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Metabolism Driving natural

systems: Chemical
energy production
and use

> Metabolism: the sum of the
physical and chemical processes
in an organism by which its
material substance is produced,
maintained, and destroyed
[anabolism], and by which
energy is made available
[catabolism]

» Metabolism allows organisms to
control biomass and energy

> A set of chemical
transformations, often
enzyme-catalysed

> A complicated network:
simplified through tools like flux
balance analysis

> Metabolism provides the energy
for inference and control

» Metabolism is itself controlled
and regulated: metabolic control
analysis, active regulation

Chemical energy
and metabolism




Free energy

> Energy that can be harnessed to perform work

> At constant temperature and pressure (which we shall assume), the
appropriate expression is the Gibbs free energy G(p, T)

Gp, T)=U+pV—TS

> Internal energy U, pressure p, volume V, temperature T, entropy S

> Change in free energy, where «;, X; are a feature and associated
potential that influence our system (e.g. N, u: copy number and
chemical potential of chemical species):

dG = Vdp — SdT + > _ pidN; — > Xjday
i j

> We'll consider chemical reactions, which take place at fixed pand T

» Particle numbers N; may be changed by reactions, and we also have to
include the pair { AWV, g} for charge across a membrane potential

» Our Gibbs free energy change

dG = widN; — FAVdg
i
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Energy from chemical reactions
» Reversible chemical reaction with S; substrates, P; products, and
stoichiometry given by a;, b;:
a1Sy+aSo+ ... = biPy + boPo + ...
»> Change in free energy
dG =Y pidN; — FAVdgq
i

» Chemical potential 1 is a measure of the ‘concentration gradient’ in a
system
i~ pd + AT Ing;

» For above reaction:

ps;dNs, (13, + RTIN[S]]) x (~a)
(;,LE-,I + RTIn[P,-]) X bj

C(a,b,u®) + RT> In[P]% — RT > In[S]%
j j

wp,dNp,
> widN;
i

> Broadly, if Z is total charge carried through a potential AW
(AW it ~ —160 mV):

AG=AG+RTin <g:{g}:> N
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Activation energies

AG=AG® + RTn (Hf“’f]b’) _ZFAW

LIS

Reactions with a negative AG net release energy and are sometimes
described as ‘happening spontaneously’

There is still an activation energy / geometric contraints to overcome
(though this is sometimes possible to do thermally)

AG doesn't tell us how fast a reaction will progress
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Rates of chemical reactions DXl WL

systems: Chemical
. . energy production
> Chemical reaction and use

a1Si + aSp + ... = byPy + baPy + ...
Chemical energy

. . . . d metaboli
> Law of mass action: reaction rate v « collision probability o reactant and metabotsm

concentration [X;]

v=vy —v_ =kt H[Sl.]a/ _ k. H[P/]bj
i i

> Equilibrium constant is calculated when v = v_

P | (gl
ke TIIST

> At equilibrium, in absence of charge coupling:

— AG=AG I[P
0=AG=AG’+RTlIn (H,[S/]af>

> So
AG = —RTInkeg

> Negative AG® — k; > k_ — forward reaction



ATP (adenosine triphosphate) as a cellular fuel source

v

vVvyYvYyVvyy

ATP is used to provide energy for most energy-demanding cellular
processes

Neurotransmitter synthesis: provides the energy for inference
Gene expression and regulation: provides the energy for control
Muscle contraction: motion

Active transport across membranes

How do organisms synthesise and obtain energy from ATP?
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http://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter10/animation__breakdown_of_atp_and_cross-bridge_movement_during_muscle_contraction.html
http://www.wiley.com/college/boyer/0470003790/animations/membrane_transport/membrane_transport.htm

ATP

HO

(adenosine triphosphate) as a cellular fuel source

NH;
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» Two phosphate bonds which may be hydrolysed, releasing energy (ATP

<> ADP < AMP)

» Cells maintain ATP/ADP ratio out of equilibrium
> ATP 4+ H,O — ADP + P;; AG® = —30.5 kJ mol~!
> Under physiological conditions and typical cellular ATP/ADP ratio,

AG ~ —(40 — 60) kd mol~*

> ‘Energy charge’ sometimes used for energetic status

[ATP] + [ADP]
[ATP] + [ADP] + [AMP]

» The human body contains 0.2 mol ATP. We require the hydrolysis of

100-150 mol ATP per day (50-75 kg). Each ATP molecule is recycled
500-750 times per day.
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ATP production

