Driving natural systems: Flux balance analysis of metabolism

Simplifying metabolic models

Solving FBA problems

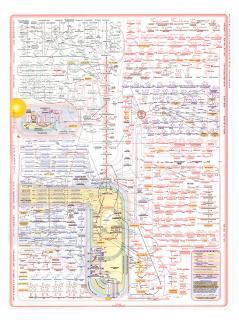
A working example of FBA

Uses of, and evolutionary insights from, FBA

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Driving natural systems: Flux balance analysis of metabolism

Complicated biochemical networks



- Biological metabolic and regulatory systems are incredibly complicated!
- Even if solvable, at what point does an ODE description of each term lose usefulness/interpretability? How robust is it to errors in parameters or missing data?

Driving natural systems: Flux balance analysis of metabolism

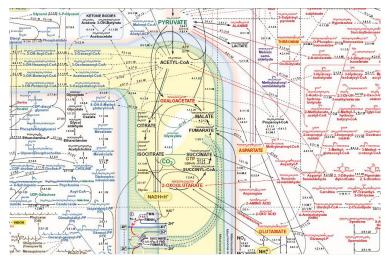
Simplifying metabolic models

Solving FBA problems

A working example of FBA

Complicated biochemical networks

- We saw some of this subset yesterday...
- (Regarding these three lectures, knowledge of individual enzymes/reactants is explicitly non-examinable)



Driving natural systems: Flux balance analysis of metabolism

Simplifying metabolic models

Solving FBA problems

A working example of FBA

Uses of, and evolutionary insights from, FBA

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Flux balance analysis

- Briefly, FBA is a simple way of simulating and optimising large metabolic systems, including the effects of perturbations, assuming a steady state
- Is a steady state assumption useful?
- Metabolite concentrations equilibrate fast (seconds) with respect to the timescale of genetic regulation (minutes) ... so a qualified yes
- Imagine we have a stochiometry matrix <u>S</u>

<i>s</i> ₁₁	<i>s</i> ₁₂	<i>s</i> ₁₃]
<i>s</i> ₂₁	s ₂₂	<i>s</i> ₂₃	
<i>s</i> ₃₁	s 32	s_{33}	
			···]

and a vector <u>v</u> describing the fluxes through each reaction

 $\left[\begin{array}{c} V_1\\ V_2\\ V_3\\ \dots \end{array}\right]$

・ロト・日本・日本・日本・日本・日本・日本

Driving natural systems: Flux balance analysis of metabolism

Simplifying metabolic models

Solving FBA problems

A working example of FBA

Flux balance analysis

- Stoichiometric matrix \underline{S} , vector of fluxes \underline{v} ; change in species with time $\frac{d\underline{X}}{dt} = \underline{Sv}$
- (the *i*th element of the vector <u>S</u>v gives the rate of accumulation or loss of species *i*)
- Balancing the fluxes means imposing $\underline{S} \underline{v} = \underline{0}$ (finding the steady state)
- We also probably want to bound \underline{v} (for example, $\underline{0} \leq \underline{v} \leq \underline{v}^{max}$)
- An important feature of <u>S</u> is that there are generally more reactions than chemical species, so the problem is underdetermined
- The solution space for any system of homogeneous equations and inequalities is a convex polytope

Driving natural systems: Flux balance analysis of metabolism

Simplifying metabolic models

Solving FBA problems

A working example of FBA

Uses of, and evolutionary insights from, FBA

・ロト・日本・山田・山田・山口・

Flux balance analysis

Stoichiometric matrix <u>S</u>, vector of fluxes <u>v</u>

- In general, many different ways exist to balance the fluxes in a system: set of possible <u>v</u> forms a convex polytope
- Each point in the polytope represents a set of fluxes at which the system can run at steady state
- We can find the solution that is optimal with respect to some feature that we are interested in
- Introduce a target function described by <u>c</u>; defined so that the quantity we want to maximise is <u>c</u> · <u>v</u>
- For example: if we're interested in producing chemical X, set c_i = 1 for i describing X → Ø, c_i = 0 otherwise



Driving natural systems: Flux balance analysis of metabolism

Simplifying metabolic models

Solving FBA problems

A working example of FBA

Uses of, and evolutionary insights from, FBA

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

- FBA is computationally cheap, needs only stoichiometric coefficients, no need for kinetic parameters
- FBA doesn't uniquely specify a solution, is difficult to use dynamically, isn't perfect (e.g. regulatory loops), and creating the stochiometric matrix is a non-trivial exercise in curation

