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Abstract

The notion that sequence homology implies functional similarity underlies much of computational biology. In the case of
protein-protein interactions, an interaction can be inferred between two proteins on the basis that sequence-similar
proteins have been observed to interact. The use of transferred interactions is common, but the legitimacy of such inferred
interactions is not clear. Here we investigate transferred interactions and whether data incompleteness explains the lack of
evidence found for them. Using definitions of homology associated with functional annotation transfer, we estimate that
conservation rates of interactions are low even after taking interactome incompleteness into account. For example, at a
blastp E-value threshold of 10{70, we estimate the conservation rate to be about 11% between S. cerevisiae and H. sapiens.
Our method also produces estimates of interactome sizes (which are similar to those previously proposed). Using our
estimates of interaction conservation we estimate the rate at which protein-protein interactions are lost across species. To
our knowledge, this is the first such study based on large-scale data. Previous work has suggested that interactions
transferred within species are more reliable than interactions transferred across species. By controlling for factors that are
specific to within-species interaction prediction, we propose that the transfer of interactions within species might be less
reliable than transfers between species. Protein-protein interactions appear to be very rarely conserved unless very high
sequence similarity is observed. Consequently, inferred interactions should be used with care.
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Introduction

Homology – similarity through common descent – occurs on

scales ranging, from genetic sequence to anatomy. The high

degree of observed protein sequence homology gives a strong

expectation that discoveries about protein function made in one

species will provide understanding in another [1]. The extent of

homology of protein function is of both practical and theoretical

importance, as it underlies the reliance on a few model organisms

and provides insight into the maintenance and diversification of

protein function through evolution.

In this paper, we examine the evidence for homology in the realm

of protein-protein interactions. Proteins, the main workhorses of the

cell, do not carry out their functions in isolation but rather interact

with each other to bring about biological function. In this study, we

ask the following question: To what extent are protein-protein

interactions conserved through evolution? A high degree of

conservation makes viable the transfer of interactions across species.

This is particularly pertinent given the cost of gathering exper-

imental data and the concentration of that data in very few species.

If, however, there is a low degree of conservation of protein

interactions then – given the very high degree of conservation of

protein sequences – this would suggest that interaction information

cannot be transfered across species and that interactions can be lost

and gained rapidly with little sequence change. This, in turn, could

help explain how small changes in protein sequence on occasion

bring about large phenotypic changes.

The homology of protein-protein interactions can be investigated

by seeking evidence of interologs. Interologs are pairs of interacting

proteins: A interacting with B in one species and A’ interacting with

B’ in another, where A’ is a homolog of A and B’ is a homolog of B
(see Figure 1). Homolog detection is an unsolved problem [2], so we

consider three different definitions of homology: blastp [3]

reciprocal hits at different thresholds of similarity, blastp reciprocal

best hits, and EnsemblCompara GeneTrees [4].

The notion of across-species interologs was first introduced by

Walhout et al in 2000 [5]. Since then, many studies have predicted

interactions on the basis of transfer by homology (e.g. [6–18]).

Despite the prevalent use of transferred interactions, relatively

little work has been published that investigates the reliability of this

procedure across species. Published success rates for transferring

interactions vary from less than 5% [19] to 100% [20], and many

values in between have been reported [8,21–24]. These differences

can be explained in part by methodological choices. For example,

Qian et al [20] reported the highest conservation rate. They

excluded gene-duplicates and compared two organisms that are

PLOS Computational Biology | www.ploscompbiol.org 1 September 2012 | Volume 8 | Issue 9 | e1002645



evolutionarily very close. In contrast, the majority of studies have

focused on comparisons between species that are much more

distant on the tree of life – budding yeast S. cerevisiae (SC),

nematode worm C. elegans (CE), fruitfly D. melanogaster (DM), and

human H. sapiens (HS) – as these are the species for which there

exists the most data [19,21–23].

It is also possible to investigate the homology of interactions

within a species. Two types of homologous interactions exist.

Interactions A{B and A’{B’ are homologous; we refer to these

as both-different conserved interactions. Additionally, interactions

A{B and A{B’ are homologous; we refer to such interactions as

one-same conserved interactions. Mika and Rost found that

interactions were more conserved within species than across

species [23]. They considered this result surprising due to the long-

standing belief that proteins arising from gene-duplication events

(paralogs) must diverge in function in order to be conserved,

whereas proteins that arise from a speciation event (orthologs)

have evolutionary pressure to maintain the function of the

ancestral protein [25]. However, Mika and Rost did not separate

orthologs from paralogs in their across-species study so the results

that they observed might be due to across-species out-paralogs

outnumbering orthologs.

Errors in the interaction data, both – false negatives (i.e. existing

interactions that are not reported in the data set) and false positives

(i.e. interactions in the data set that do not actually exist) – can

clearly have a substantial impact on results. Most obviously, false

negatives in the target interactome will cause some interactions to

be judged as non-conserved when the data in the target species is

simply missing. However, except for Ref. [24], which examines

one type of protein (transcription factors) in one pair of species

(mouse and human), none of these studies investigated the role of

errors in the data when assessing conservation.

A brief survey of the literature gives a sense of how significant

these errors are believed to be. False-positive rates in high-

throughput protein-protein interaction data, which have been

estimated to be in excess of 50% [26–28], have more recently been

estimated at 45% or considerably lower [29,30]. False-positive

rates in the multiple studies that are collated to give literature-

curated data sets seem hard to assess. Error rates in the curation

process have been estimated to be as high as 45% [31]. By

comparing the estimated sizes of interactomes to the current sizes

of data sets, false-negative rates of aggregate data sets can be

derived. Recent estimates of the S. cerevisiae interactome range

from 13500 [32] to 137000 [29] interactions (c.f. 44240
interactions in the data set we use); recent estimates for H. sapiens

range from 130000 [30] to about 650000 [32] (c.f. 44312 in our

data set); and recent estimates for D. melanogaster range from about

70000 [32] to 613000 [29] (c.f. 19786 in our data set). C. elegans has

been estimated to have about 240000 interactions [32] (c.f. 7275 in

our data set). The large range of estimates gives a flavour of how

results depend on the assumptions made. These estimates indicate

that the false-negative rates for all species except S. cerevisiae are

very high, whereas the S. cerevisiae interactome is potentially nearly

complete.

In addition to being far from 100% in all organisms save S.

cerevisiae, the coverage of interactomes is biased [33,34]. In

particular, there is a high correlation between the number of

publications in which a protein is mentioned and the number of

interactions reported for that protein in literature-curated data (an

R2 value of 0:59 was reported by [34]). This reflects the fact that

low-throughput experiments are hypothesis-driven, i.e. particular

interactions are tested for if they are of interest to researchers. If

hypotheses are formulated in part on what is known about

homologous proteins, then one should expect a bias in which

homologous interactions are more likely to be reported. This

would lead to conservation rates appearing inflated compared to

data sampled independently in different species.