> ATP + H,O — ADP + P;; AG® = —30.5 kJ mol—'

> Under physiological conditions and typical cellular ATP/ADP ratio,
AG ~ —(40 — 60) kd mol~’

> But this is net energy release — ATP rarely breaks down on its own (it

would be a poor energy currency if it did)

> Proteins that harness ATP are usually ATPases —i.e. enzymes that
catalyse the hydrolysis of ATP (hence overcoming the activation energy)

Energy

Reactants

.- ectivation energy
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Some other players in bioenergetics

» NADH: an electron donor used to transfer high-energy e~
(NADH + H* + %02 = NADt + H,O : AG® = —220 kJ mol~" —one
NADH used to synthesis several ATP)

» Means of producing ATP (and NADH):

>

>

v

Glycolysis: energy production without oxygen (glucose — 2
pyruvate + 2 ATP + NADH + H*)

Krebs cycle / citric acid cycle / TCA cycle: a circular set of
reactions that takes in ‘fuel’ once per cycle and feeds oxidative
respiration (we’'ll look at this in the practical)

Oxidative phosphorylation: energetic e~ power proton pumps,
setting up a harnessable electrochemical gradient
Fermentation (glucose — lactic acid)

Photosynthesis (photons, proton pumps)

Replenishment with nucleoside diphosphate kinases (GTP —
GDP)
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Oxidative phosphorylation

Matrix

Fumarate

Citric
acid
cycle

Succinate
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Oxidative phosphorylation

v

(Biochemical detail is not examinable)
Krebs cycle produces NADH and succinate

A series of complexes pump protons through the inner mitochondrial
membrane

Complex I: NADH + H* — NAD™, pumps 4 protons, reduces coenzyme
Q

Complex II: succinate — fumarate, reduces coenzyme Q

Complex IlI: Oxidises coenzyme Q, reduces cytochrome C, pumps 4
protons

Complex 1V: Reduces cytochrome C, pumps 2 protons

Electrochemical potential (charge separation + chemical gradient) set up
across membrane
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Oxidative phosphorylation

Inner
Membrane of
Mitochondria/
Gram negative
Bacteria

Complex V: energetic protons flow back
into matrix

F4 subunit in membrane; F, subunit in
the matrix

(Amagzing structure best understood by
viewing animation)

Structure and function: John E. Walker,
1997 Nobel Prize in Chemistry
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http://www.sumanasinc.com/webcontent/animations/content/atpsynthase.html
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Energy and life

>

>

Nick Lane: energy per gene expressed is key factor in evolution of

complex life

Local mitochondrial genomes: local control of mitochondria
Alternative 1: non-local genome, power sources not individually

addressable

Alternative 2: many full genomes localised to power generation: huge

amount of nucleic acid

Mitochondria: small, individually addressable genomes localised to

power generation

‘... being large and having
masses of DNA is not enough to
attain complexity: cells need to
control energy coupling across a
wide area of membranes using
small, high copy, bioenergetically
specialized genomes like
mtDNA’

Express 2 x 10% more genes
with no energy penalty
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Mitochondrial bioenergetic control

v

How can mitochondria be individually addressed by control?

‘Quality control’: individual mitochondrial performance is sensed
(membrane potential AW and others)?

Good mitochondria are allowed to fuse into a network and remain safe

from degradation

Bad mitochondria remain fragmented and, if they don’t recover, are

targeted for authophagy and recycling

An exercise: how does this map to the types of control we have
considered?
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Control on mitochondrial respiration

» Cells with ‘good’” and ‘bad’ mitochondria show little difference in
respiration rate

> There are pronounced physiological differences but compensatory
mechanisms exist to control respiration (this is modern and debated
research)

» Bad mitochondria produce more ROS (damaging ‘exhaust’) production
than good mitochondria

> Cells producing more ROS have more mtDNA

» — Cells with bad mitochondria produce more mitochondria to retain
overall respiratory capacity

> An exercise: how does this map to the types of control we have
considered?
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Modelling systems of chemical reactions

> We will look at several ways of modelling the chemical processes that
drive natural systems

> Now: ODE modelling — physical models for the species concentrations
and physical properties of bioenergetic systems (particularly oxidative
phosphorylation and the mitochondrion)

> Next: FBA (flux balance analysis) — coarse-grained representation of
large networks of metabolic components with constraints and
optimisations