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Driving natural systems: Flux balance analysis of metabolism

Simplifying metabolic models

Solving FBA problems

A working example of FBA

Input, output, accumulation and dummy reactions

- Assume zero accumulation, thus working in a steady-state picture
- Introduce input and output 'reactions': flux of reactants and products into and out of the system
- Maximise the dummy output flux of products of interest to maximise production of these products
- Problem is to maximise $\underline{c} \cdot \underline{v}$ subject to $\underline{S} \, \underline{v} = \underline{0}$ and $\underline{0} \leq \underline{v}$
- This problem falls into *linear programming* (maximise a function within a convex polytope)

Driving natural systems: Flux balance analysis of metabolism

Simplifying metabolic models

Solving FBA problems

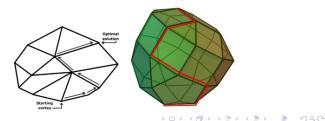
A working example of FBA

Uses of, and evolutionary insights from, FBA

・ロト・西ト・山田・山田・山下

Linear programming

- Dantzig's simplex algorithm: 'the algorithm that rules the world' according to New Scientist
- Locate extreme points (vertices) of the polytope
- For a standard linear program, if the objective function has an optimal value in the convex polytope, then it has this value on at least one extreme point of the polytope
- If an extreme point is not a minimum, there is an edge containing that point such that the objective function gets better along that edge away from the point
- If that edge is finite, we take it and find a better point; otherwise, the problem is unbounded and has no solution
- Some problems: potential cycling if points are degenerate; exponential worst-case. Many alternatives: refined pivoting; criss-cross; conic sampling; other algorithms for interior points in more complicated contexts



Driving natural systems: Flux balance analysis of metabolism

Simplifying metabolic models

Solving FBA problems

A working example of FBA

- Step 1: write problem using 'slack variables' to set up equalities.
- Minimise r = -2x 3y 4z given

becomes

$$3x + 2y + z + s + 0t = 10$$

$$2x + 5y + 3z + 0s + t = 15$$

$$x, y, z, s, t > 0$$

Step 2: write the problem in tableau form

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● のへで

Driving natural systems: Flux balance analysis of metabolism

Simplifying metabolic models

Solving FBA problems

A working example of FBA

A tableau gives a 'basic feasible solution': identify columns with one unit entry

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 0 & 0 & 0 \\ 0 & 3 & 2 & 1 & 1 & 0 & 10 \\ 0 & 2 & 5 & 3 & 0 & 1 & 15 \end{bmatrix}$$
(2)

- The corresponding variables take values from the final column; other variables are zero (x = y = z = 0, s = 10, t = 15)
- Step 3: identify a 'pivot' column need a positive entry in the top row

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 0 & 0 & 0 \\ 0 & 3 & 2 & 1 & 1 & 0 & 10 \\ 0 & 2 & 5 & 3 & 0 & 1 & 15 \end{bmatrix}$$
(3)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Driving natural systems: Flux balance analysis of metabolism

Simplifying metabolic models

Solving FBA problems

A working example of FBA

- Step 4: identify the pivot row.
- Minimise (entry in final column) / (entry in pivot column) over all rows

Γ	1	2	3	4	0	0	0]	
	0	3	2	1	1	0	10	
L	0	2	5	3	0	1	0 10 15	

- 15/3 > 10/1: choose row 3.
- Step 5: multiply pivot row by the reciprocal of pivot entry (e.g. 3)

Step 6: add linear multiples of pivot row to tableau such that pivot column entry is zero (e.g. row 1 = row 1 - 4/3× row 3; row 2 = row 2 - row 3)

$$\begin{bmatrix} 1 & -2/3 & -11/3 & 0 & 0 & -4/3 & -20 \\ 0 & 7/3 & 1/3 & 0 & 1 & -1/3 & 5 \\ 0 & 2/3 & 5/3 & 1 & 0 & 1/3 & 5 \end{bmatrix}$$
(6)

Driving natural systems: Flux balance analysis of metabolism

Simplifying metabolic models

Solving FBA problems

(4)

A working example of FBA

Uses of, and evolutionary insights from, FBA

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

 Repeat until we have no positive entries corresponding to variables in the top row.

