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We consider the problem of an overdamped Brownian particle moving in multiscale potential with N + 1
characteristic length scales: the macroscale and N separated microscales. We show that the coarse-grained
dynamics is given by an overdamped Langevin equation with respect to the free energy and with a space-dependent
diffusion tensor, the calculation of which requires the solution of N fully coupled Poisson equations. We study
in detail the structure of the bifurcation diagram for one-dimensional problems, and we show that the multiscale
structure in the potential leads to hysteresis effects and to noise-induced transitions. Furthermore, we obtain an
explicit formula for the effective diffusion coefficient for a self-similar separable potential, and we investigate

the limit of infinitely many small scales.
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I. INTRODUCTION

Brownian motion in disordered media (or rugged energy
landscapes) is a problem of great scientific and technological
interest, and applications are found in a wide range of different
areas, such as, e.g., collective transport of particles in random
media [1-6], molecular motors [7,8], and protein reaction dy-
namics and folding [9], to name but a few. In the latter example
in particular, proteins are dynamic macromolecules that exhibit
many scales of molecular motion, which is governed by a hop-
ping mechanism through the local minima of the free-energy
surface, the so-called conformational substrates or microstates.
Understanding the effect of microstates on the large-scale
dynamics of proteins is a problem of both theoretical and
practical interest. At the same time, a rugged energy landscape
can introduce metastability in the system [10,11], and the
degree of metastability can increase with the complexity of the
landscape, invalidating predictions based on thermodynamic
arguments, e.g., [12]. In addition, other systems characterized
by the presence of rugged energy landscapes include flows in
structured or disordered media, such as fluid flow in porous
media [13—15] or contact line dynamics on chemically and/or
topographically heterogeneous substrates [12,16-20], while
the understanding of conformational changes in complicated
multiscale energy landscapes can have a significant impact
on technological applications such as crystallization [21] and
drug design [22].

The dynamics of a Brownian particle moving in a rugged
energy landscape can be modeled using the Langevin dy-
namics, either non-Markovian (see Chap. 8 in Ref. [23]),
underdamped, or overdamped (Smoluchowski) dynamics in
a multiscale potential, which can be taken to be either
deterministic or random. The main goal of the present work
is to study in detail the coarse graining of the Smoluchowski
dynamics in an N-scale periodic potential. In particular, we
will derive rigorously the coarse-grained dynamics and study
the quantitative and qualitative properties of the homogenized
model. Itis important to note that many interesting phenomena,
such as subdiffusion, may arise in the coarse-grained dynamics
systems with a multiscale potential, and, as was shown in [24],
the presence of a microscale (“roughness”) in the potential

2470-0045/2016/94(3)/032107(16)

032107-1

increases the mean first passage time. In particular, given a
potential V(x) with two metastable states, perturbing V(x)
with microscale fluctuations would result in a decrease in the
reaction rate between the two states, see also [25] (and a gener-
alization of this would be finding the corresponding relaxation
times [26,27]). Such results can be obtained in a systematic
and rigorous way using analytical multiscale techniques. One
can also approximate the effective dynamics numerically,
using approaches such as heterogeneous multiscale methods
[28], reduced basis finite-element heterogeneous multiscale
methods, [29], as well as equation-free methods [30,31].
Here, we further assume an overdamped Langevin dynam-
ics of a Brownian particle moving in a multiscale periodic
potential, where the macroscale is assumed to be confining
(see Fig. 1 for some examples of multiscale potentials). By
carefully analyzing the corresponding effective (averaged)
equation in different examples of potentials, we are able to
observe nontrivial dynamics that emerges as a consequence of
the interplay between noise level and microscopic structure. In
particular, we find that the microscopic fluctuations conspire
with the additive noise to produce noise-induced hysteresis and
noise-induced stabilization depending on the particular choice
of the potential. In all cases, we are able to fully characterize
the different state transitions in terms of critical exponents.
Our basic model will be the first-order Langevin equation

dX{ = —VV.(X{)dt + 20 dW,, (D

where W, denotes standard Brownian motion on R and where
the magnitude of the noise intensity o would typically be
related to the inverse temperature. The potential depends on
N + 1 scales, the macroscale, and N small scales:

X X X
VE(X)ZV(.X,—,_,...,_N), (2)
€ € €
and it is assumed to be confining at the macroscale and periodic
in all small scales (detailed assumptions on the potential will
be presented in the next section). For the dynamics (1), with the
potential (2), tools from homogenization theory, particularly
reiterated homogenization [32], can be used to obtain an
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FIG. 1. Examples of multiscale potentials. (a) A two-dimensional rough surface that corresponds to the interfacial energy of a droplet on
a chemical heterogeneous substrate (see, e.g., [19]). Panels (b) and (c) correspond to the case of a one-dimensional (1D) periodic multiscale
potential given by (25) with @ = 0.5 (b) and (35) (c¢). The inset of panel (c) is a zoom into the area marked by a rectangle.

effective equation, valid in the limit of infinite scale separation
e — 0.

Several aspects of this problem have already been studied.
First, for periodic potentials with one characteristic length
scale, under the diffusive rescaling Xy := €X, /.2, the effec-
tive dynamics becomes diffusive with an effective diffusion
matrix D that can be calculated by solving an appropriate
Poisson equation, posed on the unit periodicity cell (see
Chap. 13 in Ref. [33] and Sec. 3.4 in Ref. [34]). This result
is a form of the functional central limit theorem for diffusion
processes with periodic coefficients [35]. Furthermore, diffu-
sion is always depleted and it becomes exponentially small
in the limit ¢ — 0 [36]. The case of Brownian dynamics
in a two-scale separable potential was studied in [37]. In
particular, the dynamics (1) with a potential V in (2) of the
form V(x,y;a) = aV(x) + p(y), with p(-) a smooth periodic
function, was considered. It was shown in [37] that the
maximum likelihood estimator for the coefficients in the drift
of the homogenized equation, given observations from the full
dynamics (1), is asymptotically biased.