In this study, we investigate the evidence for the homology of

binary protein-protein interactions using data from six species: S.

cerevisiae (SC), C. elegans (CE), D. melanogaster (DM), H. sapiens (HS),

fission yeast S. pombe (SP) and mouse M. musculus (MM). The first

four species we investigate because there exists considerable data

for them, the last two because these species are evolutionarily close

to S. cerevisiae and H. sapiens respectively, and thus represent an

interesting point of comparison.

In the first part of the present study, we calculate observed

conservation rates for interactions across species and discuss the

effects of potential bias.

In the second part, we attempt to address the sources of error

that could cause the observed conversation rates to be underes-

timates. We decouple the effects of interaction completeness from

the conservation of interactions through evolution and thereby

arrive at estimates for both. Using the assumptions of our model

and definitions of homology frequently employed for transferring

functional annotations, we show that the fraction of interactions

that are conserved is low even when interactome errors are taken

into account. If strict definitions of homology are employed, the

number of conserved interactions across species is low. We

emphasise that our estimates of the fraction of conserved

interactions do not consider the biases in the interaction data

and are hence probably overestimates. We then produce estimates

for the rate at which interactions are lost through evolution – the

first, to our knowledge, based on large-scale data sets and

comparing species that are well separated on the tree of life –

finding rates of about 0:001 per million years between the most

sequence-similar proteins.

In the third part of this study, we consider the transfer of

interactions within-species. We examine three different sets of

inferences. Set one is one-same inferences, where A’’{B’’ is inferred

from A’’{B’ where B’ and B’’ are homologs and A’’ is present in

both interactions. Set two is both-different-1 inferences, for example,

A’’{B’’ is inferred from A{B where B and B’’ are homologs and

A and A’’ are homologs. In a final case study on this data (both-

different-2) we identify the closest homologous interaction, and keep

just a single inference for each interaction. This means if the

closest inference comes from a one-same inference we no longer

Author Summary

It is widely assumed that knowledge gained in one species
can be transferred to another species, even among species
that are widely separated on the tree of life. This transfer is
often done at the level of proteins under the assumption
that if two proteins have similar sequences, they will share
similar properties. In this paper, we investigate the validity
of this assumption for the case of protein-protein
interactions. The transfer of protein interactions across
species is a common procedure and it is known to have
shortcomings but these are generally ascribed to the
incompleteness of protein interaction data. We introduce a
framework to take such incomplete information into
account, and under its assumptions show that the pro-
cedure is unreliable when using sequence-similarity
thresholds typically thought to allow the transfer of
functional information. Our results imply that, unless using
strict definitions of homology, interactions rewire at a rate
too fast to allow reliable transfer across species. We urge
caution in interpreting the results of such transfers.

Homology of Protein-Protein Interactions
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make a prediction from a less similar both-different inference. It

has been shown previously that inferences of the one-same type

are very powerful in within-species interaction prediction [23], a

result we also observe. If one wishes to compare the rate of

conservation of interactions within species to that across species

then excluding one-same interactions as done in Ref. [23] seems

fair. In our test of this type (both-different-1) we find that within-

species interactions are conserved to approximately the same

extent as across species interactions.

Functional annotations are often transferred using definitions

that are not particularly strict (see, e.g., [35–37]). We argue that

the low success of interaction transfer at comparable levels of

sequence similarity cannot be explained solely by interactome

errors. Unless a very stringent definition of homolog is employed,

the rate of evolutionary change of interactions is too high to allow

transfer across species that are well separated on the tree of life. At

such stringent definitions, the number of conserved interactions is

low. The common practice of transferring interactions on the basis

of homology between such distant species [6–17] must be treated

with caution.

Results/Discussion

Protein-protein interaction data
There are two primary types of protein-protein interactions: (1)

direct protein-protein interaction data, which is reported predom-

inantly via the yeast-two-hybrid screen and by small-scale studies

and (2) evidence that proteins participate in the same complex,

which is reported predominantly by Tandem Affinity Purification

followed by Mass Spectroscopy experiments. (For a review of

experimental techniques see Ref. [38].) These different types of

interaction have a different nature; for example, they are

predisposed to be identified between different protein functional

classes [33]. As the ratios of direct protein-protein interactions to

within-complex interactions differ substantially by species (within-

complex data is concentrated within S. cerevisiae [39–42]), we

investigate only direct protein-protein interactions. We amalgam-

ate the interaction data from several sources (see Materials and

Methods for details). Table 1 gives the data set sizes for the species

that we investigate. This data combines results from low-

throughput and high-throughput studies. We give an indication

of the relative contributions of low- and high-throughput studies

by calculating the fraction of interactions that are reported by a

study that observed fewer than one hundred interactions. These

relative contributions are not altered greatly if a different threshold

is used (see Table S1 in Text S1); they reflect that large yeast-two-

hybrid screens have been performed for S. cerevisiae, C. elegans, D.

melanogaster, and H. sapiens, and that there has been a predictably

large volume of small-scale experiments curated for H. sapiens. As

indicated in Table 1, there are many more interactions per protein

reported for S. cerevisiae than for any other species, and the

interaction data for S. pombe and M. musculus are particularly

sparse. Comparing the sizes of the interactomes of these data sets

to the estimates of the total sizes of the interactomes surveyed in

the Introduction, it is clear that the S. cerevisiae interactome might

not be far from complete, whereas the coverage of the other

interactomes is low.

Homology data
Detecting homologs is an unsolved problem [2], so one must

adopt some operational definition. Sequence similarity lies at the

heart of judging whether sequences are homologous [43], though

more advanced techniques incorporate additional information

such as phylogenetic-tree analysis and gene-tree/species-tree

reconciliation [2,4,44]. A conservative operational definition has

the advantage that false-positive homologs will be minimised, but

the disadvantage that many true homologs will be missed. In the

context of inferring functional annotations from a source species to

Figure 1. Methodology for infering protein-protein interactions.
doi:10.1371/journal.pcbi.1002645.g001

Homology of Protein-Protein Interactions
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a target species, a conservative definition of homology will lead to

low numbers of predictions. We consider three different opera-

tional definitions of homology: blastp [3] reciprocal hits; blastp

reciprocal best hits; and EnsemblCompara GeneTrees [4]. Of

these, reciprocal best hits is the most conservative and reciprocal

hits is the least conservative.

The most common tool used to identify potentially homologous

protein sequences on large scales is blastp [3]. Use of this method

enables one to connect the success of interolog prediction with the

blast E-value, which is the most common diagnostic used to

measure sequence similarity. The E-value (Eval) gives a measure of

how often one would expect to observe a particular hit by chance

when a query sequence is compared to a database of potential hit

sequences. Reciprocal hits (see Materials and Methods) gives

many-to-many homology relationships (i.e. each query sequence

can have many hits). Rather than choosing a particular sequence-

similarity cut-off, we investigate the success of interolog inferences

at different E-value thresholds. The least strict definition of

homology we use is a blast E-value of 10{6. In the Supporting

Information, we also give results for using different minimum

percentage-sequence-identity of the aligned region values as an

operational definition of homology. See Table S2 in Text S1 for

the numbers of homologs found at two different E-value

thresholds: 10{10 and the more stringent 10{70.

