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Living cells are controlled by networks of interacting
genes, proteins and biochemicals. Cells use the
emergent collective dynamics of these networks to
probe their surroundings, perform computations and
generate appropriate responses. Here, we consider
genetic networks, interacting sets of genes that
regulate one another’s expression. It is possible to
infer the interaction topology of genetic networks
from high-throughput experimental measurements.
However, such experiments rarely provide information
on the detailed nature of each interaction. We show
that topological approaches provide powerful means
of dealing with the missing biochemical data. We
first discuss the biochemical basis of gene regulation,
and describe how genes can be connected into
networks. We then show that, given weak constraints
on the underlying biochemistry, topology alone
determines the emergent properties of certain simple
networks. Finally, we apply these approaches to
the realistic example of quorum-sensing networks:
chemical communication systems that coordinate the
responses of bacterial populations.

1. Introduction
Genes are physically embodied as a string of nucleotide
bases (ATGGCCCTG. . . ) on a self-replicating DNA
molecule, contained within the cytoplasm of a prokaryote
or the nucleus of a eukaryote. Genes encode proteins,
which in turn carry out the processes required for the
maintenance of cellular life. During the process of gene
expression, the genetic information is first transcribed
or copied onto a short-lived messenger RNA (mRNA)

c© 2012 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/3.0/, which permits unrestricted use, provided the original author and
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Figure 1. (a) The central dogma of molecular biology. (b) A more accurate representation of the central dogma, with filled
arrows representing potential regulatory interactions.

molecule. This mRNA is then translated repeatedly into a protein, as specified by the genetic
code: a set of three consecutive nucleotides of mRNA uniquely specifies one of twenty possible
amino acids, a series of which are strung together to form the protein (the short sequence above,
for example, encodes the first three amino acids of the human insulin protein).

This basic description, the ‘central dogma of molecular biology’ (figure 1a), is not the entire
story however. Every cell in the human body carries the same complement of genes, yet a heart
cell and a brain cell are made up of very different proteins. Even in a single-celled organism such
as a bacterium, different proteins are expressed at different times. The bacterium Escherichia coli
is able to assemble flagella when it needs to swim, and pili when it needs to anchor itself to a
surface; it will produce a metabolic enzyme only when its substrate is present, and synthesize
DNA repair proteins only when subject to shock. In short, genes can be turned on and off.

This simple but powerful idea was first proposed by Jacques Monod in the 1940s [1], and the
framework he constructed remains essentially unchallenged to this day. The expression of genes
is a tightly regulated process [2, ch. 7]. Central to this process is a control element known as a
promoter—a short stretch of DNA that precedes every gene. The promoter contains a binding
site for the RNA polymerase, the protein complex responsible for transcription. Correspondingly,
mRNAs contain binding sites for ribosomes, the protein complexes responsible for translation.
The rate of transcription at a promoter can be increased or decreased by proteins known as
transcription factors that bind DNA in the vicinity of the promoter. In prokaryotes, transcription
factors typically bind within a few tens of bases of the promoter, whereas in eukaryotes, long-
distance interactions between transcription factors and the RNA polymerase can extend over
megabases. Eukaryotes also have additional ‘epigenetic’ mechanisms to regulate transcription,
via covalent modifications of the histone proteins on which DNA is wrapped, or modifications of
the DNA itself. Once an mRNA molecule is transcribed, its rate of translation can be regulated by
proteins that influence the capacity of ribosomes to bind ribosome binding sites, or by protein
complexes that degrade specific mRNAs. Additionally, it has become clear that a significant
fraction of transcribed RNAs do not encode proteins; rather, many of these non-coding RNAs
can themselves regulate the translation of mRNAs to proteins, via the sophisticated machinery of
RNA interference [3]. Taking all these effects into account, the central dogma must be modified
with a few additional arrows (figure 1b).

These new arrows are loaded with implications: they permit us to assemble complex networks
of transcriptional and regulatory interactions. Gene A can activate gene B and gene C, but
repress gene D, and so on. There is a compelling case to be made for the existence of such
networks in living cells. Consider that a bacterial genome contains about 4000 genes, whereas
the human genome contains about 25 000 genes—a surprisingly modest difference at first glance,
given that the human body is made up of more than 200 cell types, not to mention higher
degrees of organization required to specify a complex tissue such as the brain. A deeper analysis
suggests that gene number is not the correct measure of complexity: the properties of a cell
are specified by the proteins contained within it; the range of possible cell types is therefore
determined by the range of possible combinations of expressed genes, and grows exponentially
with gene number. How are all such combinations to be accessed, however? We know that distinct
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external signals can drive cells to differentiate into distinct types. However, such signals do not
directly interact with individual genes, turning them on or off. Once the differentiation process
is triggered, various combinations of gene expression must arise through the intrinsic behaviour
of the genes themselves. That is, there must be a network of genetic interactions which, based
on very few external regulatory cues, is able to produce the correct expression patterns. The
manifest complexity of cellular behaviour strongly implies the existence of complex regulatory
networks within.

In recent times, we have been able to resolve network architecture in unprecedented detail
using high-throughput biochemical experiments, or by inference from gene expression and gene
knockout data [4–8]. For certain well-studied organisms such as Escherichia coli and the yeast
Saccharomyces cerevisiae, there is a growing body of detailed information regarding transcriptional
and regulatory interactions [9–12]. When these data are combined, what emerges is a picture of
highly structured networks with rich topologies [13], containing recurring motifs or patterns [14,
15], very different from randomly connected sets of genes. Just as individual proteins have been
selected for function, entire networks seem to be similarly selected. So here is what one might call
the central idea of network biology: that the complex behaviour of living cells must be understood
as emerging not just from the properties of individual genes, but from the manner in which they
are connected.

