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Independent component analysis is a probabilistic
method for learning a linear transform of a random
vector. The goal is to find components that are
maximally independent and non-Gaussian (non-
normal). Its fundamental difference to classical multi-
variate statistical methods is in the assumption of
non-Gaussianity, which enables the identification
of original, underlying components, in contrast to
classical methods. The basic theory of independent
component analysis was mainly developed in the
1990s and summarized, for example, in our mono-
graph in 2001. Here, we provide an overview of
some recent developments in the theory since the year
2000. The main topics are: analysis of causal relations,
testing independent components, analysing multiple
datasets (three-way data), modelling dependencies
between the components and improved methods for
estimating the basic model.

1. Introduction
It is often the case that the measurements provided
by a scientific device contain interesting phenomena
mixed up. For example, an electrode placed on the
scalp as in electroencephalography measures a weighted
sum of the electrical activities of many brain areas.
A microphone measures sounds coming from different
sources in the environment. On a more abstract level,
a gene expression level may be considered the sum of
many different biological processes. A fundamental goal
in scientific enquiry is to find the underlying, original
signals or processes that usually provide important
information that cannot be directly or clearly seen in the
observed signals.

Independent component analysis (ICA; Jutten &
Hérault [1]) has been established as a fundamental way

c© 2012 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/3.0/, which permits unrestricted use, provided the original author and
source are credited.
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of analysing such multi-variate data. It learns a linear decomposition (transform) of the data,
such as the more classical methods of factor analysis and principal component analysis (PCA).
However, ICA is able to find the underlying components and sources mixed in the observed data
in many cases where the classical methods fail.

ICA attempts to find the original components or sources by some simple assumptions of their
statistical properties. Not unlike in other methods, the underlying processes are assumed to be
independent of each other, which is realistic if they correspond to distinct physical processes.
However, what distinguishes ICA from PCA and factor analysis is that it uses the non-Gaussian
structure of the data, which is crucial for recovering the underlying components that created
the data.

ICA is an unsupervised method in the sense that it takes the input data in the form of a
single data matrix. It is not necessary to know the desired ‘output’ of the system, or to divide the
measurements into different conditions. This is in strong contrast to classical scientific methods
based on some experimentally manipulated variables, as formalized in regression or classification
methods. ICA is thus an exploratory, or data-driven method: we can simply measure some
system or phenomenon without designing different experimental conditions. ICA can be used
to investigate the structure of the data when suitable hypotheses are not available, or they are
considered too constrained or simplistic.

Previously, we wrote a tutorial on ICA [2] as well as a monograph [3]. However, that material
is more than 10 years old, so our purpose here is to provide an update on some of the main
developments in the fields since the year 2000 (see Comon & Jutten [4] for a recent in-depth
reference). The main topics we consider below are:

— causal analysis, or structural equation modelling (SEM), using ICA (§3);
— testing of independent components for statistical significance (§4);
— group ICA, i.e. ICA on three-way data (§5);
— modelling dependencies between components (§6); and
— improvements in estimating the basic linear mixing model, including ICA using

time–frequency decompositions, ICA using non-negative constraints, and modelling
component distributions (§7).

We start with a very short exposition of the basic theory in §2.

2. Basic theory of independent component analysis
In this section, we provide a succinct exposition of the basic theory of ICA before going to recent
developments in subsequent sections.

(a) Definition
Let us denote the observed variables by xi(t), i = 1, . . . , n, t = 1, . . . , T. Here, i is the index
of the observed data variable and t is the time index, or some other index of the different
observations. The xi(t) are typically signals measured by a scientific device. We assume that they
can be modelled as linear combinations of hidden (latent) variables sj(t), j = 1, . . . , m, with some
unknown coefficients aij,

xi(t) =
m∑

j=1

aijsj(t), for all i = 1, . . . , n. (2.1)

The fundamental point is that we observe only the variables xi(t), whereas both aij and si(t) are to
be estimated or inferred. The si are the independent components, whereas the coefficients aij are
called the mixing coefficients. This estimation problem is also called blind source separation. The
basic idea is illustrated in figure 1.
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signals separated by ICA

measured signals

ICA

(a)

(b)

Figure 1. The basic idea of ICA. From the four measured signals shown in (a), ICA is able to recover the original source signals
that were mixed together in the measurements, as shown in (b). (Online version in colour.)

The model can be expressed in different ways. Typically, the literature uses the formalism
where the index t is dropped, and the xi and the si are considered random variables. Furthermore,
the xi are usually collected into a vector x of dimension n, the same is done for the si and
the coefficients aij are collected into a mixing matrix A of size n × n. (In this paper, vectors are
denoted by bolded lowercase letters and matrices are bolded uppercase. Random variables and
their realizations are not typographically different, but the index t always denotes realizations.)
Then, the model becomes

x = As, (2.2)

where x and s are now random vectors, and A is a matrix of parameters. We can equally well
move to a matrix notation where the observed xi(t) are collected into a n × T matrix X, with i
giving the row index and t giving the column index, and likewise for si(t), giving

X = AS, (2.3)

where A is still the same matrix as in (2.2). A proper probabilistic treatment really requires the
formulation in (2.2) because in that formalism, we have random variables as in typical statistical
theory, and we can talk about their expectations, in particular, in the limit of an infinite number of
observations. The formulation in (2.3) is not suitable for probabilistic treatment in the same way
because the matrix X is now fixed by the observations and not random; however, it is useful in
other ways, as will be seen in the following.