On the other hand, the problem of homogenization for
Brownian particles in periodic potentials with N scales, in the
absence of a macroscopic confining potential, was studied in
[38,39]. In those papers, the overdamped Langevin dynamics
in potentials of the form

N
Ny — x
14 (x)—;Uk<Rk>, 3)

where Uy, k =1, ... are Holder continuous periodic poten-
tials. Under the assumption that the scale ratios Rk:‘ are
bounded from above and below (in particular, allowing the
possibility of a lack of scale separation), it was shown that the
eigenvalues of the effective diffusivity tensor D(VY) decay
exponentially quickly as the number of scales increases. Using
this result, the authors were able to show that in the limit of
infinitely many scales, the effective behavior is characterized

by anomalous slow behavior. This subdiffusive behavior can
be analyzed in a quantitative way by studying the mean exit
time of the effective dynamics from a ball whose radius is
of O(1).

The potential (2) that we consider here can be thought of as
a caricature of a disordered medium. For self-similar potentials
of the form

+00
V=3 v(g) @

j=1

where V() is a periodic function, it is possible, at least in
1D, to obtain an analytical formula for the effective diffusion
coefficient.

Here we will show that the coarse-grained equation of (1)
is reversible with respect to an appropriate Gibbs measure and
that the effective potential is given by a coarse-grained free
energy. In addition, an important point to note is that, even
though the noise in the full dynamics (1) is additive (since it
is due to thermal fluctuations), the noise in the coarse-grained
model is multiplicative. It is well known that multiplicative
noise can lead to noise-induced state transitions, both first- and
second-order [40]. The fact that additive noise from the fast
scales, combined with the multiscale nature of the dynamics,
leads to multiplicative noise and noise-induced transitions
in the coarse-grained dynamics was shown rigorously and
investigated in detail for the stochastic Kuramoto-Sivashinsky
(sKS) equation—an SPDE with no gradient structure [41,42].
Specifically, as was shown in these studies, the coarse-grained
dynamics of the sKS equation near the instability threshold
is described by a low-dimensional stochastic differential
equation (SDE) (an “amplitude equation”) of the Landau-
Stuart type with additive as well as multiplicative noise. For
particular choices of the spatial correlation structure of the
noise, the amplitude equation contains only multiplicative
noise that leads to noise-induced stabilization and intermittent
behavior. The transition between the three possible states of the
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system—normal, Gaussian-like behavior, intermittency, and
stabilization—depends on the strength of the noise.

One of our goals here is to investigate similar issues for
the multiscale overdamped Langevin dynamics. In particular,
following the techniques developed in [40] (see also Sec. 5.4 in
Ref. [23]) for non-multiscale SDEs with multiplicative noise
in 1D, we analyze the effect of the multiscale structure on the
bifurcation diagram of the coarse-grained dynamics in 1D. In
particular, we show that the presence of several spatial scales
leads to hysteresis loops in the bifurcation diagram, which
we can characterize quantitatively in terms of an appropriate
critical exponent. We note the similarities between our findings
and the work on critical transitions and bifurcation theory for
nonautonomous stochastic dynamical systems, in particular
the emergence of hysteresis phenomena in the study of the
so-called tipping points [43]. A similar numerical study of
water molecules filling or emptying carbon nanotubes was
investigated in [44], where a coarse-grained potential energy
landscape was derived computationally, using coarse-grained
molecular dynamics, and was used to investigate the metasta-
bility and hysteretic parameter dependence of the dynamics.

The paper is organized as follows: In Sec. II we present
the model that we will be considering in detail, and we
also give our main results: the formula for the homogenized
equation and the main properties of the effective potential
(free energy) and of the effective diffusion tensor. The effect
of the multiscale structure of the potential on a pitchfork
bifurcation is studied in Sec. III. Noise-induced stabilization
phenomena for multiscale potentials are considered in Sec. I'V.
In Sec. V we calculate the effective diffusion coefficient for a
Brownian particle moving in a piecewise linear self-similar
potential with infinitely many scales. Conclusions and a
discussion are offered in Sec. VI, and the derivation of the
coarse-grained equation and the calculation of the effective
diffusion coefficient using multiscale techniques are outlined
in the Appendixes.

II. BROWNIAN MOTION IN A RUGGED
ENERGY LANDSCAPE

We consider the overdamped Langevin dynamics in a
multiscale potential with N 4 1 characteristic length scales.
The dynamics is given by the following SDE:

dX€(t) = —VVX(D)]dt + 20 dW (), (5)

where the potential V¢(x) is of the form

Ve(x) = V(x aiA i) ©6)
el TN )
where € < 1 measures the degree of scale separation, and
where V(x,y1, ...,yn) is a smooth function that is periodic in
all but the first variable. The variables yy, ..., yy characterize
the microscopic scales of the potential, while x represents the
macroscale. So V is assumed to have a fractal-like structure
that is realistic and allows for analytical progress to be made.
Also, without loss of generality, we may assume that V
has period one in each microscopic variable. W(¢) denotes
standard Brownian motion in R¢ and ¢ > 0 corresponds to
the temperature. We shall assume that the potential can be
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decomposed as follows:

7yN)= VO(x)+V1(-x7y1""7yN)v (7)

where V| is assumed to be a confining potential, while V;
is assumed to be bounded uniformly with respect to all
parameters and periodic with period 1 with respect to the
variables yj, ...,yy. This ensures that both the full dynamics
(5) and the coarse-grained dynamics (10) are ergodic (see
Sec. 4.5 in Ref. [23]). In particular, the process {X€(¢)} is
(exponentially) ergodic! with invariant distribution

Vix,yi,...

