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The study of networks has become a substantial interdisciplinary endeavor that encompasses myriad disciplines
in the natural, social, and information sciences. Here we introduce a framework for constructing taxonomies of
networks based on their structural similarities. These networks can arise from any of numerous sources: They
can be empirical or synthetic, they can arise from multiple realizations of a single process (either empirical
or synthetic), they can represent entirely different systems in different disciplines, etc. Because mesoscopic
properties of networks are hypothesized to be important for network function, we base our comparisons on
summaries of network community structures. Although we use a specific method for uncovering network
communities, much of the introduced framework is independent of that choice. After introducing the framework,
we apply it to construct a taxonomy for 746 networks and demonstrate that our approach usefully identifies
similar networks. We also construct taxonomies within individual categories of networks, and we thereby expose
nontrivial structure. For example, we create taxonomies for similarity networks constructed from both political
voting data and financial data. We also construct network taxonomies to compare the social structures of 100
Facebook networks and the growth structures produced by different types of fungi.
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I. INTRODUCTION

Although there is a long tradition of scholarship on
networks, the last two decades have witnessed substantial
advances in network science due to developments in physics,
mathematics, computer science, sociology, and numerous
other disciplines [1,2]. Given that the questions asked by
researchers in different fields can be surprisingly similar, it
would be useful to be able to highlight similarities in network
structures across disciplines in a systematic way. One way to
approach this is to formulate a suitable means of comparing
networks and to use this means to develop taxonomies of
networks. Such taxonomies have the potential to facilitate the
identification of problems from different disciplines that might
be approached similarly in terms of both empirical analyses
and theoretical modeling. For example, if a biological network
representing covariation of neural activity in different regions
of the brain is demonstrated to be structurally similar to a
financial network representing correlations of stock returns,
then certain types of edge thresholding methods or structural
null models might be applicable to both situations. (In this
paper, we use the terms “edge” and “link” interchangeably.)

From a historical perspective, classification of objects has
often been central to the progress of science, as demonstrated

*These authors contributed equally to this work.

by the periodic table of elements in chemistry and phylogenetic
trees of organisms in biology [3]. It is plausible that an
organization of networks has the potential to shed light
on mechanisms for generating networks, reveal how an
unknown network should be treated once one has discerned
its position in a taxonomy, or help identify a network
family’s anomalous members. Further potential applications
of network taxonomies include unsupervised study of multiple
realizations of a given model process (e.g., characterizing
the similarities and differences of many different networks
drawn from the Erdős-Rényi random graph model using the
same parameter values), examination of multiple empirical
networks with known similar origins or generative processes,
and the detection of anomalous changes in temporally ordered
series of networks. In this paper, we develop a framework
for the creation of network taxonomies [4]. In so doing, we
develop the requisite diagnostic tools and discuss several case
studies that suggest how our methodology can help illuminate
relationships both between and within families of networks.

In aiming to construct taxonomies of networks, one has
to consider the scales at which one wants to compare
differences in network structures. Much research has fo-
cused on extremes—either microscopic (e.g., node degree) or
macroscopic (e.g., mean geodesic distance) properties—and
numerous researchers have, for example, reported that many
empirical networks possess heavy-tailed degree distributions
or the small-world property [1,5]. Given the ubiquity of such
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findings, it is clear that more nuanced approaches are needed
to make useful comparisons between networks. Indeed, inter-
pretations of microscopic and macroscopic approaches often
implicitly assume that networks are homogeneous and ignore
“mesoscopic” structures in networks. To overcome some of
these limitations, earlier work has focused on the statistics
of small, a priori specified modules called “motifs” [6,7],
role-to-role connectivity profiles of nodes [8], the isolation
of statistically significant structures called “backbones” [9],
interrelations of network modules [10], examination of the
number of nodes located within “shells” [11], and the self-
similarity of networks as characterized by fractal exponents
[12]. The taxonomic framework that we develop in the present
paper builds on the idea of examining network modules by
computing community structures [13,14], as was also done
in the work of Ref. [15], and we subsequently compare
signatures derived from community structure across networks.
Importantly, although we use a specific method to identify
network communities, much of the introduced framework is
independent of that choice. Consequently, our comparative
framework can accommodate a large variety of community
detection schemes.

The remainder of this paper is organized as follows.
First, we discuss the detection of communities in networks
in order to find coherent groups of nodes that are densely
connected to each other. We then introduce mesoscopic
response functions (MRFs), which allow us to probe how
the community structure of a network changes as a function
of a resolution parameter that determines network scales of
interest. We then illustrate MRFs using several examples of
networks and compare the MRFs for several well-known
generative models of networks. We use MRFs to develop
a means to measure distance between a pair of networks,
and we use this comparative measure to cluster networks
and thereby develop taxonomies. Using 746 networks from
numerous different fields, we construct a taxonomy of these
networks. We then construct taxonomies of networks within
fields using several case studies: voting in the United States
(US) Senate, voting in the United Nations General Assembly,
Facebook networks at US universities, fungal networks, and
networks of stock returns in the New York Stock Exchange. In
each example, we expose structure that either is illuminating
or can be checked against information from an external source
(e.g., previously published investigations). This suggests that
our method for comparing networks is capturing important
similarities and differences. We conclude with a brief summary
and discussion of our results. In addition, we provide further
details in the appendices and Supplemental Material [16].
Among other topics, we examine the robustness of the obtained
taxonomies, address some computational issues, tabulate some
of the basic properties of the networks that we study, and
provide references for the network data sources used in this
study.

II. MULTIRESOLUTION COMMUNITY DETECTION

Our approach is based on network community structure
[13,14]. A community consists of a set of nodes for which
there are more edges (or, in the case of weighted networks, a
larger total edge weight) connecting the nodes in the set than

what would be expected by chance. The algorithmic detection
of communities is a particularly active area of network science,
in part because communities are thought to be related to
functional units in many networks and in part because they
can strongly influence dynamical processes that operate on
networks [13,14].

In this paper, we detect communities using the mul-
tiresolution Potts method [13,14,17], which is a generaliza-
tion of modularity optimization [13,14,17–20]. (Modularity
optimization is one of the most popular approaches for
detecting communities.) Given a network adjacency matrix
A with elements Aij , we find communities by minimizing the
Hamiltonian of the infinite-range N -state Potts spin glass

H(λ) = −
∑
i �=j

Jij (λ)δ(Ci,Cj )

= −
∑
i �=j

(Aij − λPij )δ(Ci,Cj ) , (1)

where Ci indicates the community (state) of node (spin) i, the
quantity λ is a resolution parameter, and J(λ) is the coupling
matrix with entries Jij (λ) representing the interaction strength
between node i and node j in the Potts Hamiltonian. We use
the (undirected-network) null model Pij = kikj /(2m), where
ki denotes the strength (total edge weight) of node i and m

is the total edge weight in the network [18]. By tuning the
resolution parameter λ, we can detect communities at multiple
scales of a network. Our particular choice of Jij implies that we
are optimizing modularity (with the addition of the resolution
parameter) [13,14].

To compare networks, we create profiles of summary
statistics that characterize the community structure of each
network at different mesoscopic scales. We also study a wide
variety of networks that contain different numbers of nodes
and edges. (We enumerate the networks that we consider in
Table II of the Supplemental Material.) To ensure that we
can compare the profiles for different networks, we sweep
the resolution parameter λ from a minimum value �min to a
maximum value �max (discussed in detail below). We define
these quantities separately for each network such that the
number of communities η into which a network is partitioned
is 1 at �min and is equal to the total number of nodes N at
�max. In other words, one can think of λ as a parameter that
controls the fragmentation of a network into communities.

To find the minimum and maximum resolution-parameter
values, consider the interactions in Eq. (1). An interaction
is called ferromagnetic when Jij > 0 and antiferromagnetic
when Jij < 0. For each pair of nodes i and j , we find the
resolution λ = �ij at which the interaction Jij is neutral [i.e.,
Jij (�ij ) = 0], leading to �ij = Aij/Pij . We thereby identify
two special resolutions:

�min = max
ij

{�ij |η(λ) = 1} , (2)

�max = max
ij

{�ij } + ε , (3)

where ε > 0 is any small number (we use ε = 10−6 in the
present paper). The resolution �min is the largest �ij value
for which community detection yields a single community;
note that this need not be the minimum nonzero value of �ij .
Including the small number ε in the definition of �max ensures
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that all edges are antiferromagnetic at resolution λ = �max and
thereby forces each node into its own community.