2. The control of gene expression
For the purposes of this exposition, we focus on prokaryotic gene regulation via promoters.
A promoter is a loosely defined object. We can take it to signify a stretch of DNA, upstream of
every gene, which controls whether that gene is expressed or not. The properties of a promoter,
like those of a gene, are determined by its DNA sequence. A survey of bacterial promoters reveals
a conserved pattern of nucleotides, all variations of a particular consensus sequence. The most
conserved regions are two short stretches situated −35 and −10 nucleotides from the site at
which transcription begins [2, ch. 7]. These regions are thought to provide the binding site that is
specifically recognized by the RNA polymerase protein (figure 2a).

There are in fact numerous proteins that, like the polymerase, are able to recognize and bind
specific nucleotide sequences. Their binding sites are typically between six and 20 base pairs in
length. Binding is mediated by physical interactions between residues on the protein and on the
DNA molecule. Given the structure of a protein we should, in principle, be able to calculate its
interaction energy with a particular DNA sequence. The result of such a calculation would be
the ‘DNA-binding code’. The search for such a code is an active area of research [16–18], but
for the time being we can rely on experimental measurements of binding affinities [7,8]. Various
classes of DNA-binding proteins are known, grouped according to the structure of their DNA
recognition domains. These proteins are often modular, having one domain that binds DNA,
and another that is responsible for regulatory interactions. Once bound to DNA, a protein can
recruit other proteins to its vicinity, or can prevent them from binding. In particular, a DNA-
binding protein can interact with and influence the binding and transcriptional activity of the
RNA polymerase. Such molecules are known as gene regulatory proteins or transcription factors.
They can be classified as activators (which increase the rate of polymerase binding) or repressors
(which prevent the polymerase from binding or block it from transcribing). A given protein might
activate or repress transcription depending on the relative position of its binding sequence to that
of the RNA polymerase.

The activity of a transcription factor can itself be modulated by the binding of small molecules
or by covalent modification [2, chs 7 and 15]. For example, the E. coli lac repressor, which blocks
transcription at the lac operon, contains binding sites for a sugar called allolactose; when the
repressor is bound to allolactose, it is unable to bind DNA, and therefore unable to repress
transcription. This type of modulation is a key mechanism by which external signals can regulate
gene expression. Many small molecules in the environment can diffuse across the bacterial
cell membrane to directly influence intracellular transcription factors. Other types of signalling
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Figure 2. Protein–DNA interactions. (a) Genes are DNA regions that are transcribed into mRNA, and eventually translated
into proteins. Promoters are DNA regions upstream of genes where the RNA polymerase molecule (RNAP) binds and initiates
transcription. Transcription factors (TFs) can bind near promoters and interact with the polymerase, exerting regulatory control.
(b) The binding of a single protein is shown in the reaction-kinetic (left) and energetic (right) representations. (c) Free DNA
as a function of protein levels. The graphs are of Hill functions, showing hyperbolic (n= 1) as well as sigmoidal (n= 2,
n= 6) binding curves. Higher Hill coefficients produce more threshold-like functions. The half-saturation concentration is one
in each case.

molecules can bind the extracellular domains of transmembrane proteins known as receptors;
this causes a conformational change in the receptor’s intracellular domain, which can drive the
subsequent activation or inhibition of transcription factors by phosphorylation. For example, a
large number of bacterial ‘two-component systems’, consisting of a membrane-bound sensor and
intracellular transcriptional regulator, operate on this principle. As we show later, these types of
regulatory inputs influence intracellular network dynamics, allowing cells to sense environmental
conditions and respond appropriately.

We can calculate the expression level at a particular promoter from a biophysical model that
incorporates the microscopic details just mentioned, using an approach pioneered by Shea &
Ackers [19] in their study of the OR control system of bacteriophage λ. To do this, we first list
all possible promoter configurations (the combinations in which the promoter binds various
regulatory proteins or the RNA polymerase); and we specify the relative free energies of each of
these states. Once this information is given, there is a well-defined thermodynamic prescription
for calculating system properties. Consider a DNA region D that can bind a set of proteins Xi
(i = 1, . . . , n), each with multiplicity mi. Let the cytoplasmic protein concentrations be [Xi]. This
binding event can be represented as

D + m1X1 + m2X2 + · · · + mnXn
k+
�
k−

D · X1m1 · X2m2 · · · Xnmn . (2.1)

For simplicity in the discussion that follows, this representation clubs together what are in
fact several independent binding events, and includes effective rate constants k+ and k− for
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this clubbed reaction. Indeed, there might be several configurations of the bound state: other
combinations in which the DNA can bind these proteins. Let sj represent these various states
(including the one in which the DNA is bare). The probability of occurrence of each state in
thermodynamic equilibrium is then [19]

℘(sj) ∝ e−�Fj/kT[X1]m1 [X2]m2 · · · [Xn]mn , (2.2)

where k is Boltzmann’s constant, and T is the absolute temperature. The term �F is the standard
free energy of the given configuration, describing the energetics of interaction between the
molecules; for example, bonds between DNA and protein residues can stabilize binding by
making �F more negative. The concentration terms arise owing to entropy or counting: the higher
the concentration of a certain protein, the more ways in which one can pick a single molecule to
bind the DNA.

We can give this result a kinetic interpretation, under the simplifying assumption of a clubbed
multi-protein reaction. The probability that m1 molecules of X1 enter the reaction volume will be
proportional to [X1]m1 . More generally, the probability per unit time that the reaction (2.1) occurs
from left to right (P+) or right to left (P−) is

P+ = k+[D][X1]m1 [X2]m2 · · · [Xn]mn

and P− = k−[D · X1m1 · X2m2 · Xnmn ].