(b) Identifiability
The main breakthrough in the theory of ICA was the realization that the model can be made
identifiable by making the unconventional assumption of the non-Gaussianity of the independent
components [5]. More precisely, assume the following.

— The components si are mutually statistically independent. In other words, their joint
density function is factorizable: p(s1, . . . , sm) =∏

j p(sj).
— The components si have non-Gaussian (non-normal) distributions.
— The mixing matrix A is square (i.e. n = m) and invertible.

Under these three conditions, the model is essentially identifiable [5,6]. This means that the mixing
matrix and the components can be estimated up to the following rather trivial indeterminacies:
(i) the signs and scales of the components are not determined, i.e. each component is
estimated only up to a multiplying scalar factor, and (ii) any ordering of the components is
not determined.
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The assumption of independence can be seen as a rather natural ‘default’ assumption when
we do not want to postulate any specific dependencies between the components. It is also more
or less implicit in the theory of classical factor analysis, where the components or factors are
assumed uncorrelated and Gaussian, which implies that they are independent (more on this
below). A physical interpretation of independence is also sometimes possible: if the components
are created by physically separate and non-interacting entities, then they can be considered
statistically independent.

On the other hand, the third assumption is not necessary and can be relaxed in different ways,
but most of the theory makes this rather strict assumption for simplicity.

So, the real fundamental departure from conventional multi-variate statistics is to assume that
the components are non-Gaussian. Non-Gaussianity also gives a new meaning to independence:
for variables with a joint Gaussian distribution, uncorrelatedness and independence are
in fact equivalent. Only in the non-Gaussian case is independence something more than
uncorrelatedness. Uncorrelatedness is assumed in other methods such as PCA and factor analysis,
but this non-Gaussian form of independence is usually not.

As a trivial example, consider two-dimensional data that are concentrated on four points:
(−1, 0), (1, 0), (0, −1), (0, 1) with equal probability 1

4 . The variables x1 and x2 are uncorrelated
owing to symmetry with respect to the axes: if you flip the sign of x1, the distribution stays
the same, and thus we must have E{x1x2} = E{(−x1)x2}, which implies their correlation (and
covariance) must be zero. On the other hand, the variables clearly are not independent because if
x1 takes the value −1, we know that x2 must be zero.

(c) Objective functions and algorithms
Most ICA algorithms divide the estimation of the model into two steps: a preliminary whitening
and the actual ICA estimation. Whitening means that the data are first linearly transformed by a
matrix V such that Z = VX is white, i.e.

1
T

ZZT = I or
1
T

T∑
t=1

z(t)z(t)T = I, (2.4)

where I is the identity matrix. Such a matrix V can be easily found by PCA: normalizing the
principal components to unit variance is one way of whitening data (but not the only one).

The utility of this two-step procedure is that after whitening, the ICA model still holds,

Z = VX = VAS = ÃS or z = Ãs, (2.5)

where the transformed mixing matrix Ã = VA is now orthogonal [2,5]. Thus, after whitening, we
can constrain the estimation of the mixing matrix to the space of orthogonal matrices, which
reduces the number of free parameters in the model. Numerical optimization in the space of
orthogonal matrices tends to be faster and more stable than in the general space of matrices,
which is probably the main reason for making this transformation.

It is important to point out that whitening is not uniquely defined. In fact, if z is white, then
any orthogonal transform Uz, with U being an orthogonal matrix, is white as well. This highlights
the importance of non-Gaussianity: mere information of uncorrelatedness does not lead to a
unique decomposition. Because, for Gaussian variables, uncorrelatedness implies independence,
whitening exhausts all the dependence information in the data, and we can estimate the mixing
matrix only up to an arbitrary orthogonal matrix. For non-Gaussian variables, on the other hand,
whitening does not at all imply independence, and there is much more information in the data
than what is used in whitening.

For whitened data, considering an orthogonal mixing matrix, we estimate Ã by maximizing
some objective function that is related to a measure of non-Gaussianity of the components. For a
tutorial treatment on the theory of objective functions in ICA, we refer the reader to Hyvärinen &
Oja [2] and Hyvärinen et al. [3]. Basically, the main approaches are maximum-likelihood
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estimation [7], and minimization of the mutual information between estimated components [5].
Mutual information is an information-theoretically motivated measure of dependence; so its
minimization is simply motivated by the goal of finding components that are as independent
as possible. Interestingly, both of these approaches lead to essentially the same objective function.
Furthermore, a neural network approach called infomax was proposed by Bell & Sejnowski [8]
and Nadal & Parga [9], and was shown to be equivalent to likelihood by Cardoso [10].

The ensuing objective function is usually formulated in terms of the inverse of Ã, whose rows
are denoted by wT

i , as

L(W) =
n∑

i=1

T∑
t=1

Gi(w
T
i z(t)), (2.6)

where Gi is the logarithm of the probability density function (pdf) of si, or its estimate wT
i z. In

practice, quite rough approximations of the log-pdf are used; the choice G(u) = − log cosh(u),
which is essentially a smoothed version of the negative absolute value function −|u|, works well
in many applications. This function is to be maximized under the constraint of orthogonality of
the wi. The z(t) are here the observed data points that have been whitened.

Interestingly, this objective function depends only on the marginal densities of the estimated
independent components wT

i z(t). This is quite advantageous because it means we do not
need to estimate any dependencies between the components, which would be computationally
very complicated.

