20N_2+ ...+ Voeg)) =0.
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Once again, this implies that

dn—2=0n_2- (VN_3ON_3+ ...+ Vooo) + 7“1(\}),2(3307 CTN—3),
where TE;ZQ € Hy_, is unspecified. Since the compatibility condition holds, by
Proposition 16 equation (48) has a solution, so that we can write

TJ(\})('wa")xN—l) = ;’\:(]\]/:)(x()a"-axl\/'—l) —|—T'J(3)($0,.-.7$N_2),

where 77{1\}) € Hy—1 is the unique smooth solution of (48) and for some 7"5\?) € Hy_;

For the inductive step, suppose that for some k& < N, the functions ¢n, ... dn+k-1)
have all been determined. We shall consider the case when k is even, noting that the
k odd case follows mutatis mutandis. From the previous steps, each term in

ONAh—2s ON+k—4s -y ON—k—2,

admits a decomposition such that in each case we can write:

e (k/2—1)
ON+k—2i = ON+k—2i + TN 20

where _
ON+k—2i € Hia—i,
has been uniquely specified, and the remainder term

(k/2—1) 1
TNy r—2i € Hijo—in

remains to be determined. The O(e!¥~%) equation is given by
(49) AoNON+k + AeN—1ON k-1 + ...+ ANn—kpo = 0.

Following the example of the O(¢¥=2) step. In descending order we successively

apply the compatibility conditions which must be satisfied for the equations involving

r%lk’ e ,r%:;)_2 of the form

(50) Z2N—2k-2ﬂ“§\lff;:2)i = RHS,

where in (50), all terms dependent on the variable xj,/5_; have been specified uniquely
and where

Aon—ok—2it =Vay o, (IN-k—iVay_ 1) -

This results in (49) being integrated with respect to the variables N,..., N — k + 1.
In particular, all terms Asn_j¢ for j =0,...,k — 1 will have integral zero, and thus
vanish. The resulting equation is then

(51) / .. / (AQN_k¢)N +...+ AN—k¢)O) e Ve dry ...dry_k+1 = 0.

Moreover, since the function ¢x_; depends only on the variables xq,...,zNy_; , then
(51) must be of the form

VN_k-(/.../(Vde)N—‘r...VxN1¢N_1+...V$0¢0) e_v/ade...de_k_H) ZO.I
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We now apply the inductive hypothesis to see that
/ (VIN¢N + ... V()(b()) €_V/U d.Z'N s d.’L'N,k,Jrl
= //(V;WHN + 1) den (VN-1ON—1+ .+ Vi) e/ dey_ 1 den_ji1

= ///(vaeN +1) doy (Vay_On—1+1) don_1 (Vay y0N—2+ ...+ Vigdo) e/ 7 dan_o- - don_pi1

=Kn-kt1 (Vany_oON—k + .. Vo) .

Thus, the compatibility condition for the O(¢¥~*) equation reduces to the elliptic
PDE

VI;C . (ICZL’N—k (Vkaqst_k + ... v$0¢0)) = O7

so that ¢n_i can be written as
ONk=ON -k (Vay_ o1 @Pey_rr + - Vagdo) + TS)_;N

where rg\})_ 5 is an element of HJA‘,_ x> Which is yet to be determined. Moreover, each

. (k/2—1)
remainder term 7y’ 5. can be further decomposed as

(kj2—i) _ ~(kj2—i) (k/2—i+1)
Ntk—2 = "Nyk—2 T T"NYk—2i >

where i
.
{?{N-{-k—gi € Hij2—it1;
is uniquely determined and

(k/2—i+1) 1
TNYr—2i € Mija—iy1s

is still unspecified. Continuing the above procedure inductively, starting from a
smooth function ¢y we construct a series of correctors ¢1,...,¢an_1.

We now consider the final equation (38d). Arguing as before, we note that we can
rewrite (53) as

N
(52) Aondon + ... Anp10n+1 = F(x) — Z£i¢i~
i=1
A necessary and sufficient condition for ¢on to have a solution is that

/d (Aon_1¢an—1+ ..+ Anvp1odng1) e /7 day
T

N
- / (F(x) —~ Zci@) e V7 dry.
Te i—1

At this point, the remainder terms will be of the form

(53)

(1) (2) (k) (1)
Ton—2:ToN—4s-+-ToN_2k>-- T2
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such that Téizzf_zi € H;, is unspecified. Starting from rg\),_Q a necessary and sufficient

condition for the remainder r;ilz,_% to exist is that the integral of the equation with

respect to dx_; vanishes, i.e.