}
(2.3)

If these were the only possible reactions, then in equilibrium we would have P+ = P−, giving

[D][X1]m1 [X2]m2 · · · [Xn]mn

[D · X1m1 · X2m2 · · · Xnmn ]
= k−

k+
≡ 1

K
, (2.4)

where K is the equilibrium constant. This result is usually presented as the principle of mass
action. The concentration of a given promoter state is the total DNA concentration multiplied by
the probability of occurrence of that state. If we agree to measure all free energies as differences
from that of the bare configuration, a comparison of (2.2) and (2.4) shows

K ∝ e−�F/kT . (2.5)

That is, the values of the reaction rate constants are constrained by free-energy differences: their
ratio must be consistent with the equilibrium prediction. There is in fact a much more basic
constraint on the kinetic constants. Imagine that the DNA is involved in several complexes.
In that case the condition P+ = P−, while sufficient to ensure time-invariance of probabilities,
is certainly not necessary. It could be that the depletion of a certain species through one
reaction is compensated for, not by the reverse reaction, but by a separate creation pathway.
However, detailed balance asserts that in equilibrium such solutions are not acceptable: all
forward reactions must be balanced by the corresponding reverse reactions. This fact is not at
all evident from a reaction-kinetic formulation. While it will be convenient to work within the
kinetic framework of rate constants, we must always bear in mind the constraints imposed by
equilibrium considerations.

We can now use these general results to study a few relevant examples, where we now
explicitly treat multi-step reactions. Consider a DNA region D to which the protein X can bind.
For convenience, let us measure energy in units of kT, and let the free energy of the bare DNA be
zero. Suppose the free energy of state DX is εX (figure 2b). The probability that the DNA is bare is
given by

℘(D) = 1
1 + e−εx [X]

= 1
1 + K[X]

. (2.6)

The concentration of bare DNA is a hyperbolic function of the protein concentration, reaching
half-saturation at a value [X] = 1/K (figure 2c).

Suppose now that the DNA region D represents a promoter, and that the protein X is a
repressor, which acts to prevent transcription by the polymerase P. Let the free energy of the
state DP be εP. If the two proteins X and P bind independently, then the free energy of the
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Figure 3. Transcriptional regulation by DNA-binding proteins. (a) Independent binding of a repressor (X) and the polymerase
(P). The free energy of the doubly bound state is the sumof the individual binding energies. (b) Cooperative binding. The binding
of a single molecule of X increases the likelihood that a second molecule will bind.

doubly bound state DXP will be the sum of the individual binding energies. (If the independent-
binding assumption is not valid, the energy of the state DXP must be provided as an additional
parameter.) The energies of the various bound states in this scenario are indicated in figure 3a.
The only state from which transcription can proceed is the state DP. Applying the equilibrium
prescription, we find that this state occurs with probability

℘(DP) = e−εP [P]
1 + e−εP [P] + e−εX [X] + e−εP−εX [P][X]

= e−εP [P]
1 + e−εP [P]

1
1 + e−εX [X]

, (2.7)

where we have explicitly factorized the expression. This factorization is possible precisely because
the proteins X and P bind independently, so the probability that state DP occurs is the probability
that P is bound multiplied by the probability that X is not bound (the latter being given by (2.6)).
It is instructive to see how the derivation might proceed from the kinetic framework. Applying
detailed balance, we can find two expressions for the concentration of the doubly bound state,
corresponding to the upper and lower binding paths:

[DXP]
[D][X][P]

= K1K2 = K3K4. (2.8)

The four dissociation constants cannot, therefore, be independently specified. (Note also that, by
the independent binding property, K1 = K4 = e−εX and K2 = K3 = e−εP .)

In many instances, transcription factors bind to multiple sites. Suppose the promoter in
question contains two sites, A and B, to which X can bind in any order (figure 3b). Let the free
energies of the two singly bound states be εA and εB, and that of the doubly bound state be
εAB = εA + εB + �εAB. These assumptions correspond to the most general situation, of which the
following are special cases: if the two sites are identical, then εA = εB; if X binds independently
to these sites, then �εAB = 0. The energy term �εAB corresponds to some interaction between the
two bound copies of X. If the binding of a single molecule makes it more favourable for another to
bind, a condition referred to as positive cooperativity, then �εAB < 0. Conversely, in a situation of
negative cooperativity, �εAB > 0, and the binding of one molecule interferes with the ability of the
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other to bind. Positive cooperativity is the norm among transcription factors that act multiply. Let
us see what effect this will have. Assume, for simplicity, that |εA| ∼ |εB| � |�εAB|. In the kinetic
framework, this corresponds to K1 � K2, and K3 � K4, with the detailed balance condition again
as shown in (2.8). We find

[Dtot][X]
[DXA]

>
[D][X]
[DXA]

= 1
K1

� 1
K2

= [DXA][X]
[DXAXB]

>
[DXA][X]

[Dtot]
, (2.9)

where the inequalities are obtained by noticing that the concentration of any DNA configuration
must be less than that of the total amount of DNA available. This shows that [DXA] � [Dtot],
and similarly, [DXB] � [Dtot]: the singly bound configurations form a negligible fraction of the
population. No sooner has one molecule of X bound DNA, than the second also binds. Therefore,
the probability that the DNA is bare is given by

℘(D) = 1
1 + e−εAB [X]2 = 1

1 + K1K2[X]2 . (2.10)

The cooperativity of binding gives rise to the quadratic term in the denominator. The binding
curve is sigmoidal, meaning that it has an inflection point at [X] = 1/K1K2 (figure 2c). In the
literature, as a first approximation, binding probabilities are often parametrized as Hill equations

℘(D) = 1
1 + ([X]/[X0])n , (2.11)

with n being the Hill coefficient (a measure of cooperativity) and [X0] being the half-saturation
concentration. The hyperbola (2.6) (with n = 1) and the sigmoid (2.10) (with n = 2) can both be
parametrized in this way (figure 2c). These parameters, among many others, are required to
provide a detailed biochemical description of any genetic network.

3. Genetic networks

(a) The network equation
Single genes are often regulated by multiple transcription factors that interact with one another.
A classic example is the lac operon, which is regulated by both a repressor and an activator [20].
In eukaryotes, a single gene could be regulated by dozens of proteins. It is a remarkable fact that,
using only thermodynamic constraints of the type we have considered, a promoter can be made to
perform a variety of mathematical operations on its regulatory inputs. Specifically, the probability
of occurrence of the transcriptionally active promoter configuration can be a complicated function
of the concentration of various transcription factors [21–26]. These concentrations can themselves
change over time owing to regulation of the genes encoding the transcription factors. If we wish
to understand the behaviour of the system, we must therefore consider the regulatory network as
a whole. We now try to arrive at a general mathematical description of such networks.