Another interesting feature of the objective function in (2.6) is that each term
∑

t Gi(wT
i z(t))

can be interpreted as a measure of non-Gaussianity of the estimated component wT
i z. In fact, this

is an estimate of the negative differential entropy of the components, and differential entropy can
be shown to be maximized for a Gaussian variable (for fixed variance). Thus, ICA estimation is
essentially performed by finding uncorrelated components that maximize non-Gaussianity (see
Hyvärinen & Oja [2] and Hyvärinen et al. [3] for more details).

Such objective functions are then optimized by a suitable optimization method, the most
popular ones being FastICA [11] and natural gradient methods [12].

3. Causal analysis, or structural equation modelling
We start the review of recent developments by considering a rather unexpected application of
the theory of ICA found in causal analysis. Consider the following fundamental question: the
observed random variables x1 and x2 are correlated, and we want to know which one causes
which. Is x1 the cause and x2 the effect, or vice versa? In general, such a question cannot be
answered, and the answer could also be ‘neither’ or ‘both’ of them causing the other. However,
we can make some progress in this extremely important question by postulating that one of the
variables has to be the cause and the other one the effect.

If we further assume that the connection between the two variables takes the form of a linear
regression model, we are basically left with the following model selection problem. Choose
between the following two models:

model 1: x2 = b1x1 + e1 (3.1)

and

model 2: x1 = b2x2 + e2, (3.2)

where b1 and b2 are regression coefficients. Now, if model 1 holds, we can say that x1 causes
x2, and if model 2 holds, we can say that x2 causes x1. The residuals e1, e2 are assumed to be
independent of the regressors x1 and x2, respectively.

The classical problem with such model selection is that it is not possible for Gaussian variables.
If we assume the data are Gaussian, the two models give equally good fits. In fact, if we assume
the variables x1 and x2 are standardized to unit variance, the regression coefficients are equal,
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i.e. b1 = b2; they are equal to the correlation coefficient between x1 and x2. The variances of the
residuals are thus also equal, and the models are completely symmetric with respect to x1 and x2.
There is no way of distinguishing between the two models.

However, if the data are non-Gaussian, the situation is different. We can formulate the two
models as ICA models,

model 1:

(
x1
x2

)
=
(

1 0
b1 1

)(
s
e1

)
(3.3)

and

model 2:

(
x1
x2

)
=
(

b2 1
1 0

)(
s
e2

)
, (3.4)

where one of the components turns out to be equal to one of the observed variables. The two
components on the right-hand side are, by definition, independent and non-Gaussian; so these
are proper ICA models. Thus, selecting the direction of causality is simply reduced to choosing
between two ICA models.

In principle, we could just estimate ICA on the vector x = (x1, x2) and see whether the mixing
matrix is closer to the form of the one in model 1 or model 2. The zeros in the mixing matrices
are in different places, which clearly distinguish them. A more efficient way of choosing between
the models can be based on likelihood ratios of the two models [13,14]. (An earlier approach used
cumulants [15].)

In fact, this is just a special case of the general problem of estimating a linear Bayesian network,
or an SEM. In the general SEM, we model the observed data vector x as

x = Bx + e or xi =
∑
j�=i

bijxj + ei, (3.5)

with a matrix B that has zeros in the diagonal. The idea that each xi is a function of the other xj
formalizes the causal connections between the different variables. The theory of SEM has a long
history, but most of it is based on Gaussian models, and leads to the same kind of identifiability
problems as estimation of the basic linear mixing model (2.2) with Gaussian variables.

The linear non-Gaussian acyclic model (LiNGAM) was introduced by Shimizu et al. [16]
as a general framework for causal analysis based on estimation of (3.5). The assumption
of non-Gaussianity of the ei is combined with the assumption of acyclicity to yield perfect
identifiability of the model. The assumption of acyclicity is quite typical in the theory of Bayesian
networks: it means that the graph describing the causal relations (defined by the matrix B) is not
allowed to have cycles. Thus, the directions of causality are always well defined: if xi causes
xj, then it is not possible that xj causes xi, even indirectly. However, such acyclicity can be
relaxed [14,17].

An example of a network that can be estimated by LiNGAM is shown in figure 2.
The simplest method of estimating the LiNGAM model is to first perform ICA on the data, and

then infer the network structure, i.e. the matrix B from the mixing matrix of ICA. In principle, this
may seem straightforward because (3.5) implies x = (I − B)−1e, and thus B is very closely related
to the mixing matrix. However, the situation is much more complicated because ICA does not
give the components in any specific order, whereas the SEM defines a specific order for the ei
in the sense that each ei corresponds to xi (and not xi−1, for example). Thus, more sophisticated
methods are needed to infer the correct ordering, for example, based on acyclicity [16,18].

Estimating non-Gaussian Bayesian networks is a topic of intense research at the moment.
Different extensions of the basic framework consider temporal structure [19], and three-way
structure [20,21]. It is also possible to estimate nonlinear models, in which case non-Gaussianity
may no longer be necessary [22,23]. As already mentioned, cyclic models can be estimated,
replacing the acyclicity assumption by a weaker one [14,17].
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x5

x6

0.77

x3

0.12

x4

–0.15

x1

–1.1

–0.87 0.6

x2

0.019

–0.89 –0.43

Figure 2. An example of a causal network between the variables xi that can be estimated with LiNGAM. The non-zero bij ’s are
shown as arrows from xj to xi , with numerical values attached to them. The network is acyclic, which is seen in the fact that after
a suitable reordering of the variables (which has been done here), all the arrows go down.