III. MESOSCOPIC RESPONSE FUNCTIONS (MRFS)

To describe how a network disintegrates into communities
as the value of λ is increased from �min to �max [see Fig. 1(a)
for a schematic], one needs to select summary statistics. There
are many possible ways to summarize such a disintegration
process, and we focus on three diagnostics that characterize
fundamental properties of network communities.

First, we use the value of the Hamiltonian H(λ) (1), which
is a scalar quantity closely related to network modularity
and quantifies the energy of the system [13,14]. Second,
we calculate a partition entropy S(λ) to characterize the
community size distribution. To do this, let nk denote the
number of nodes in community k and define pk = nk/N

to be the probability to choose a node from community k

uniformly at random. This yields a (Shannon) partition entropy
of S(λ) = −∑η(λ)

k=1 pk log pk , which quantifies the disorder in
the associated community size distribution. Third, we use the
number of communities η(λ).
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FIG. 1. (Color online) (a) Schematic of some of the ways that a
network can break up into communities as the value of λ (or ξ ) is
increased. (b) Zachary Karate Club network [23] for different values
of the effective fraction of antiferromagnetic edges ξ . All interactions
are either ferromagnetic or antiferromagnetic; i.e., for the values of
ξ that we used, there are no neutral interactions. We color edges
in blue if the corresponding interactions are ferromagnetic, and we
color them in red if the interactions are antiferromagnetic. We color
the nodes based on community affiliation. (c) The Heff , Seff , and ηeff

MRFs, and the interaction matrix J for different values of ξ . We
color elements of the interaction matrix by depicting the absence
of an edge in white, ferromagnetic edges in blue (dark gray), and
antiferromagnetic edges in red (light gray).

Because we need to normalize H, S, and η to compare them
across networks, we define an effective energy

Heff(λ) = H(λ) − Hmin

Hmax − Hmin
= 1 − H(λ)

Hmin
, (4)

where Hmin = H(�min) and Hmax = H(�max); an effective
entropy

Seff(λ) = S(λ) − Smin

Smax − Smin
= S(λ)

log N
, (5)

where Smin = S(�min) and Smax = S(�max); and an effective
number of communities

ηeff(λ) = η(λ) − ηmin

ηmax − ηmin
= η(λ) − 1

N − 1
, (6)

where ηmin = η(�min) = 1 and ηmax = η(�max) = N .
Some networks contain a small number of entries �ij

that are orders of magnitude larger than most other entries.
For example, in the network of Facebook friendships at
Caltech [21,22], 98% of the �ij entries are less than 100,
but 0.02% of them are larger than 8000. These large �ij

values arise when two low-strength nodes become connected.
Using the null model Pij = kikj /(2m), the interaction between
two nodes i and j becomes antiferromagnetic when λ >

Aij/Pij = 2mAij/(kikj ). If a network has a large total edge
weight but both i and j have small strengths compared
to other nodes in the network, then λ needs to be large
to make the interaction antiferromagnetic. In prior studies,
network community structure has been investigated at different
mesoscopic scales by considering plots of various diagnostics
as a function of the resolution parameter λ [13,14,17]. In
the present example, such plots would be dominated by
interactions that require large resolution-parameter values to
become antiferromagnetic. To overcome this issue, we define
the effective fraction of antiferromagnetic edges

ξ = ξ (λ) = �A(λ) − �A(�min)

�A(�max) − �A(�min)
∈ [0,1] , (7)

where �A(λ) is the total number of antiferromagnetic in-
teractions for the given value of λ. In other words, it is
the number of �ij elements that are smaller than λ. Thus,
�A(�min) is the largest number of antiferromagnetic interac-
tions for which a network still forms a single community, and
the effective number of antiferromagnetic interactions ξ (λ)
is the number of antiferromagnetic interactions (normalized
to the unit interval) in excess of �A(�min). The function ξ (λ)
increases monotonically in λ.

Sweeping λ from �min to �max corresponds to sweeping
the value of ξ from 0 to 1. (One can think of λ as a continuous
variable and ξ as a discrete variable that changes with events.)
As we perform such sweeping for a given network, the number
of communities increases from η(ξ = 0) = 1 to η(ξ = 1) = N

and yields a vector [Heff (ξ ), Seff(ξ ), ηeff(ξ )] whose components
we call the mesoscopic response functions (MRFs) of that
network. (We also sometimes refer to the vector itself as
an MRF.) Because Heff ∈ [0,1], Seff ∈ [0,1], ηeff ∈ [0,1], and
ξ ∈ [0,1] for every network, we can compare the MRFs across
networks and use them to identify groups of networks with
similar mesoscopic structures. In Fig. 1(b), we show the
Zachary Karate Club network [23] for different values of
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FIG. 2. (Color online) Values of the three mesoscopic response
functions [Heff (ξ ), Seff (ξ ), ηeff (ξ )] as a function of ξ ∈ [0,1]. By
construction, the MRFs start from the bottom front corner [Heff (ξ =
0), Seff (ξ = 0), ηeff (ξ = 0)] and end at the top back corner [Heff (ξ =
1), Seff (ξ = 1), ηeff (ξ = 1)]. We show a schematic representation of
[H (ξ ),S(ξ ),η(ξ )] for two networks; one is in blue (solid curve) and
the other is in red (dashed curve). The surface represents the mean
value of ηeff (ξ ) for binned values of [Heff (ξ ),Seff (ξ )] computed using
the 189 networks identified in the right column of Table I.

ξ . As more edges become antiferromagnetic, the network
fragments into smaller communities, and panel (c) shows the
corresponding MRFs. In Fig. 2, we plot the coordinates of the
three-dimensional MRF vector against each other. In Fig. 3,
we show example MRFs for several other networks.

Although minimizing Eq. (1) is an NP-hard problem
[24] and H possesses a complicated landscape of local
optima for many networks [25], there exist numerous good
computational heuristics that make finding a nearly optimal
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FIG. 3. (Color online) Example scalar mesoscopic response
functions (MRFs). The curves show Heff (magenta, dashed), Seff

(blue, dash-dotted), and ηeff (black, solid) as a function of the
effective fraction of antiferromagnetic edges ξ for the following
networks: (a) New York Stock Exchange (NYSE), 1980–1999 [27];
(b) fractal (10,2,8) [29]; (c) Biogrid D. melanogaster [35]; (d)
Garfield scientometrics citations [36]; (e) United Kingdom House of
Commons voting, 2001–2005 [30]; and (f) roll-call voting of 108th
United States House of Representatives [31–34].

partition of the network into communities at a given resolution
computationally tractable [13,14]. Thus far, we have reported
results that we obtained by optimizing modularity using the
locally greedy Louvain algorithm [26] because its speed is
important for studying large networks. We have compared the
results that we report in the present work to those obtained from
optimizing modularity using spectral and simulated-annealing
algorithms, and we obtained similar MRFs and taxonomies for
them (see Appendix B for more details).

IV. EXAMPLES OF MRFS

The shapes of the MRFs summarize many factors—
including the fraction of possible edges in a network that
are actually present, the relative weights of inter- versus
intra-community edges, the edge weights compared with the
expected edge weights in the null model, the number of
edges that need to become antiferromagnetic for a community
to fragment, and the way in which the communities frag-
ment (e.g., whether a community splits in half or a single
node leaves a community when a particular edge becomes
antiferromagnetic). To understand the effects of some of
these factors on the shapes of the MRFs, we consider some
examples.

Of particular interest are plateaus in the ηeff and Seff

curves that are accompanied by large increases in Heff . As
illustrated in Fig. 3(a), the New York Stock Exchange (NYSE)
network from 1980 to 1999 [27] provides a good example
of this behavior. This network is an example of a so-called
similarity network. We use this label to describe networks
that have been constructed by starting from some node-level
quantity or attribute and then defining the edges based on
some form of similarity or correlation measure between
each pair of nodes. Similarity networks tend to be complete
(or almost complete) and weighted networks, except when
they have been deliberately thresholded. In this particular
example, each node represents a stock, and the strength of
the edge connecting stocks i and j is linear in the Pearson
correlation between the daily logarithmic returns of the stocks.
(See Sec. IX E for more details.) Plateaus imply that as the
resolution λ is increased (leading to an increase in Heff), the
communities remain unchanged even though the number and
strength of antiferromagnetic interactions increase. As λ is
increased and more interactions become antiferromagnetic,
there is an increased energy incentive for communities to
break up. Community partitions in such plateaus tend to be
robust and have the potential to represent interesting structures
[13,14,17,28].