1 xox x
€ = Ve g W)/G
p(x) = 7€ ;

(8)
7€ — e*V()c,f,Ei2 ..... E'LN)/adx
= Jo .
The dynamics {X“(¢)} given by (5) is reversible with respect to
the distribution (8). In particular, the generator of the process
{X¢€(1)} is self-adjoint in the space Lz(]R{d; p€(x)) and can be
written in the form

e

= V. [p“(x)V-]. 9
pe(x)

Introducing the auxiliary variables y, = éi n=1,...,Nand

using the chain rule, we can write (5) as a system of interacting

diffusions across scales:

dX<(t) = =V, V(X(0),Y{ @), ....Y§(0)dt

N

1

— Z E—EVWV(XE(t),Yf(t), L YE@)dt
=1

+20 dW (1),

dys(t) = —élnvxv(Xf(t),Yl(t), L YN@D)dt

N
1
-> SV VXY, Y 0)dr
=1

2
+ dW (1)
E n

for n=1,...,N. The state space of the diffusion process
{XE(0), YE(), ..., Y5(0)} is RY x T¢ x --- x T?, where T¢
denotes the unit torus. This auxiliary diffusion process inherits
from (5) the properties of ergodicity and reversibility. Our goal
is to eliminate the fast scales {Y{(¢), ... Yy (¢)} and to obtain a
closed equation for the macroscopic variable X (). We remark
on the similarity between this homogenization problem and
the derivation of a mean-field limit equation for interacting
diffusions [45]. In Appendix A, we use homogenization theory
[33] and in particular the theory of reiterated homogenization
[32] to derive such a closed SDE for the macroscopic variable
X€(t), valid in the limit of infinite scale separation € — 0.
In this section, we present the coarse-grained model and
we elucidate some of its main properties. In particular, in
Appendix A we derive the following result: the solution X; of

't converges exponentially fast to the invariant distribution. Details
about the rigorous study of (5) can be found in [46].
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(5) converges as € — 0 to the solution of the SDE,
dX, = - MX)VV¥(X,))dt + V- M(X,)dt

+V2M(X)dW,, (10)

where W(x) denotes the free energy and M(x) the effective
diffusion tensor:

U(x) = —In Z(x),

(11)
Z(x) = / . / e_V(X’yl"“’—VN)/UdyN N dyl
T T
and

M) = (I +V,,6n)
= VA ()C) Td Td wIN

x (I + Vy,0p)e” V=00 gy dyy. (12)

The corrector fields {6;(x), ... ,0y(x)} are defined recursively

as follows: let 8y _; be the solution of

Vi - AMN=i(x, 0, - yn—1)
[Vey Oy o y1s - yv—i) + 1]} =0,
yn—k €T, (13)
where for 1 < k < N:
My (X, y15 - YN-k)
=f | U+ VNON) -+ V108 —k41)

¢ ¢

xe V17 dyy - dxy-gs1, (14)

and My(x,y1,...,yy) = e V&Yoo Tt is possible to
show that the effective diffusion tensor is positive definite,
uniformly in x € R?, and to obtain upper and lower bounds
on M.

The homogenized dynamics X (¢) is exponentially ergodic
and reversible with respect to the invariant distribution

Z(x) —
p(x) =—, Z= Z(x)dx (15)
Rd
The generator of the homogenized dynamics, which is a self-
adjoint operator in Lz(Rd,p(x)), can be written in the form

1

£=75

Vi - [Z(xX)M(x)Vi-]. (16)
We remark that Z in (15) is the partition function of the full
dynamics X;,YS and requires the calculation of an integral
over R? x T, It can be shown that the invariant distribution
of the homogenized dynamics is the weak limit of the invariant
distribution (8) of X¢(¢). This follows from properties of
periodic functions (see Chap. 2 in Ref. [47]).

The coarse-grained equation (10) that we derive here
provides us with a rigorous derivation of the free energy (11)
for systems with strong scale separation, which can be used,
in turn, to compute equilibrium coarse-grained quantities [48].
On the other hand, the homogenized dynamics (10) is the most
general form of a reversible diffusion process with respect
to the invariant distribution (15) (see Sec. 4.6 in Ref. [23]),
and it can be used to study time-dependent phenomena

PHYSICAL REVIEW E 94, 032107 (2016)

such as bifurcations and noise-induced transitions. Indeed, an
important point to note is that for the case of nonseparable
potentials, as given by (6), all scales are fully coupled in the
hierarchy of Poisson equations (13) and (14). As a result of
this, even though the noise in the original dynamics (5) is due
to thermal fluctuations and is hence additive, the noise in the
coarse-grained dynamics is multiplicative, something that, as
is well known and as was emphasized in the Introduction, can
lead to noise-induced transitions [40]. These points will be
elucidated in Secs. III and IV.

A final remark is that the noise in the coarse-grained
dynamics becomes additive when the potential (6) is separable,
ie.,

N
Ve =Y V(f) (17)
n=0

(a potential that could be achieved by design in a physical
setting, and hence is also realistic), a surprising result and
perhaps counterintuitive as one might expect that coarse
graining always leads to multiplicative noise in the effective
description. In this case, the Poisson equations (13) and (14)
can be solved in a hierarchical fashion, and the homogenized
equation is of the form (10), but with a constant effective
diffusion tensor. For illustrative purposes, we present the
formulas for N = 1 [37], in which case the effective dynamics
is given by the SDE:

dX; = - MVVy(X,)dt + 20 M dW,, (18)

where
M= [ 149,000 + 9,600 @) 19
and

1 ]
I’L(dy) = P(Y)dy = ?eig IV[(y)dy’ 7 = / , e ? ]VI(Y)dy_
T

(20)
The field ¢(y) is the solution of the Poisson equation,

—Lo0(y) ==V, Vi(y), Lo:=-=V,Vi(y)-Vy +0A,,
(21

with periodic boundary conditions.

The homogenized equation in 1D

It is well known that the homogenized coefficients in 1D
can be computed explicitly, up to quadratures (see Secs. 12.6.1
and 13.6.1 in Ref. [33]). This is the case for the N-scale
homogenization problem that we consider in this study. In
Appendix B we show how, by solving the family of Poisson
equations in (13) and (14) and by using formula (12), we obtain
the following expression for the effective diffusion coefficient:

o
MO = oz

(22)
Zy(x) = / TV IO gy, dyy,
TN
see also [24]. Of course, the explicit calculation of the effective
diffusion coefficient in 1D using (22) requires the calculation
of the partition functions Z1(x). In Sec. V we show how these
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multiple integrals can be calculated analytically for the case
of an N-scale potential that is piecewise linear at all scales.

In the following, we will consider different examples of
multiscale potentials in 1D to study the interplay between
noise and the multiscale structure of the potential. Our goal, in
particular, is to understand how the microscopic fluctuations
can affect the global dynamics of the system.

III. A PITCHFORK BIFURCATION: NOISE-INDUCED
HYSTERESIS

Consider the following SDE:
dX(t) = [aX(t) — X(t)*1dt + V20 dW(2), (23)

the deterministic part of which is the normal form for a
supercritical pitchfork bifurcation. For « < 0 there is a single
stable equilibrium at 0, while for o > 0 there is an unstable
equilibrium at x = 0 and two stable equilibria at x = 4/a.
The system described by (23) has a potential Vy(x; o) =
—%xz + ix“.

