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Stoichiometry is not always the full picture

I An example: we observe the phenomenological reaction description

NO2 + CO → NO + CO2

I From our previous work, we might expect

ν = ν+ = k+[NO2][CO]

I Instead we observe
ν = k [NO2]2

I What’s going on?
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Stoichiometry is not always the full picture

I For NO2 + CO → NO + CO2, we observe ν = k [NO2]2 rather than
ν = ν+ = k+[NO2][CO]

I Leading to the hypothesis that the system is really

NO2 + NO2 → NO + NO3

NO3 + CO → NO2 + CO2

and that the first reaction is much slower
I In this case, there’s a ‘rate-limiting step’, the flux through which largely

controls the flux through the whole pathway
I This picture leads us into a finer-grained representation of enzymatic

reactions
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Enzyme kinetics

I Simple enzyme kinetics described by

E + S
k1



k−1
ES

k2−→ E + P

I Enzyme reversibly binds to substrate to form complex, reacts, and
produces enzyme and product

I We’ll assume that the reaction is irreversible for now
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Enzyme kinetics

I Enzyme kinetics described by

E + S
k1



k−1
ES

k2−→ E + P

I Descriptive equations

d [S]

dt
= −k1[E ][S] + k−1[ES]

d [E ]

dt
= −k1[E ][S] + k−1[ES] + k2[ES]

d [ES]

dt
= k1[E ][S]− k−1[ES]− k2[ES]

d [P]

dt
= k2[ES]
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Enzyme kinetics

E + S
k1



k−1
ES

k2−→ E + P

I Quasi-steady-state approximation: separation of timescales
I Assume that concentration of complex doesn’t change on the timescale

of product formation

d [ES]

dt
= k1[E ][S]− k−1[ES]− k2[ES] ' 0

→ k1[E ][S] = k−1[ES] + k2[ES]

I Enzyme conservation law: [E ] + [ES] = [E ]0 = const
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Enzyme kinetics

I k1[E ][S] = k−1[ES] + k2[ES]

I [E ] + [ES] = [E ]0 = const

k1 ([E ]0 − [ES]) [S] = k−1[ES] + k2[ES]

k1[E ]0[S] = (k−1 + k2 + k1[S]) [ES]

[ES] =
k1[E ]0[S]

k−1 + k2 + k1[S]

[ES] =
[E ]0[S]

km + [S]

I Where km =
k−1+k2

k1

I Assuming that reaction is fast:

v =
d [P]

dt
= k2[ES] =

k2[E ]0[S]

km + [S]
≡

vmax [S]

km + [S]

I ‘Michaelis-Menten kinetics’
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Beyond the ‘road map’ picture

I Metabolic maps, flux balance analysis, and simple enzyme models are
useful but don’t provide the full picture

I Metabolic control analysis offers a way to explore how concentrations
and enzymatic properties influence fluxes through a system

I MCA does not explicitly identify controlling or regulating enzymes – but
finds the species that have the strongest effect on metabolic flux

I A mathematical framework describing how fluxes and concentrations are
coupled to metabolic network parameters

I In particular, metabolic fluxes are global system-wide properties and
depend on the set of local reaction parameters

I Can be thought of as how the architecture of a metabolic network
applies control to biological quantities
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Rate-limiting steps

I Reaction pathways are often thought of as having a single ‘rate-limiting
step’: the slowest step in the pathway

I But in biology we usually observe that the net flux through a pathway
depends on many if not all reaction constants

I We could consider the step least able to go faster – but how can we
identify this?