The rate of protein creation per promoter, α, is a product of the following terms: the probability
that the promoter is transcriptionally active, the rate at which transcription proceeds irreversibly
from the active state and the number of proteins translated per resulting transcript. Consider a
cell that contains nP copies of a gene encoding protein Xi. If the protein once created does not
degrade, then the number of protein molecules ni will obey

dni

dt
= nPαi. (3.1)

If the cell volume is V, then the protein concentration xi = [Xi] evolves as

dxi

dt
= d

dt
nP

V
αi − 1

V
dV
Dt

xi, (3.2)

where the negative term arises owing to dilution.
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Immediately after division, a bacterial cell contains a chromosome that has already begun to
replicate. Depending on its position relative to the DNA replication origin, either one or two
copies of each gene will be present at this stage. Every gene will be replicated once more before
the cell is ready to divide again. The term nP/V can therefore vary by as much as a factor of two
over the cell cycle. We will usually ignore this variation, assuming the promoter concentration
to be constant, and absorbing it into the quantity αi. We will also assume that cell volume
grows exponentially, so V(t) ∝ eγ t. The growth rate γ is related to the cell doubling time TD as
γ = ln(2)/TD. If the protein is subject to degradation in a first-order reaction, the rate constant of
that reaction must be added to the dilution rate γ to give the net decay rate γi. Protein degradation
and dilution might themselves depend on the concentrations of some subset of proteins present in
the system [27]. Finally, we have seen that the expression rate αi can also depend on other protein
concentrations. Taken together, these assumptions give

dxi

dt
= αi(x1, x2, . . . , xn) − γi(x1, x2, . . . , xn)xi. (3.3)

In many instances, network topology can be specified by sparse matrices of the form shown
below, where only a few direct interactions generate non-zero matrix entries:

Aij ≡ ∂αi

∂xj
and Γij ≡ ∂γi

∂xj
. (3.4)

This apparently simple system of equations describes a typical genetic network. Of course, all the
complex biochemistry is hidden within the functions α() and γ ().

(b) The network equation as an extension of Boolean threshold models
Equations of the general form (3.3) were first extensively studied by computational
neuroscientists in their attempts to model neural networks [28]. In the neural context, the quantity
xi is the activity of a single neuron, and the function α() couples neurons to one another
across synapses. The neural activity is a continuous variable, changing continuously over time,
analogous to the expression level of a gene. Early models described neurons as binary units,
which could perform thresholding operations (the so-called perceptrons [29]). In these models, xi
is 0 or 1, and neural activity is updated discretely according to the inputs received:

xi(t + 1) = Θ

⎛
⎝∑

j

wijxj(t) − μi

⎞
⎠. (3.5)

Here, Θ(s) is a step function, equal to 1 if s ≥ 0, and 0 if s < 0. The weight matrix wij describes the
strength of the interaction between input neuron j and output neuron i. If the weighted input to
neuron i crosses the threshold μi, then the neuron is activated.

Starting with this binary description, we can generalize the model in many different ways.
First, the synchronous update rule (‘=’) described earlier could be changed to an asynchronous
update rule (‘:=’), selecting a random unit to update at each time step. Second, we could convert
the binary activity variable to a continuous variable. In order to do this, we would need to select an
appropriate function α() to describe how the neuron responds to its inputs. Typically, α is chosen
to be a sigmoidal or threshold-like function, to which the step function is an approximation.
This gives

xi := α

⎛
⎝∑

j

wijxj − μi

⎞
⎠ . (3.6)

The dynamical variable is now continuous, but the model still operates in discrete time steps.
Essentially, the neurons are assumed to adopt their new activities instantly upon update.
Of course, the change of activity might occur gradually, with different neurons relaxing towards
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the steady state prescribed by (3.6) at different rates γi:

1
γi

dxi

dt
= α

⎛
⎝∑

j

wijxj − μi

⎞
⎠− xi. (3.7)

We thus arrive at an equation of the form (3.3). Note, however, that the function α() has a
very special form, thresholding a weighted sum of inputs, an approximate phenomenological
description of neural behaviour.

Moving back to genetic systems, how much can we learn by analogy with neural or electronic
networks? It turns out that, when groups of genes are collected into a network, the resulting
architecture is markedly different from that of the generic electronic circuit to which it is often
compared. In the electronic case, large numbers of simple nodes are connected in complex
ways. In the genetic case, the network is likely to be much more shallow, with each node, a
promoter, executing more complex operations [14,21]. A single promoter is capable of responding
in intricate ways to its inputs, and indeed, it is becoming clear that real single neurons might
themselves be capable of sophisticated computations [30]. The simplicity and uniformity of
electronic nodes have allowed us to model large electronic circuits very effectively. It is likely
that there will never be an equivalent standard framework for the study of genetic systems—
too much depends on the unique characteristics of each gene or protein. This is the biochemical
complexity that makes the analysis of genetic networks challenging. Nevertheless, as we discuss
in §4, topology proves to be a surprisingly useful determinant of network properties.

4. The emergent properties of networks

(a) A biological wish-list
Imagine that we need to design a regulatory system to orchestrate one of the most intricate of
all known biological processes, the development of a living embryo [31]. What are some of the
tasks that need to be carried out, and some of the problems we might encounter along the way?
We start with a fertilized egg that has undergone repeated divisions, thus producing a set of
undifferentiated cells. Very soon, this embryo will begin to respond to maternal cues, in the form
of spatial gradients of signalling molecules called morphogens, causing cells in different positions
to express different sets of genes. Gene expression levels will need to vary significantly, as we
move across segment boundaries: small changes in the levels of a signalling molecule must be
amplified to produce large changes in expression. New transcription factors will be synthesized,
triggering a subsequent round of gene expression. Cells will need to respond rapidly to these
changes. At this stage, small errors in expression patterns must be avoided, as they would lead to
larger and possibly lethal errors in downstream processes. The morphogen signals will eventually
start to die away; the cells must nevertheless retain some memory of these signals, remaining
firmly committed to their different fates. Developmental processes in different parts of the embryo
will need to be synchronized: protein levels will need to oscillate periodically in time. And the list
goes on.