In Fig. 3(b), we show MRFs for a “fractal” network [29],
which demonstrates that plateaus in the ηeff and Seff curves
need not be accompanied by significant changes in Heff . Such
plateaus can be explained by considering the distribution of
�ij values. If several interactions have identical values of �ij ,
then the interactions all become antiferromagnetic at exactly
the same resolution value. This leads to a significant increase
in the effective fraction of antiferromagnetic edges ξ but only
a small change in Heff . If these interactions do not result in
additional communities, then we obtain plateaus in the ηeff and
Seff curves.

036104-4



TAXONOMIES OF NETWORKS FROM COMMUNITY STRUCTURE PHYSICAL REVIEW E 86, 036104 (2012)

To demonstrate other qualitative behaviors, we show the
MRFs for the Biogrid Drosophila melanogaster network and
the Garfield Scientometrics citation network in Fig. 3(c) and
Fig. 3(d), respectively. A common feature in these MRFs is
the sharp initial increase in the curves that results from the
networks initially breaking into two communities.

Another family of networks, which we will discuss in
more detail in our case studies, are political voting networks.
These voting networks are also similarity networks: We have
constructed these networks so that an edge between two nodes
indicates the level of agreement on votes between two entities,
and each edge takes a value between 0 and 1. In Fig. 3(e), we
show the MRFs for the voting network of the United Kingdom
House of Commons during the period 2001–2005 [30]; in
Fig. 3(f), we show the MRFs for the roll-call voting network for
the 108th (2003–2004) United States House of Representatives
[31–34]. In both cases, we observe that sharp increases in Heff

can be accompanied by only small changes in ηeff and Seff . To
see how this can arise, we again consider the distribution of
�ij values. If there is a large difference between consecutive
�ij values, then a large increase in λ is needed to increase
ξ ; this results in a large change in Heff . However, the change
in ηeff is small because this results only in a single additional
antiferromagnetic interaction.

V. COMPARING NETWORK MODELS

To provide further insights into MRFs, we consider Erdős-
Rényi (ER) [37], Barabási-Albert (BA) [38], and Watts-
Strogatz (WS) [39] networks. These network models are
stochastic, and there is a large ensemble of possible network
realizations for each choice of parameter values in these
models. However, even with the ensuing structural variation,
networks generated by a given one of these three models
exhibit similar properties at mesoscopic and macroscopic
scales, so we expect MRFs for different realizations of a given
model to be similar. In Fig. 4, we compare the MRFs for
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FIG. 4. (Color online) MRFs for 1000 realizations of Erdős-
Rényi (ER), Barabási-Albert (BA), and Watts-Strogatz (WS) net-
works. Each network has N = 1000 nodes and mean degree 〈k〉 = 10.
For each value of ξ , the upper curves show the maximum values
of Heff (top row), Seff (middle row), and ηeff (bottom row) for all
networks in the ensemble; the lower curves show the corresponding
minimum value, and the dashed curves show the corresponding mean.
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FIG. 5. (Color online) Upper panels: MRFs for Watts-Strogatz
networks for different values of the rewiring probability p. Each
network has N = 1000 nodes and mean degree 〈k〉 = 10. Lower
panels: Distribution of �ij values for each network. The MRFs for
p = 1 are indistinguishable from those of an Erdős-Rényi network
with N = 1000 and 〈k〉 = 10.

1000 realizations of each model for networks with N = 1000
nodes and mean degree 〈k〉 = 10. For the WS networks, we
set the edge rewiring probability at p = 0.1. As illustrated
in Fig. 4, we obtain a narrow range of possible MRFs for
fixed parameter values. This comparison illustrates that the
MRF profiles of the three different models are distinctive. In
addition, for each model, there is little variation in the shapes
of the MRFs for different network realizations that use the
same parameter values.

It is also instructive to consider variation in MRF shapes
for a particular network model for different parameter values.
We focus on WS networks because they illuminate the effect
of the distribution of �ij values on the shapes of the MRFs. In
Fig. 5, we show MRFs for WS networks for different values of
the edge rewiring probability p. (We continue using N = 1000
and 〈k〉 = 10.) We also show the distribution of �ij values for
each network.

For small rewiring probabilities, the MRFs have lots of
steps. As with prior examples, we can see how this feature
arises by considering the distribution of �ij values. When the
rewiring probability is small, many nodes possess the same
degree, which results in the presence of many interactions
with identical �ij values (see the bottom left panel of Fig. 5).
Because several interactions have identical �ij values, these
interactions all become antiferromagnetic at exactly the same
resolution-parameter value, so the behavior of MRFs changes
only for a small number of ξ values. As the rewiring probability
p is increased, the degree and �ij distributions become more
heterogeneous, which leads to smoother MRFs. For a rewiring
probability of p = 1, the WS network is an ER network.

VI. MEASURING DISTANCE BETWEEN NETWORKS

In the framework that we have introduced in this paper,
comparing two networks at the mesoscopic level amounts to
characterizing the differences in behavior of the corresponding
MRFs. To quantify such differences, we define a distance
between two networks with respect to one of the summary
statistics as the area between the corresponding MRFs. For
example, the distance between two networks i and j with
respect to the effective energy Heff is given by

dH
ij =

∫ 1

0

∣∣Hi
eff(ξ ) − Hj

eff(ξ )
∣∣ dξ . (8)
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TABLE I. Network categories, the total number of networks
assigned to each category, and the number of networks from each
category included in the taxonomy in Fig. 6. For the full taxonomy
that uses all 746 networks, see Fig. 1 of the Supplemental Material.

Category All networks Taxonomy networks

Political: voting 285 23
Facebook 100 15
Fungal 65 12
Synthetic 58 0
Financial 54 6
Metabolic 43 15
Social 26 26
Political: cosponsorship 26 26
Other 23 0
Protein interaction 22 22
Political: committee 16 16
Brain 12 12
Language 8 8
Collaboration 8 8
Total 746 189

For the effective entropy and effective number of communities,
the distances are given by dS

ij = ∫ 1
0 |Si

eff(ξ ) − S
j

eff(ξ )| dξ and

d
η

ij = ∫ 1
0 |ηi

eff(ξ ) − η
j

eff(ξ )| dξ , respectively.
We represent the resulting three sets of distances (computed

for each pair of networks from the 746 networks that we
consider; see Table I) in matrix form as DH, DS , and Dη. These
distance measures have several desirable properties. First, they
compare MRFs across all network scales (i.e., for all values of
ξ ); second, each distance is bounded between 0 and 1; third,
the distances are easy to interpret, as each of them corresponds
to the geometric area between (a certain dimension of) a pair
of MRFs; and finally, we find a posteriori that these distances
can be used to cluster networks accurately (see the discussions
below).

We have computed MRFs for the energy H, entropy S,
and number of communities η, but we can proceed similarly
with any desired summary statistic. If two diagnostics provide
similar information, then one of them can be excluded without
significant loss of information. We checked whether the
summary statistics were sufficiently different—for the set
of networks that we considered—for it to be worthwhile to
include all of them by calculating the Pearson correlation
coefficient between their corresponding distance measures.
The correlations between the pairs of distances are r(dH

ij ,dS
ij )

.=
0.36, r(dH

ij ,d
η

ij )
.= 0.24, and r(dS

ij ,d
η

ij )
.= 0.58. These correla-

tions are not sufficiently high to justify excluding any of the
summary statistics.

In the interest of parsimony—and given the nonvanishing
correlations between the distance measures—we reduce the
number of distance measures using principal component
analysis (PCA) [40]. Starting with N networks, we create
a 1

2N (N − 1) × 3 matrix in which each column corresponds
to the vector representation of the upper triangle of one of
the distance matrices DH, DS , Dη, and we perform a PCA
on this matrix. We then define a distance matrix Dp with
elements d

p

ij = wHdH
ij + wSd

S
ij + wηd

η

ij , where the weights
are the coefficients for the first principal component, and

we normalize the sum of squared coefficients to unity. The
coefficients are wH

.= 0.24, wS
.= 0.79, and wη

.= 0.57. The
first component accounts for about 69% of the variance, so
the distance matrix Dp provides a reasonable single-variable
projection of the distance matrices DH, DS , and Dη.

