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An example: we observe the phenomenological reaction description
NO, + CO — NO + CO,
> From our previous work, we might expect

v=v;s = ki [NG][CO|

v

Instead we observe
v = K[NO,]?

> What's going on?
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> For NO, + CO — NO + COs, we observe v = k[NO,]? rather than
v=vy = ki [NG][CO
> Leading to the hypothesis that the system is really

N02 + N02 —  NO + N03
NO;+CO — NOs + COs

and that the first reaction is much slower

> In this case, there’s a ‘rate-limiting step’, the flux through which largely
controls the flux through the whole pathway

> This picture leads us into a finer-grained representation of enzymatic
reactions
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E—i—SkA ES = E+P

—1

»> Enzyme reversibly binds to substrate to form complex, reacts, and
produces enzyme and product

» We'll assume that the reaction is irreversible for now

Enzyme changes shape
Substrate slightly as substrate binds

l Products

=

{ Active site

::>

=

Substrate entering Enzyme/substrate Enzyme/products Products leaving
active site of enzyme complex complex active site of enzyme



Enzyme kinetiCS Driving natural

systems: Enzymes
and metabolic
control analysis

»> Enzyme kinetics described by F;;iytﬂﬁs,;”ei

ki ko
E+S = ES = E+P

—1
> Descriptive equations

d[s]
dt
d[E]
dt
d[ES]
dt
d[P]

dt

= —K[ENS| + k_1[ES]
= —K[ENIS] + k_1[ES] + ko [ES]
= KIENS] - k_1[ES] — ko [ES]

—  kelES]



Enzyme kinetics

ky ko
E+Sk:‘ ES = E+P
—1

» Quasi-steady-state approximation: separation of timescales

> Assume that concentration of complex doesn’t change on the timescale
of product formation

d[ES]

= = KIEIS] - k1 [ES] ~ ke ES] = 0

= K[E][S] = k_1[ES] + ko[ES]

> Enzyme conservation law: [E] + [ES] = [E]o = const
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Enzyme kinetics

> Ki[E][S] = k_1[ES] + ko[ES]
> [E] + [ES] = [E]o = const

ki ([Elo— [ESDS] = K 4[ES] + klES]
K[Eo[S] = (k-1 + ke + ki[S]) [ES]
_ ki[E]o[S]
[ES] = K_1 + ko + k4[]
_ [El[S]
[ES] = km + [S]

k_q1+k
> Where km = }(1 2

> Assuming that reaction is fast:

v= P lEs) =

diP] Kol ELo[S] _ Viax[S]
at

Kkm+[S] ~ km+[S]

» ‘Michaelis-Menten kinetics’
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> Metabolic maps, flux balance analysis, and simple enzyme models are Metabolic control
useful but don’t provide the full picture analysis

» Metabolic control analysis offers a way to explore how concentrations
and enzymatic properties influence fluxes through a system

» MCA does not explicitly identify controlling or regulating enzymes — but
finds the species that have the strongest effect on metabolic flux

» A mathematical framework describing how fluxes and concentrations are
coupled to metabolic network parameters

> In particular, metabolic fluxes are global system-wide properties and
depend on the set of local reaction parameters

» Can be thought of as how the architecture of a metabolic network
applies control to biological quantities
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» Reaction pathways are often thought of as having a single ‘rate-limiting EEES

step’: the slowest step in the pathway

»> But in biology we usually observe that the net flux through a pathway
depends on many if not all reaction constants

» We could consider the step least able to go faster — but how can we
identify this?

> We need a refined picture: rather than identifying a single rate-limiting
step, explore how metabolic flux varies as enzyme activities and
concentrations change



Metabolic control theory

» We are interested in things like J; (flux through a particular set i of
reactions) and X; (concentration of chemical /), and the control that
features of the metabolic network exert on these quantities

> v; (steady-state rate of reaction /) is a local parameter (describing one
particular reaction)

_ ko[Elol[S]

= km+[S]

> Flux control coefficient, how relative steady state change in flux depends
on relative change in steady-state value of a parameter (e.g. a reaction
rate):

> eg.v

(or more complicated forms)

8J/J

Cy =
i sy—0 8V /v

> ‘Relative’ here means relative to a particular steady-state realisation of
the metabolic system: we're studying multiplicative perturbations

s dJv _anJ
i ov;d T Blny;

» Encodes how much the flux through a pathway depends on the rate of a
particular reaction
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» Flux control coefficient

J_ oJ v _ dind Metabolic control
Vi (9V,- J aln Vi analysis

» We also have concentration control coefficients

X _ olnX
Vi Blnv,-

» Absence of dimensionality is useful when comparing different reactions

(a) ()
AN den

T cli

Flux, S
In(Flux)

g g
Concentration of enzyme, ,,,, In(Concentration of enzyme, £,



Elasticities

> Elasticity measures how relative change in a property (for example,
concentration X;) provokes relative change in a local reaction rate

> Again, ‘relative’ here means relative to a particular steady-state
realisation of the metabolic system

Al
5S—0 60X/ X

v _
€Ex =

> For example, consider ... % PEP 2% .
» (enolase; phosphoenolpyruvate; pyruvate kinase)

JF’,';P tells us how changes in the concentration of PEP provoke change

in the rate of pk
ﬂX _ Olnv

oXv — aInx
> Encodes kinetic details of the enzyme’s behaviour (how reaction rate
depends on reactant concentration); resembles the order of reaction

v
€x
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Coefficients in MCA

» Control coefficients: how flux J or concentration X depends on a
reaction rate v

