Metabolic control analysis in a simple model

1. Calculating elasticities and control coefficients.

We will be exploring MCA properties and relations for a simple branched pathway, illustrated below:
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Figure 1: A simple branched model metabolic network. X; are metabolites; R; are reactions.

The files dYdT2015.m and ComputeNu2015.m contain ODEs describing the system. The MATLAB command [t,y]
= ode45(@dYdT, [0 1e3], x0, [1, k) will solve these ODEs for initial condition zg and parameters k. Set all
kinetic constants to 0.1. Given an initial condition at ¢ = 0 where all concentrations are unity, use MATLAB to
find the steady state of the system (we will assume that ¢ = 1000 is long enough for the system to equilibrate).
Record both the concentrations and the fluxes in this state.

Recall that an elasticity €% describes the instantaneous relative change in a reaction rate v induced by a relative
change in a concentration X (for example, how enzymatic rate depends on substrate concentration). elasticity.m
perturbs the steady-state concentration values by a small amount, and uses an ODE solver to compute the changes

in flux provoked over a short time interval (t = 107%). These changes in flux are then used to write down the
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Flux control coefficients C, i measure the relative change in steady state flux J; through reaction (or pathway)
j provoked by a change in the rate parameter k; of the same, or a different reaction 7. Use your steady-state
concentration result to compute the steady-state fluxes of the unperturbed system. Then, perhaps following the
approach of elasticity.m, perturb the rate parameters associated with each reaction by a small amount (say
107°) and find the new steady-state fluxes.

Use these changes in flux to write down the flux control coefficients of the system, using
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If there’s time, do the same for concentration control coefficients
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2. Summation and connectivity theorems.

We have now obtained the flux and concentration control coefficients describing the influence of rate parameter per-
turbations on a metabolic system. We also have elasticities for this system, describing how reaction rates change with
concentrations. We will now verify and interpret the fundamental theorems of metabolic control analysis.
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The flux control summation theorem states that >, Ck]] = 1 foor any j. Verify that this is the case (within numerical
error). Which reactions are ‘rate-limiting’? Verify that reactions with several nonzero control coefficients exhibit
control in the directions you would expect.

How can a situation arise in which C,;] = 0 (the rate parameter of a reaction plays no role in controlling flux
through that reaction)?

The flux connectivity theorem suggests that ). C 7€t = 0 for J; that responds to chemical X. Observe that
reactions 3 and 4, by mass action, depend on the concentratlon of X5. Show that the connectivity theorem is
obeyed for the link between J3 (and J;) and Xs.