It is important that the distance measures for comparing
networks are robust to small perturbations in network structure.
Because many of the networks that we study are constructed
empirically, they might contain false positives and false
negatives. In other words, the networks might falsely identify
a relationship where none exists, and they also might fail to
identify an existing relationship. Consequently, the topology
and edge weights of an observed network might be slightly
different than those of the actual underlying network. To test
the robustness of our distance measures to such observational
errors, we recalculate the MRFs for a subset of relatively small
unweighted networks in which, for each network, we rewire
a number of edges corresponding to a given percentage of
the total number of edges (5%, 10%, 20%, 50%, or 100%).
See Appendix A for more details. (We study networks with
up to 1000 nodes and consider only a subset of 25 networks
because of the computational costs of rewiring a large number
of networks multiple times; however, we have performed the
same investigation for five different subsets of 25 networks and
obtained similar results. We list the networks in each subset
in Table I of the Supplemental Material.) We investigate two
rewiring mechanisms: one in which the degree distribution is
maintained, where we also ensure after each rewiring that the
network consists of a single connected component; and another
in which the only constraint is that the network continues
to consist of a single connected component after each edge
rewiring [41]. We find in both cases that the structures of
the block-diagonalized distance matrices for the 25 networks
(see Figs. 14 and 15 in Appendix A) are robust to random
perturbations of the networks, thereby suggesting that our
MRF distance measures are not sensitive to small structural
perturbations.

VII. CLUSTERING NETWORKS

We assign each of the 746 networks to a category based
on its type (see Table I). Due to the varying availability of
different types of network data, the networks that we consider
are not distributed evenly across these categories. Many of the
networks are either different temporal snapshots of the same
system or different realizations of the same type of network.
To have a more balanced distribution across the different
categories, we focus on 189 of the 746 networks. We include
only categories for which we have eight or more networks, and
we select a subset of networks (uniformly at random) from
each of the larger categories. We also exclude all synthetic
networks. See Sec. IV of the Supplemental Material for the
list of networks that we consider and Fig. 1 in Sec. II of the
Supplemental Material for a dendrogram showing a taxonomy
that we constructed using all 746 networks.

Our primary reason for assigning each network to a category
is to use such an external categorization to help assess the
quality of taxonomies produced by the unsupervised MRF
clustering. For each way of computing distance, we construct
a dendrogram for the set of networks using average linkage
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FIG. 6. (Color) Taxonomy for 189 networks (described in the
text). We construct the dendrogram (tree) using the distance matrix
Dp and average linkage clustering. We order the leaves of the
dendrogram to minimize the distances between adjacent nodes
(using the MATLAB option optimalleaforder) and color the
leaves to indicate the type of network.

clustering, which is an agglomerative hierarchical clustering
technique [13,42,43]. In Fig. 6, we show a dendrogram
obtained from the distance matrix Dp. The colored rectangle
underneath each leaf indicates the network category. Contigu-
ous blocks of color demonstrate that networks from the same
category have been grouped together using the MRF clustering
method, and the presence of such contiguous color blocks is
an indication of the success of the MRF clustering scheme.

The assignment of a network to one of these categories is, of
course, to some extent subjective, as several of the networks
could belong to more than one category. For example, we
could categorize the network of jazz musicians [44] as either a
collaboration network or a social network. The initial selection
of network categories is also somewhat subjective. One could
argue that if one has a social network category, then it is not
necessary to have a collaboration network category as well
because a collaboration network is a type of social network.
We have attempted to maintain a balance between having too
many categories and having too few of them. When such
ambiguities have arisen, we have systematically chosen the
most specific of the relevant categories (e.g., we placed the jazz
musician network in the category of collaboration networks
rather than in the category of social networks). Obviously, our
methodology does not depend on such choices.

VIII. TAXONOMIES OF EMPIRICAL NETWORKS

All of the networks in some categories appear in blocks
of adjacent leaves in the dendrogram in Fig. 6. For example,
there is a cluster of political voting networks at the far left
of the dendrogram. This cluster includes voting networks
from the US Senate, the US House of Representatives, the
UK House of Commons, and the United Nations General
Assembly (UNGA). The clustering of these voting networks
suggests that there are some common features in the network
representations of the different legislative bodies. We also
obtain blocks that consist of all political committee networks
and all metabolic networks.

There are also several categories for which all except one or
two networks cluster into a contiguous block. For example, all

but two of the fungal networks appear in the same block, and all
but one of the Facebook networks are clustered together. The
isolated Facebook network is the Caltech network, which is
the smallest network of this type and which appears in a group
next to that containing all of the other Facebook networks.
We also remark that the social organization revealed by the
community structure of the Caltech Facebook network has
been shown to be different from those of the other Facebook
networks [21,22].

Networks of certain categories do not appear in near-
contiguous blocks. For example, protein interaction networks
appear in several clusters. These networks represent inter-
actions within several different organisms, so we would not
expect all of them to be clustered together. Moreover, the
data that we employed include examples of protein interaction
networks for the same organism in which the interactions
were identified using different experimental techniques, and
these networks do not cluster together. This supports previous
work suggesting that the properties of protein interaction
networks are very sensitive to the experimental procedure
used to identify the interactions [45,46]. Social networks
are also distributed throughout the dendrogram. This is
unsurprising given the extremely broad nature of the category,
which includes networks of very different sizes with edges
representing a diverse range of social interactions. The leftmost
outlying social network is the network of Marvel comic
book characters [47], which is arguably an atypical social
network.

The grouping (and, to some extent, the nongrouping)
of networks by category suggests that the PCA distance
matrix Dp between MRFs of different networks produces a
sensible taxonomy. It is important to ask, however, whether
a simpler approach based on a single network diagnostic,
such as edge density, can be comparably successful at
constructing a taxonomy. In Appendix D, we demonstrate
using some well-known diagnostics that this does not appear
to be the case, as the diagnostics we tried were unable to
reproduce or explain the classifications that we produced using
the MRFs.

In order to compare the aggregate shapes of the MRFs
across categories, we show the bounds of the Heff , Seff , and
ηeff curves for each category in Fig. 7. We again consider
all empirical network categories with at least eight networks
in them. This illustrates that the MRFs for some classes
of networks (such as political cosponsorship and metabolic
networks) are very similar to each other, whereas there are
large variations in the MRFs for other categories (such as social
and protein interaction networks). The variety of different
MRFs for the social and protein interaction networks is
consistent with the fact that their constituent networks are
scattered throughout the dendrogram in Fig. 6.

IX. CASE STUDIES

We now consider several case studies, in which we generate
taxonomies using multiple realizations of particular types of
networks or multiple time snapshots of particular networks.
This enables us to compare these networks and (in some cases)
illustrate possible connections between network function and
mesoscopic network structure.
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FIG. 7. (Color online) MRFs for all of the network categories
containing at least eight networks (see Table I). At each value of ξ , the
upper curve shows the maximum value of Heff (magenta, left panel in
each category), Seff (blue, center panels), and ηeff (black, right panels)
for all networks in the category and the lower curve shows the mini-
mum value. The dashed curves show the corresponding mean MRFs.

A. Voting in the United States Senate

Our first example deals with roll-call voting in the US
Senate [31–34,48]. Establishing a taxonomy of networks
detailing the voting similarities of individual legislators com-
plements previous studies of these data, and it facilitates
the comparison of voting similarity networks across time.
We consider Congresses 1–110, which cover the period
1789–2008. As in Ref. [34], we construct networks from the
roll-call data [31,32] for each two-year Congress such that the
adjacency matrix element Aij ∈ [0,1] represents the number
of times Senators i and j voted the same way on a bill (either
both in favor of it or both against it) divided by the total number
of bills on which both of them voted. Following the approach
of Ref. [32], we consider only “nonunanimous” roll-call votes,
which are defined as votes in which at least 3% of the Senators
were in the minority.

Much research on the US Congress has been devoted to
the ebb and flow of partisan polarization over time and the
influence of parties on roll-call voting [33,34]. In highly
polarized legislatures, representatives tend to vote along
party lines, so there are strong similarities in the voting
patterns of members of the same party and strong differences
between members of different parties. In contrast, during
periods of low polarization, the party lines become blurred.
The notion of partisan polarization can be used to help
understand the taxonomy of Senates in Fig. 8, in which we
consider two measures of polarization. The first measure uses
DW-Nominate scores (a multidimensional scaling technique
commonly used in political science [32,33]), where the extent
of polarization is given by the absolute value of the difference
between the mean first-dimension DW-Nominate scores for
members of one party and the same mean for members of
the other party [31–33]. In particular, we use the simplest
such measure of polarization, called MPR polarization, which
assumes a competitive two-party system and hence cannot be
calculated prior to the 46th Senate. The second measure that
we consider is the maximum modularity Q over partitions of
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FIG. 8. (Color) (a) Dendrogram for Senate roll-call voting net-
works for the 1st–110th Congresses. Each leaf in the dendrogram
represents a single Senate. The two horizontal color bars below the
dendrograms indicate polarization measured in terms of optimized
modularity (upper bar) and DW-Nominate scores (lower bar). We
color the branches in the dendrogram corresponding to periods of
similar polarization. (b) Polarization of the US Senate as a function of
time, which we label using the Congress number. The height of each
stem indicates the level of polarization measured using optimized
modularity, and the color of each stem gives the cluster membership
of each Senate in (a). The black curve shows the DW-Nominate
polarization. Note that we have normalized both measures to lie in
the interval [0,1].

a network. It was shown recently that Q is a good measure of
polarization even for Congresses without clear party divisions
[34]. Modularity is given in terms of the energy H in Eq. (1)
by Q = −H(λ = 1)/(2m).