The much more conservative set of reciprocal best hits gives

one-to-one homology relationships (see Materials and Methods).

We report the numbers of reciprocal-best-hit homologs in Table

S3 in Text S1. EnsemblCompara GeneTrees [4] uses a gene-tree/

species-tree reconciliation approach. We report the numbers of

orthologs defined by EnsemblCompara GeneTrees in Table S4 in

Text S1. EnsemblCompara GeneTrees does not include orthology

relationships between S. pombe and non-fungi species. We also use

the manually-curated orthologs between S. pombe and S. cerevisiae

that are reported in Ref. [45]. There are 4966 homology

relationships reported between 3875 S. cerevisiae proteins and

3657 S. pombe proteins.

Interactions conserved across species: the evidence
From an interaction A{B in the source species, we infer all

interactions A’{B’ in the target species, where A’ is a sequence

homolog of A and B’ is a sequence homolog of B (see Figure 1).

We consider all six species as source species but exclude M.

musculus and S. pombe as target species because of the sparsity of

data in these organisms. (We do, however, consider them as target

species for H. sapiens and S. cerevisiae, respectively.) For the

reciprocal-hit data, we investigate the effect of the E-value as an

operational definition of homology (meaning that both Eval(A,A’)
and Eval(B,B’) must be below a similarity threshold). Each

interaction in the target species can conceivably be predicted more

than once, but we consider only one inference to it. Hence, when

we report the number of transferred interactions that are correct,

we always give the number of unique interactions that are

predicted correctly.

We compute the number of inferred interactions that are

correct by counting how many of them are found in the

interaction set of the target species (see Figure 2 A). The fraction

of correct inferences observed, denoted Os,t, is the number of

correct inferences divided by the total number of inferences (see

Figure 2 B). As seen in Figure 2 A for the reciprocal-hits data, large

numbers of correct inferences are made only at relatively lax E-

values (to the right side of the figure). However, as would be

expected and shown in Figure 2 B, only a small fraction of the

inferences are correct at these lax E-value cut-offs. (Figure S1 in

Text S1 contains the same figure with the axes scaled differently

for each target species. Figure S2 in Text S1 shows the same data

but for thresholds of percentage sequence identity rather than for

E-value.)

It is important to compare the success of inferring interactions

using homology relative to that achieved with random guesses –

i.e. how often randomly chosen pairs of proteins will actually

interact. One must define what class of inferences are ‘random’:

we first consider a random inference as one between any two

proteins in the target species, given that they both have homologs

in the source-species interactome. Figure 2 C gives the likelihood

ratio L for an interolog to be a true prediction (see Materials and

Methods). The likelihood that a transferred interaction is correct is

only a few times better than random at lax E-values, and it is not

much larger even at very strict E-values (note very few correct

predictions are made at such strict E-values). The likelihood is

generally higher for inferences across species that diverged more

recently. For example, inferences from S. pombe to S. cerevisiae have

a higher likelihood than those between S. cerevisiae and other

species. An alternative comparison to random inference is possible

by rewiring the interactions in the source species while fixing the

number of interactions for each protein (see Materials and

Methods). This comparison controls for biases in protein

appearance in the source-species interaction list. (Such biases

could either result from the data-gathering process or reflect the

underlying biology.) We give the ratio of the number of correct

inferences from the actual source-species interactions to the mean

Table 1. We assembled direct protein-protein interactions from BioGRID, IntAct, MINT, and HPRD (see Materials and Methods for
details).

SC CE DM HS MM SP

# interactions 44266 7275 20334 45695 2911 1155

Fraction of low-throughput interactions 0.15 0.15 0.07 0.61 0.82 0.97

# proteins in interactome 5782 3988 6514 9597 2101 793

Mean # of interactions for proteins in interactome 7.6558 1.8242 3.1216 4.7614 1.3855 1.4565

# proteins (approximate) 6490 19522 13520 20763 21427 4806

Mean # of interactions for all proteins 6.8206 0.3727 1.504 2.2008 0.1359 0.2403

Low-throughput interactions are those interactions that have supporting evidence in publications that report fewer than one hundred interactions. (The trends are not
sensitive to this choice of cut-off, see Table S1 in Text S1.) The S. cerevisiae network is more complete than those of the other species: a much higher fraction of S.
cerevisiae proteins have protein-protein interaction data, and each protein is involved in more interactions. The approximate number of proteins only considers one
protein isoform per gene. (We report the number of unique STRING identifiers; see Materials and Methods.)
doi:10.1371/journal.pcbi.1002645.t001

Homology of Protein-Protein Interactions
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of several random sets of interactions for each species pair in

Table 2. A comparison between Figure 2 C and Table 2 illustrates

that the different propensities for proteins to appear in the source

species accounts for some of the success of transferring interactions

on the basis of homology.

Although there are no standard E-value thresholds that are used

to define homology, we draw attention to two thresholds that often

appear in the literature. A threshold of 10{10 is considered a fairly

strict criterion for sequence similarity (it is used by the functional

annotation tool Blast2GO for their ‘strict’ annotation style [35]) and

has been used in this literature [21,46]. At this threshold, although

hundreds or thousands of interolog inferences are correct, the

fraction of correct inferences is three percent or less (see Figure 2 A

and B). This small fraction is a result of the very large total numbers

of predictions (between tens of thousands and two million, depending

on species pair). An E-value threshold of 10{70 is considered strict,

and has also been used in the literature [22,46]. At this E-value cut-

off, there are a few hundred correct inferences at most (depending on

species pair) and at most 30% correct inferences.

We show the results for the EnsemblCompara GeneTrees

homologs in Table S5 in Text S1 and those for reciprocal-best-hit

homologs in Table S6 in Text S1. The number of correct predictions

from S. cerevisiae to S. pombe using the manually curated set of orthologs

is 373, the fraction correct is 0:0091 and the likelihood ratio is 70:7.

The corresponding numbers for S. pombe as source and S. cerevisiae as

target species are 387, 0:3446, and 49:6. The EnsemblCompara

GeneTrees homologs achieve similar fractions of correct inferences to

reciprocal-hits homologs at E-values of about 10{80; for the

reciprocal-best-hit homologs, this value is about 10{120.

The fraction of correct inferences depends on the coverage of

the target-species interactome – note the much higher fraction of

correct inferences to S. cerevisiae in Figure 2 B and in Tables S5 and

Figure 2. Large numbers of correct inferences are only observed when the fraction of correct inferences is very low. We show the
results of inferring interactions from S. cerevisiae (SC), C. elegans (CE), D. melanogaster (DM), H. sapiens (HS), S, Pombe (SP), and M. musculus (MM) to
the first four of those species. (A) Number of correct interolog inferences across species, for different blastp E-value cut-offs. (B) Fraction of all
inferences that are observed in the interactions of the target species, Os,t. (C) The likelihood ratio L that an inference is correct. This indicates how
much better it is to use the inferences than to select random pairs of proteins in the target species that have homologs in the source species
interactome. (A) and (B) together indicate that it is only at lax E-values that one makes significant numbers of correct inferences, but this is a very
small fraction of the total number of inferences made at these E-values. The S. cerevisiae data-set coverage is significantly higher than that of other
species, so one obtains larger values for inferences to S. cerevisiae.
doi:10.1371/journal.pcbi.1002645.g002

Homology of Protein-Protein Interactions
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S6 in Text S1. This is expected, and below we investigate how the

fraction of correct inferences is altered when we take the coverage

of the target-species interaction data set into account.

