
EE2 Maths: Taylor’s theorem for multi-variable functions

Reminder: in univariate case
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where we could also have written x− x0 = ∆x.

Generalizing to two variables:
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Where we define ∆x = x − x0 and ∆y = y − y0 and evaluate the derivatives at x0, y0.
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For more than two dimensions we can write this as
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Hessian: If f(x1...xn) we can define Hij =
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f(x1, ..., xn). The matrix H is called

the Hessian. Hij appears in the equation above (5).


