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Biological Sensing of Chemicals

• We are interested in the
problem of sensing the value
of a constant external
concentration of chemicals.

• Our canonical motif will be a
receptor that binds to (and
unbinds from) a ligand.

• Other situations and motifs
also occur.

Taken from Bialek and Setayeshgar, Proc. Nat. Acad. Sci.
USA 102:10040-10045 (2005).
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A Single Receptor

Assume the cell attempts to estimate the concentration of an
external ligand through the instantaneous occupancy of a single
receptor.

• Ligands bind to the receptor at a rate k+CL.

• Ligands unbind at a rate k− (see Ref. [1] for a discussion
of subtleties).

• Average receptor occupancy r̄ = k+CL
k+CL+k−

.

• At any instant, receptor state is r = 0 with p = 1− r̄ and
r = 1 with p = r̄ .

We have a problem: clearly the instantaneous value of r tells us
very little about r̄ and hence CL; an instantaneous guess
cL = k−r/(k+(1− r)) of CL has an infinite variance.
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Many Receptors
This problem can be alleviated if we have many receptors.
With many receptors, the fraction with ligands bound (R) will
typically show small deviations about R̄ = p.

• With NR independent receptors, σ2
R = p(1−p)

NR
.

• Standard error propagation (see eg. Wikipedia) gives(
σcL

cLR=R̄

)2

=

(
1

cLR=R̄

)2(dcL
dR

)2

R=R̄

σ2
R .

=
1

p2(1− p)2
σ2
R =

1

NRp(1− p)
. (1)

• Note that this result is inconsistent with infinite variance
for NR = 1. Identify the cause of the inconsistency, and
verify that the variance for NR = 1 is indeed infinite.

• Are receptors on a cell independent? Is it worth covering
100% of a cell surface with receptors? See Ref. [2].
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Berg-Purcell Limit I

A good Bayesian would consider the history of the receptor. In
a classic paper (Ref. [2]) Berg and Purcell suggested that a cell
might average over the state of a receptor over some period T .
We will initially ignore the question of how this might be done,
and simply estimate the variance of such an estimate. For a
single receptor,

rT =
1

T

∫ t1+T

t1

dt r(t). (2)

The variance in concentration estimate is given by(
σcL

cLrT =r̄

)2

=

(
1

cLrT =r̄

)2(dcL
drT

)2

rT =r̄

σ2
rT
. (3)
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Berg-Purcell Limit II

Using cL = k−rT/(k+(1− rT )),(
σcL

cLrT =r̄T

)2

=
1

p2(1− p)2
σ2
rT
, (4)

Note that this is the same as of the error from the
instantaneous value of R (Eq. 1), but with σ2

rT
instead of σ2

R .
This is because r̄T = R̄ = p, and so cL is the same function of
rT and R.

Our task is to evaluate σ2
rT

.
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Berg-Purcell Limit III

σ2
rT

=
1

T 2

∫ t1+T

t1

∫ t1+T

t1

dsdt〈r(t)r(s)〉 − p2 (5)

r(t) is governed by the differential equation

dr

dt
= k+CL(1− r)− k−r . (6)

The solution is trivial, and allows us to show that

〈r(t)r(t + τ)〉 = p(1− p) exp(−(k+CL + k−)|τ |) + p2. (7)

Derive this relationship. Don’t forget that p, the average
occupancy of a ligand, is given by p = k+CL/(k+CL + k−).
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Berg-Purcell Limit IV

Thus

σ2
rT

=
p(1− p)

T 2

∫ t1+T

t1

∫ t1+T−t

t1−t
dτdt exp(−|τ |/τr ), (8)

with τr = 1/(k+CL + k−). The integral is straight-forward,
provided care is taken to split the integral over τ into two parts
(t1 − t < τ < 0 and 0 < τ < t1 + T − t). The result is

σ2
rT

=
2p(1− p)τr

T

(
1− τr

T
(1− exp(−T/τr ))

)
. (9)

Verify this result. Eqs. 4 and Eq. 9 imply (for T � τr )(
σcL

cLrT =r̄

)2

=
2τr

Tp(1− p)
=

2

Tk+CL(1− p)
=

2

n̄
, (10)

in which n̄ is the average number of binding events in time T .