We define a two-scale potential by introducing a rapid
fluctuation on the bifurcation parameter «, so the potential
reads

o + g5(x) sin(2my)
2

Vieyia) = %x“ _ [ ]xz, (24)

which in turn can be rewritten as
Vix,y;a) = Vo(x;a) — %gg(x)x2 sin 27y), (25)

where we have introduced a decaying function with the
properties g5(0) = 1 and gs(x > &) — 0. Note that the main
purpose of this function is to ensure that the microscopic
fluctuations are confined within the region in which the
macroscopic potential varies. An illustration of the above
potential for the case of « = 0.5 is shown in Fig. 1.

We start by studying the equilibrium properties of (23). The
ergodic distribution of the homogenized dynamics is given by
(15), which, after including the potential given by (25), yields

PHYSICAL REVIEW E 94, 032107 (2016)

where [Ip(-) is the modified Bessel function of the first
kind, which depends on both the position x and the noise
intensity o, and it is a correcting term coming from the
microscopic fluctuations—note that if gs =0, we recover
the Gibbs measure of the unperturbed macroscopic system.
Therefore, we can see that the microscopic fluctuations are
able to modify the equilibrium points of the system [i.e.,
the maxima of p(x)], and these are controlled by the noise
intensity.

To quantify this effect, we construct the bifurcation diagram
of the solution for different values of o. Toward that end, we
look at the equilibria x; of the above function p(x), which are
given by the solution of the following equation:

I(;(xszgs/za):| o

27
Io(x2gs/20) &7

—xf + x5 |:oz +

The results are presented in Fig. 2, where we can see
that for sufficiently large values of the noise level, the
long-time behavior of the macroscopic system demonstrates
the same qualitative behavior as the unperturbed case with
a supercritical pitchfork bifurcation occurring when o = 0
[cf. Fig. 2(a)]. However, as the noise intensity decreases,
the behavior becomes qualitatively different. Indeed, for
some critical value of o, the pitchfork bifurcation becomes
subcritical and two saddle-node bifurcations symmetric about
the x axis arise along the negative axis, giving rise to three
stable and two unstable branches. As « passes 0, the central
stable branch becomes unstable [cf. Figs. 2(b) and 2(c)]. In this
scenario, we can identify three different dynamic states: (I) for
o < a, <0, zero is a stable solution of the system; (II) for
o, < a < 0, in addition to zero, there are two other nonzero
stable solutions; and (III) for o > 0, zero becomes unstable
and there are two nonzero stable solutions. We note that this
system gives rise to a hysteresis loop, and the macroscopic
system will not follow the same equilibrium branch for «
increasing as when « is decreased.

To further illustrate the transitions that arise in our mul-
tiscale system, we simulate the evolution of a Brownian
motion in the two-scale potential (25). We choose o = 0.1,
€ = 0.1, and g; to be a smooth mollification of the indicator
function over [—10, 10]. We approximate the SDE numerically

U vwaye s (8%
= e Voo , 26
p(x) 7€ Uy (26)
(a)
0.8
0.4}
W
S0
—04
08

-0.4 -0.2
(07

FIG. 2. Bifurcation diagram of the two-scale potential given by (25) obtained by solving (27) for (a) o = 0.5, (b) 0 = 0.2, and (¢) 0 = 0.1.
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FIG. 3. Top panels show histograms generated over a long sample of the SDE (23) with the two-scale potential (25) witho = 0.1,¢ = 107!,
and using bins of size 0.05 (thin gray line) and 0.1 (dashed blue line) for the three different dynamical states: (a) state  witho = —0.5 < «,, (b)
state I with @« = —0.25 € [«,,0], and (c) state III with « = 0.25 > 0. In all three panels, the thick red line shows the analytical homogenized
solution given by (26). Panel (d) shows the corresponding bifurcation diagram for reference with the three states demarcated with vertical solid

lines.

using a standard Euler-Maruyama discretization with step size
At = 107*. In Fig. 3, we plot histograms generated from 10
independent runs each of 10° time steps, fora = —0.5, —0.25,
and 0.25, respectively. The choices of « correspond to the
dynamics before the bifurcation point, close to the bifurcation
point, and after bifurcation, respectively, as illustrated in the
bottom panel of Fig. 3. They correspond to the three dynamical
states defined above. In each case, the red line denotes the exact
stationary distribution p(x) given by (26). The thin gray line
denotes a normalized histogram, generated from the samples
lying in [—2,2] with the size of each bin taken to be 0.05. We
see that the approximated density exhibits large fluctuations
around p(x). This is to be expected since the stationary density
p€(x) does not converge pointwise to p(x), but only in the
weak sense. Indeed, increasing the size of the histogram bins
by 0.1, as depicted by the dashed blue line, we see much better
agreement in each case.

Extension to N scales

A natural extension in the two-scale potential of (25) is to
add more microscopic scales, say up to N, so that the new
potential is of the form

1 N
V(xy;@) = Vo(rs@) — Sgs(0x 3 sin(ry,)  (28)

n=1

for y, = x/€". In this case, the stationary distribution reads

1 v x285 N
p(x) = Ee_ﬁ 0|:10(¥>i| s (29)

and (27) becomes

I/(x2g5/20)
— 3 s N—0 i =0. 30
x; +x |:Ot + T (xszgg/Za) 30)

By computing again the equilibrium points and constructing
the corresponding bifurcation diagram, we observe that the
transition from supercritical to subcritical is in fact enhanced
with the number of scales N (see Fig. 4 for the case with
o =0.1).