4. Testing of independent components
After estimating ICA, it would be very useful to assess the reliability or statistical significance of
the components. In fact, in the literature, independent components estimated from various kinds
of scientific data are often reported without any kind of validation, which seems to be against the
basic principles of scientific publication.

The classical validation of estimation results is statistical significance (also called reliability),
which assesses if it is likely that the results could be obtained by chance. In the context of ICA,
we would like to be able to say if a component could be obtained, for example, by inputting just
pure noise to an ICA algorithm.

An additional problem that we encounter with computationally intensive and complex
estimation methods is what we could call computational reliability. Even if the data were perfect
and sufficient for any statistical inference, the computational algorithm may get stuck in bad local
optima or otherwise fail to produce meaningful results. Most ICA algorithms are based on local
optimization methods: they start from a random initial point and try to increase the objective
function at every iteration. There is absolutely no guarantee that such an algorithm will find the
real (global) optimum of the objective function. This is an additional source of randomness and
errors in the results [24].

To validate ICA results, it might seem, at first sight, to be interesting to test the independence of
the components because this is an important assumption in the model. In practice, however, this
is not very relevant because ICA methods can often estimate the decomposition quite well, even if
the components are far from independent, as discussed in §6 below. What is important in practice
is to assess whether the components correspond to some real aspects of the data, regardless of the
exact validity of the model assumptions.

One way to assess the reliability of the results is to perform some randomization of the data or
the algorithm, and see whether the results change a lot [24,25]. To assess the statistical significance,
we could randomize the data, for example, by bootstrapping. To assess computational reliability,
we could run the ICA algorithm from many different initial points. An additional difficulty for
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such assessment in the case of ICA is the permutation indeterminacy: the components are given
by the algorithm in a random order. Thus, we have to match the components from different runs.

The results of such randomization can be visualized by projecting the components from the
high-dimensional component space onto, say, a two-dimensional plane [24]. If an almost identical
component is output by the algorithm for all, or most of, the randomized runs, it is more likely to
be a true phenomenon in the data and not a random result.

In addition to such visualization, recently developed methods allow the statistical
quantification of the reliability of the components. Such a method seems to be difficult to obtain
for bootstrapping; so it was proposed by Hyvärinen [26] that one should analyse a number of
separate datasets. If the independent components are similar enough in the different datasets, one
can assume that they correspond to something real. In some applications, one naturally obtains a
number of data matrices that one would expect to contain the same independent components. In
the case of neuroimaging, for example, one typically measures brain activities of many subjects,
and tries to find components that the subjects have in common [27]. In general, even if one only
measures a single dataset, one can just divide it into two or more parts.

Using this idea of analysing different datasets, it is actually possible to formulate a proper
statistical testing procedure, based on a null hypothesis, which gives p-values for each component.
The key idea is to consider the baseline where the orthogonal transformation Ã estimated after
whitening is completely random; this gives the null distribution that models the chance level
[26]. In the space of orthogonal matrices, it is in fact possible to define ‘complete randomness’
as the uniform distribution in the set of orthogonal matrices owing to the compactness of that
set. To see whether a component is significantly similar in the different datasets, one computes
the distribution of the similarities of the components under this null distribution and compares its
quantiles with the similarities obtained for the real data. This gives a statistically rigorous method
for assessing the reliability of the components. The similarities can be computed either between
the mixing coefficients corresponding to each component [26] or between the actual values of the
independent components [28], depending on the application.

5. Group independent component analysis, or three-way data
In some applications, one does not measure just a single data matrix but several, as already
pointed out in §4. In other words, the random vector x is measured under different experimental
conditions, for different subjects, simply in different measurement sessions, etc. This gives rise
to what is called three-way or three-mode data, which is properly described by three indices,
for example, xi,k(t) where i is the index of the measured variable, t is the time index or a similar
sample index, and k = 1, . . . , r is the new index of the subject, the experimental condition or some
similar aspect that gives rise to several matrices.

This is often called the problem of group ICA because most of the literature on the topic
has been developed in the context of neuroimaging, where the problem is to analyse a group
of subjects [29]. In that context, k is the index of the subject.

There are basically two approaches to the group ICA problem. One is the approach already
described in §4: We do ICA separately on each data matrix and then combine the results, which
further gives us the opportunity to test the significance of the components. The second approach,
which we consider in this section, is to estimate some ‘average’ decomposition. For example, if
we assume that the mixing matrices are approximately the same, then we can try to estimate the
average mixing matrix.

The first, fundamental question in analysis of such three-way data is whether the three-way
structure can be simply transformed into an ordinary two-way structure without losing too much
information. In other words, can we just ‘collapse’ the data into an ordinary matrix and analyse
it with ICA, or do we need special methods? In fact, in many cases where ICA is applied, it does
not seem to be necessary to construct special methods for analysis of three-way data: it seems to
be enough to transform the data into a single matrix for a useful application of ICA.

 on January 14, 2013rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


9

rsta.royalsocietypublishing.org
PhilTransRSocA371:20110534

......................................................

Denote by Xk the data matrix obtained from the kth condition (or subject). Its rows are the
different variables i, and the columns different observations t. Thus, each Xk is a matrix that we
could input to an ICA algorithm, which would model it as Xk = AkSk.

Fundamentally, we can construct two different ‘total’ data matrices that contain all the Xk, i.e.
all the three-way data. We can concatenate the Xk either column-wise or row-wise, obtaining,
respectively, the matrices X1 and X2,

X1 =
(

X1, X2, . . . , Xr

)
and X2 =

⎛
⎜⎜⎜⎜⎝

X1
X2
...