I We need a refined picture: rather than identifying a single rate-limiting
step, explore how metabolic flux varies as enzyme activities and
concentrations change
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Metabolic control theory

I We are interested in things like Ji (flux through a particular set i of
reactions) and Xi (concentration of chemical i), and the control that
features of the metabolic network exert on these quantities

I vi (steady-state rate of reaction i) is a local parameter (describing one
particular reaction)

I e.g. vi =
k2[E ]0[S]
km+[S]

(or more complicated forms)

I Flux control coefficient, how relative steady state change in flux depends
on relative change in steady-state value of a parameter (e.g. a reaction
rate):

CJ
vi

= lim
δvi→0

δJ/J
δvi/vi

I ‘Relative’ here means relative to a particular steady-state realisation of
the metabolic system: we’re studying multiplicative perturbations

CJ
vi

=
∂J
∂vi

vi

J
=
∂ ln J
∂ ln vi

I Encodes how much the flux through a pathway depends on the rate of a
particular reaction



Driving natural
systems: Enzymes

and metabolic
control analysis

Enzymes and
reaction rates

Metabolic control
analysis

Theorems in MCA

MCA and control
theory

Control coefficients

I Flux control coefficient

CJ
vi

=
∂J
∂vi

vi

J
=
∂ ln J
∂ ln vi

I We also have concentration control coefficients

CX
vi

=
∂ ln X
∂ ln vi

I Absence of dimensionality is useful when comparing different reactions
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Elasticities

I Elasticity measures how relative change in a property (for example,
concentration Xi ) provokes relative change in a local reaction rate

I Again, ‘relative’ here means relative to a particular steady-state
realisation of the metabolic system

εvX = lim
δS→0

δv/v
δX/X

I For example, consider ... eno−−→ PEP
pk−→ ...

I (enolase; phosphoenolpyruvate; pyruvate kinase)

I ε
pk
PEP tells us how changes in the concentration of PEP provoke change

in the rate of pk

εvX =
∂v
∂X

X
v

=
∂ ln v
∂ ln X

I Encodes kinetic details of the enzyme’s behaviour (how reaction rate
depends on reactant concentration); resembles the order of reaction
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Coefficients in MCA

I Control coefficients: how flux J or concentration X depends on a
reaction rate v

I Elasticities: how reaction rate v depends on concentration X
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The summation theorem

I Flux control summation theorem∑
i

CJ
vi

= 1

I So for a rate-limiting step i , CJ
vi

= 1 and CJ
vj

= 0 for all j 6= i

I The rate vi of step i thus has total control over the flux J
I More realistic: the control over J is spread across several steps
I The flux control coefficient of each enzyme is a system property – if we

change one enzyme’s contribution, the others change to compensate
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The summation theorem

I System-wide effects of perturbations

A
k1



k−1
B

k2



k−2
C

I Increasing k2 affects A despite its lack of direct connection
I More B is used up; flux through reaction 1 increases due to lack of

product inhibition; A decreases
I An analogy – a perhaps more familiar system in which a local

perturbation has global consequences – food webs, where e.g. removal
of a predator impacts prey, prey’s prey, prey’s competitors, and so on
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The connectivity theorem

I For every enzyme that responds to the concentration of metabolite X :∑
i

CJ
vi
ε

vi
X = 0

I ε
vi
X is the elasticity with which concentration X affects rate vi

I CJ
vi

is the control that rate vi has on flux J
I Quantifies how the kinetics of the enzymes (represented by elasticities)

affects flux control coefficients
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Connectivity theorem

∑
i

CJ
vi
ε

vi
X = 0

I Consider ... eno−−→ PEP
pk−→ ...

I (enolase; phosphoenolpyruvate; pyruvate kinase)

CJ
enoε

eno
PEP + CJ

pk ε
pk
PEP = 0

CJ
eno

CJ
pk

= −
ε

pk
PEP
εeno

PEP

I Relative values of control coefficients depend on PEP elasticities
I Links local properties (elasticities: functions of enzyme behaviour) to

global properties (control of flux through pathways in the system)
I With corrections due to branching and other structures, can solve for

control coefficients given elasticities
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Summary

I Elasticities encode dependence of reaction rate on substrate
concentration

εvX =
∂v
∂X

X
v

=
∂ ln v
∂ ln X

I (Concentration—flux) control coefficients encode dependence of
(concentration—flux) on individual reaction rates