ICDNS:
Chemosensing

Thomas
Ouldridge

The Basic
Problem

Berg-Purcell
Limit

Maximum
Likelihood
Estimation

Achieving the
MLE in a
Cellular
Context -
Driving

Integrating
Over Time -
More Driving

Summary

Problems

Berg-Purcell Limit VI

The Berg-Purcell result can be extended to NR independent
receptors; in this case(

σcL
cLRT =R̄

)2

=
2

n̄NR
. (11)

I always have the following nagging doubts with the
Berg-Purcell result:

• Although we’re doing better than before and synthesizing
data from multiple time points, is taking the average RT

the best a cell can do?

• How would a cell take an average over some time period
anyway?
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Maximum Likelihood Estimation I

We (and presumably the cell) have a model of the physics with
a single unknown parameter, the ligand concentration. We can
therefore calculate the likelihood of a series of binding and
unbinding events as a function of cL [3].

Assume we start with a single receptor in an unbound state.
The likelihood of surviving for a time t and then binding to a
ligand is exponentially distributed with an average of (k+cL)−1:

Pu(t) = k+cL exp(−k+cl t). (12)

Similarly, the probability of remaining ligand-bound for some
time s is

Pb(s) = k− exp(−k−s). (13)
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Maximum Likelihood Estimation II

The likelihood of observing a series of n binding and unbinding
events, with waiting times t+

i , t
−
i , i = 1..n, given a ligand

concentration cL is then

P({t+
i , t

−
i }|cL) = (k−k+cL)n exp

(
−

n∑
i=1

k−t
−
i + k+cLt

+
i

)

= (k−k+cL)n exp(−k−tb − k+cLtu). (14)

Here, tb =
∑n

i=1 t
−
i and tu =

∑n
i=1 t

+
i are the total time that

the receptor spends in bound and unbound states respectively.
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Maximum Likelihood Estimation
III

P({ti , si}|cL) = (k−k+cL)n exp(−k−tb − k+cLtu). (15)

In principle, we (or the cell) could combine this likelihood with
prior beliefs about cL to respond optimally to a series of
binding and unbinding events.

Main point: tb only appears in an overall normalisation factor
– it does not make certain values of cL more likely than others.
Any optimal statement about the external ligand concentration
should not include tb. For example, with a flat prior, the cL
that maximises the a posteriori likelihood is

cL =
n

tuk+
. (16)
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Maximum Likelihood Estimation
IV

How does this estimate compare to that obtained by Berg and
Purcell? The variance in cL estimated from n binding cycles is

(
σcL

cLtu=t̄u

)2

=

(
1

cLtu=t̄u

)2(dcL
dtu

)2

tu=t̄u

σ2
tu =

σ2
tu

t̄u
2
. (17)

Further,
σtu

2 = nσ2
t+ = n(t̄+)2 = t̄u

2/n (18)

So the variance in our estimate obtained from n cycles is 1/n,
compared to a variance of 2/n̄ obtained by Burg-Purcell in a
time T . In the limit of long times, therefore, the MLE is twice
as precise.
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Maximum Likelihood Estimation V

Clearly we can also combine estimates of the average waiting
time for binding from NR independent receptors, reducing the
variance of our estimate. But what is the real physical content
of the MLE?

In the Berg-Purcell case, the time intervals in which the ligand
is bound contribute to our estimate. Thus the variance
associated with these time intervals contributes to our
uncertainty. But, as highlighted by the MLE, these time
intervals actually tell us nothing about CL: ligand unbinding is
characterised by a CL-independent rate k−.