Inferences with M. musculus and S. pombe as source species

achieve higher numbers of correct fractions than the inferences

from other species. We hypothesise that this is due to biases in the

interactomes that are particularly evident for these species. As

discussed in the Introduction, such biases are present in low-

throughput interaction data sets, as there is a high observed

correlation between number of published papers and number of

interacting partners [34]. A very large proportion of interactions

in the S. pombe and M. musculus data sets come from low-

throughput, hypothesis-driven studies. The observation of a

homologous interaction in one species can inform experiments in

another. In Figure S3 and Table S7 in Text S1, we demonstrate

that in the target species, homologs of the source species are

considerably more likely to interact than a randomly chosen pair

of proteins. This is particularly true for S. pombe and M. musculus,

presumably because of the high fraction of low-throughput data

in these species interactomes. This suggests that – especially for

these two species – interactions are more likely to be reported if

there is a homologous interaction in another species. Evidence for

the homology of protein-protein interactions will be inflated

because of this effect: observed conservation rates depend both on

the evolutionary conservation of interactions and on the tendency

for researchers to be more likely to look for homologous

interactions. Assessing the relative contributions of these two

effects is hard, as they manifest in the same way (i.e. in higher

observed conservation rates of interactions). Note that the

likelihoods for inferences from S. pombe and M. musculus

(Figure 2 C) are not large compared to the other species, as is

the case with the observed fraction of correct inferences (Figure 2

B). This is because the likelihood ratio controls for some of this

bias by comparing transferred interactions to random guesses

between proteins that have homologs in the source-species

interactome.

Interactions conserved across species: errors in the
interactome data

The bias in data-gathering discussed above leads to an

overestimate in the fraction of interactions conserved, however

errors in the interactome data could lead to the observed rates

being underestimates. In particular, one expects the coverage of

the target-species interactome to influence strongly the

observed fraction of correct inferences. Previous studies left

such effects of interactome incompleteness as possible expla-

nations for the poor performance of interaction transfer on the

basis of homology [21–23,47]. Here we investigate the

magnitude of such effects by considering several possible

sources of error.

False positives. The effect of false positives in the source

species leads to an underestimation of the fraction of interactions

that are conserved, as predictions from false-positive interactions

are less likely to be correct. As a simple check of the magnitude of

this effect, we simulated for the three species with the largest

interactomes false-positive rates in the source species in excess of

50% and found that the observed fractions of correct inferences

are not affected greatly(see Figure S4 in Text S1).

The effect of false positives in the target species is the opposite of

that in the source species: the fraction of interactions conserved

will be overestimated, as some predictions will be judged to be

correct by matching to a false-positive interaction in the target

species. In the Materials and Methods section, we show under

reasonable assumptions that this overestimation is larger than the

underestimation (produced as discussed above by false positives in

the source species), provided that FPRsvFPRt=(1{FPRt),
where FPRs and FPRt are the false-positive rates in the source

and target species respectively. False-positive rates in the different

species interaction sets are unlikely to be so different that this

inequality fails to hold, so here we do not further consider the

possibility that false positives can lead to an underestimation of the

conservation of interactions.

Table 2. Across species: How does inferring interactions from the source-species interactome compare to inferring interactions
from randomised versions of the source-species interactome?

Evalƒ10{10

target species SC CE DM HS

source species SC - 2.3 (0.17) 2.1 (0.091) 1.9 (0.092)

CE 2.3 (0.18) - 2.2 (0.16) 1.6 (0.13)

DM 2.3 (0.10) 2.1 (0.076) - 1.9 (0.047)

HS 2.4 (0.068) 2.1 (0.047) 2.0 (0.072) -

MM 2.3 (0.25) 1.8 (0.18) 1.7 (0.44) 2.0 (0.37)

SP 2.5 (0.21) 1.7 (0.22) 1.7 (0.19) 1.5 (0.092)

Evalƒ10{70

source species SC - 8.9 (1.4) 4.3 (1.6) 5.8 (0.90)

CE 9.1 (3.4) - 18 (19) 13 (9.5)

DM 9.9 (4.6) 16 (11) - 9.4 (3.0)

HS 5.0 (0.73) 7.3 (2.0) 6.2 (1.1) -

MM 6.4 (5.8) 11 (6.4) 11 (3.4) 6.5 (2.2)

SP 26 (32) 12 (5.9) 15 (12) 8.0 (1.7)

We give the ratio of the fraction of correct inferences Os,t from the real interaction data compared to randomly rewired data for the reciprocal-hits homologs. (The
number of interactions in which each protein participates is preserved in the randomization.) The numbers in parentheses give the standard deviations over 10

rewirings.
doi:10.1371/journal.pcbi.1002645.t002
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Coverage of the source-species interactions. We hypoth-

esize that the fraction of inferred interactions observed to be

correct Os,t is independent of the coverage (which is defined as one

minus the fraction of false-negatives) of the source-species

interactions. The reason is as follows: although more correct

inferences are observed with more interactions in the source

species, more incorrect inferences are also made. We tested

whether such independence held by sampling the source-species

interactions (see Materials and Methods for details). The results

support our hypothesis; see Figure S5 in Text S1.

Coverage of the target-species interactions. We hypothe-

sised that the fraction of inferred interactions observed to be

correct Os,t is directly (i.e. linearly) proportional to the coverage of

the target-species interactions ct. For example, if the interaction

list of the target species is halved in size, then the fraction of

correct inferences should also halve. We tested this hypothesis by

sampling from the interaction list of the target species (see

Materials and Methods) and report the mean coefficients of

correlation R2 between Os,t and ct: it is 0:98 for the reciprocal-hits

definition, 0:99 for the EnsemblCompara GeneTrees homologs,

and 0:98 for the reciprocal-best-hits homologs. We give the full set

of R2 values in Tables S9, S10 and S11 in Text S1. All associated

p-values are less than 0:05.

The independence of the observed fraction of correct inferences

on the source-species interaction coverage and the linear

dependence on the target-species interaction coverage help

motivate the following simple model for the estimated true rate

of conserved interactions:

Os,t~Es,tct, ð1Þ

where Os,t is the fraction of inferred interactions observed to be

correct, Es,t is the fraction of inferred interactions estimated to be

correct (taking into account incomplete interactome coverage),

and ct is the coverage of the target-species interactome. We

emphasise that this simple model does not take into account the

bias in data-gathering processes discussed above. It thus gives

estimates expected with biased data; as discussed above these will

be overestimates compared to estimates on data gathered at

random. Due to the particularly strong bias associated with the

two smallest interactomes (S. pombe and M. musculus), we estimate

Es,t values for these species only with their most closely related

species (see below). Focusing just on the four species for which

there is the most interaction data, there are twelve equations (one

for each pair of species, where order matters) of the form (1) for

each definition of homology. As there are more unknowns than

equations – only the Os,t are known – one cannot solve (1) without

either making some assumptions or incorporating independent

estimates for values of Es,t or ct. We pursue the former strategy

and discuss the latter one.