Xr

⎞
⎟⎟⎟⎟⎠. (5.1)

Which one we should use depends on what we expect to be similar over conditions/subjects k. If
we assume that the mixing matrix is the same, but the components values are different, we should
use X1 because we have

X1 = A
(

S1, S2, . . . , Sr

)
. (5.2)

Thus, the ICA model holds for X1, with the common mixing matrix A. Application of ordinary
ICA on X1 will estimate all the quantities involved.

By contrast, if we assume that the independent component matrices Sk are similar for the
different subjects/conditions, while the mixing matrices are not, we should use X2 because we
have

X2 =

⎛
⎜⎜⎜⎜⎝

A1
A2
...

Ar

⎞
⎟⎟⎟⎟⎠S, (5.3)

and thus the ICA model holds, with the common matrix of independent components S. Here, we
can reduce the dimension of the data to n, the dimension of the original data matrices, and then
perform ICA to obtain the common independent component matrix S. The mixing matrices Ai can
be obtained afterwards, for example, by computing Ak = XkST/T. (A very interesting approach
that further explicitly models (small) differences between the Sk was proposed by Varoquaux
et al. [30].)

Doing ICA on X1 is typically quite straightforward. If the number of data points is
computationally too large after concatenation, one can always take a smaller random sample
of the columns of X1 before inputting it into an ICA algorithm; this will have little effect on the
results. On the other hand, X2 can have a very large dimension that can be quite problematic
from a computational viewpoint. Different computational strategies are available to cope with
this problem, as reviewed by Calhoun et al. [29]. A computationally efficient, if approximative,
method was recently proposed by Hyvärinen & Smith [31].

If we can make even stronger assumptions on the similarities of the data matrices for
different k, we can use methods developed for analysis of such three-way in the context of
classical (Gaussian) multi-variate statistics. The most relevant method is parallel factor analysis
or PARAFAC [32]. In the notation of ICA, the model assumed by PARAFAC can be expressed as

Xk = ADkS, (5.4)

where Dk is a diagonal matrix, specific for each k. That is, the mixing matrices and independent
components are the same for all k up to the scaling factors (and possibly switches of signs) given
by Dk. The differences between the conditions k are thus modelled by the diagonal matrices Dk.
PARAFAC is a major improvement to classical Gaussian factor analysis or PCA in the sense that
it can actually uniquely estimate the components even for Gaussian data. However, there is an
important restriction here, which is that the Dk must be linearly independent, which intuitively
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means that data matrices must be sufficiently different with respect to the scalings for different k.
In fact, if all Dk were equal, the model would reduce an ordinary linear mixing like in (2.2).

A combination of ICA with PARAFAC for estimation of (5.4) was proposed by Beckmann &
Smith [33], by basically assuming that the S in the PARAFAC model in (5.4) is non-Gaussian, like
in ICA. This has the potential of improving estimation from what would be obtained by either ICA
or PARAFAC alone. Estimation proceeds by considering the matrix X2, and maximizing an ICA
objective function under some constraints on the mixing matrix. The constraints on the mixing
matrix are a direct consequence of the definition of PARAFAC. On the other hand, if the data are
non-Gaussian enough, under these assumptions, it might be enough to do ICA on the average
data matrix X̄ =∑r

k=1 Xk/r to estimate the average mixing matrix and the average components.
Three-way structure is related to a powerful approach to ICA based on joint diagonalization

of covariance matrices. The idea is to estimate a number of covariance matrices, for example, in
a number of time blocks, or in different frequency bands (which is related to estimating cross-
correlation matrices with lags). Under suitable assumptions, joint (approximate) diagonalization
of such covariance matrices estimates the ICA model, and a number of algorithms have been
developed for such joint diagonalization [34–36]. Thus, these methods rely on an ‘artificial’
creation of three-way data from an ordinary data matrix. This suggests that when one actually
has directly measured three-way data, such joint diagonalization approaches might be directly
applicable and useful. A generalization of ICA based on this idea was proposed by Cardoso
et al. [37].

6. Modelling dependencies of components

(a) Why estimated components can be dependent
Often, the components estimated from data by an ICA algorithm are not independent. While
the components are assumed to be independent in the model, the model does not have enough
parameters to actually make the components independent for any given random vector x. This is
because statistical independence is a very strong property with potentially an infinite number of
degrees of freedom. In fact, independence of two random variables s1 and s2 is equivalent to any
nonlinear transformations being uncorrelated, i.e.

cov(f1(s1), f2(s2)) = E{f1(s1)f (s2)} − E{f1(s1)}E{f (s2)} = 0, (6.1)

for any nonlinear functions f1 and f2, with E{.} denoting mathematical expectation. This is
in stark contrast to uncorrelatedness, which means that (6.1) holds for the identity function
f1(s) = f2(s) = s. This equation suggests that to find a transformation that is guaranteed to give
independent components, we need an infinite number of parameters, i.e. a class of rather
arbitrary nonlinear transformations. It is thus not surprising that linear transforms cannot achieve
independence in the general case, i.e. for data with an arbitrary distribution. (See Hyvärinen et al.
[38, ch. 9] for more discussion.)

In fact, if we consider a real dataset, it seems quite idealistic to assume that it could be a linear
superposition of strictly independent components. A more realistic attitude is to assume that
the components are bound to have some dependencies. Then, the central question is whether
independence is a useful assumption for a particular dataset in the sense that it allows for
estimation of meaningful components. In fact, empirical results tend to show that ICA estimation
seems to be rather robust against some violations of the independence assumption.