In Fig. 8(a), we include bars under the dendrograms
to represent the two polarization measures, both of which
have been normalized to lie in the interval [0,1]. The bars
demonstrate that Senates with similar levels of polarization
(measured in terms of both DW-Nominate scores and opti-
mized modularity values) are usually assigned to the same
group, suggesting that our MRF clustering technique groups
Senates based on the polarization of roll-call votes. We have
also colored dendrogram groups according to their mean levels
of polarization using optimized modularity, where the brown
group in the dendrogram corresponds to the most polarized
Senates and the blue group corresponds to the least polarized
Senates. We chose the specific number of groups by inspection
of the dendrogram. Although one ought to expect similarity in
the results from the modularity-based measure of polarization
and the MRF clustering, it is important to stress that the
MRF clustering method is based on different principles;
modularity attempts to quantify the extent to which a given
network is “modular,” whereas the MRF clustering explicitly
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FIG. 9. (Color online) Comparison of the (low-polarization) 85th
Senate and the (high-polarization) 108th Senate. The panels show (a)
the Heff MRFs and (b) the cumulative distributions of �ij values.

compares the differences in modular structures between any
two networks at all scales.

In Fig. 8(a), we also show the clusters that we obtained
for the Senate. They closely match the different periods
of polarization that have been identified using optimized
modularity and DW-Nominate [34]. The cluster with the
highest mean polarization (shown in brown) consists of
Senates 7, 26–29, 44, 46–51, 53, 55, 66, and 104–110. The
104th–110th Congresses correspond to a period of extremely
high polarization following the 1994 “Republican Revolution,”
in which the Republican party earned majority status in the
House of Representatives for the first time in more than 40
years [31,33,34]. The cluster with the second highest mean
polarization (shown in red) includes several contiguous blocks
of Senates, such as those from Congresses 21–25, 35–39, and
56–61. The 21st–25th Congresses (1829–1839) corresponded
to a period of partisan conflict between supporters of John
Quincy Adams and Andrew Jackson; it lasted until the
emergence of the Whigs and the Democratic Party in the 25th
Congress [34,49]. The American Civil War started during the
37th Congress, and a third party known as the Populist Party
was strong during the 56th–58th Congresses.

The main differences between different clusters occur in
the Heff response functions. For the most polarized Senates,
there is a sharp shoulder in the Heff MRF that becomes
less pronounced as the polarization decreases. We illustrate
this in Fig. 9, in which we compare the Heff MRFs for the
(low-polarization) 85th and (high-polarization) 108th Senates.
The shoulder in the Heff curve for the 108th Senate is
very pronounced, which can be explained by considering the
distribution of �ij values. The 108th Senate has a bimodal �ij

distribution that contains a trough at �ij = 1. Recall that �ij =
Aij/Pij , so �ij compares the observed voting similarity Aij

of legislators i and j with the similarity Pij = kikj /(2m) ex-
pected from random voting. If �ij < 1, legislators i and j vote
differently more frequently than expected (with respect to the
chosen null model); if �ij > 1, they vote more similarly than
expected. Therefore, the peaks in the �ij distribution above
and below 1 correspond, respectively, to intraparty and inter-
party voting blocs. In a Senate with low polarization, legisla-
tors from different parties often vote in the same manner, so the
values of �ij no longer separate two distinct types of behavior.

We also examined roll-call voting networks in the US House
of Representatives and found many similar features as the ones

that we have presented for the US Senate. For example, the
highly polarized 104th–110th Congresses, which followed the
“Republican Revolution,” appear in the same cluster for both
the House and Senate. We also observed some differences in
the clusters for the two chambers. For example, the 78th–102nd
Senates all appear in the same cluster. For the House, however,
Congresses 80, 88, 89, and 98–102 are not in the same cluster
as the other Congresses between 78 and 102; instead, they
are assigned to a cluster that also includes the 26th–28th
Houses. This was a particularly eventful period: The 25th
Congress saw the emergence of the Whigs and the Democratic
Party, and the abolitionist movement was also prevalent
(e.g., the Amistad seizure occurred in 1839 during the 26th
Congress).

B. Voting in the United Nations General Assembly

The United Nations General Assembly (UNGA) is one of
the principal organs of the United Nations (UN), and it is the
only part of the UN in which all member nations have equal
representation. Although most resolutions are neither legally
nor practically enforceable because the General Assembly
lacks enforcement powers on most issues, it is the only forum
in which a large number of states meet and vote regularly on
international issues. It also provides an interesting point of
comparison with roll-call voting in the US Congress, as the
level of agreement on UN resolutions tends to be much higher
than that in the Senate and House [50].

We study voting for the 1st–63rd sessions (covering the
period 1946–2008), where each session corresponds to a year
[51]. For each session, we define an adjacency matrix A whose
elements Aij represent the number of times countries i and
j voted in the same manner in a session (i.e., the sum of
the number of times both countries voted yea on the same
resolution, both countries voted nay on the same resolution, or
both countries abstained from voting on the same resolution)
divided by the total number of resolutions on which the UNGA
voted in a session. The matrix A, with elements Aij ∈ [0,1],
thereby represents a (similarity) network of weighted edges
between countries.

We cluster UNGA sessions by comparing MRFs for
the corresponding voting networks. In Fig. 10, we plot a
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FIG. 10. (Color online) Dendrogram for the United Nations Gen-
eral Assembly resolution voting network for the 1st–63rd sessions
(excluding the 19th session), covering the period 1946–2008. Each
leaf in the dendrogram represents a single session. In the main text,
we discuss the coloring of groups of dendrogram branches.
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dendrogram of the UNGA sessions and highlight some of
the clusters, which correspond to notable periods in the recent
history of international relations. The red cluster in the middle
of the dendrogram consists of all post-Cold War sessions
(1992–2008) except 1995. This group forms a larger cluster
with some UNGA sessions from the 1970s and a cluster
consisting of 1946, 1948, and 1950. These last three sessions
(which are shown in magenta) are all noteworthy: 1946 was
the first session of the UNGA, the Universal Declaration of
Human Rights was introduced during the 1948 session, and
the “Uniting for Peace” resolution was passed during the 1950
session. At the rightmost part of the dendrogram, we color in
black a group that consists of all sessions from 1979 to 1991
(excluding 1980). The beginning of this period marked the
end of détente between the Soviet Union and the United States
following the former’s invasion of Afghanistan at the end of
1979, and the end of this period saw the end of the Cold War.
The large blue cluster in the leftmost part of the dendrogram
consists primarily of sessions from before 1971 (though it also
includes the sessions in 1977 and 1995).

C. Facebook

We now consider Facebook networks for 100 US univer-
sities [21,22]. The nodes in each network represent users of
the Facebook social networking site, and the unweighted edges
represent reciprocated “friendships” between users at a single-
time snapshot in September 2005. We consider only edges
between Facebook users at the same university, as this allows
us to compare the structure of the networks at the different
institutions. These networks represent complete data sets
obtained directly from Facebook. In contrast to the previous ex-
amples, we are not comparing snapshots of the same network at
different times but are instead comparing multiple realizations
of the same type of network that have evolved independently.
Such real-world ensembles of network data are rare, and
constructing a taxonomy will hopefully allow us to compare
and contrast the social organization at these institutions.