The surprising fact is, each of the tasks on our wish-list can be achieved by small networks
of interacting genes (figure 4) [32,33]. In §4b, we survey a few simple networks that are
able to generate, in principle, these various biologically desirable outcomes. Over the past
decade systems such as those discussed here have been explored experimentally by synthetic
biologists [34–36]: negative feedback for noise reduction [37,38]; positive feedback and the
flip–flop for bistability [20,39–41]; and hysteretic and ring oscillators [26,42–44].

(b) The dynamics of simple network topologies
Amplification by cooperative activation: consider a gene that encodes a protein Y and is regulated
by an activator X (figure 5a). Cooperative interactions can result in a Hill-type dependence of the

 on January 14, 2013rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


10

rsta.royalsocietypublishing.org
PhilTransRSocA371:20110548

......................................................

am
pli

fic
ati

on

rap
id 

eq
uil

ibr
ati

on

ce
llu

lar
 m

em
or

y

os
cil

lat
ion

s

Figure4. Theemergent properties of networks: amplificationby cooperative activation; rapid equilibration andnoise reduction
by negative feedback; memory and bistability by positive feedback and the flip–flop; oscillations by hysteretic and ring
oscillators.

gene expression level on the activator concentration. Setting x = [X] and y = [Y],

dy
dt

= A
xn

1 + xn − y, (4.1)

where for notational simplicity, x is measured in units of the half-saturation concentration
(compare with (2.11)) and time is measured in units such that the decay rate of y is unity (compare
with (3.3)). The value of the steady-state output, ȳ, can depend sensitively on that of the input, x̄:

∂ ȳ
∂ x̄

= ∂ ln ȳ
∂ ln x̄

∣∣∣∣
x̄=1

= n
2

. (4.2)

At high or low values of x̄, the value of ȳ is close to either zero or A and is insensitive to changes
in the input. However, near the threshold x̄ = 1, a certain fractional change in x̄ is amplified to
produce an n/2 greater fractional change in ȳ: differential input signals will be amplified.

Rapid equilibration and noise reduction by negative feedback: consider what happens when
a gene negatively regulates its own expression (figure 5b). Assume that the protein is a repressor
that behaves as shown in (2.6):

dx
dt

= A
1

1 + x
− x ≡ f (x) − g(x). (4.3)

The steady state of the system corresponds to that concentration x at which the rate of creation
f (x) and the rate of destruction g(x) balance one another. We see from figure 6a that the negative-
feedback system settles into a steady state intermediate between 0 and A (something that cannot
be captured in a pure binary description). If the expression level of the system is transiently
increased above this steady state, the resulting drop in the creation rate quickly restores
equilibrium. In fact, the auto-repressed system equilibrates more rapidly than an unregulated
system with the same steady state, as shown in figure 6a; this has the effect of suppressing
stochastic fluctuations [45].

Memory and bistability by positive feedback: we next allow the gene to positively regulate its
own expression (figure 5b). This can be achieved by closing the loop in (4.1):

dx
dt

= A
xn

1 + xn − x ≡ f (x) − g(x). (4.4)

We see from the binary model that this system can have multiple steady states: a gene that is
active will sustain its own expression, whereas one that is inactive will never become activated
(figure 5b). In the continuous model, this would correspond to having multiple values of x at
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Figure 5. Simple binary networks. (a) Basic interactions between binary genes. Interactions are shown in bold if the regulator
is active. (b) Feedback networks. The binary negative-feedback network does not have a self-consistent steady state. The binary
positive-feedbacknetworkhas two steady states, either active or inactive. (c) Flip–flop. If thefirst gene is active, then the second
is inactive, and vice versa. As in the case of positive feedback, the system has two steady states. (d) Hysteretic oscillator. The
dotted arrow represents transitions in time. The system cycles between states of high activator and high repressor expression.
(e) Ring oscillator. The three genes cycle through high-expression states in succession.

which the rates of creation and destruction balance one another. For hyperbolic activation (n = 1),
we find just one stable expression state. However, for sigmoidal activation (n > 1), the system
can have two stable states, separated by an unstable state that forms a threshold (figure 6b).
Trajectories that begin above this threshold are driven to the high state, whereas those that begin
below the threshold are driven to the low state. The behaviour of the system therefore depends
on its history, a phenomenon known as hysteresis. Suppose that we begin with a group of cells
in the low expression state, then fully induce expression in some of these cells by means of an
external signal such as a morphogen. Even once this signal is removed, the induced cells will
maintain their high-expression levels. The positive-feedback network thus forms the basis for
cellular memory, allowing cells of identical genotype to achieve different phenotypes depending
on the external signals received.

Memory and bistability with a flip–flop: a pair of genes that repress one another is similar to a
single gene that activates itself (figure 5c). In the context of electronics, such systems are known as
flip–flops. The binary version of this system is capable of maintaining two distinct internal states:
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Figure6. Continuous feedback networks. (a) Negative feedback. (i) Protein creation anddegradation rates. (1) f(x) = 2/(1 +
x) for the auto-repressed system. (2) f(x) = 1 for the unregulated system. (3) g(x) = x. (ii) Solid lines show timecourses for
the auto-repressed system; dashed lines show timecourses for the unregulated system. Negative feedback producesmore rapid
equilibration. (b) Positive feedback. (i) Protein creation and degradation rates. (1) For f(x) = 2x/(1 + x), the system has a
single stable fixed point. (2) For f(x) = 2x4/(1 + x4), the system has two stable fixed points, separated by an unstable fixed
point. (3) g(x) = x. (ii) Timecourses. Systems initialized at x > 1 are driven to the high state, whereas those initialized at x < 1
are driven to the low state. (c,d) Flip–flop. Graphs in x–y space show nullclines (solid) and trajectories (dashed) for equation
(4.5) with A= 5. (c) For n= 1, the system has one stable state. (d) For n= 4, the system has two stable states, one at high-x
low-y, and the other at high-y low-x.

if we choose one gene to be active, then the other must be inactive. In terms of concentrations,

dx
dt

= A
1

1 + yn − x ≡ u(x, y)

and
dy
dt

= A
1

1 + xn − y ≡ v(x, y).