On the other hand, modelling dependencies of the estimated components is an important
extension of the analysis provided by ICA. It can give useful information on the interactions
between the components or sources recovered by ICA. Thus, the fact that the components are
dependent can be a great opportunity for gaining further insights into the structure of the data.
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(a)

(b)

Figure 3. (a, b) An illustration of two signals whose activity levels are correlated, which leads to a correlation of their squares
s21 and s

2
2. However, the signals are uncorrelated in the conventional sense.

(b) Correlation of squares of components
A typical form of dependence in real data is correlation of variances or squares (also called
correlation of energies owing to an abstract physics analogy). This typically means that there
is some underlying process that determines the level of activity of the components, and the levels
of activity are dependent of each other. An illustration of such signals is shown in figure 3.

The simplest way of modelling this process is to assume that the components are generated
in two steps. First, a number of non-negative variance or scale variables vi are created. These
should be dependent on each other. Then, for each component, a zero-mean ‘original’ component
s̃i is generated independently of each other, and independently of the vi. Finally, the actual
components si in the linear model (2.2) are generated as the products,

si = s̃ivi. (6.2)

This generative model implies that the si are uncorrelated, but there is the correlation of
squares [38],

cov(s2
i , s2

j ) = E{s2
i s2

j } − E{s2
i }E{s2

j } > 0. (6.3)

The extensions of ICA with correlations of squares essentially differ in what kind of
dependencies they assume for the variance variables vi. In the earliest work, the vi were divided
into groups (or subspaces) such that the variables in the same group are positively correlated,
while the variables in different groups are independent [39]. A follow-up paper made this division
smooth so that the dependencies follow a ‘topographic’ arrangement on a two-dimensional
grid, which allows for easy visualization and has interesting neuroscientific interpretations [40].
A fixed-point algorithm for the subspace model was proposed by Hyvärinen & Köster [41].

In those early models, the dependency structure of the vi is fixed a priori (but see the extension
by Gruber et al. [42]). In more recent work, the dependency structure of the vi has been estimated
from data. The model in Hyvärinen et al. [40] in fact contains a parameter matrix that describes
the correlations between the vi, and one can estimate these parameters rather straightforwardly
[43]. A closely related formalism uses a generative model of the whole covariance structure of x
[44,45].
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Another line of work defines a parametrized pdf that does not have an explicit representation
of the variance variables vi but attempts to model the same kind of dependencies [46,47]. The pdf
is typically of the form

log p(x) =
∑

j

G

(∑
i

hij(w
T
i x)2

)
+ log Z(H), (6.4)

where the wi are the rows of the separating matrix like in (2.6), the data are whitened, and W
is constrained orthogonal. (The log-likelihood can be obtained from this formula by just taking
the sum over all observed data points x(t).) What is new here is that instead of taking the
nonlinear function G of the estimated components wT

i x separately, it is taken of the sums of
squares. Computing squares is of course intimately related to computing correlations of squares.
The matrix H describes the dependencies of the linear components wT

i x. In fact, the nonlinear
components

∑
i hij(wT

i x)2 take the place of the estimated maximally independent components
here. We can thus think of this model as a nonlinear version of ICA as well.

The function Z in (6.4) is the normalization constant or partition function of the model. What
makes estimation of these models challenging is that this function Z depends on the parameters
hij (it is constant only with respect to x) and there is no simple formula for it. Computationally
simple, general ways of dealing with this problem are considered by Hinton [48], Hyvärinen [49]
and Gutmann & Hyvärinen [50], among others, and applied on this model by Osindero et al. [46],
Köster & Hyvärinen [47] and Gutmann & Hyvärinen [50], respectively.

An alternative approach would be to try to find simple objective functions that are guaranteed
to find the right separating matrix in spite of correlations of squares [51,52]. Such methods
might be more generally applicable than models that rely on an explicit parametric model of
square correlations.

(c) Dependencies through temporal mixing
In the case of actual time series xi(t) and si(t), dependencies between the components (which
would usually be called source signals) can obviously have a temporal aspect as well. One starting
point is to assume that the innovation processes of the linear components si(t) are independent,
whereas the actual time series si(t) are dependent [53]. Using this idea, we can formulate a
non-Gaussian state-space model [54,55]. We first model the source signals si(t) using a vector
autoregression (VAR) process,

s(t) =
∑
τ>0

Bτ s(t − τ) + u(t), (6.5)

where the Bτ are the autoregressive coefficients, and u(t) is the innovation process. The
innovations ui(t) are assumed non-Gaussian and mutually independent, but owing to the
temporal mixing by the matrices Bτ , the source signals si(t) are not necessarily independent. Then,
we model the observed data x(t) by the conventional mixing model (2.2).

Various methods for estimating such a model have been proposed by Gómez-Herrero et al. [54],
Zhang & Hyvärinen [55] and Haufe et al. [56]. A particularly simple way to estimate the model
is to first compute the innovation process of x(t) by fitting a VAR on it, and then do basic ICA on
those innovations, i.e. the residuals [54]. (See also Hyv̈arinen et al. [19] for a related method based
on fitting ICA on the residuals of a VAR model.)

Alternatively, we can assume that the components si(t) are independent in a certain frequency
band only. If the frequency band is known a priori, we can just temporally filter the data to
concentrate on that frequency band. In fact, linear temporal filtering does not change the validity
of the linear mixing model, nor does it change the mixing matrix. Furthermore, an optimal
frequency band can be estimated from the data as well [57].