In Fig. 11, we show the dendrogram for Facebook networks
that we produced by comparing MRFs. The two color bars
below the dendrogram indicate (top) the number of nodes N

in each network and (bottom) the fraction of possible edges
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FIG. 11. (Color online) Dendrogram for 100 Facebook networks
of US universities at a single-time snapshot in September 2005. We
order the leaves of the dendrogram to minimize the distances between
adjacent nodes. The color bars below the dendrogram indicate (top)
the number of nodes N in the networks and (bottom) the edge
density ed .

fe that are present (i.e., the edge density). The Facebook
networks range in size from 762 to 41,536 nodes, and the
edge density varies from 0.2% to 6%. In contrast to previous
examples, we observe in this case that two simple network
properties appear to explain most of the observed clustering of
the networks. An important feature of this example is that the
Heff , Seff , and ηeff MRFs are each very similar in shape and
lie in a narrow range across all 100 institutions (see Fig. 7).
Such extreme similarity is remarkable—as one can see in
Fig. 7, this contrasts starkly with most of the other examples
that we examine—and it suggests that all of the Facebook
networks have very similar mesoscopic structural features. If
one also considers demographic information, then one can find
interesting differences between the networks [21,22], but the
structural similarity indicated by the MRFs is striking.

D. Fungi

We also examined fungal mycelial networks extracted from
time series of digitized images of colony growth. In these
undirected, planar, weighted networks, the nodes represent
hyphal tips, branch points, or anastomoses (hyphal fusions),
and the edges represent the interconnecting hyphal cords
weighted by their conductivity [52–54]. For comparison, we
also digitized weighted networks of the acellular slime mold
Physarum polycephalum [55]. Fungal networks look like
trees but contain additional edges (known as cross-links) that
generate cycles.

As shown in Fig. 12(a), we find using our method
that replicate networks from different species at comparable
time points are grouped together. Furthermore, the aggregate
clustering pattern reflects increasing levels of cross-linking
that are characteristic of different species, as illustrated in
Fig. 12(b); this ranges from the low levels in Resinicium
bicolor to intermediate levels in Phanerochaete velutina and
highly cross-linked networks formed by Phallus impudicus.
By constructing a dendrogram for only one species but
including data from repeated experiments and over time
[see Fig. 12(c)], we observe a progression from trees at
early developmental times to an increasingly cross-linked
network later in mycelium growth [52,56]. In early growth,
the developmental stage appears to dominate the clustering
pattern, as networks from different replicates but of similar
age are grouped together. At later times, however, the fungal
networks exhibit a high aggregate level of similarity, and
the fine-grained clustering predominantly reflects the subtle
changes in structure evolving within each replicate.

E. New York Stock Exchange

As our final example, we consider a set of stock-return
correlation networks for the New York Stock Exchange
(NYSE), which is the largest stock exchange in the world (as
measured by the aggregate US dollar value of the securities
listed on it). Each node represents a stock, and the strength of
the edge connecting stocks i and j is linear in the Pearson
product-moment correlation coefficient between the daily
logarithmic returns of the stocks [27]. We consider N = 100
stocks during the time period 1985–2008 and construct two
networks for each year: one for the first half and one for the
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FIG. 12. (Color) (a) Dendrogram of networks for six different
species of Saprotrophic basidiomycetes and the slime mold Physarum
polycephalum. Each leaf represents a replicate experiment. The colors
and numbers correspond to the following species: (1) Resinicium
bicolor, (2) Physarum polycephalum, (3) Phallus impudicus, (4)
Phanerochaete velutina, (5) Stropharia caerulea, and (6) Agrocybe
gibberosa. (b) Images illustrating the network structure of the
different species [53]. (c) Dendrogram of network development in six
replicate time series of Phanerochaete velutina. We color the leaves
by time, and the color bar underneath the leaves indicates experiment
number (1, . . . ,6). In the inset, we show extracted networks that
illustrate the transition from simple branching trees to increasing
levels of interconnection (i.e., cross-linking) with time.

second half. This yields a sequence of (almost) fully connected,
weighted adjacency matrices whose elements quantify the
similarity of two stocks (normalized to the unit interval for
each time window).

We show the dendrogram for the NYSE networks in Fig. 13.
The first division of these networks classifies them into two
groups (which we have colored in blue and red). The red cluster
appears to correspond to periods of market turmoil, including
the networks for the second half of 1987 (including the Black
Monday crash of October 1987), all of 2000–2002 (including
and following the bursting of the dot-com bubble), and the
second half of 2007 and all of 2008 (including the credit and
liquidity crisis). The value of the NYSE composite index,
which measures the aggregate performance of all common
stocks listed on the NYSE [57], supports our hypothesis that
the red cluster is associated with periods of market turmoil.
Indeed, the networks in the red cluster correspond (with one
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FIG. 13. (Color online) Dendrogram for 48 NYSE networks
during the period 1985–2008. For each year, we include a network
both for its first half (H1) and for its second half (H2) [27]. The split
of the dendrogram into two clusters (a blue group on the left and a
red group on the right) appears to correspond to volatility. Leaf color
indicates mean daily volatility of the composite index.

or two exceptions) to the periods of high volatility of the
composite index (see Fig. 13), where we define the mean
volatility during a time period as the mean absolute value
of the daily return of the composite index.

X. CONCLUSIONS

We have developed an approach that facilitates the compar-
ison of diverse networks by summarizing network community
structure using what we call mesoscopic response functions
(MRFs). We have demonstrated how this approach can be used
to group networks both across categories and within categories.
Our work builds on prior research on network community
structure, which has focused predominantly on algorithmic
detection of communities rather than on subsequently using
communities for applications (such as comparing sets of
networks).

The development of algorithmic methods to detect com-
munities is frequently motivated by the idea that community
structure in a network representing a system has some bearing
on the function of that system. If different networks perform
different functions—and if their functions are constrained, at
least in part, by their mesoscopic structure—then it should
be possible in principle to derive a functional classification
of networks based on community structure. Although this has
mostly been presented as a presumption in the existing litera-
ture, it is actually an empirically testable hypothesis. Indeed,
we have shown in the present paper that one can systematically
exploit mesoscopic structure to obtain useful comparisons of
networks. This allows one to derive taxonomies for networks,
and these taxonomies also appear to have correspondence with
functional similarities. We observed that networks that were
not grouped with other members of the same class appeared to
be unusual in some respects, and we also demonstrated that we
could detect historically noted financial and political changes
from time-ordered sequences of networks.

We believe that our framework has the potential to aid in the
exploration and exploitation of similarities in network struc-
tures across both network types and disciplinary boundaries.
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APPENDIX A: ROBUSTNESS OF CLUSTERING

To examine the robustness of our clustering to false
positives (false links) and false negatives (false nonlinks), we
consider two network rewiring mechanisms, and we apply
the rewiring to each network among 25 of the 746 networks
in Table II in the Supplemental Material. We highlight these
25 networks in that table. (In the Supplemental Material, we
also consider five additional subsets of 25 networks.) The
first step in the procedure is to randomly rewire a number of
edges corresponding to a given percentage (5%, 10%, 20%,
50%, or 100%) of the total number of edges in each network,
subject to the constraints that we preserve the networks’ degree
distributions and the fact that each network consists of a
single connected component [58]. (That is, such a rewiring
of a number of edges equal to x% of the L edges in a
network amounts, in practice, to performing �xL� rewiring
steps; the same edge can be rewired multiple times.) Second,
we randomly rewire a given number of the edges subject only
to the constraint that each rewired network still consists of a
single component.

Because we are perturbing the original networks, we focus
on the distance matrices DH, DS , and Dη, because they
can be calculated directly for each network. We consider
25 of the 746 original networks of varying sizes and edge
densities; we highlight these networks in bold in Table II of
the Supplemental Material. In Fig. 14, the first column shows
the matrices for the original networks. (Note that the node
orderings for DH, DS , and Dη are not necessarily the same in
Fig. 14 because of the block diagonalization of the matrices.)
The subsequent columns show the mean-distance matrices
as increasing numbers of edges are rewired with the degree
distributions preserved; for a given row, the node ordering
in each column is fixed. The elements of the mean-distance
matrices for the randomizations are given by the mean pairwise
distances between networks, where the mean is calculated over
all possible pairs between 10 perturbations of each network.

We now describe in more detail the procedure that we
use to construct the mean-distance matrices. Let A and B

represent two different (unperturbed) networks and let the
sequences A1,A2, . . . ,A10 and B1,B2, . . . ,B10 represent 10
realizations of the perturbation process (e.g., at the 5% level)
for the networks. We then calculate the mean of the ensuing
10 × 10 = 100 pairwise distance values. Based on visual
inspection of Fig. 14, the matrices for the first few columns for

D
H

0% 5% 10% 20% 50% 100%

D
S

D
η

FIG. 14. (Color online) The first column shows the block-
diagonalized distance matrices DH (top row), DS (middle row), and
Dη (bottom row) for the 25 networks listed in bold in Table II of the
Supplemental Material. The other columns show block-diagonalized
mean-distance matrices following randomizations of the original
networks in which a given percentage of edges are rewired and the
degree distributions of the networks are preserved. (We also constrain
each rewired network to consist of a single connected component.)
The components of the mean-distance matrices are given by the mean
pairwise distances between the randomized networks’ MRFs (see the
main text for a more detailed explanation). The ordering of the nodes
in the plots is fixed for each row.

all of the distances are fairly similar to the original distance
matrices. This suggests some notion of robustness in our
clustering technique. We study only 25 networks because
of the computational costs of rewiring a large number of
networks multiple times; however, we have performed the
same investigation for five additional subsets of 25 networks
and obtained similar results. We list the networks in each subset
of 25 in Table I in the Supplemental Material.