⎫⎪⎪⎬
⎪⎪⎭ (4.5)

To understand system dynamics, it is useful to examine the curves u(x, y) = 0, along which
dx/dt = 0, and v(x, y) = 0, along which dy/dt = 0. The fixed points or steady states of the system
occur where these curves, known as nullclines, intersect. Once again, we must ask of each fixed

 on January 14, 2013rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


13

rsta.royalsocietypublishing.org
PhilTransRSocA371:20110548

......................................................

point whether it is stable or unstable. In this case, a graphical analysis shows that, for n = 1,
the system has a single stable fixed point along the diagonal x = y (figure 6c). For n > 1, this
symmetric fixed point becomes unstable, and two asymmetric stable fixed points are created,
one corresponding to high x-expression, and the other to high y-expression (figure 6d). As in the
case of the positive feedback network, the flip–flop provides a mechanism for cellular memory.

Hysteretic oscillator: we again look at a system of two genes, but now one of them is an
activator, while the other is a repressor (figure 5d). In a sense, this is an extended version of
a negative feedback circuit we saw previously, and the binary model predicts that it should
oscillate. Importantly, because the feedback now comes with a delay, oscillations can be shown
to occur in the corresponding continuous system as well. Consider the following activator–
repressor pair:

dx
dt

= γx

(
vx + Ax

x2

1 + x2
1

1 + y
− x

)
≡ u(x, y)

and
dy
dt

= vy + Ayx − y ≡ v(x, y).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (4.6)

The nullclines intersect at a single fixed point, and the flows suggest oscillatory behaviour. If x
is slow to respond to changes in y, this fixed point is stable and any oscillations are damped
(figure 7a). However, if x responds sufficiently rapidly, the fixed point becomes unstable, and the
system enters a sustained limit-cycle oscillation (figure 7b). Hysteretic oscillators of this kind are
known to form the molecular basis for circadian rhythms and other types of periodic phenomena
in living cells [46].

Ring oscillator: finally, let us consider a system with three genes, each repressing the next in
sequence (figure 5e). The binary system is clearly oscillatory. The continuous analogue may be
specified as

dxi

dt
= A

1
1 + xn

i−1
− xi, (4.7)

where i = 0 is identified with i = 3. The system has a symmetric fixed point xi = x0. For sufficiently
high n, this fixed point can become unstable, forcing the system into a limit-cycle oscillation
(figure 7c).

5. Separating biochemistry from topology

(a) Estimating biochemical and topological complexity
Suppose we are given N distinct regulatable promoters, each of which has binding sites for up to
M distinct transcription factors. In addition, we are given Next promoters whose transcriptional
outputs can be controlled using extracellular signals. Each promoter can be made to express
one or more transcription factors; the same transcription factor might be expressed by multiple
promoters, in which case its total level is obtained by summing. We assume that the levels of
all transcription factors can be measured. To simplify the discussion, we discretize the system so
that all the inputs and outputs can take on any one of the states x ∈ {0, 1, . . . , Ω − 1} with inputs
saturating at the maximal level. Reasonable values of these quantities are N, Next approximately
2–10, M ∼ 2–5 [47], and Ω ∼ 10.

A promoter is specified by defining its response to ΩM distinct inputs. For each promoter
i, let this information be summarized as a function αi(x1, x2, . . . , xn). The set {αi|i = 1, . . . , N}
represents the biochemical specification of the system. There are ΩΩNM

possible biochemistries
(though given the continuous and slowly varying nature of a promoter’s input–output function,
the accessible biochemical space will in reality be much smaller than this).

We next turn to topology, which involves specifying which of the N + Next promoters is driving
each of the M inputs of a given promoter. The M × (N + Next) connectivity matrix for promoter i

 on January 14, 2013rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


14

rsta.royalsocietypublishing.org
PhilTransRSocA371:20110548

......................................................

2.0
(i) (ii)

1.5

1.0

0.5

0

0.5 1.0 1.5 0 10 20 30 40

2.0

1.5

1.0

0.5

0

y

y

x time

time

3

2

1

0 5 10 15 20

x
i

(a)

(b)

(c)

Figure 7. Continuous oscillators. (a,b) Hysteretic oscillator. We show results for equation (4.6), with vx = 0.1, vy = 0.0,
Ax = 4.0, Ay = 2.0. (i) Shows nullclines (solid) and trajectories (dotted) in x–y space. (ii) Shows y(t). (a) For γx = 3.0,
oscillations are damped and the system eventually reaches the fixed point. (b) Forγx = 5.0, the fixed point is unstable, and the
system enters a limit cycle oscillation. (c) Ring oscillator. We show results for equation (4.7), with A= 4 and n= 4. The graph
shows the values of x1, x2 and x3 over time. The system eventually enters a limit cycle.

has the form

Ci
jk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

M

⎧⎪⎪⎨
⎪⎪⎩

N︷ ︸︸ ︷
Ci

1,1 . . . Ci
1,N

...
. . .

...
Ci

M,1 . . . Ci
M,N

∣∣∣∣∣∣∣∣∣∣∣∣∣

Next︷ ︸︸ ︷
Ci

1,N+1 . . . Ci
1,N+Next

...
. . .

...
Ci

M,N+1 . . . Ci
M,N+Next

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (5.1)

where the indices j and k run over inputs and promoters, respectively; and each entry can take on
values 0 or 1. The set {Ci|i = 1, . . . , N} represents the topological specification of the system and
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there are approximately 2NM(N+Next) possible topologies (ignoring degeneracies). Notice that the
biochemical space explodes much more rapidly than the topological space.