A different framework of dependent components in time series was proposed by Lahat
et al. [58], combining the idea of independent subspaces discussed earlier with suitable
non-stationarities.
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(d) Further models of dependencies
A model in which the components are linearly correlated (without considering any time structure)
was proposed by Sasaki et al. [59]. The idea is to consider a generative model similar to the one
in (6.2), but with, in some sense, opposite assumptions on the underlying variables: the s̃i are
linearly correlated, while the vi can be independent (above, it was approximately vice versa).
This changes the statistical characteristics because s̃i are zero-mean while the vi are non-negative.
In fact, the si are then linearly correlated. A topographic kind of dependencies was proposed by
Sasaki et al. [59].

Very general kinds of dependencies can be modelled by non-parametric models. However,
such as all non-parametric models, estimation may require very large amounts of data.
A framework modelling dependencies in the form of trees and clusters was proposed by Bach &
Jordan [60]. A related approach was proposed by Zoran & Weiss [61].

A recent trend in machine learning is ‘deep learning’, which means learning multi-layer
models, where each ‘layer’ is a linear transformation followed by a nonlinear function taken
separately of each linear component, like in a neural network [62–64]. In fact, many such models
can be considered to be related to ICA: ICA essentially estimates one layer of such a
representation. This may lead to the idea that we might just estimate ICA many times, i.e.
model the independent components by another ICA, and repeat the procedure. However, this
is meaningless because a linear transform of a linear transform is still a linear transform, and
thus no new information can be obtained (after the first ICA, any subsequent ICA would just
return exactly the same components). Some nonlinearities have to be taken between different
layers. The connection between ICA and deep learning models is a very interesting topic for
future research.

7. Improvements in the estimation of linear decomposition
Finally, we will review methods for more efficient estimation of the basic linear mixing model
(2.2) when the components si are independent as in the basic model assumptions.

(a) Independent component analysis using time–frequency decompositions
The basic ICA model assumes that the si and xi are random variables, i.e. they have no time
structure. In the basic theory, it is in fact assumed that the observations are independent and
identically distribution (i.i.d.), as is typical in statistical theory. However, it is not at all necessary
that the components are i.i.d. for ICA to be meaningful. What the i.i.d. assumption means in
practice is that any time structure of the data is ignored and what is analysed is simply the
marginal distribution of the data over time.

Nevertheless, it is clear that the time structure of the data could be useful for estimating
the components. In §6c, we already used it to model dependencies between the components,
but even in the case of completely independent components, time structure can provide more
information. In fact, it is sometimes possible to estimate the ICA model even for Gaussian data,
based on the time structure (autocorrelations) alone, as initially pointed out by Tong et al. [65]
and further developed by Belouchrani et al. [34], among others (see ch. 18 of Hyvärinen et al.
[3] or Yeredor [36] for reviews.) However, such methods based on autocorrelations alone have
the serious disadvantage that they only work if the independent components have different
autocorrelation structures, i.e. the components must have different statistical properties. This is
in stark contrast to basic ICA using non-Gaussianity, which can estimate the model even if all the
components have identical statistical properties (essentially, this means equal marginal pdfs).

Thus, it should be useful to develop methods that use both the autocorrelations and non-
Gaussianity. In an intuitive sense, such methods would more fully exploit the structure present
in the data, leading to smaller estimation errors (e.g. in terms of asymptotic variance). Various
combinations of non-Gaussianity and autocorrelations have been proposed. An autoregressive
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approach was taken in Hyvärinen [66] and Hyvärinen [67]: it is straightforward to construct,
for each component, a univariate autoregressive model with non-Gaussian innovations, and
formulate the likelihood or some approximation.

Perhaps a more promising recent approach is to use time–frequency decompositions, such
as wavelets or short-time Fourier transforms. Pham [68] proposed that we can assume that the
distribution of each time–frequency atom (e.g. a wavelet coefficient) of si(t) is Gaussian inside
a short time segment. The likelihood of such a Gaussian coefficient is easy to formulate: it is
essentially equal to − log σ , where σ is the standard deviation inside the time segment [68].
Note that Gaussianity of the time–frequency atoms does not at all imply the Gaussianity of
the whole signals because the variances are typically very different from each other; so we
have Gaussian scale mixtures that are known to be non-Gaussian [69]. Related methods with
non-Gaussian models for the atoms were developed by Zibulevsky & Pearlmutter [70], and
adaptation of the time–frequency decomposition was considered by Pham & Cardoso [71] and
Kisilev et al. [72]; see Gribonval & Zibulevsky [73] for a review.

A simple practical method for using such a time–frequency decomposition was proposed by
Hyvärinen et al. [74] (unaware of the earlier work by Pham). Considering the vector of short-time
Fourier transforms x̂f (t) of the observed data vector, we simply take the sum of the log-moduli
over each window and component, obtaining

L(W) =
n∑

i=1

∑
f ,t

− log |wT
i x̂f (t)|, (7.1)

where t is the time index, corresponding to the window in which the Fourier transform has
been taken, and f is the frequency index. Here, a sum of the squares of two Fourier coefficients
is implicitly computed by taking the modulus of wT

i x̂f (t), which is complex valued. It can be
considered a very rudimentary way of estimating the variance in a time–frequency atom.