To carry out a more thorough randomization of each
network, we now rewire every edge in each network 10
times on average. In Fig. 15, we show the DH, DS , and
Dη mean-distance matrices for this number of rewirings. We
again calculate the mean distance using the method described
in the previous paragraph. The first column again shows the
distance matrices for the original networks. The second and
third columns, respectively, show the distance matrices for
randomizations in which the degree distributions are preserved
and destroyed. The node orderings of the matrices in the second
and third columns are again the same as the orderings for the
matrix of the first column of the corresponding row. The second
column in Fig. 15 demonstrates that some block structure
remains in the distance matrices when the degree distributions
are preserved. The third column shows that much of this
structure is destroyed (though some block structure is still
visible) when the degree distributions are not preserved. When
the networks are “fully randomized” in this way—with the
only constraint being that each rewired network must consist
of a single connected component—one is in effect producing
random graphs. These random graphs, however, have common
properties, such as number of nodes and edge density.

APPENDIX B: COMPUTATIONAL HEURISTICS

1. Robustness of network MRFs

We detected all communities in the main text using the
locally greedy Louvain algorithm [26]; however, several

036104-12



TAXONOMIES OF NETWORKS FROM COMMUNITY STRUCTURE PHYSICAL REVIEW E 86, 036104 (2012)

D
H

original maintaining degree fully randomized
D

S
D

η

FIG. 15. (Color online) Block-diagonalized distance matrices
DH (top row), DS (middle row), and Dη (bottom row) for the 25
networks listed in bold in Table II of the Supplemental Material. The
first column shows the distance matrices for the original networks.
The second column shows the mean-distance matrices following
randomizations of the original networks in which 10 times the total
number of edges in the networks have been rewired such that the
degree distributions are preserved and the rewired networks each
consist of a single connected component. The third column shows
the mean-distance matrices following randomizations of the original
networks in which 10 times the total number of edges in the networks
have been rewired but only the fact that the networks consist of single
connected components is preserved (i.e., the degree distributions are
not preserved). The components of the mean-distance matrices for the
randomizations are given by the mean pairwise distances between the
networks.

alternative heuristics exist, so we now investigate whether
the choice of heuristic has any effect on the results. In
Ref. [25], Good et al. demonstrated that there can be extreme
near-degeneracies in the energy function. In particular, there
can be an exponential (or larger) number of low-energy
(i.e., high-modularity) partitions. Given this, it is unsurprising
that different energy-optimization heuristics can yield very
different partitions for the same network. Good et al. suggested
that the reason for such behavior is that different heuristics
sample different regions of the energy landscape. Because of
the potential sensitivity of results to the choice of heuristic,
one should treat individual partitions by particular heuristics
with caution. However, one can have more confidence in
the validity of the partitions if different heuristics produce
similar results. Here we compare the results for the Louvain
algorithm [26] with those for a spectral algorithm [19] and
simulated annealing [59].

In Fig. 16, we show MRFs for three networks calculated us-
ing Louvain [26], spectral [19], and simulated-annealing [59]
algorithms. For all three networks, the three algorithms agree
very closely on the shapes of theH, S, and η MRFs. The MRFs
are most similar for the roll-call voting network of the 102nd
US Senate [32–34], and the H MRF is almost identical for the
three heuristics. In general, we observe the largest differences
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FIG. 16. (Color online) Comparison of the MRFs produced using
spectral [19], Louvain [26], and simulated-annealing [59] optimiza-
tion heuristics. We show the MRFs for (a) the Zachary Karate Club
network [23], (b) the roll-call voting network of the 102nd US Senate
[32–34], and (c) the Garfield small-world citation network [36].

in the shapes of the MRFs when considering those produced
using the spectral algorithm versus those produced using the
other two algorithms. The energy values that we obtained using
this particular spectral algorithm (which is a bipartitioning
method) tended to be larger—i.e., less optimal—than those
that we obtained from the Louvain and simulated-annealing
algorithms. Moreover, the Louvain and simulated-annealing
algorithms are much more popular than spectral algorithms in
investigations of community structure [14] (and life is short),
so we only compare results using the Louvain and simulated-
annealing algorithms for the remainder of this appendix.

2. Robustness of resulting network taxonomies

Although Fig. 16 shows good agreement between the
shapes of the MRFs that we obtain from the different
computational heuristics, we nevertheless check that the small
differences that do occur do not have a significant effect on
the resulting network taxonomy. Because of the computational
cost of detecting communities using simulated annealing, we
investigate the effect on the taxonomy using a subset consisting
of 25 small networks. We highlight all of the networks that
we consider with an asterisk in Table II of the Supplemental
Material. (The largest network that we include is the cat
brain cortical/thalmic network [60], which has 1,170 nodes.)
Indeed, MRFs for small networks tend to be much noisier than
those for large networks—see, for example, Fig. 16(a), which
shows the MRFs for the 34-node Zachary Karate Club
network—so we expect that differences between algorithms
are likely to be more pronounced for small networks.

In Fig. 17, we show dendrograms obtained using the
Louvain and simulated-annealing modularity optimization
algorithms for a subset of 15 networks selected uniformly
at random from the 25-network subset that we mark using
asterisks in Table II of the Supplemental Material. On visual
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Biogrid: R. norvegicus
Phanerochaete velutina  control 11-2

BA: (100,2)
Communication within a sawmill on strike

Protein: oxidoreductase (1AOR)
Dolphins

Zachary karate club

Macaque brain: visual/sensory cortex
Macaque brain: visual cortex 2

Les Miserables
Cat brain: cortical/thalmic

Phanerochaete velutina  control 11-2

Louvain

2008 NCAA Football Schedule
Electronic circuit (s208)

Biogrid: R. norvegicus

BA: (100,2)
Communication within a sawmill on strike

Protein: oxidoreductase (1AOR)
Dolphins

Zachary karate club

Macaque brain: visual/sensory cortex
Macaque brain: visual cortex 2

Les Miserables
Cat brain: cortical/thalmic

Simulated annealing

FIG. 17. Comparison of the dendrograms produced using a
Louvain algorithm (top panel) and simulated annealing (bottom
panel) for a subset of 15 networks. The only difference between the
two dendrograms is the order in which the “Communication within
a sawmill on strike” and the “BA: (100,2)” networks cluster together
and the distances at which the other networks become assigned to
the same cluster. The names of the networks are as they appear in
Table II in the Supplemental Material.

inspection, the dendrograms appear to be very similar, as there
are only a few small differences in the heights at which leaves
and clusters combine. To quantify the similarity between a pair
of dendrograms with underlying distance matrices denoted s
and t, we define a correlation coefficient ϕ as

ϕ =
∑

i<j (sij − s̄)(tij − t̄)√[∑
i<j (sij − s̄)2

][ ∑
i<j (tij − t̄)2

] , (B1)

where s̄ is the mean of the distances sij and t̄ is the mean
of the distances tij . A pair of dendrograms derived from
identical distance matrices have a correlation coefficient of
ϕ = 1. The correlation for the example dendrograms shown
in Fig. 17 is 0.997. To get a better sense of the extent of
this correlation, we compare the observed correlations with
those obtained for randomized dendrograms. To make the
comparison, we first produce a distribution of correlation
coefficients ϕ between pairs of dendrograms drawn from
a large number of empirical (unrandomized) dendrograms
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FIG. 18. (Color online) Comparison of the distributions of cor-
relation coefficients between empirical Louvain dendrograms and
empirical (red, hollow) and randomized (blue, solid) simulated-
annealing dendrograms. See the text for details.

produced by the Louvain and simulated-annealing algorithms.
Because of the computational costs of calculating the MRFs
from the simulated-annealing algorithm, we only consider
the subset of 25 networks identified in Appendix B 1. We
select 15 networks uniformly at random from this subset of
25 networks and generate two dendrograms similar to those
in Fig. 17: One corresponds to the distance matrix produced
by the Louvain algorithm, and the other corresponds to the
distance matrix produced by simulated annealing. We then
calculate the correlation coefficient between the two distance
matrices. We repeat this process 10,000 times to obtain 10,000
correlation coefficients, whose distribution we show using the
hollow red histogram in Fig. 18. This procedure makes it
possible to compare a large number of dendrograms at the
computational cost of calculating simulated annealing MRFs
for a total of 25 networks, which we highlight with asterisks
in Table II of the Supplemental Material.