To quantify the transition from a supercritical to a subcriti-
cal pitchfork bifurcation observed when the noise intensity is
decreased (cf. Fig. 2), and how this depends on the number
of microscopic scales N, we take the absolute value of «,
defined in the bottom panel of Fig. 3 to play the role of an
order parameter of the transition, such that the bifurcation
is supercritical for |o.| = 0 and subcritical for || > 0. The
results are depicted in Fig. 5(a), where we can observe that
|| becomes zero at some critical value o, that depends on
the number of microscopic scales. Indeed, by considering
values of x; < 1 in (30), we can expand the Bessel functions
appropriately [1j(x)/Io(x) ~ x/2 for x <« 1] and we can see
that the two nonzero solutions exist for values of o that are
below the critical value:

) 3D

N
O = —
4

which defines the critical point. By taking now the rescaled
variables

0. —0O lee]

, (32)

i
=2
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FIG. 4. Bifurcation diagram for different values of the number of
microscopic scales N = 1,2,3,4 (from left to right) in the potential
defined in (28).

we can observe that all data collapse into a single curve, and
close to the critical point the transition is characterized by a
power-law behavior:

Y ~ |X|, (33)

with y = 1.6 [cf. Fig. 5(b)]. In addition, we present in Fig. 6
a phase diagram on the plane (o,«0) where we can see how
the different dynamical states (I), (I), and (IIT) defined above
depend on the number of microscopic scales N.

The manifestation of hysteresis in disordered systems at low
temperatures (i.e., small o) is well known. Indeed, a similar
phenomenon is observed in the Ising model of a ferromagnetic
material subject to an external magnetic field, where for
temperatures lower than a critical temperature 7, the mean
spin of the system exhibits hysteresis as the magnitude of the
external field is varied. This scenario is very much analogous
to the model described in (23) and (25), where the parameter

PHYSICAL REVIEW E 94, 032107 (2016)

o controls the strength of an external perturbation, and for
which hysteresis occurs only where the noise intensity o is
below a critical threshold. More generally, the observation that
roughness of the energy landscape can give rise to hysteresis
effects has been observed in various systems, for example
hysteresis of contact angles at the solid-liquid interface of
fluids wetting rough surfaces [16,18,20,49], hysteresis in
loading and unloading of rough adhesive surfaces [50], as
well as folding-unfolding hysteresis in proteins with complex
energy landscapes [51].

IV. NOISE-INDUCED STABILIZATION

As one would expect, the manner in which the multiscale
perturbation of the potential will influence the equilibrium
behavior of X; depends strongly on the nature of the coupling
between the different scales in the energy potential. In
particular, by introducing a perturbation of the potential at
a third length scale, the long-term dynamics of the diffusion
process will be significantly altered. We now consider a tilted
three-scale quartic potential of the form

1
x4 =
2

4

+ gssin (2w
V(x,yLysa) = —x* [L(yl)}xz

+ gsA sin 2w y2)x, (34)
which we rewrite as
V(x,y1,y20) = Vo(x;a) — Lgsx®sin (2my))
~+ gsAx sin 2w y,). (35)

An example of this potential is shown in Fig. 1. The above
parameter X has been introduced to connect it with the potential
presented in the previous section, which is recovered when A =
0. As before, we start by looking at the stationary distribution,

1.8 : ; ‘
@ e =™ [ :
1.6ro — Dn
i |
Z 107 1.6 ] o
> -]
107 ° o
< o |
‘ o
107 107" o'
(0c—0)/oc & i
o
£
o
| <
000006000006 6 o I I I I
-08 -06 -04 -0.2 0 02 04 06 08 1

(0c—0)/0c

FIG. 5. Results obtained by using the multiscale potential defined in (28). (a) Transition from supercritical (Jo.| = 0) to subcritical (Jo.| > 0)
as the noise intensity is decreased. (b) Rescaled o and || show data collapse into a single curve. The inset shows a log-log plot, where we
can identify power-law behavior close to criticality with exponent y = 1.6. The corresponding bifurcation diagrams for the supercritical and

subcritical cases are also shown for reference.
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FIG. 6. Phase diagram showing the three dynamical states I (green), II (blue), and III (red), which are observed in the potential given in
(28) and defined in Fig. 2 for two values of the number of microscopic states N.

which we find to be

1 x2 XgsA
p(x) = ze—ﬂ%h(%)m(%). (36)

Figure 7 shows numerical computations of both the stationary
distribution obtained by solving the multiscale SDE with the
potential given in (35), and the above analytical solution p(x)
for different values of o and «, observing excellent agreement
in all cases. In addition, we look at the equilibria of p(x),

which are given by the following equation:

Ig(x7g5/20) Ij(x;gsh/o)
Io(x2g5/20) lo(x;8s51/0)

—x2 4 x; 0, (37)

from which we construct the bifurcation diagram, shown in
Fig. 8 for different values of the noise level o. It is interesting
to note that the introduction of the additional multiscale fluc-
tuations in (35) gives rise to a significantly altered bifurcation
structure. Indeed, the transition to subcritical bifurcation is not
observed, but rather the supercritical pitchfork bifurcation is

25 T T
20t
15f

107
50

. . . 25 . . . . .
1 o0 )
1 151 )
1 10h )

™ Al

0 ik

25 T T

-2 -1 0
T

0
x

FIG. 7. Numerical solution of the stationary distribution p¢(x) by solving the multiscale SDE with the potential given in (35) and the
analytical solution p(x) given by (36) (solid red line) for different values of the noise strength and the parameter «. Panels (a), (b), and
(c) correspond to ¢ = 0.2 for « = —1, —0.2, and 1, respectively. Panels (d), (e), and (f) correspond to o = 0.5 for « = —1, —0.2, and 1,
respectively. Panels (g), (h), and (i) correspond to o = 1 for « = —1, —0.2, and 1, respectively.
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-1 0 1 -3 -2 -1 0 1
« «

FIG. 8. Bifurcation diagram for the three-scale potential and for three different values of the noise strength, namely o = 0.2 (a), 0 = 0.5

(b),and o =1 (¢).

being shifted to the left as the noise intensity is decreased.
Moreover, it is remarkable that the macroscopic unperturbed
behavior is only recovered for sufficiently large values of o.

To make this statement more precise, we look at the value
of o, which is defined as the value where the pitchfork
bifurcation occurs (see Fig. 8) and which satisfies the following
condition:

R p(xag)|,_, =0, (38)
giving rise to
& (39)
oy — ——.
0 20

We hence conclude that for the three-scale potential, the
case ap = 0, which corresponds to the standard supercritical
bifurcation, is only achieved when ¢ — oo [we note also that
for the unperturbed macroscopic dynamics (gs = 0) and for the

case of a two-scale potential analyzed in the previous section,
A = 0, we have oy = 0 independently of o].