We make two assumptions to calculate values of ct, which we

then use to solve for values of Es,t. First, we assume that the S.

cerevisiae interactome is complete (which is consistent with the

literature; see Introduction and Refs. [28,34,48]). Altering this

assumption changes all our results by a constant multiple. Second,

we assume that the fraction of conserved interactions between a

source species x and S. cerevisiae is the same as from S. cerevisiae to

species x; i.e. ESC,x~Ex,SC . This implies that cx~OSC,x=Ox,SC .

Making these assumptions allows one to decouple the Es,t values

from the ct values and hence to obtain estimates for both.

We give the estimated values of ct and the implied total

interactome sizes in Table 3. These values lie within previous

estimates (see the discussion in the Introduction and Refs.

[28,34,48]). Our estimates of interactome size, like all others,

make a series of assumptions and should therefore be taken as

complementary to existing estimates. We estimate the size of the C.

elegans and D. melanogaster interactomes to be larger than that of H.

sapiens. This is surprising, as the numbers of proteins in the former

two organisms are smaller (see Table 1). Homologs of S. cerevisiae

proteins are considerably more likely than random to interact in

H. sapiens (see Figure S3 in Text S1), which is probably due to the

high proportion of interactions in H. sapiens that come from low-

throughput studies (see Table 1). This would cause OSC,HS

estimates to be higher than expected, and hence, via the equation

cHS~OSC,HS=OHS,SC , cHS estimates would be higher than one

might expect. The same effect occurs for C. elegans, though to a

lesser extent (see Figure S3 in Text S1).

We show estimated fractions of interactions conserved in

Figure 3 and Tables S12 and S13 in Text S1. As one should

expect, the estimated fraction of correct inferences is lower

between S. cerevisiae and the other three species. The estimates are

highest for the most stringent definition of homology (reciprocal

best hits; see Table S6 in Text S1). The extent to which strictness

in definition of orthology is important for the transferability of

interactions is evident from Figure 3: using reciprocal hits at E-

values of 10{10 gives success rates of a few percent, even when

interactome incompleteness is taken into account.

One could also solve the set of equations (1) by using

independent estimates of the coverage of the interactomes ct.

Larger estimates of ct than ours would give smaller estimates of

Es,t. The estimated fraction of conserved interactions remains low

unless one assumes very small coverages of the target-species

interactome; this would imply very large total interactome sizes.

For example, a 50% success rate for transferring interactions

between S. cerevisiae and H. sapiens at an E-value cut-off of 10{70

would imply an interactome size of over 400000 interactions for S.

cerevisiae and over two million interactions for H. sapiens.

We now consider the extent of conservation between S. cerevisiae

and S. pombe. Making the same assumptions as above,

ESC,SP~ESP,SC~OSP,SC , the curve shown in dashed-dotted pink

in the left-most panel of Figure 2 B. We estimate ESC,SP and

ESP,SC to be 0:4396 using the reciprocal-best-hits homology

definition and 0:3446 for the manually-annotated ortholog data

set. The estimated fractions of interactions conserved across S.

pombe and S. cerevisiae, whose last common ancestor existed about

760 million years ago [49], are similar to those between D.

melanogaster, H. sapiens, and C. elegans. D. melanogaster and H. sapiens

shared a common ancestor about 830 million years ago [49], and

C. elegans shared a common ancestor with these two about 960
million years ago [49].

Of all of the species pairs one would expect the estimated

fraction of correct inferences to be highest between H. sapiens and

M. musculus, as these species shared a common ancestor about 90
million years ago [49]. We report estimates for EHS,MM and

EMM,HS in Figure S6 in Text S1. At an E-value threshold of

10{10, we estimate EHS,MM to be 3:5% and EMM,HS to be 2:1%.

The estimated fraction correct rises above 1 at the most stringent

reciprocal-hits E-values, and is well above 1 for the reciprocal-

best-hits data (EHS,MM&1:45 and EMM,HS&1:29) and the

EnsemblCompara GeneTrees data (EHS,MM&1:75 and

EMM,HS&2:70). This could be because our estimates of the

coverage of the two species interactomes are too low (which is

equivalent to our estimates of the interactome sizes being too

high). However, it is far more likely that the estimates of EHS,MM

and EMM,HS are too high because of the aforementioned biases in

the data-gathering processes. Our model assumes that interactions

are sampled independently in different species; however, if an
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interaction is known in one species, then researchers might be

prompted to search for it in another. This is likely to be

particularly true between H. sapiens and M. musculus.

Our estimates can be compared to the results of studies that

experimentally tested for the presence of interologs. Matthews et al

[21] tested predictions of inferring from S. cerevisiae to C. elegans

using an orthology definition that was many-to-one (each S.

cerevisiae was considered an ortholog of at most one C. elegans

protein, but C. elegans proteins could have more than one S.

cerevisiae ortholog). They found that between 16% and 31% of the

inferences were correct. (Compare these to our estimates for the

same species pair: 28% using reciprocal-best-hits data and 17%
using the EnsemblCompara GeneTrees data). Using one-to-one

ortholog matching, a conservation rate of between 34% and 64%
was reported between H. sapiens and M. musculus transcription

factor-transcription factor interactions [24]. A recent study

comparing two yeasts, S. cerevisiae and Kluyveromyces waltii, which

diverged about 150 million years ago, used one-to-one orthology

relationships and found that 43 of 43 tested interactions were

conserved [20].

Interactions conserved across species: probability per
million years that a duplicated interaction is lost

The results described above can be used to estimate the rate of

loss of protein-protein interactions using a simple model. Assume

that an interaction that existed in the last common ancestor of the

source and target species has a probability p per unit time of being

lost in either of the two species. For low p, the probability that we

observe an interaction between A’ and B’ in the target species, given

that we have observed an interaction between A and B in the source species, is

approximately (1{p)T , where T is the number of units of time

since the species diverged. There are many ways to estimate T ,

and we use the mean time and range of times given in Ref. [49].

We show how p varies with the extent of sequence homology.

We report results for the EnsemblCompara GeneTrees data, the

reciprocal-best-hits data, and the reciprocal-hits data in windows

of similarity as judged by E-value. (i.e. avEvalƒb for different a

and b). We solve the equation Es,t~(1{p)T to obtain p.

Our calculations suggest that when the divergence time of

species is taken into account, the probability per million years of

an interaction being lost appears to be fairly independent of

species pair (see Figure 4; the indicated errors represent ranges in

the estimates of T ). At the strictest definition of homology that we

consider, we find that the rate of change of protein interactions

through evolution is about 10|10{10 interactions lost per year.

