Metabolic control analysis in a simple model

1. Calculating elasticities and control coefficients.

We will be exploring MCA properties and relations for a simple branched pathway, illustrated below:

Figure 1: A simple branched model metabolic network. X_i are metabolites; R_j are reactions.

- (a) The files dYdT2015.m and ComputeNu2015.m contain ODEs describing the system. The MATLAB command [t,y] = ode45(@dYdT, [0 1e3], x0, [], k) will solve these ODEs for initial condition x_0 and parameters k. Set all kinetic constants to 0.1. Given an initial condition at t = 0 where all concentrations are unity, use MATLAB to find the steady state of the system (we will assume that t = 1000 is long enough for the system to equilibrate). Record both the concentrations and the fluxes in this state.
- (b) Recall that an elasticity ϵ_X^{ν} describes the instantaneous relative change in a reaction rate ν induced by a relative change in a concentration X (for example, how enzymatic rate depends on substrate concentration). elasticity.m perturbs the steady-state concentration values by a small amount, and uses an ODE solver to compute the changes in flux provoked over a short time interval ($t = 10^{-6}$). These changes in flux are then used to write down the elasticities of the system, using $\epsilon_{X_i}^{\nu_j} = \frac{\delta \nu_j}{\delta X_i} \frac{X_i}{\nu_j}$. Obtain these elasticities, pick a couple and confirm that they match your expectation.
- (c) Flux control coefficients $C_{k_i}^{J_j}$ measure the relative change in *steady state* flux J_j through reaction (or pathway) j provoked by a change in the rate parameter k_i of the same, or a different reaction i. Use your steady-state concentration result to compute the steady-state fluxes of the unperturbed system. Then, perhaps following the approach of elasticity.m, perturb the rate parameters associated with each reaction by a small amount (say 10^{-5}) and find the new steady-state fluxes.
- (d) Use these changes in flux to write down the flux control coefficients of the system, using

$$C_{k_i}^{J_j} = \frac{\delta J_j}{\delta k_i} \frac{k_i}{J_j}.$$
(1)

(e) If there's time, do the same for concentration control coefficients

$$C_{k_i}^{X_j} = \frac{\delta X_j}{\delta k_i} \frac{k_i}{X_j} \tag{2}$$

2. Summation and connectivity theorems.

We have now obtained the flux and concentration control coefficients describing the influence of rate parameter perturbations on a metabolic system. We also have elasticities for this system, describing how reaction rates change with concentrations. We will now verify and interpret the fundamental theorems of metabolic control analysis.

- (a) The flux control summation theorem states that $\sum_i C_{k_i}^{J_j} = 1$ foor any j. Verify that this is the case (within numerical error). Which reactions are 'rate-limiting'? Verify that reactions with several nonzero control coefficients exhibit control in the directions you would expect.
- (b) How can a situation arise in which $C_{k_i}^{J_i} = 0$ (the rate parameter of a reaction plays no role in controlling flux through that reaction)?
- (c) The flux connectivity theorem suggests that $\sum_i C_{k_i}^{J_j} \epsilon_X^{\nu_i} = 0$ for J_j that responds to chemical X. Observe that reactions 3 and 4, by mass action, depend on the concentration of X_2 . Show that the connectivity theorem is obeyed for the link between J_3 (and J_4) and X_2 .