An important consequence of the fact that o« depends
on o is that the stability of the zero solution can be tuned
by changing the noise strength. Indeed, if we take a fixed
(negative) value «, the zero solution will be unstable for values
of o that are below the critical value

A

= 40
o Slal] (40)

and stable otherwise. How this transition is approached as we
increase the value of o can be studied by looking at the position
of the local maximum, say x., of the stationary distribution
p(x), which is a solution of (37) [see Fig. 8(c) for the definition
of x, for a given value of «]. For a fixed value of «, we then have
that the zero solution is stable when x, = 0 and unstable when
x. > 0. We can therefore define x. to be the order parameter
of this transition. Figure 9 shows how the position of one of

RIOREEES
1 3.5r

-0.4

-0.2 0 012 0.4 0.6 0.8
(0c—0)/o,

FIG. 9. (a) Position x, of the local maximum of the PDF as a function of the noise strength o for different values of the parameter «,
namely o = —1, —0.5, —0.4, —0.3, —0.2, and —0.1 (curves from left to right). Panel (b) shows the position of the maximum with respect
to the rescaled variable (0. — 0)/0.. When the solution is plotted in a log-log scale (inset panel), we can observe a power-law behavior with

exponent 1/2.
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the two maxima of the PDF approaches the value of zero as
o is increased and for different values of the chosen «, where
we can see that near the critical point, the solution exhibits a
power-law behavior of the form

xe ~ X1, (41)

with y = 1/2. Indeed, we can verify this behavior analytically
if we look at the solutions given by (37) in the limit of x, < 1,
for which we can expand the Bessel functions appropriately
[I(x)/Io(x) ~ x /2 for x <« 1]. Expanding around the critical
point 0 = o, — 8o yields to leading order in §o that x, ~
|6a/ LANES

V. BROWNIAN MOTION IN A PIECEWISE LINEAR
SELF-SIMILAR POTENTIAL

In this section, we consider a piecewise-linear N-scale
separable potential given by

ve(x)zvNC—c,...,éiN)
—S( )+S( >+ +S< ) (42)

_2x if x mod 1 € [0,3),
() = {2 —2x  ifxmodl e[l

where

(43)

for fixed N € N and € > 0. Since we are dealing with a
separable potential with no large-scale component, we know
from the results presented in Sec. II that the coarse-grained
dynamics is purely diffusive, i.e., the coarse-grained Fokker-
Planck equation is the heat equation:
2
9 Fo(x,t) — Mo )3 Fo(x, t) (ad)
at dx2
where M is a constant effective diffusion tensor. Since the fast
scale fluctuations in the potential are separated, as is described
in Appendix B, we can easily obtain the constant effective

@ + -
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diffusion from (B2):

—-N
M(o) = U(/ e—S(Z)/adZ/ eS(Z)/adZ>
T T

olo(1 —e Vo) — 17V

o
= . (45)

{202[cosh (%) - 1] }N

The N-scale perturbations have a retarding effect on the
motion, which is amplified as N increases, a consequence
of the increased complexity of the potential. This is captured
in the scalar term Ky(o) = {202[cosh(al) — 1137V, which is
plotted in Fig. 10(a) for varying o and for different values
of N. We can see that, for each N, there is a neighborhood
up to some finite value o, where it is vanishingly small,
say Ky(o) <k, with « being an arbitrarily small value.
For o outside this region, this coefficient rapidly transitions
to the value 1, implying that the overdamped Brownian
motion is no longer inhibited by the multiscale fluctuations.
It is well known that Brownian motion in disordered media,
particularly fractal-like media, can be anomalously slow.
Classical examples include diffusion on the Sierpinski Carpet
[52] and diffusions on comblike structures [53]. In the physics
literature, the association of renormalization on multiple scales
with anomalous dynamics is well known and has been studied
in various works, for example [54], where the anomalous
electric properties of fluid-saturated sedimentary rocks were
studied, and [55], where a rigorous iterated effective-medium
approximation theory was developed and applied to study the
conductivity of various composite materials.

As can be seen in Fig. 10(a), increasing the number of
scales N moves this transition point to higher o. One can
estimate such a transition point by expanding the function
cosh( )y=1+ 2 Uz + 4, L+ 0(067°) so that at the transition
point (rc we have

1
Kn(0) ~ ——— (46)

(1+

)"

_
-
2

20,

0.95(,

0.9

2 0.85

0.87

0.75

FIG. 10. (a) Plot of the retardation factor Ky (o) over o for different values of N. (b) Effective diffusion coefficient approximated from
numerical simulations for N = 1, 2, and 3 compared to the homogenized diffusion coefficient M (o) predicted by (45) (dashed lines).
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We are interested in finding the value of o, for which Ky (o,) =
k. By taking the logarithm of the above expression, we obtain
at leading order

1 1/2
Sl @
which is valid for sufficiently large values of N.

To further demonstrate the effect of the scales on the rate
of diffusion of X€¢(¢), we numerically simulate (5) for the
piecewise potential (42) for different values of N. For e = 0.1
and o = 1, we approximate the solution of (5) up to time
T = 100, using an Euler-Maruyama discretization with step
size varying between 10~7 and 10~%. Given the resulting
approximation X, X>, ...,Xy, the diffusion coefficient was
approximated by using the maximum likelihood estimator:

oc(N) ~

LM/k]

Z (Xt+k Xz) , (48)
2k At

1

DXy, .. 7]

i=1
where k € N controls the subsampling time § = kAt. As noted
in [37], when inferring transport coefficients from multiscale
data, the subsampling rate must be chosen carefully to ensure
that the estimator converges to the diffusion coefficient of (5)
on the O(1) time scale (i.e., the effective diffusion coeffi-
cient). Based on short numerical experiments, k = 10_1/ At
was used. The estimator (48) was then averaged over 100
independent realizations. In Fig. 10(b) we show the average of
this estimator, as a function of time, for N = 1, 2, and 3 scales,
respectively. The error bars denote 95% confidence intervals.
The dashed lines denote the homogenized effective diffusion
coefficient M (o) predicted by (45). We see good agreement
in each case, although the discrepancy between the simulated
diffusion coefficient and M (o) increases as N increases. This
discrepancy is likely caused by discretization error due to the
increase in stiffness for larger values of N, as well as the fact
that the small-scale parameter € might not be sufficiently small
to faithfully capture the homogenized dynamics.