One can compare this estimate to the only other estimate we could

find in the literature, which is based on a small number of

experimentally tested interactions and gives an estimated rate of

(2:6+1:6)|10{10 [20]. That study explicitly excludes the impact

of gene duplication, so one would expect a lower rate of protein

interaction change.

The step from considering the success of inferring interactions

across species to inferring the rate at which interactions are lost

through evolution is a large one that entails numerous assumptions

and abstractions, in addition to those used to estimate values of

Es,t. First, we suppose that the abstraction to a typical duplicated

Table 3. Estimated interactome coverages and interactome sizes.

reciprocal hits EnsemblCompara GeneTrees reciprocal best hits

coverage interactome size coverage interactome size coverage interactome size

CE 0.0293 (0.0027) 256000 (24000) 0.024 310531 0.050 150742

DM 0.0707 (0.0214) 349000 (96000) 0.074 308787 0.095 240160

HS 0.1874 (0.0372) 158000 (35000) 0.162 174858 0.217 130204

We report the means and standard deviations for the reciprocal hits data over all the E-value thresholds that we investigate. These results assume that the S. cerevisiae
interactome is complete at 44266 interactions.
doi:10.1371/journal.pcbi.1002645.t003

Figure 3. Fraction of interactions estimated to be conserved through evolution Es,t, which we calculate by taking interactome
coverage into account. One should expect the lower conservation rates between S. cerevisiae (SC) and the other species, given the known
evolutionary relationships between these species. We estimate the conservation rates at E-values often associated with the transfer of functional
annotations (E-values of about 10{10) to be a few percent.
doi:10.1371/journal.pcbi.1002645.g003
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interaction is a sensible one – i.e. that it makes sense to estimate

the rate at which any given duplicated interaction is lost. There are

various heterogeneities in protein-protein interactions that might

make this questionable. For example, genes that are duplicated

might lose interactions faster than genes that are not duplicated.

One response is to restrict the enquiry and seek the probability

that interactions between non-duplicated genes are lost [20].

Second, we have modelled the loss of interactions as independent

of each other, though whether a given interaction is lost will

presumably depend on its location in the protein-protein

interaction network. Indeed, we present evidence in the next

section that some structural network properties can be relevant to

the success of interolog inference (also see [50]). Third, we have

not taken into account the role of interaction gain through

evolution. Fourth, we assume that the homologs we use are in fact

true paralogs or orthologs. Our estimates should be considered in

light of these caveats. However, given the simplicity of our model,

it is encouraging that our estimates for the rate at which

interactions are lost is in broad agreement with that of Qian et

al [20].

In contrast to the rate of protein sequence evolution, the rate of

protein function evolution remains almost unknown [20]. Protein-

protein interactions provide a window through which to view this

question. Although the rate at which protein-protein interactions

are lost within species has been studied [51,52], the loss rate across

species has not received much attention. Consequently, our

estimates should be taken as initial ones, and we believe that they

are the first ones that are based on large data sets.

Interactions conserved across species: can one select the
conserved interactions?

Given the low number of interactions transferable at stringent

definitions of homology and the low success rate of transfer of

interactions at less stringent definitions, we were motivated to

investigate whether there are any properties that can select which

inferences are likely to be correct among those made at less

stringent definitions of homology (i.e. the reciprocal-hits data).

Studies that use transferred interactions in building predicted sets

of interactions sometimes also incorporate additional protein

properties [9,10,12,14]. Our intention is to investigate the extent

to which certain biological properties can explain the lack of

interaction conservation at less stringent definitions of homology,

rather than to seek an algorithm that accurately predicts protein

interactions across species. For this investigation, we focus on the

three species for which there exists the most data – S. cerevisiae, D.

melanogaster, and H. sapiens – in the hope that the results for these

data sets will be influenced less by noise than the smaller data sets.

Full details of the methods and results are given in the Supporting

Information.

We investigate the effects of restricting inferences to those in

which none of the proteins involved has more than ten homologs.

We find that at lax E-values the fraction correct is improved

although the number of correct inferences is vastly reduced (Figure

S7 in Text S1). We also investigate the effects of several other

properties, which roughly can be divided into three classes:

properties of the four proteins A, A’, B and B’ (e.g. the age of the

proteins and the number of domains that make up the proteins);

Figure 4. Estimates of the probability p that a duplicated interaction is lost per million years. We show results for the three separate
homology definitions: EnsemblCompara GeneTrees and reciprocal best hits on the left; reciprocal hits at different sequence-similarity thresholds on
the right. If the proteins in two species remain highly similar in sequence, then the probability that both species retain the interaction is higher – i.e.
one finds lower values of p at smaller E-values and using the reciprocal-best-hits and EnsemblCompara GeneTrees homology relationships. The
divergence time between species is needed to calculate p; we use the estimate and range (shown in triangles) of times given in Ref. [49].
doi:10.1371/journal.pcbi.1002645.g004
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properties of how the interaction A{B is embedded in the source-

species interaction network (e.g. how many interactions the

proteins have); properties of the homology relationships between

A and A’ and between B and B’ (e.g. the similarity of the lengths of

proteins A and A’). We give the list of properties that we

investigate in the Supporting Information. Although many of the

properties that we consider do indeed help select interactions that

are more likely to be conserved, we find that they only do so with

minimal efficacy, as each property helps to make an inference no

more than 1:5 times more likely (see Figures S8 and S9 in Text

S1). These results suggest that at Evalƒ10{6, the observed

fraction deemed correct from H. sapiens to S. cerevisiae could

increase from 1:5% to 2:25% (with the number of correct

inferences reduced by 25%).

Interactions conserved within species: success of ‘one-
same’ and ‘both-different’ inferences

We now examine the evidence for the homology of protein-

protein interactions within a species. Our principal aim is to

compare this evidence to that for across-species inferences.

We consider three sets of inferences in the within species case:

one-same, both-different-1 and both-different-2 (see Figure 1).

One-same inferences are inferences of A’’{B’’ from A’’{B’.
The both-different-1 class excludes all inferences of the one-same

type. In the both-different-2 class we identify the closest

homologous interaction for every A’’{B’’. That is, we keep only

the closest interaction and then remove all one-same inferences

from the list. In order to identify this closest interaction we order

the possible inference pairs by their maximum blastp Eval. For

example, suppose that A’’{B’’ can be inferred from both A{B
and A’’{B’, at a given homology cut-off. The Eval for the

inference from A{B will be the larger of Eval(A’’,A) and

Eval(B,B’’) whilst that for the inference A’’{B’ will be Eval(B’,B’’).
Thus, for the inference from A{B to be considered closer than

that from A’’{B’, both Eval(A’’,A) and Eval(B,B’’) must be lower

than Eval(B’,B’’). This means that for some interactions at a given

homology cut-off an inference will be made by both-different-1 but

not by both-different-2. The both-different-2 set is designed to

completely remove the effects of one-same inferences. It operates

under the premise that the presence of the predicted interaction

(A’’{B’’) is most parsimoniously explained by the evolutionarily

closest interaction.