$$\begin{bmatrix} 1 & -2/3 & -11/3 & 0 & 0 & -4/3 & -20 \\ 0 & 7/3 & 1/3 & 0 & 1 & -1/3 & 5 \\ 0 & 2/3 & 5/3 & 1 & 0 & 1/3 & 5 \end{bmatrix}$$
(7)

- We're done!
- Basic feasible solution:

$$\begin{bmatrix} 1 & -2/3 & -11/3 & 0 & 0 & -4/3 & -20 \\ 0 & 7/3 & 1/3 & 0 & 1 & -1/3 & 5 \\ 0 & 2/3 & 5/3 & 1 & 0 & 1/3 & 5 \end{bmatrix}$$
(8)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 \rightarrow *z* = 5, *s* = 5, *x* = *y* = *t* = 0.

Solution r = -2x - 3y - 4z = -20.

Driving natural systems: Flux balance analysis of metabolism

Simplifying metabolic models

Solving FBA problems

A working example of FBA

Evolution and biological optimisation

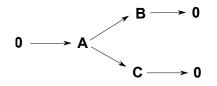
- Is it reasonable to expect natural systems to find optimal solutions?
- Evolution is a powerful optimiser, particularly in systems with large populations and small generation times (for example, bacteria)
- Growth rate is often explored with FBA: a reasonable proxy for 'fitness' in bacterial populations
- How is growth rate predicted? Often, biomass production; also arguments for ATP production.
- e.g. E. coli:
 0.33G6P + 0.07F6P + 0.96R5P + 0.36E4P + 0.36GA3P + 0.863PG + 0.77PEP +
 2.94PYR + 2.41ACCOA + 1.65OA + 1.28AKG + 15.7NADPH + 40.2ATP → BM + 3NADH (Schuetz et al. MSB 3 119 (2007))
- Can also consider nonlinear and/or nonconvex objectives: need more general solvers.
- As we will see, bacterial systems can evolve to find optimal solutions on reasonable human timescales
- Variants of flux balance analysis also allow us to explore transient phenomena

Driving natural systems: Flux balance analysis of metabolism

Simplifying metabolic models

Solving FBA problems

A working example of FBA



- All reactions irreversible
- Sources and sinks allow balance

$$\underline{\underline{S}}^{T} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

Trivial example: maximise production of B

$$\underline{\mathbf{C}} = \begin{bmatrix} 0\\0\\0\\1\\0 \end{bmatrix}$$

Driving natural systems: Flux balance analysis of metabolism

Simplifying metabolic models

Solving FBA problems

A working example of FBA

$$\underline{\underline{S}}^{T} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; \ \underline{\underline{C}} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

- Find the \underline{v} that maximises $\underline{c} \cdot \underline{v}$ such that $\underline{Sv} = \underline{0}$ and $\underline{0} \leq \underline{v} \leq \underline{1}$
- Worth knowing the appropriate MATLAB command: linprog
- v = linprog(-c, [], [], S, zeros(1,N), a, b)
- First argument -<u>c</u> because linprog is a minimisation tool
- Empty arguments 2 & 3 allow constraints of the form $Sv \leq w$
- Arguments 4 & 5 impose Sv = 0
- Arguments 6 & 7 bound \underline{v} with $\underline{a} \leq \underline{v} \leq \underline{b}$

Driving natural systems: Flux balance analysis of metabolism

Simplifying metabolic models

Solving FBA problems

A working example of FBA

Uses of, and evolutionary insights from, FBA

・ロト・西・・田・・田・・日・

$$\underline{\underline{S}}^{T} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; \ \underline{\underline{C}} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

In this case v = linprog(-c, [], [], S, zeros(1,N), a, b) with <u>a</u> = <u>1</u>, <u>b</u> = <u>0</u> straightforwardly gives

$$\underline{v} = \begin{bmatrix} 1\\1\\0\\1\\0 \end{bmatrix}$$

$$\mathbf{B} \longrightarrow \mathbf{0}$$

$$\mathbf{A} \xrightarrow{\mathbf{C}} \mathbf{C} \xrightarrow{\mathbf{X}} \mathbf{0}$$

Driving natural systems: Flux balance analysis of metabolism

Simplifying metabolic models

Solving FBA problems

A working example of FBA

Uses of, and evolutionary insights from, FBA

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$\underline{\underline{S}}^{T} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; \ \underline{\underline{c}} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

• What if the reaction $A \rightarrow C$ keeps us alive?