VI. CONCLUSIONS

We have analyzed the overdamped Langevin dynamics
of a Brownian particle moving in a multiscale potential.
Using multiscale techniques, we derived a coarse-grained
equation with a space-dependent diffusion tensor (i.e., with
multiplicative noise), driven by the system’s free energy. The
calculation of the diffusion tensor requires the solution of a

J

PHYSICAL REVIEW E 94, 032107 (2016)

coupled system of N Poisson equations, which can be solved
in 1D, and an explicit formula (up to quadratures) for the
diffusion coefficient can be obtained.

We demonstrated that the system can exhibit noise- or
multiscale-induced transitions, and these were analyzed in
different types of multiscale potentials. In the case of a
double-well potential with one nonseparable microscopic
scale, it was shown that the multiscale structure can induce
hysteresis effects in the pitchfork bifurcation, something that
was observed to be enhanced as the number of microscopic
scales was increased. For the case of a tilted three-scale
quartic potential, we have shown that the presence of the
microstructure is able to change the bifurcation diagram such
that the stability of the zero solution can be controlled by
the noise intensity. The diffusion coefficient was calculated
analytically for a piecewise linear potential at all scales, and the
transitions in the limit of infinitely many scales were studied.

The present work opens up several new avenues for
research. First, the study of noise- or multiscale-induced
transitions in higher dimensions and the construction of the
corresponding bifurcation diagram would be a natural exten-
sion. Furthermore, it would be interesting to study the effect
of inertia on the coarse-grained dynamics. Homogenization
problems for the underdamped Langevin dynamics [3] or,
even more so, for the generalized Langevin equation [56] are
technically more challenging due to the hypoelliptic nature
of the corresponding Fokker-Planck operator. In addition,
the study of mean-field limits for interacting multiscale
diffusions, in the sense of [45], is a very challenging problem.
Finally, it would also be interesting to consider the effect of
nonreversible perturbations in multiscale Brownian dynamics.
Such a problem is relevant for developing improved sampling
techniques for multiscale diffusions [57,58]. We shall consider
these and related issues in future studies.
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APPENDIX A: BROWNIAN MOTION IN AN N-SCALE POTENTIAL: DERIVATION OF THE HOMOGENIZED EQUATION

Consider the following R¢-valued overdamped Langevin diffusion process corresponding to the multiscale potential V¢:

dxf = =VV(x{)dt + 20 dW,,

(AD)

where W; is a d-dimensional standard Brownian motion, and where the N-scale potential V¢ satisfies

VEé(x) = V(x,x/e,x/e?, ... x/eV)

for some smooth V : R x T9 x - --

(A2)

x T4 — R. Given a smooth observable f: R4 — R, the time evolution of the expectation

Fé(x,t) = IEX(;:X [f(x€(¢))] satisfies the following backward Kolmogorov equation (BKE):

0, F€(x,t) = L°F(x,1),

(A3)
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where the operator £¢ is the infinitesimal generator £€ is defined by
LEf(x)=—VVx) - V) +oAf(x), feCHRY.

We shall use reiterated homogenization to identify the behavior of F€(x,t) in the limit as € — 0. We shall follow the formal

approach described in Sec. 3.7 of Ref. [34], namely of “freezing” the scales x,x /e, ...,x/eV~! and studying the macroscopic
effects of the O(e~") oscillations using classical periodic homogenization. Toward that end, we shall formally assume that the
variable x /e" is independent from the variables x,x /e, ...,x/eV~!, writing V¢(x) = V{;(x,x/e"), so that
1
V. VE(x) = (Vx + —sz> Vy(x,2)
€ z=x/eN
We shall look for solutions F€(x,t) of the form F(x,x /eN ,1), where
F(x,z,0) = Fo(x,z,0) + €F1(x.2,0) + € Fa(x,2,0) + - . (A4)

The Backward Kolmogorov equation can be rewritten as

0, F(x,z,t) = =Dy V(x,2) Dy F(x,z,t) + 0 Dy Dy F(x,z,1), (AS)

where Dy = (V, + €V V.). We now perform a standard homogenization procedure of the above PDE to obtain the effective
dynamics in the limit of € — 0. We substitute this ansatz (A4) in (A5) and consider the leading-order terms of the expansion in
powers of €~'. The O(e~2") can be written as

V.- [e "V, Fy(x,z,1)] =0, ze T (A6)

Since for fixed x, e~V¥®3/9 > 0 uniformly on T%, (A6) implies that F, does not depend on the fast variable, i.e., Fy(x,z,t) =
Fo(x,1), Y(x,1) € R¢ x [0,00). The O(¢~V) equation is given by

V. [e7 WOV Fi(x,z,0)] = =V, - (e Vg, Fo(x,z,1), 7€ T (A7)
Let Ox(x,z) be the vector valued solution of the following Poisson equation:
V. fe MO [Voy(x.2) + 1]} =0, zeT, (A8)

where (V,0y);j = 0,,0n,; fori,j =1,...,d. Itis clear that F1(x,z,t) = Oy(x,2)V, Fo(x,t) satisfies (A7). Finally, consider the
O(1) equation given by

V.- [e WOV Fyx,z,)] = = V. - [e VOOV F (x,2,0)] = V- [e7 VSOV Fi(x,2,0)]

. e~ Va9
=V, - [e 7Y, Fy(x,1)] — ———— 8, Fo(x.1).
o

A necessary and sufficient condition for F; to exist is that the right-hand side has integral zero with respect to e~ "¥®*9 dz, i.e.,

Zn_1(x)0;F(x,t) =0V, - (/ evf’(x’z)/UVZFl(x,z,t)dz> + 0oV, (/ e~ VnxD/o szXFO(x,t)>

=0V, ( / e VWAV 0y + 1) dz Y, Fo<x,t)> =V, - [Ky-1(x) Vo Fo(x,0)],
where
ZN—l(X)Z/fV’s(X’Z)/UdZ
and
Ky i) =0 / e WOV 0y (x,2) + Tdz.