CJ
vi

=
d ln J
d ln vi

; CX
vi

=
d ln X
d ln vi

;

I Summation theorem demonstrates the coupled, system-wide sharing of
pathway flux control between reaction∑

i

CJ
vi

= 1

I Connectivity theorem links local elasticities with global control
coefficients (large elasticity→ small control coefficient)∑

i

CJ
vi
ε

vi
X = 0
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Summary

I Elasticities provide a more complete way of describing enzymatic
functionality than single-substrate Michaelis-Menten (multiple substrates,
allostery, competition and so on can be included)

I We have a way, via the connectivity theorem, of computing global control
coefficients from local enzymatic properties (elasticities)

I These control coefficients tell us the degree of control that different steps
in reaction pathways have on flux through the pathway (or subsets of the
pathway)

I There are also control coefficients and theorems associated with control
of concentration (as opposed to flux) – these are an extension exercise
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Metabolic control picture

I Let’s write the dynamics of a metabolic network as

ṡ(t) = Nν(s(t), p(t))

I N is stoichiometry matrix, ν are reaction rates, which are generally
functions of state s and parameters p

I Assume that concentrations are able to vary independently (though this
can be relaxed)

I Change variables to represent difference from a steady state of interest:
x = s − s0; u = p − p

0
I If we depart from (s0, p0):

∆ν =
∂ν

∂s
∆s +

∂ν

∂p
∆p
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Metabolic control picture

I Our metabolic system

ṡ(t) = Nν(s(t), p(t))

I With change of variables x = s − s0; u = p − p
0

as we depart from
(s0, p0)

dx
dt

=
ds
dt

= N∆ν

= N
∂ν

∂s
∆s + N

∂ν

∂p
∆p

≡ N
∂ν

∂s
x + N

∂ν

∂p
u
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Link to control theory

I Recall the description of a control problem:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

I x is system state; y is an output; u is a control
I Let’s use the simplified picture where y = x ; so C = I and D = 0
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Metabolic control picture

I Compare

ẋ(t) =

(
N
∂ν

∂s

)
x(t) +

(
N
∂ν

∂p

)
u(t)

I with
ẋ(t) = Ax(t) + Bu(t)

I A = N ∂ν
∂s

∣∣∣
s0,p0

; B = N ∂ν
∂p

∣∣∣
s0,p0

I C = I; D = 0
I These derivatives describe changes in flux provoked by changes in

concentrations and rate parameters, just as we saw previously
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Metabolic control picture

I Transfer function for a single-input-single-output system

H(z) = C
(

zI − A
)−1

B + D

I In our metabolic case we have

H(z) =

(
zI − N

∂ν

∂s

)−1
N
∂ν

∂p

I A transfer function containing things that look like metabolic control
coefficients – so we can explore the control behaviour of metabolic
systems

I A little more work is needed to complete the mapping, but then
equivalents of the two MCA theorems appear (see reference later)
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Conclusions from these lectures

I First pair: introduction to metabolism; biochemistry of cellular energy
production and use; ATP production; mitochondria; implementation of
ODE modelling of mitochondrial physiology; tailoring ODE models to
explore specific questions

I Second pair: flux balance analysis for simple metabolic modelling; linear
programming and simplex algorithm; uses of flux balance analysis;
evolution and metabolic optimisation; curation of metabolic information;
implementation of linear programming for flux balance analysis;
perturbation and responses in a metabolic model

I Third pair: metabolic reactions beyond stoichiometry; enzyme kinetics;
metabolic control analysis; elasticities, control coefficients and theorems;
link to classical control theory; implementation of metabolic control
analysis in a simple model; theorem verification

I Metabolism is responsible for energy production in the natural world,
providing the driving for inference, control, and a host of other processes

I Metabolism is itself controlled on a variety of levels and we have met and
implemented several tools for quantitative investigation of metabolic
networks
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