- We can solve with a lower bound on flux through this reaction: $a_3 = 0.1$.
- In this case v = linprog(-c, [], [], S, zeros(1,N), a, b) unsurprisingly gives

г 1 л

$$\underline{v} = \begin{bmatrix} 0.9\\ 0.1\\ 0.9\\ 0.1 \end{bmatrix}$$

$$B \longrightarrow 0$$

$$C \longrightarrow 0$$

Driving natural systems: Flux balance analysis of metabolism

Simplifying metabolic models

Solving FBA problems

A working example of FBA

Uses of, and evolutionary nsights from, FBA

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Deleting and restricting reactions

- ▶ v = linprog(-c, [], [], S, zeros(1, N), a, b) finds \underline{v} that maximises $\underline{c} \cdot \underline{v}$ such that $\underline{Sv} = \underline{0}$ and $\underline{a} \leq \underline{v} \leq \underline{b}$
- Removing single reactions in turn allows identification of the key reactions for production of a target (e.g. biomass)
- Many reactions are catalysed by specific enzymes: identification of critical reactions can thus be used to choose drug targets
- Extension to multiple reaction deletions (e.g. pairwise) for promiscuous enzymes
- Bounds in linear programming can be used to "knock down" rather than "knock out" reactions
- Set appropriate $b_i = 0$ or $b_i = b_i^{max}$

Driving natural systems: Flux balance analysis of metabolism

Simplifying metabolic models

Solving FBA problems

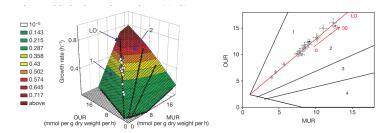
A working example of FBA

Uses of, and evolutionary insights from, FBA

・ロト・西・・田・・田・・日・

Evolution and optimality

- E. coli wildtype evolved to use several different food sources
- When grown on malate,
 - Growth rates against oxygen and malate uptake closely match FBA predictions
 - Initial positions lie on optimal extreme path; evolution drives further increase along this path



Driving natural systems: Flux balance analysis of metabolism

Simplifying metabolic models

Solving FBA problems

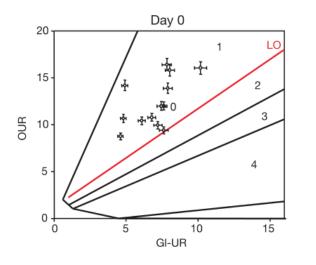
A working example of FBA

Uses of, and evolutionary insights from, FBA

・ロト・日本・日本・日本・日本・日本

Evolution and optimality

When grown on glycerol – an unnatural, but passable, sole foodstuff – metabolism is initially far from optimal...



Driving natural systems: Flux balance analysis of metabolism

Simplifying metabolic models

Solving FBA problems

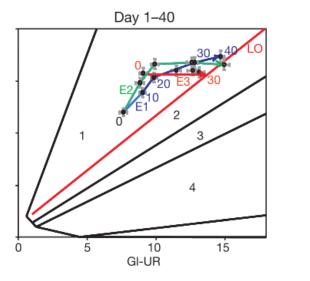
A working example of FBA

Uses of, and evolutionary insights from, FBA

・ロト・西ト・ヨト ・ヨー シタの

Evolution and optimality

 ... but evolution locates the optimal (and accurately predicted) metabolic profile after 40 days (~700 generations)



Driving natural systems: Flux balance analysis of metabolism

Simplifying metabolic models

Solving FBA problems

A working example of FBA

Uses of, and evolutionary insights from, FBA

・ロト・日本・日本・日本・日本・日本

- Flux variability analysis: for degenerate optima, determines the range of parameters that gives rise to the optimal solution
- Minimisation of metabolic adjustment: attempts to predict transient behaviour in response to perturbation by minimising distance between standard and perturbed fluxes
- Quadratic programming: minimise $||\underline{v}_{WT} \underline{v}_{\mu}||^2$ such that $\underline{\underline{S}v}_{\mu} = \underline{0}$
- Other approaches to dynamics: regulatory on-off minimisation; iterated dynamic FBA

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Driving natural systems: Flux balance analysis of metabolism

Simplifying metabolic models

Solving FBA problems

A working example of FBA