F(l‘)Z(ZL‘) = / (A2N71¢2N—1 +... AN+1¢N+1) e~ Ve deydry_1...dzry
(T4)N
(54)
+/ (»CN¢N+...£1¢1)€_V/U dl'Ndefl...d.’El
(T4)N

where

Z(x):/ / e V7 dey ... dxy.
T4 T4

As above, after simplification, (54) becomes
Vo (Vay@n + . 4 Vo ¢0) = Z(2) F(2),
which can be written as

g

S VI / (I +VarOn) oo (I4+Va,01) e 7 day ... de Vi, o | = F(z),
Z(l‘) (Td)N

or more compactly
o

Z(x)

where the terms in the right hand side have been specified and are unique. Thus,
the O(1) equation (54) provides a unique expression for F'(z). Moreover, for each
i=1,...,N—1, there exists a smooth unique solution réljz,fm € H;—1 and ¢an € Haon
by Proposition 16.

Fx) = Vao - (K1 (2)Vaydo(2))

Note that we have not uniquely identified the functions ¢1, ..., ¢2n, since after the
above N steps there will be remainder terms which are still unspecified. However,
conditions (39a)-(39¢) will hold for any choice of remainder terms which are still un-
specified. In particular, we can set all the remaining unspecified remainder terms to
0. Moreover, every Poisson equation we have solved in the above steps has been of
the form:

Seu(wo, ..., xx) = a(wo, ..., k) - Vaydo(2o) + A(wo, ..., zx) : V3, do(20),

where Sy, is of the form (33), and a and A are uniformly bounded with bounded
derivatives. In particular, from the remark following Proposition 16 the pointwise
estimates (43) hold. d

REMARK 19. Although we do not have an explicit formula for the test functions,
fori=1,...,N, we have that an expression for the gradient of ¢; in terms of the
correctors 0;:

Vlqul = vmez(l + vfﬂi—le"[:i—l) """ (1 + leewl)v$0¢0'

As we shall see, these are the only terms that are required for the calculation of the
homogenized diffusion tensor, thus we can obtain an explicit characterisation of the
effective coefficients.
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5.2. Tightness of Measures. In this section we establish the weak compactness
of the family of measures corresponding to {Xf : 0 < ¢t < T}oce<1y in C([0,T];RY)
by establishing tightness. Following [40], we verify the following two conditions which
are a slight modification of the sufficient conditions stated in [10, Theorem 8.3].

LEMMA 20. The collection {X; : 0 <t < Thioce<ty is relatively compact in
C([0,T); R?) if it satisfies:
1. For all § > 0, there exists M > 0 such that

IE”( sup |X§|>M> <4, O0<e<l
0<t<T

2. For any § >0, M > 0, there exists ey and 7y such that

y~' sup  sup ]P’( sup | Xy — X[ | >6; sup |X§|<M> <.
0<e<en 0<to<T  \ tE[to,to+] 0<s<T

To verify condition 1 we follow the approach of [40] and consider a test function
of the form ¢g(x) = log(1 + |#|?). The motivation for this choice is that while ¢o(x)
is increasing, we have that

w

(55) Do+ 2| Vido(@)llr < C.

k=1

Let ¢1,...,¢an—1 be the first 2V — 1 test functions constructed in Proposition 18.
Consider the test function

(56) ¢°(z) = ¢o(x) +edr(z,x/e)+ ... +€2N71¢2N_1(.T, x/e, ... ,x/ezN*z,x/EQNfl).
Applying [t6’s formula, we have that

N 2N-1

(X0) = 6o / G(x)ds+3 3 / Vo5 dW,,

i=0 k=0

where G(z) is a smooth function consisting of terms of the form:
(57) etizkeViey, . (eiV/JquSk) (z,x/e,...,x/e),

To obtain relative compactness we need to individually control the terms arising in
the drift. More specifically, we must show that

t
(58)  E sup / ‘ev/avxi-(e*V/"vjm) (XSE,XSE/e,...,X;/eN)ds‘<oo,
0<t<T Jo

where i + j — k > 0, and moreover, for terms arising from the martingale part,

(59)

< 00,

sup / Va,; (X X e, .., XE)EN) AW,

0<t<T

together with

(60) sup_[6;(X;)| < oo,
0<t<
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Terms of the type (58) can be bounded above by:
E sup / |(Va, V- Vi, i) (XS, ., XE/EN)| + [0V, + Vo, 0u(XE, .., XE/eN)] ds.
0<t<T

If i > 0, then V,,V is uniformly bounded, and so the above expectation is bounded
above by

T
E/ [V 01 (XE, oo, XE/EN) + Vi, - Vi, (XS, XE/N)] ds
0

T 3
:CE/ > IV éo(X9)|| . ds < KT,
0 m=1

using (55), for some constant K > 0. For the case when ¢ = 0, an additional term
arises from the derivative V.V, and we obtain an upper bound of the form

/ZHWO (XD (4 192 VX))
o)

T 3
<E [ [VEaED] 0+ VTVl X i
m=1

and which is bounded by Assumption 1 and (55). For (59), we have

2

t
E| sup /Vx].m(Xj,Xj/e,...,X;/eN)dW
0

0<t<T

T 3
< C]E/O Z [V ¢o(X)|| o ds
m=1

which is again bounded. Terms of the type (60) follow in a similar manner. Condition
1 then follows by an application of Markov’s inequality.