» Then: MCA (metabolic control analysis) — analysis of how fluxes and
concentrations in metabolic networks respond to perturbations in
network properties
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A simple example of ODE modelling

» Adenylate kinases swap high-energy phosphates between adenosine
frames in the inter-membrance space of the mitochondrion

> Rate of this reaction

2ADP = ATP + AMP

= e —ve =k ]IS - k- TR
ki [ADPP? — k_[AMP][ATP]
= Xax (Kax[ADPP? — [AMP[ATP])

> Xk is the activity; Kak the reaction parameter

> For example,

d[ATP] __

dat

v/V

Driving natural
systems: Chemical
energy production

and use

Modelling systems
of chemical
reactions



An electrochemical example

>

Complex | uses energy from NADH electrons to pump protons out of the
mitochondrial matrix

H* 4+ NADH + Q = NADY + QH, + 4AHT

4AH represents four protons pumped across the membrane

These protons need to work against an electrochemical gradient:
_ Hout ) _

AGy = RTIn ( ol ) FAW

Reaction rate « collision probability

We also have dependence on ‘proton flux probability’ represented by the
Boltzmann factor e~ 2G+/FT /7

(Model) combination:

reactionratevr o (collision probability) x (proton flux probability)
o (concentrations) x (Boltzmann factor)

N
Il

kjr[HJr][NADH][Q] _ K. [NAD+][QH2]e4AGH/FIT
= Xg (Ké/[Hﬂ[NADH][O] - [NAD+][QH2]e4AGH/RT)
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Systems of chemical ODEs

A. Electron Transport System and Oxidative Phosphorylation in Mitochondria

External
space

Intermembrane
space

Mitochondrial
matrix

NADH

B. Substrate Transport
Extemal

space IN I I
AT AT

ATP ADP AMP Pi

Intermembrane ADP  ATP b
space
2 ADP £= ATP + AMP

Mitochondrial
matrix

C. Cation Transport
External
space

Intermembrane
space

H K" H K

Mitochondrial
matrix

Figure 1. lllustration of the Components Included in the Model of
Mitochondrial Oxidative Phosphorylation

Jor = Xea (, (AGo, c1+4AGH~RT In ([H*]/1077)~RT In ([Ql/[QH,]))/RT
[NADH], — [NAD]V)

[HoPO,Ji[H'], — [HoPO, | [H],
[HoPO T, + hpinse )

Jote = Xin AW (Mf”i“:l[l{l)

A", /dt = ﬁ(f/.;..—(ﬂl)fm7(472)]«3
— (24 2)Jca + (na = 1) Jia
+ 2fpine + Jrie — Jkn)/ Vs

d[K*] /dt = (ku +Jx)/ Vs

dMg*"], /dt = (~Jvgares = Jaganes)/ Vs

d[NADH]_ /dt = (+Jou —Ja1)/ Vs

dIQH,], /dt = (Her —Jes)/ Vs

dleytCred)* ] /dt = (+2

d[ATP], /dt = (Hfrr

d[mATP], /dt = (+/xmm)/"

dmADP]_/dt = (4/vgrs)/ Vs

d[Pil, /dt = (Jrr, +Joind)/ Vs

d[ATP],/dt = (Harec +Jant +Jaxi)/ Vi

d[ADP],/dt = (Havee = Jaxt — 2aki)/ Vi

d[AMP],/dt = (Hfavr +Jak)/ Vi

d[mATP),/dt = (+)ugarri)/Vi

dmADP], /dt = (+/vgave)/ Vi

d|Pi];/dt = (Hei —Join)/ Vi

AN /dt = (4Jor+ s + 4ot — na Jrn

~Jant = Jiie = Jx)/ Cist
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Systems of chemical ODEs elucidate biochemical control

> Simulation of physiological ODE model allows us to determine that
phosphate control acts on Complex Il flux:

Jes = Xes L [Pil, /hei s
Jos = /\“(1 + [Pil, fAris
(,mrm LG +2RTIn( 1],/ 107 ) 2P AP+ Tinl[Q)/ QL)) /2RT (f‘“w G2 A RTIn(QU/ QML) 2RT
[eytGox)*] = [eytGired)* ]) (7) [eyt€(ox)™] — [eytC(red)* ]) (24)

A

150;

140
]

4 6 4 6
Buffer [Pi] (mM) Buffer [Pi] (mM)

> Can’t match data without o< (1 + [Pj]/k1)/(1 + [P]]/k2) term
> We will explore other features of this model in the practical.
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