We conduct an investigation for our various within-species

inferences similar to the across-species case. See Figure 5 and

Table 4; additionally we provide a version of Figure 5 for

percentage sequence identity instead of E-value in Figure S10 in

Text S1. The number of correct one-same interactions is large in

comparison to both across-species interactions and to both-

different-1 interactions. Indeed, one-same interactions represent

a sizeable fraction of the aggregate interaction lists (compare

Figure 5 A and Table 1). However, a comparison to Figure 2

shows that the observed fraction of correct one-same inferences is

comparable to and sometimes lower than that for across-species

inferences (depending on the species pair).

The both-different-1 results show that within-species inferences

have a similar success rate to that of across-species inferences. This

is different from the result of Mika and Rost [23] who found that

within-species interactions (with one-same inferences removed)

were more successful. The reason for this difference is unclear,

however there are four major differences between our methodol-

ogy for both-different-1 and that used by Mika and Rost (Figure

S11 in Text S1). Firstly, unlike Mika and Rost, we do not separate

different data sets. This is unlikely to be the cause of the difference

as Mika and Rost state that the same trends are observed even if

they do not carry out this procedure. Secondly, we use blastp E-

value as our indicator of protein homology as opposed to HVAL.

Mika and Rost claimed that HVAL is a better method for the

identification of homologs, and it is certainly true that blastp E-

value is not the best homolog indicator. However, it is by far the

most widely used measure of homology. If HVAL is a better

homolog indicator this should just mean that all our results are

slightly worse than those of Mika and Rost. Thirdly, there is a

change in database size. In this study we use over 44,000

interactions for S. cerevisiae, whereas Mika and Rost used just under

6000 of them. In predicting within-species interactions for S.

cerevisiae their number of true positives is approximately 180 at

their laxest HVAL cut-off of 0. This compares to nearly 1800 for

us at our laxest E-value cut off and around 250 at our strictest.

Fourthly, the majority of Mika and Rost’s conclusions use multiple

species data for across-species interaction inference. The use of

multiple species affects the accuracy in a specific way. The ability

to infer interactions is described as the ratio of correct inferences to

the number of incorrect inferences. If multiple species data is used

the number of correct inferences will increase more slowly than the

number of incorrect inferences as the correct inferences from each

species to the target species tend to repeat more than the incorrect

inferences. This means the ratio of correct inferences to incorrect

inferences will decrease as the number of species we infer from

increases. However, Mika and Rost also report a difference using

only pairs of species. Thus none of these methodological or data

differences provide an obvious explanation of why different

conclusions are reached.

In our both-different-2 results (See: Table 5, Figure 5), in which

we remove one-same interactions along even more stringent

criteria we observe that across-species inferences appear to be

more successful than within-species.

Concluding remarks
Using six species, a mixture of low-throughput and high-

throughput binary protein-protein interaction data and three

different sets of homology definitions, we have investigated the

conservation of interactions across and within species. Several

factors mean that observed conservation rates do not reflect true

evolutionary conservation rates. The biases in the data suggest that

observed conservation rates will be inflated due to preferential

investigation of homologous interactions. We develop a framework

that takes interaction incompleteness into account – in contrast to

previous studies, which have side-stepped the question of

interactome errors. Using this framework, we are able to estimate

interactome sizes with a method that is different from others in the

literature.

Our estimates for the fraction of conserved interactions are

very low for definitions of homology that are often associated with

the transfer of functional annotations across species. We

emphasise that our results will be overestimates due to the

preferential investigation of homologous proteins in multiple

species.

We used our results on the conservation of interactions to

estimate the rate at which protein-protein interactions are lost

through evolution, though we stress the caveats involved with

such an estimate.

Given that inferred interactions are not accurate unless stringent

definitions of homology are used, but that few interactions are

transferable when such definitions are in place, we considered the

possibility that certain types of inference were substantially less

likely to yield conserved interactions. For example, we considered

it possible that inferences from proteins in large protein families

were substantially less accurate. Despite investigating a range of

Homology of Protein-Protein Interactions

PLOS Computational Biology | www.ploscompbiol.org 10 September 2012 | Volume 8 | Issue 9 | e1002645



properties that might influence the conservation of interactions, we

found no properties that gave much improvement in conservation

rates when taken into account.

The present study concentrates on the success of interolog

inferences, which is the basis for a large number of widely-used

methods to predict interactions [6–17]. We urge extreme caution

in interpreting interactions transferred across species unless the

definition of homology employed is a strict one, and we believe

that interactome incompleteness is not solely responsible for the

lack of observed conservation of interactions.

Figure 5. Inferences within a species: ‘one-same’ inferences (left) dominate ‘both-different-1’ inferences (centre) and both-
different-2 inferences (right)). For inferences within S. cerevisiae (SC), C. elegans (CE), D. melanogaster (DM), and H. sapiens (HS), one-same
inferences dominate for (A) the number of correct inferences, (B) the fraction of inferences observed to be correct Os,t, and (C) the likelihood L that
the inferences are correct.The very large likelihoods for C. elegans, particularly for the both-different cases, are due to small-number effects.
doi:10.1371/journal.pcbi.1002645.g005
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Materials and Methods

Protein-protein interaction data
Several publicly available databases gather interaction data

from multiple sources [53–60]. We assembled our interaction lists

from four of the largest databases: BioGRID (www.thebiogrid.org

[58]; downloaded in June 2010), IntAct (www.ebi.ac.uk/intact

[53]; downloaded in June 2010), MINT (mint.bio.uniroma2.it/

mint [56]; downloaded in June 2010), and HPRD (hprd.org [60];

downloaded in July 2010). We use a locus-based approach; in

other words, we consider only one protein isoform per gene and

achieve this by mapping all protein identifiers to the identifiers

used in STRING [57].

From these databases we select only direct protein-protein

interaction data, thereby excluding all indirect association data,

such as from tandem affinity purification experiments. We used

interactions with ‘physical association’ evidence type from the

IntAct database; ‘biophysical’ or ‘protein complementation’ assay

type from the MINT database; ‘reconstituted complex’, ‘PCA’,

‘Co-crystal structure’ or ‘yeast-two-hybrid’ from the BioGRID

database; and all interactions from the HPRD, as it only contains

binary interaction data.

Homology data
We downloaded amino acid sequences for the proteins of the

species considered from the NCBI (ftp://ftp.ncbi.nih.gov/refseq/

release). We ran blastp using default parameters (except for setting

the maximum number of hits retrieved to be 1000000 and the E-

value cut-off to be 10{6). For each query, we selected the hit with

the lowest E-value and only kept pairs that were found as ‘query-

hit’ and as ‘hit-query’ (‘reciprocal hits’). Our homology relation-

ships are thus many-to-many. In Table S2 in Text S1 we give the

numbers of reciprocal hits found at two different similarity cut-offs.

We also consider only reciprocal best hits, in which two

sequences are considered each others’ reciprocal best hits if the

first is the best hit when the second is queried against the database

and the second is the best hit when the first is queried against the

database. The reciprocal-best-hit criterion gives one-to-one query-

hit matches. We also require that both hit-query and query-hit E-

values must be 10{10 or lower. We give the numbers of reciprocal-

best-hit matches in Table S3 in Text S1. The reciprocal best hits

method suffers from being dependent on the precise database used

for the queries. There is also no guarantee that the closest-

sequence homolog is the closest functional homolog.