Instead, we should just measure the average waiting time for
binding.
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MLE in cells I

It is easy for us to look at a time trace and implement the
MLE. It is much harder to see how a cell would do it.

It seems like the downstream circuitry needed to calculate an
average unbinding time would be even more complicated than
that needed to integrate R for the Berg-Purcell approach.

• Is it possible to redesign the receptor so that we reduce
the variance associated with dissociation times?

• Does this help?
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MLE in cells II

So far we have modelled detachment as a Poisson process.
Such processes have a a variance equal to the square of their
mean; the are broad. In a markov process in which the
ligand-bound configuration is a single, discrete state, this is
unavoidable.

A process that requires several steps
can have a much lower variance
in completion time compared to its
mean [4]. If a process involves m > 1
irreversible exponentially-distributed
steps of mean τ , the overall mean is
mτ and variance mτ2 < m2τ2.
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MLE in cells III

To reduce variance, a systematic tendency to step in one
direction is vital (see practical). In terms of our receptors, we
need ligands to systematically bind in state 1 and unbind from
state m. This requires driving: an input of fuel (eg. ATP) [4,5].

Detailed balance [5]: Consider two states i and f . The rate
constants for transitions, qi→f and qf→i , are related by

qi→f

qf→i
=
πf
πi

= exp((Gi − Gf )/kT ), (19)

in which πi and πf are the probabilities of being in states i and
f in thermodynamic equilibrium. Gi and Gf are free energies,
defined by πx = exp(−Gx/kT ).
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MLE in cells IV

Given
qi→f

qf→i
= exp((Gi − Gf )/kT ), (20)

then in a loop 0→ 1→ ...→ m→ 0, the total free energy
change is

∆Gloop = −kT ln
m∏
i=0

qi→i+1

qi+1→i
< 0, (21)

where I have added ‘<’ because we are considering a system
that tends to go in one direction around the loop. But G0 is
the probability of being in state 0 in equilibrium. It should
therefore be single-valued - so how can ∆Gloop be non-zero?

This can only be achieved if something we have coarse-grained
away has actually changed during the cycle; i.e., the state of a
fuel molecule. We will explore these questions further in the
practical.
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Cells must perform readouts

Cells must have a molecular mechanism for reading out from
receptors.

• The signal must be conveyed to the interior of the cell.

• We would like to do some form of integration over the
receptor history.
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A passive readout mechanism

Can we achieve these two goals with a readout that binds and
unbinds from the receptor in a way that is influenced by the
binding of a ligand? This is a passive readout (it does not
consume fuel).

Such a passive readout mechanism
is shown in the Figure. The frac-
tion of free readout molecules, X ,
will depend on the fraction of ligand-
bound receptors R (provided k3/k4 6=
k1/k2). Clearly the readout can con-
vey the signal to the cell’s interior,
but we will show that it can’t inte-
grate receptor history.
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Mutual information I

Our discussion will make use of mutual information. We could
consider the external ligand concentration CL, the fraction of
receptors ligand bound R and the fraction of readouts bound to
receptors X as related random variables. The uncertainty of a
variable Z is quantified by its entropy H(Z )

H(Z ) = −
∑
z

p(z) log p(z). (22)

We can also quantify the uncertainty in Z given knowledge of a
second variable Y through the conditional entropy

H(Z |Y ) = −
∑
z,y

p(y)p(z |y) log p(z |y). (23)
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Mutual information II

The mutual information is the difference between the two

I (Z ,Y ) = H(Z )− H(Z |Y ) =
∑
z,y

p(y , z) log

(
p(y , z)

p(y)p(z)

)
.

(24)
I (Z ,Y ) quantifies the reduction in uncertainty about Z
provided by knowing about Y . An effective cellular readout
network X will have a high I (X ,CL).

• The mutual information is symmetric.