This likelihood is to be maximized for orthogonal (or unitary) W for whitened data. Comparing
this with (2.6), we see that is it remarkably similar in the sense of taking a nonlinear function
Gi(s) = − log |s| of the estimate of the source, and then summing over both time and frequency.
Thus, from an algorithmic viewpoint, the fundamental utility in using (7.1) is that this objective
is of the same form as the typical objective functions of a complex-valued ICA model [75],
and thus can be performed by algorithms for complex-valued ICA [76]. Taking the time–
frequency structure into account is here reduced to a simple preprocessing of the data, namely
the computation of the time–frequency decomposition.

(b) Modelling component distributions
In most of the widely used ICA algorithms, the non-quadratic functions Gi are fixed; possibly just
their signs are adapted, as is implicitly done in FastICA [77]. From the viewpoint of optimizing
the statistical performance of the algorithm, it should be advantageous to learn (estimate) the
optimal functions Gi. As pointed out already, the optimal Gi has been shown to be the log-pdf of
the corresponding independent components [3,4]; so this is essentially a non-parametric problem
of estimating the pdfs of the independent components. The problem was analysed on a theoretical
level by Chen & Bickel [78], who also proposed a practical method for adapting the Gi. Further
non-parametric methods were proposed by Vlassis & Motomura [79], Hastie & Tibshirani [80]
and Learned-Miller & Fisher [81].

In fact, an ingenious approach to approximating the optimal Gi was proposed much earlier
by Pham & Garrat [7], who approximated the derivative of Gi as a linear combination of a set of
basis functions. It was shown that the weights needed to best approximate the derivative of Gi
can be obtained by a rather simple procedure. It seems that this method has not been widely used
mainly because the main software packages for ICA do not implement it, but on a theoretical
level, it looks extremely promising.
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An alternative approach was proposed by Bach & Jordan [82], in which the fashionable
reproducible kernel Hilbert space methods were used to approximate the dependency between
two estimated components. The theory was further developed in Gretton et al. [83], among others.
Another approach using a direct estimate of mutual information was developed by Stögbauer
et al. [84]. While development of such independence measures is an extremely important topic in
statistics, it is not clear what their utility could be in the case of basic ICA, where the problem can
be reduced so that we need only univariate measures of non-Gaussianity (e.g. differential entropy)
as in (2.6), which are simpler to construct than any explicit multi-variate (or bivariate) measures
of independence.

(c) Non-negative models
A completely different approach to estimation of a linear mixture model is provided by the idea of
using only matrices with non-negative entries in (2.3). This was originally proposed by Paatero &
Tapper [85] and Paatero [86] under the heading ‘positive matrix factorization’ in the context of
chemometrics, and later popularized by Lee & Seung [87] under the name ‘non-negative matrix
factorization’ (NMF).

It is important to understand the meaning of non-negativity here. Of course, many physical
measurements, such as mass, length or concentration, are by their very nature non-negative.
However, any kind of non-negativity is not sufficient for a successful application of NMF. What
seems to be important in practice is that the distribution of the measurements is such that zero
has a special meaning, in the sense that the distribution is qualitatively somewhat similar to an
exponential distribution. In other words, there should be many observations very close to zero.
If you consider measurements of masses that have the average of 1 kg with an approximately
Gaussian distribution and a standard deviation of 0.1 kg, it is completely meaningless to use the
‘non-negativity’ of that data. On the other hand, if one computes quantities such as (Fourier)
spectra, or histograms, non-negativity may be an important aspect of the data [88] because values
in high-dimensional spectra and histograms are often concentrated near zero.

In some cases, such non-negativity constraints in fact enable estimation of the model [89,90]
without any assumptions on non-Gaussianity. However, the conditions are not often fullfilled,
and in practice, the performance of the methods can be poor. That is why it has been proposed
to combine non-negativity with non-Gaussianity, in particular the widespread form of non-
Gaussianity called sparseness [91]. Such NMF with sparseness constraints can be seen as a
version of the ICA model where the mixing matrix is constrained to be non-negative, and the
independent components are modelled by a distribution that is non-negative and sparse (such
as the exponential distribution). Furthermore, a similar sparse non-negative Bayesian prior on
the elements of the mixing matrix can be assumed. If these assumptions are compatible with
the actual structure of the data, estimation of the model can be improved. A closely related
‘non-negative ICA’ approach was proposed by Plumbley [92].

See Plumbley et al. [93] for a detailed review, and Cichocki et al. [89] for further work including
extensions to three-way data.

8. Conclusion
It is probably fair to say that in the last 10 years, ICA has become a standard tool in machine
learning and signal processing. The generality and potential usefulness of the model were never
in question, but in the early days of ICA, there was some doubt about the adequacy of the
assumptions of non-Gaussianity and independence. It has been realized that non-Gaussianity
is in fact quite widespread in any applications dealing with scientific measurement devices (as
opposed to, for example, data in the social and human sciences). On the other hand, independence
is now being seen as a useful approximation that is hardly ever strictly true. Fortunately, it does
not need to be strictly true because most ICA methods are relatively robust regarding some
dependence of the components.
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Owing to lack of space, we did not consider applications of ICA here. The applications have
become very widespread, and it would hardly be possible to give a comprehensive list anymore.
What characterizes the applications of ICA is that they can be found in almost every field of
science owing to the generality of the model. On the other hand, each application field is likely
to need specific variants of the basic theory. Regarding brain imaging and telecommunications,
such specialized literature is already quite extensive. Thus, the future developments in the theory
of ICA are likely to be driven by the specific needs of the application fields and may be specific to
each such field.
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