We additionally consider homologs as defined by Ensembl-

Compara GeneTrees [4]. This method is based on the inference of

multiple potential gene tree topologies; it penalises those topologies

which are inconsistent with known species relationships.

Comparisons to random: likelihood measure
Following the work of Jansen et al [61] and Yu et al [22], we

consider the likelihood ratio L for an interolog inference (from

Table 4. Within species: Ratio of correct inferences using the real data compared to randomly rewired interactions.

Evalƒ10{10 Evalƒ10{70

One-same Both-different-1 Both-different-2 One-same Both-different-1 Both-different-2

SC 4.6 (0.48) 2.2 (0.065) 1.5 (0.26) 7.9 (0.99) 3.7 (0.62) 2.4 (0.71)

CE 3.3 (0.26) 1.5 (0.10) 1.5 (0.25) 8.2 (0.61) 15 (8.5) 7.4 (0.54)

DM 3.5 (0.38) 1.5 (0.084) 1.1 (0.14) 11 (2.2) 15 (9.6) 2.4 (2.0)

HS 4.9 (0.33) 2.0 (0.025) 1.1 (0.14) 10 (0.95) 4.6 (0.33) 2.8 (0.53)

The one-same inferences perform better than the both-different inferences. The values in this table should be compared to those in Table 2. A comparison with Figure 5
C illustrates that the choice of how to measure the improvement over random can have very large effects on the results.
doi:10.1371/journal.pcbi.1002645.t004

Table 5. Fraction of observed correct inferences Os,t at blastp E-value cut-offs of 10{10 and 10{70 for across-species and both-
different-1 within-species transferred interactions.

Fraction of correct inferences, Evalƒ10{10

target species SC CE DM HS

source species SC 0.0128(0.0055) 0.0006 0.0018 0.0041

CE 0.0207 0.0004 (0.0002) 0.0029 0.0041

DM 0.0157 0.0007 0.0012 (0.0006) 0.0024

HS 0.0175 0.0006 0.0017 0.0029 (0.0009)

Fraction of correct inferences, Evalƒ10{70

source species SC 0.0352 (0.0128) 0.0054 0.0066 0.0221

CE 0.2201 0.0072 (0.0046) 0.0258 0.0464

DM 0.1285 0.0113 0.0091 (0.0013) 0.0373

HS 0.1092 0.0076 0.0138 0.0233 (0.0079)

The numbers in brackets give results for the both-different-2 inferences. The data show that within-species inferences are not always more accurate than across-species
inferences.
doi:10.1371/journal.pcbi.1002645.t005
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interacting proteins A and B to an interaction between their

homologs A’ and B’) to be a true prediction. The likelihood, which

is a function of the source species and target-species interaction

data (ints and intt), relates the odds of finding a conserved

interaction (a positive) before and after knowing the interaction

data:

L(ints,intt)~
Dposterior

Dprior

,

where Dposterior, which denotes the odds of finding a positive (i.e.

the ratio of the probability of finding a positive to that of finding a

negative) after we have inferred interactions, is given by

Dposterior~
P(posDints,intt)

P(negDints,intt)
~

P(posDints,intt)

1{P(posDints,intt)
:

The quantity P(posDints,intt) is the probability of finding a

positive after we have considered the interaction data ints and intt.

This quantity is the observed fraction of correct inferences Os,t.

The quantity Dprior, the prior odds of finding a positive in the

target species given that there exist homologs of both proteins in

the source-species interactome, is given by

Dprior~
P(pos)

P(neg)
~

P(pos)

1{P(pos)
,

where P(pos) gives the number of correct inferences among all

possible inferences before we consider the interaction data (but

assuming that we know which proteins are in the source-species

interactome). The quantity P(neg) is the same except for a

negative. The number of possible inferences is equal to every pair

of proteins in the target species, each of which have a homolog in

the source species interactome. If there are n proteins in the target

species with homologs in the source species interactome, then this

is (n2zn)=2 (including self-interactions). In the one-same case

(inferring from an interaction between A and B to one between A
and B’), one can make inferences to any pair of proteins as long as

one of them is in the interactome and the other has a homolog

somewhere else in the interactome. The number of possible

correct inferences is the number of interactions A{B in the target

species for which both A and B have homologs in the source

species interactome.

Predictions are more likely to be true for higher values of the

likelihood ratio L. A likelihood of L~1 designates that prediction

is no better than guessing that there is an interaction between any

pair of proteins in the target species, provided both of them have

homologs in the source species interactome.

Comparisons to random: rewiring
We randomised the interactions from which we were inferring by

rewiring them, such that the number of interacting partners of each

protein is kept constant. By keeping constant the number of times

each protein appears in the interaction list, we ensure that

differences we identify are due to the interactions themselves rather

than to the properties of the proteins. We perform this rewiring of

the source-species interactions ten times for each species pair.

Considering false positives
One can estimate the magnitude of underestimation from false

positives in the source species by assuming that false positives and

true positives contribute in a linear fashion to the aggregate

fraction of correct inferences:

Os,t(data)~FPRs|Os,t(FPs)z(1{FPRs)|Os,t(TPs),

where FPRs is the false-positive rate in the source species; and

Os,t(data), Os,t(FPs), and Os,t(TPs) are, respectively, the fraction

of correct inferences observed for the data, the fraction that would

be observed with 100% false-positive source-species interactions,

and the fraction that would be observed with 100% true-positive

source-species interactions. The largest possible underestimation

arises with Os,t(FPs)~0. The largest underestimation is thus

DOs,t(TPs){Os,t(data)D
Os,t(TPs)

~1{(1{FPRs)~FPRs:

Assuming that whether or not an interaction is a false positive

and whether or not it is predicted as an inferred interaction are

independent assumptions, it follows that the fraction of inferences

that are falsely considered to be correct is simply the false-positive

rate of the target-species interactions:

Os,t(TPt)~TPRt|Os,t(data)~(1{FPRt)|Os,t(data),

where Os,t(TPt) is the fraction of correct inferences that would be

observed if all of the target species data were true-positives, and

TPRt and FPRt are the true- and false-positive rates in the target

species. The overestimation caused by false positives in the target

species is thus

DOs,t(TPt){Os,t(data)D
Os,t(TPt)

~
D(1{FPRt){1D

1{FPRt

~
FPRt

1{FPRt

:

Under these assumptions, and provided that

FPRsvFPRt=(1{FPRt), the underestimation caused by false

positives in the source species is always less than the overestimation

caused by the target species.

Simulating false negatives by sampling
To simulate the effect of false negatives, we sub-sample from the

interaction lists by randomly selecting 25%, 50%, and 75% of the

interactions. At each of these values, we make ten random

samplings.

Supporting Information

Text S1 Supplementary material available including figures and

tables supporting the results described in the paper and a

description of the tests carried out for the selection of conserved

interactions.

(PDF)
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