To prove Condition 2, we set ¢o(z) = x and let ¢1,...,dan—1 be the test func-
tions which exist by Proposition 18. Applying It6’s formula to the corresponding
multiscale test function (56), so that for ¢t € [0, 7] fixed,

N 2N-1 t
(62) - X; = / Gds+> Y ¢ Vwi@dWS,

i=0 k=0

where G is of the form given in (57). Let M > 0, and let
(63) T = inf{t > 0; | X5| > M}.

Following [40], it is sufficient to show that
(64)

tATy,
E sup/
to<t<T Jtonrg,

14+v
V7V, - (e*V/Uvjm) (X;,X;/g...,Xsf/eN)ds‘ ] <
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534 and

24-2v

tATy,
/ V(XX ey, XE)EN) dW < o0
t

3
oNT s

535 (65) E sup

to<t<to+vy

536 for some fixed v > 0. For (64), when ¢ > 0, the term V,,V is uniformly bounded.
537 Moreover, since Vg is bounded, so are the test functions ¢q, ..., ¢an+1. Therefore,
538 by Jensen’s inequality one obtains a bound of the form

to+v 1+v
539 cwE/ ‘eV/“vL. : (e—V/“vjm) (XS, X e, ., XE/eM)| T ds
to
to+y
540 SC"y”/ |K|1+l’ ds < K/,
541 to

When i = 0, we must control terms involving V. Vp of the form,

tATy
E l sup / ‘VVO - Vchﬁk’HV ds}
t

to<t<to+vy 0/\7';'/[

542 where 7§, is given by (63). However, applying Jensen’s inequality,
tATy (to+7)AThs

543 E|  sup / V'V - ijgbk‘HV ds| < Cv”/ E|VV, - v1j¢k|”” ds

to<t<to+v JtoAT, toATE,

(to+7)AT3r 1
544 < 07”/ E|VVp (X9 ds
t()/\T;/I
1w (to+7)ATs
a3 <oy vl | | Xe[H ds
toATyy

546 (66) < CMy"Y ||V2V0H1LJ:, i

548 as required. Similarly, to establish (65) we follow a similar argument, first using the
519  Burkholder-Gundy-Davis inequality to obtain:

t to+y I4v
550 E ( sup |V, 0j dWS|2+2”> <E ( / Ve ds)

to<t<to+v Jto to

to+y
551 < 7"/ E |in¢j|2+2” ds

to
353 <Oy
554 We note that Assumption 1 (3) is only used to obtain the bounds (61) and (66).
555 A straightforward application of Markov’s inequality then completes the proof of
556 condition 2. It follows from Prokhorov’s theorem that the family {X;¢ € [0,T]}o<e<1
557 is relatively compact in the topology of weak convergence of stochastic processes
558 taking paths in C([0,7];R?). In particular, there exists a process X° whose paths lie
550 in ([0, T); RY) such that {X¢ ;¢ € [0,T]} = {Xt € [0,T]} along a subsequence €,
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5.3. Identifying the Weak Limit. In this section we uniquely identify any
limit point the set {Xf;t € [0,T]}o<e<1. Given ¢g € C(R?) define ¢° to be

o (x) = ¢o(z)+epi(z/e)+. .. N on(x, x /e, . .. ,x/eN)—|—. AN pon(z e, €N,

where ¢1,...,¢xN are the test functions obtained from Proposition 18. Since each test
function is smooth, we can apply Itd’s formula to ¢°(X5) to see that

B 00(X0) ~ [ 5 Voo (ZXOMXT0(XD) du+ R

fs] — (X,

where R, is a remainder term which is bounded in L?(7¢) uniformly with respect to
¢, and where the homogenized diffusion tensor M(x) is defined in Theorem 3. Taking
€ — 0 we see that any limit point is a solution of the martingale problem

L
B on(?) = [ 55 Vo (ZXDMOVo(XD) du| 7| = ou(xD).
This implies that X° is a solution to the martingale problem for £° given by

Lof(z) =

g

From Lemma 10, the matrix M(x) is smooth, strictly positive definite and has
bounded derivatives. Moreover,

Z(I) = / / er(z,xl,...,zN)/g dry...dzy
Td Td

:e%(z)/a/ / e Vi@ TN/ g
Td Td

where the term in the integral is uniformly bounded. It follows from Assumption 1,
that for some C' > 0,

IM(z)VE(x)] < C(1+|z|), VzeR?

where W = —logZ. Therefore, the conditions of the Stroock-Varadhan theorem
[47, Theorem 24.1] holds, and therefore the martingale problem for £° possesses a
unique solution. Thus X? is the unique (in the weak sense) limit point of the family
{X“}o<e<1. Moreover, by [47, Theorem 20.1], the process {X?;t € [0,T]} will be the
unique solution of the SDE (17), completing the proof.
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