Consider a feedback network constructed with some complicated Ci
jk. Such a network will

have N′
ext ≤ Next external inputs, and therefore can be put into ΩN′

ext configurations. How
completely can we probe the biochemistry of such a system? To get a rough idea, let us make
the following simplifying assumptions: for each external configuration, the feedback system
achieves a unique steady state; and as we cycle through configurations, a given promoter cycles
through a random sample (with repeats) of its ΩM possible states. The probability that a given

state is missed over ΩN′
ext samples is (1 − 1/ΩM)Ω

N′
ext ≈ exp(−ΩN′

ext/ΩM). Therefore, the expected
number of distinct states sampled by each promoter is ΩM(1 − exp(−ΩN′

ext/ΩM)). The depth of
biochemical characterization is essentially a step function: if N′

ext < M our sampling is extremely
sparse; if N′

ext � M we hit nearly all possible states; and with ΩM samples our fractional coverage
is (1 − 1/e).

If Next ≥ M, we can choose to construct a synthetic genetic network with the trivial feed-
forward architecture (as reported in Rai et al. [26]):

Ci
jk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

M

⎧⎪⎪⎨
⎪⎪⎩

0 . . . 0
...

. . .
...

0 · · · 0

∣∣∣∣∣∣∣∣
0 . . . 0
...

. . .
...

0 · · · 0

M︷ ︸︸ ︷
1 . . . 0
...

. . .
...

0 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= (0 | 0I), (5.2)

where 0 is the zero matrix and I is the identity matrix. This allows us to perform a complete
biochemical characterization, in which we determine all the functions αi, using exactly ΩM

external configurations. Having done the feed-forward characterization we can, in principle,
predict the response of any other topology under all of its ΩN′

ext external configurations.
An experimental demonstration of this feed-forward-to-feedback predictive procedure was
reported by Rai et al. [26]. For N′

ext > M, this type of prediction is clearly efficient: a large
number of feedback responses can be predicted from a relatively small number of feed-forward
measurements. However, in practice, it is often the case that even ΩM is large in absolute terms,
making a complete biochemical characterization unfeasible.

(b) Case study: bacterial cell-to-cell communication
There are several natural contexts in which bacterial cells in a population stand to benefit
by coordinating their actions [48]. Many bacterial species achieve such coordination through
chemical communication channels that work on the following principle [49]. Any cell in the
population can ‘issue’ a signal using an enzyme designated I; this enzyme generates a molecule
known as acyl-homoserine lactone (AHL) that can diffuse freely between cells. Cells ‘receive’
this signal using a transcription factor designated R; when R is bound to AHL it functions as
an activator, driving transcription at a promoter henceforth designated pX. The capability of I/R
systems to issue and receive signals can have a variety of uses [50]. Because the concentration
of AHL in the medium is a readout of the density of cells issuing the signal, one hypothesis is
that these systems allow cells to tune their transcriptional response as a function of population
density (figure 8)—hence the term ‘quorum sensing’. For example, cells infecting a host can
remain quiescent until they reach a critical density, staying hidden from the host’s immune system
until they are ready to launch a virulent attack [51]. Topologically, I/R quorum-sensing systems
are interesting because they are invariably found in a particular positive-feedback configuration:
the enzyme I is expressed downstream of the R-dependent promoter pX [26,52].

A computational and experimental characterization of I/R systems has been reported
previously [26]. We revisit those results in the context of the biochemical and topological
framework developed here. The key variables are (figure 8): the bacterial cell density ρ; the
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Figure 8. Schematic of an I/R quorum-sensing system. Cells have number density ρ . The intracellular enzyme I synthesizes
the chemical signal AHL, which diffuses into the medium and subsequently into other cells. The transcription factor R, when
bound to AHL, activates transcription of mRNA at the promoter pX. For clarity, we have separated the ‘issuing’ and ‘receiving’ of
the chemical signal, but these processes happen simultaneously within each cell.

concentration φ of AHL in the medium; and the intracellular concentrations YI and YR of the
enzyme I and transcription factor R. AHL levels will be proportional both to the enzyme levels
and to cell density: φ(t) = μρ(t)YI(t). The transcriptional output of promoter pX is a function of
instantaneous AHL and R levels. This biochemistry is summarized:

αX(φ, YR) = αX(μρYI, YR). (5.3)

Given two external promoters pA and pB, the system can be wired into the following topologies:

PX PA PB

I
R

⎛
⎝0 1 0∣∣∣∣

0 0 1

⎞
⎠

︸ ︷︷ ︸
feed-forward

,

PX PA PB

I
R

⎛
⎝1 0 0∣∣∣∣

0 1 0

⎞
⎠

︸ ︷︷ ︸
I-feedback

and

PX PA PB

I
R

⎛
⎝0 1 0∣∣∣∣

1 0 0

⎞
⎠

︸ ︷︷ ︸
R-feedback

, (5.4)

where matrices of the format (5.1) specify which promoters are driving which of the two inputs
of promoter pX. If the proteins I and R have translation rates QI, QR and decay rates γI, γR,
respectively, the feedback systems are described by the following differential equations:

I-feedback
1
γR

dYR

dt
= QRαR − YR

1
γI

dYI

dt
= QIαX(μρYI, YR) − YI

and R-feedback
1
γI

dYI

dt
= QIαI − YI

1
γR

dYR

dt
= QRαX(μρYI, YR) − YR.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (5.5)

Here, αI and αR are control parameters: transcription rates that are constant in time but whose
values can depend on external inputs; the function αX() embodies the frozen biochemical
parameters; and the structure of the equations indicates the feedback topology. There are
evidently two reasons why the responses of R-feedback and I-feedback systems might differ. The
first is biochemical: the promoter logic αX(μρYI, YR) is an asymmetric function of its two inputs
YI and YR (figure 9a). The second is structural or topological: the input YI is multiplied by the
cell density, whereas the input YR is fed in directly (figure 9b,c) causing these two variables to
influence the dynamics in completely distinct ways.