• I (Z ,Y ) ≥ 0 (prove this – see [6] for guidance).
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Data Processing Inequality I

Let’s say we have three variables V ,Y ,Z . Let us assume that
V depends on Z only via Y ;

P(V |Y ,Z ) = P(V |Y ). (25)

Then we can show

I (Z ,V ) ≤ I (Z ,Y ). (26)

This is the data processing inequality.
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Data Processing Inequality II

I (Z ,V ) ≤ I (Z ,Y ). (27)

Prove this. Hint:

• First prove that the mutual information between Z and
the combined variable (V ,Y ) can be expanded as

I (Z , (V ,Y )) = I (Z ,V )+I (Z ,Y |V ) = I (Z ,Y )+I (Z ,V |Y ),
(28)

where

I (Z ,V |Y ) =
∑
v ,y ,z

p(y)p(v , z |y) log
p(v , z |y)

p(v |y)p(z |y)
. (29)

• Show that I (A,B|C ) ≥ 0 in general.

• Show that I (Z ,V |Y ) = 0 in our special case.
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Passive Readouts Cannot Integrate
[7]

Why is all this relevant? In a steady state, our passive sensing
system must be in thermodynamic equilibrium.

Thermodynamic equilibrium implies a particular distribution of
free readout fraction X for a given fraction of receptors in the
ligand-bound state R. Therefore the probability distribution of
X at any given time is fully determined by R regardless of the
actual value of CL.

P(X |R,CL) = P(X |R). (30)

Thus I (CL,X ) ≤ I (CL,R) and we can’t do any better than the
instantaneous state of the receptors by looking at passive
readouts.
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Active Readouts Can Integrate

To break this restriction, we need to push the system out of
equilibrium. One way to achieve this is to use the receptors to
catalyse a change of state of the readouts [8].

Readouts can be phosphorylated/methylated by receptors, and
then decay by a separate pathway. This implies a net cycle in
the system, which must therefore be out of equilibrium.

Such a cycle can only be maintained
by using up chemical fuel. To read
more about how such a process can
effectively integrate the receptor sig-
nal, and to understand the trade-offs
involved, see Ref. [8].
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Summary

• Cell surface receptors are a key ingredient of chemosensing.

• The instantaneous signal from a single receptor is of
limited use.

• To improve, we need multiple receptors or to integrate a
single receptor’s state over time.

• Simply averaging a receptor’s occupancy over time is not
the optimal way to extract information on ligand
concentration from a trajectory - unbinding times offer no
information, but introduce variance into the signal.

• Variance in ligand unbinding times can be reduced if the
cell is willing to burn fuel.

• Internal readout molecules can be used to integrate the
receptor’s signal over time. To do so, however, the readout
process must itself use chemical fuel (it cannot be passive).
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Problems I

1 Please complete the tasks highlighted in the notes.

2 Consider a 4-state loop with transition rate matrix M (q is
an arbitrary rate constant with dimensions of inverse time):

0 q(2− ε)/100 0 εq/100
εq 0 q(2− ε) 0
0 εq 0 q(2− ε)

q(2− ε) 0 εq 0

 (31)

Mij is the rate of stepping from i to j . State 1 is a
receptor without a ligand; 2, 3 and 4 are ligand-bound
states. What does ε quantify? How much free energy is
dissipated in a loop 1→ 2→ 3→ 4→ 1 (see Eq. 21)?
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Problems II

3 Use the function “gillespie.m” to write a code for
simulating a markov model. Your code needs to take an
initial state and repeatedly apply “gillespie.m” to generate
a trajectory.

• “gillespie.m” will generate a transition and a transition
time with the appropriate probability. It will return a
vector [new state, transition time].

• “gillespie.m” requires an input of the form [transition rate
matrix, old state].

4 Estimate (through simulation) the mean and variance of
the time bound in a single binding event (time spent in
states 2,3,4 before reaching 1) as a function of 0 ≤ ε ≤ 1.

5 Estimate (through simulation) the mean and variance of
fractional receptor occupancy during a certain number of
binding cycles or over some time period T as a function of
0 ≤ ε ≤ 1.
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