We now repeat the homogenization process, assuming that the O(e~“~D) term is independent from the coarser scales, by

reintroducing the small scales to the above coarse-grained PDE. Toward that end, writing
Zya(x) = Z§ y(x,x/e"™) and  Kyoi(x) = K§y_ (x,x/e7h),

and Dy_; = (V, + 6N#,IVZ), the KBE after coarse-graining the O (e ") fluctuations can be written as

o
0 F(x,2,t) = -————Dn_1[Kn(x,2) Dy 1 F(x,2,1)],
Zy_y(x,2)
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where Dy_; = (Vx + E,V#,IVZ). This can now be homogenized in an analogous manner. Suppose now that this homogenization
process has been repeated k times so that the resulting coarse-grained PDE is given by
B F(a0) = ———— Dy 4[K§y_ (.00 Dy 1 Fe(x.2.1)], (A9)
Z5_1(x,2)
where
Zy 4 (x,2) = / E / e VN TNttt XN/ ey iy
and

K;vik(x,z) =0 / .. / (] + VXNQN) .. (] + VxN,keka)€_V;'7k(x’z’xN7kH”"'xN) dxy - - dxXyN_js1,

and Dy_, =V, + eN%sz. Once again, we look for solutions of F€(x,z,t) of the form

F€(x,z,t) = Fo(x,z,t) + € Fi(x,2,1) + €2 Fo(x,2,t) + - - - .
Substituting this ansatz in (A9), we obtain the leading-order equation
V. - [K§ -1 (. 2)V. Folx,z,0] = 0,

and since for fixed x € RY, K v_x(x,2) > Oover T9, it follows that Fy(x,z,t) = Fy(x,t). The next leading-order equation is given
by

V. [Ky_ (. 2DVFi(x,z,0)] = =V, - [K§y_(x,2) Vi Fo(x,2,1)]. (A10)
Letting 6y be the solution of the cell equation
V. AKy (%, 2)[Veby-i(x,2) + 1]} =0, (Al1)
and then choosing F(x,z,t) = Oy_(x,z)V, Fo(x,t) satisfies (A10). The next equation in the expansion is then given by
V. [Ky_i(x.2)V. Fa(x,2,0)] = =V, - [K§y_ (X, 2) Vi Fi(x,2,0)] = Ve - [K§y_ (x,2) V. Fi(x,2,0)]
= Vi - [Ky .2V Fo(x,0)] — Z§_i(x,2)0; Fo(x,1).

A necessary and sufficient condition for F, to exist is that the right-hand side has integral zero with respect to Z,_, (x,z) dz, i.e.,

/vafk(x,z) dzo, Fy(x,t) =V, - (/ Ky 1 (x,2[V.0y_k(x,2) + I]VXFo(x,t)>.

Denote by

We can then choose
Kfaa0) = [ K DI Vaby-c(r.) + 11z
so that the PDE after coarse graining the (N — k — 1)th scale becomes

1
9 Fo(x,1) = mvx [Kn—k—1(x)V Fo(x,1)].

Following the above inductive scheme N times, we obtain the following coarse-grained PDE, which is independent of €:

1
3 FO(x,t) = ——V, - [K(@X)V FO(x,0)], (A12)
Z(x)
where
Z(x) = / . / eV EI I
and
1
K(x)=0 / n / 1_[ [1 + Vx,‘ei(x’xls ce ’xl_)]e—V(x,xl,.“,xN)/ade ---dxy,
i=N
where the correctors 61, ... ,0y are the solutions (known up to additive constants) of (A11).
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We can observe that (A12) corresponds to the BKE of a diffusion process x° described by the following SDE:

dx) = [ = M(x)) VW (x)) + Vi - M(x)] dt + J2M(xP)aW,, (A13)

where we have defined

. K(x)
M(x) = 700 (A14)
and
Y(x) = —log Z(x). (A15)

One can moreover show that the matrix M(x) is symmetric positive-definite, and therefore a matrix square root /M (x) is
guaranteed to exist.

This result suggests that the process x; converges weakly to x? as € — 0. In [46], this convergence is obtained rigorously,
subject to assumptions on the range of the multiscale fluctuations arising from V€.

APPENDIX B: CALCULATION OF THE EFFECTIVE DIFFUSION COEFFICIENT IN ONE DIMENSION

In general, one is not able to obtain explicit expressions for the coefficients of the coarse-grained SDE, and one typically
must resort to computational methods to approximate M (x), for example solving for 6, ... ,0y using a numerical PDE solver.
However, in the particular case when d = 1, we can obtain closed-form solutions for the cell equations, from which the effective
diffusion coefficient can be readily calculated. Indeed, the cell equation for the corrector 6 in one dimension is given by

Oy, eV 001007 (9 Oy + 1)] = 0,
so that
V(x0.....xn) /0

Oy On(x0, ..., xn) + 1 =C(xo, ..., xy—1)e

where

then
1+ 3uy On—k (X0 s xn—1) = C (X0, -+ - XNk DN (X0, -+ XN 1),
where
-1
C(xo, ..., XN—k—1) = </ Ky k(X0 -+ s xy—) dXNk>
so that

Kn—k—1(x0, .. .. XN—k—1) = /’CN—k(XO» e XN Oy 0s - xv—) + 1] doxy—i

~1 ~1
= o(/ . / eV 0 X0 gy ,de_k) =0 </ B / eV 0T gy ,de_k> .
T T T T

Continuing this procedure inductively, it follows that the effective diffusion coefficient M(x) = Z(x)~'K;(x) can be written as

M(x) B

T 72020

where

Z(x) = / i / eV EIL IO gy
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In the special case in which the scales in the potential are completely separated, i.e., when

V) = Vox) + Vi(x/e) + - + Viy(x/eV),

for a smooth confining potential V;; and smooth periodic functions Vi, ..
diffusion coefficient M(x) tensorizes into a product of the form

.,Vy, then one can see from (B1) that the effective

N —1
Mx)=o0o H </1‘r e Vilo gy, /Tev"(z")/"dz,-) . (B2)
i=1

The contribution of each scale to the potential satisfies

2
/e“’f(”f’/“du,-/e"f(”f)/“dvi > (/ e[%(ul->—v,»(ui>]/adui> -
T T T

by the Cauchy-Schwartz inequality, with equality holding only when V; = 0. This implies that adding increasingly fine-scale
fluctuations to V¢ will always decrease the effective diffusion coefficient, as one would expect.
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