If cell density varies slowly compared with intracellular protein concentrations, equation (5.5)
can be solved to obtain quasi-steady-state values YI and YR as functions of ρ. Under positive
feedback, two distinct classes of responses can arise (figure 10a). For monostable responses
(type M; mnemonic sMooth), transcription increases smoothly with cell density. For bistable
responses (type B; mnemonic aBrupt), there is a range of cell densities over which two stable
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Figure 9. I/R feedback systems. (a) The input–output function of pX : the output transcription rate as a function of YI and
YR at a fixed cell density ρ . The contour plot shows the value of αX(μρYI , YR), as measured in Rai et al. [26]. (b,c) Feedback
topologies. Either R or I is controlled externally, while the other protein is expressed from the promoter pX with transcription
rate αX(μρYI , YR). The same promoter can also drive further outputs. The two topologies are different because the function
αX () is asymmetric, and because it is only the term YI that is multiplied by the cell densityρ . (b) R-feedback. (c) I-feedback.
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Figure 10. Density-dependent responses. (a) Four types of responses: (M)monostable, where transcription smoothly increases
with cell density; (B+) bistable,with a threshold density atwhich transcription abruptly increases; (B±) bistable andhysteretic
at the terminal density, where high and low transcription states coexist; (B−) bistable but uninduced even at the terminal
density, since the potentially bistable region is never reached. (b) Regions of {α, n} space that generate each response type;α
represents the external control parameter, whereas n represents the Hill coefficient based on a parametrization of the input–
output functionαX(μρYI , YR) [26].

transcription levels coexist. For each topology, a bifurcation analysis can be used to obtain regions
of parameter space that give rise to the different response types [26, supporting information].
Figure 10b shows a two-dimensional slice of the parameter space: a biochemical parameter n (the
Hill coefficient of R-DNA binding, which plays a key role in determining the form of αX()) is
varied along the x-axis; the control parameters αI or αR are varied along the y-axis. We see that
the R-feedback topology is constrained: it is restricted to a single response type independent of
the regulator level, once biochemical parameters are frozen. However, the I-feedback topology
is versatile: it can be tuned between smooth and abrupt density-dependent response types by
varying the regulator alone. This versatility might underlie the observed preference for I-feedback
systems among diverse bacterial species: an organism that is able to rapidly modify its response in
the face of an uncertain and fluctuating environment gains a crucial fitness advantage. Versatility
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Figure 11. Using topology to tame biochemistry. (a) Regulation, biochemistry and topology can each be used to modulate the
response of a genetic network, but on successively longer time scales. (b) We show a slice of biochemical space in which two
network topologies (I and II) can potentially generate two different types of responses (A and B) within the regions indicated.
Grey dots represent the unknown, a priori distribution of parameter values. Although region I-B appears larger than region I-A,
topology-I is much more likely to generate type A responses compared with type B responses because of the increased density
of dots in region I-A. However, because region I-A completely contains region II-A, we can say that topology-I is more likely to
generate type A responses than topology-II is, regardless of the density of dots.

is a purely topological property of the system, made without reference to specific biochemical
parameter values.

6. Conclusion
There are three types of changes that can be used to modulate the response of genetic networks,
operating on completely distinct time scales (figure 11a). Control parameters (such as the
transcription rates αI or αR) are the software: they can respond directly and dynamically to external
inputs, and vary on time scales from minutes to hours. Biochemical parameters (such as the Hill
coefficient n) are the firmware: they can be changed incrementally by mutations, infrequent events
that might become fixed in a population only over hundreds of generations. Network topology is
the hardware: it is possible to switch topology but this requires rare, potentially disruptive, large-
scale DNA rearrangements. The topological hardware and biochemical firmware are essentially
frozen, leaving only the regulated software to vary freely at short time scales.

When studying natural genetic networks, the approach to take depends on the extent of
available data. If topology is known and key parameters identified, we can use experimental
measurements to constrain as many parameters as feasible. Of the remaining parameters we can
try to identify a few that are expected to be critical, and investigate all possible system behaviours
as their values are varied. This approach is incomplete, however, because of a further unknown
that is often ignored: we rarely, if ever, know the a priori distribution of parameter values that are
likely to occur in nature. It is therefore impossible to estimate or compare the volumes of regions
in parameter space that give rise to any set of specified behaviours (such as A or B; figure 11b).
Even in this situation, topology provides a useful organizing framework. Consider the region of
parameter space of some genetic network associated with some desired behaviour. If this region
in the case of topology-II is completely contained within that in the case of topology-I, then
we can be certain that the topology-I is more likely to generate the desired behaviour, without
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knowing anything about the likelihood of occurrence of parameters (figure 11b). The analysis
thus generates a partial ordering among topologies independent of the actual biochemistry, and
suggests a means to search the space of all possible topologies for interesting networks. Searching
through topologies in this manner might be the only approach possible if the very existence
of certain interactions is in doubt. For each topology, we would scan over parameter values to
identify the range of possible behaviours. It could be the case that several topologies are consistent
with some desired outcomes. In that case, it might be necessary to add additional biologically
relevant constraints: robustness to parameter variation; adaptation to external changes; power
consumption efficiency; and so on. The approach of searching topological space with constraints
is emerging as a powerful means to understand the design principles of complex genetic networks
in the absence of detailed biochemical data [53–58].

We might soon achieve a nearly complete understanding of certain simple organisms through
a systematic analysis of the networks that govern their behaviour. Eventually such techniques
might even give us predictive power, allowing us to guess at the inner workings of organisms
based solely on the annotated sequences of their genomes. However, on very long time scales,
the structure of a network must itself be dynamic: natural selection can be thought of as driving a
search through topological space, converging on network architectures that generate biologically
useful outcomes [59,60]. As more and more genome sequences enter the databases, we can begin
to catalogue regularities in network architecture, or striking differences between different species.
Once enough such patterns are known, it might be possible to shift our focus away from the
question that concerned us here, of what genetic networks do, towards the broader question of
how such networks came to be.
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