> Elasticities: how reaction rate v depends on concentration X
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The summation theorem

vvyyvyy

Flux control summation theorem
Sl =
i

So for a rate-limiting step /, Cy, = 1 and Cﬂl, =0forallj#i
The rate v; of step i thus has total control over the flux J
More realistic: the control over J is spread across several steps

The flux control coefficient of each enzyme is a system property — if we
change one enzyme’s contribution, the others change to compensate
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» System-wide effects of perturbations

Theorems in MCA

kq k>
= B = C
1 ks

> Increasing k, affects A despite its lack of direct connection

»> More B is used up; flux through reaction 1 increases due to lack of
product inhibition; A decreases

> An analogy — a perhaps more familiar system in which a local
perturbation has global consequences — food webs, where e.g. removal
of a predator impacts prey, prey’s prey, prey’s competitors, and so on



The connectivity theorem

» For every enzyme that responds to the concentration of metabolite X:

ZC;’;;’I =0

1

> e}’(" is the elasticity with which concentration X affects rate v;

Cﬁi is the control that rate v; has on flux J

» Quantifies how the kinetics of the enzymes (represented by elasticities)
affects flux control coefficients
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Connectivity theorem

ZC" =0

eno

Consider ... 2% pep 25,

(enolase; phosphoenolpyruvate; pyruvate kinase)

J _eno
ConocPp + Cpy kprp

J pk
Ceno _ EPEP

J eno
Cok €PEP

0

Relative values of control coefficients depend on PEP elasticities

Links local properties (elasticities: functions of enzyme behaviour) to
global properties (control of flux through pathways in the system)

With corrections due to branching and other structures, can solve for

control coefficients given elasticities
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Summary

> Elasticities encode dependence of reaction rate on substrate

concentration
ov X Olnv

oXv ~ ainx
» (Concentration—flux) control coefficients encode dependence of
(concentration—flux) on individual reaction rates

v _
€Ex =

dind _x dinX

Cy = ;= ;
diny;" " diny;

vi

> Summation theorem demonstrates the coupled, system-wide sharing of
pathway flux control between reaction

S cl=1
i

» Connectivity theorem links local elasticities with global control
coefficients (large elasticity — small control coefficient)

ZC%e‘)’(’ =0
i
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> Elasticities provide a more complete way of describing enzymatic
functionality than single-substrate Michaelis-Menten (multiple substrates,
allostery, competition and so on can be included)

> We have a way, via the connectivity theorem, of computing global control
coefficients from local enzymatic properties (elasticities)

» These control coefficients tell us the degree of control that different steps
in reaction pathways have on flux through the pathway (or subsets of the
pathway)

»> There are also control coefficients and theorems associated with control
of concentration (as opposed to flux) — these are an extension exercise

Theorems in MCA



Metabolic control picture

> Let’s write the dynamics of a metabolic network as

(1) = Nu(s(t), p(t))

> N is stoichiometry matrix, v are reaction rates, which are generally
functions of state s and parameters p

> Assume that concentrations are able to vary independently (though this
can be relaxed)

> Change variables to represent difference from a steady state of interest:

X=S—Sp,U=p—p,
> If we depart from (sg, po):
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> Our metabolic system
5(1) = Nu(s(t), p(1))

» With change of variables x = s — s,; U = p — p.. as we depart from
9 - 20 =0= B EO P MCA and control
(S0, o) theory



Link to control theory

> Recall the description of a control problem:

x(1) Ax(t) + Bu(t)
y(t) = Cx(t)+ Du(t)

> x is system state; y is an output; u is a control
> Let's use the simplified picture where y = x; so g

la

2:

0
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Metabolic control picture

» Compare
. v v
)= (N=)x(t N—= ) u(t
(0 (8s)x()+<ap>u()
> with
x(t) = Ax(1) + Bu(t)
» A=N%| B=NZ%
= = 0s §0’Bo = = E §07E0
» C=15D=0

» These derivatives describe changes in flux provoked by changes in
concentrations and rate parameters, just as we saw previously
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Metabolic control picture

» Transfer function for a single-input-single-output system

H(z) =C(21-4) ' B+D

» In our metabolic case we have

H(z) = (Zl*§%> - N

os

> A transfer function containing things that look like metabolic control
coefficients — so we can explore the control behaviour of metabolic

systems

> A little more work is needed to complete the mapping, but then
equivalents of the two MCA theorems appear (see reference later)
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> First pair: introduction to metabolism; biochemistry of cellular energy
production and use; ATP production; mitochondria; implementation of
ODE modelling of mitochondrial physiology; tailoring ODE models to
explore specific questions

> Second pair: flux balance analysis for simple metabolic modelling; linear
programming and simplex algorithm; uses of flux balance analysis;
evolution and metabolic optimisation; curation of metabolic information;
implementation of linear programming for flux balance analysis;
perturbation and responses in a metabolic model

» Third pair: metabolic reactions beyond stoichiometry; enzyme kinetics;
metabolic control analysis; elasticities, control coefficients and theorems;
link to classical control theory; implementation of metabolic control
analysis in a simple model; theorem verification

> Metabolism is responsible for energy production in the natural world,
providing the driving for inference, control, and a host of other processes

» Metabolism is itself controlled on a variety of levels and we have met and
implemented several tools for quantitative investigation of metabolic
networks

MCA and control
theory
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