We compare this observed distribution of correlation
coefficients to a randomized reference. We focus on the corre-
lation between empirical Louvain dendrograms (i.e., empirical
dendrograms that result from distance matrices produced by
the Louvain method) and randomized simulated-annealing
dendrograms (i.e., dendrograms that result from distance
matrices produced by the simulated-annealing algorithm and
are then randomized). We proceed as follows: For each of the
10,000 dendrogram pairs that we assembled from 15-network
subsets, we create 100 randomizations of the simulated-
annealing dendrogram, and we then calculate the correlation
coefficient between each of these randomized dendrograms
and the corresponding empirical Louvain dendrogram. The
resulting distribution from 10,000 repetitions is the solid blue
histogram in Fig. 18. To randomize the simulated-annealing
dendrogram, we used the double-permutation procedure de-
scribed in Refs. [61,62]. This procedure has two steps.
First, we randomize the distances at which the different
clusters are combined. For example, consider an unrandomized
dendrogram in which clusters A and B are combined at a
distance of 0.45, and clusters C and D are combined at a
distance of 0.65; after the randomization, A and B might be
combined at a distance of 0.65, and C and D might be combined
at a distance of 0.45. Second, we randomize the networks
corresponding to each leaf in the dendrogram. This two-step
randomization procedure maintains the underlying distances
and the topology of the dendrogram.
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As mentioned above, we show the distributions of correla-
tion coefficients between empirical Louvain dendrograms and
both empirical (unrandomized) and randomized simulated-
annealing dendrograms in Fig. 18. The correlation is clearly
much higher for the empirical case, as there is only a very slight
overlap in the tails of the two distributions. The correlation
between the Louvain and simulated-annealing dendrograms is
greater than 0.99 for about 63% of the studied dendrograms.

APPENDIX C: DIAGNOSTIC FOR ASSESSING THE
CLUSTERING FROM DIFFERENT DISTANCE MEASURES

An examination of the leaf colors of the dendrogram in
Fig. 7 illustrates that the employed distance measure groups
networks from a variety of categories—including political
voting networks, political committee networks, Facebook
networks, metabolic networks, and fungal networks. A visual
comparison provides a reasonable starting point for assessing
the effectiveness of different distance measures at clustering
networks. To quantify how effectively each distance matrix
(DH, DS , Dη, and Dp) clusters networks of the same type,
we introduce a clustering diagnostic, which we denote by
α(h) and will explain shortly. Because the assignment of
networks to categories is subjective and because some of
the categories include networks of very different types, it
would be inappropriate to assess the effectiveness of a distance
measure based on how well it clusters networks in very
broad categories. We thus focus our examination on narrower
categories whose constituent networks are clustered fairly
tightly in Fig. 7. This includes the following eight categories
of networks: Facebook, metabolic, political cosponsorship,
political committee, political voting, financial, brain, and
fungal.

The value of the clustering diagnostic α(h) depends on
where one “cuts” the dendrograms. We start by constructing a
dendrogram for each of the four distance matrices DH, DS , Dη,
and Dp. Performing a horizontal cut through a dendrogram
at a given height h splits the dendrogram into multiple
disconnected clusters (see Fig. 17). For each such cluster, we
calculate the proportion of networks from a particular category
that are contained in it. For example, if a cut produces three
clusters and if we consider the Facebook category, then we
might find that one cluster contains two tenths of the Facebook
networks, a second cluster has three tenths of those networks,
and the third cluster has the remaining half of those networks.
We calculate these membership fractions for each network
category and for each cluster. We then identify, for each
category, what we call the plurality cluster, which we define
as the cluster that includes the largest fraction of networks
from that category. In the above example, the third cluster is
the plurality cluster for the Facebook category. Our diagnostic
α(h) is then defined by adding across all eight categories the
fraction of networks in the plurality clusters:

α(h) =
8∑

j=1

γj (h) , (C1)

where γj (h) is the plurality fraction for the j th category of
networks for the given cut at height h of the dendogram.
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FIG. 19. (Color online) Comparison of the effectiveness of the
employed distance measures at clustering networks of the same
category. As discussed in the main text, we quantify this using
the clustering diagnostic α(h). We calculate dendrograms from four
distance matrices (DH, DS , Dη, and Dp) and compare the resulting
values of α(h) for different sets of categories. (a) The value of the
clustering diagnostic α(h) as a function of dendrogram cut level h

(i.e., where the dendrogram is split to clusters) for the following eight
categories of networks: Facebook, metabolic, political cosponsorship,
political committee, political voting, financial, brain, and fungal. (b)
The value of α(h) for the largest five of the above eight categories
(Facebook, metabolic, political cosponsorship, political committee,
and political voting) and (c) for the smallest five of the above eight
categories (Facebook, metabolic, financial, brain, and fungal). The
maximum possible value of α(h) in each panel is equal to the number
of categories considered in each panel. The values of α(h) obtained
using the PCA-distance matrix Dp (gray solid curve) are usually
higher than those obtained using the other three distance measures.
This suggests that PCA distance is the most effective of the four
employed clustering measures.

We perform similar calculations for each level of the
dendrogram and use the resulting values of α(h) to assess the
effectiveness of the different distance measures at clustering
the networks. For example, at the root of the dendrogram, all of
the networks are in a single cluster, so the maximum fraction of
networks in the same cluster is one for every network category.
Given the above choice of eight categories, this yields α = 8.
However, as one considers lower levels of the dendrogram, the
clusters break up more and more, so the fraction of networks
in the plurality cluster in each category typically decreases.
Effective distances measures ought to result in relatively high
values for α(h) for many values of h.

In Fig. 19, we compare the values of α(h) at each level
of the dendrogram for DH, DS , Dη, and Dp. For each of the
different subsets of networks and for most of the dendrogram
levels, the PCA distance matrix Dp is the most effective of
the employed distance measures at clustering networks of the
same category. This agrees with our visual assessment (i.e., our
identification of contiguous blocks of color) of the different
measures.

APPENDIX D: USING SIMPLE CHARACTERISTICS
TO CLUSTER NETWORKS

We established in Section VIII that the PCA distance matrix
Dp between MRFs can produce sensible network taxonomies,
and we now consider briefly whether the observed taxonomies
can be explained using simple summary statistics. We consider
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FIG. 20. (Color online) Taxonomy for 189 networks. We
constructed the dendrogram using the distance matrix Dp and
average linkage clustering. We order the leaves of the dendrogram
to minimize the distances between adjacent nodes, and we color the
leaves to indicate the type of network. The three color bars below
the dendrogram indicate whether the network corresponding to each
leaf is weighted or unweighted (top), the number of nodes N in the
networks (middle), and the edge density ed (bottom).

only a few specific properties, though, of course, there are
myriad other network diagnostics that one might consider.

Perhaps the three simplest properties of an undirected
network are the following: (1) whether it has weighted or
unweighted edges; (2) the number of nodes N ; and (3) the

edge density ed = 2L/[N (N − 1)] (where L is the number of
edges, which we distintinguish from the total edge weight m in
weighted networks). The top colored row in Fig. 20 indicates
that many of the weighted networks are clustered together
at the far left of the dendrogram. However, there are also
weighted networks scattered throughout the dendrogram, so
whether a network is weighted or unweighted does not explain
the observed classification. The third colored row provides a
clearer explanation for the cluster of networks at the left: These
are not simply weighted networks, as they are in fact similarity
networks, so nearly all possible edges are present and they have
weights indicating connection strengths. However, this prop-
erty alone cannot explain the observed classification, as several
of the weighted networks containing nearly all possible edges
do not appear at the far left of the dendrogram. In fact, there are
many clusters in the dendrogram that contain networks with
very different fractions of possible edges. The total number
of nodes, shown by the second colored row in the figure,
again explains some of the clustering, as networks with similar
numbers of nodes are clustered together in some regions of
the dendrogram. However, there are also numerous examples
in which networks with the same number of nodes appear
in different clusters. Therefore, none of these three simple
network diagnostics can explain the observed classification by
itself.
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