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Complicated biochemical networks

I Biological metabolic and
regulatory systems are
incredibly complicated!

I Even if solvable, at what
point does an ODE
description of each term
lose useful-
ness/interpretability?
How robust is it to errors
in parameters or missing
data?
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Complicated biochemical networks

I We saw some of this subset yesterday...
I (Regarding these three lectures, knowledge of individual

enzymes/reactants is explicitly non-examinable)
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Flux balance analysis

I Briefly, FBA is a simple way of simulating and optimising large metabolic
systems, including the effects of perturbations, assuming a steady state

I Is a steady state assumption useful?
I Metabolite concentrations equilibrate fast (seconds) with respect to the

timescale of genetic regulation (minutes) ... so a qualified yes
I Imagine we have a stochiometry matrix S


s11 s12 s13 ...
s21 s22 s23 ...
s31 s32 s33 ...
... ... ... ...


I and a vector v describing the fluxes through each reaction

v1
v2
v3
...


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Flux balance analysis

I Stoichiometric matrix S, vector of fluxes v ; change in species with time
dX
dt = Sv

I (the i th element of the vector S v gives the rate of accumulation or loss
of species i)

I Balancing the fluxes means imposing S v = 0 (finding the steady state)

I We also probably want to bound v (for example, 0 6 v 6 vmax )
I An important feature of S is that there are generally more reactions than

chemical species, so the problem is underdetermined
I The solution space for any system of homogeneous equations and

inequalities is a convex polytope
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Flux balance analysis

I Stoichiometric matrix S, vector of fluxes v
I In general, many different ways exist to balance the fluxes in a system:

set of possible v forms a convex polytope
I Each point in the polytope represents a set of fluxes at which the system

can run at steady state
I We can find the solution that is optimal with respect to some feature that

we are interested in
I Introduce a target function described by c; defined so that the quantity

we want to maximise is c · v
I For example: if we’re interested in producing chemical X , set ci = 1 for i

describing X → ∅, ci = 0 otherwise
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Flux balance analysis

I FBA is computationally cheap, needs only stoichiometric coefficients, no
need for kinetic parameters

I FBA doesn’t uniquely specify a solution, is difficult to use dynamically,
isn’t perfect (e.g. regulatory loops), and creating the stochiometric matrix
is a non-trivial exercise in curation
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Input, output, accumulation and dummy reactions

I Assume zero accumulation, thus working in a steady-state picture
I Introduce input and output ‘reactions’: flux of reactants and products into

and out of the system
I Maximise the dummy output flux of products of interest to maximise

production of these products
I Problem is to maximise c · v subject to S v = 0 and 0 6 v
I This problem falls into linear programming (maximise a function within a

convex polytope)
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Linear programming
I Dantzig’s simplex algorithm: ‘the algorithm that rules the world’

according to New Scientist
I Locate extreme points (vertices) of the polytope
I For a standard linear program, if the objective function has an optimal

value in the convex polytope, then it has this value on at least one
extreme point of the polytope

I If an extreme point is not a minimum, there is an edge containing that
point such that the objective function gets better along that edge away
from the point

I If that edge is finite, we take it and find a better point; otherwise, the
problem is unbounded and has no solution

I Some problems: potential cycling if points are degenerate; exponential
worst-case. Many alternatives: refined pivoting; criss-cross; conic
sampling; other algorithms for interior points in more complicated
contexts
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The simplex algorithm

I Step 1: write problem using ‘slack variables’ to set up equalities.
I Minimise r = −2x − 3y − 4z given

3x + 2y + z ≤ 10

2x + 5y + 3z ≤ 15

x , y , z, > 0

becomes

3x + 2y + z + s + 0t = 10

2x + 5y + 3z + 0s + t = 15

x , y , z, s, t > 0

I Step 2: write the problem in tableau form 1 2 3 4 0 0 0
0 3 2 1 1 0 10
0 2 5 3 0 1 15

 (1)
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The simplex algorithm

I A tableau gives a ‘basic feasible solution’: identify columns with one unit
entry  1 2 3 4 0 0 0

0 3 2 1 1 0 10
0 2 5 3 0 1 15

 (2)

I The corresponding variables take values from the final column; other
variables are zero (x = y = z = 0, s = 10, t = 15)

I Step 3: identify a ‘pivot’ column – need a positive entry in the top row 1 2 3 4 0 0 0
0 3 2 1 1 0 10
0 2 5 3 0 1 15

 (3)
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The simplex algorithm

I Step 4: identify the pivot row.
I Minimise (entry in final column) / (entry in pivot column) over all rows 1 2 3 4 0 0 0

0 3 2 1 1 0 10
0 2 5 3 0 1 15

 (4)

I 15/3 > 10/1: choose row 3.
I Step 5: multiply pivot row by the reciprocal of pivot entry (e.g. 3) 1 2 3 4 0 0 0

0 3 2 1 1 0 10
0 2/3 5/3 1 0 1/3 5

 (5)

I Step 6: add linear multiples of pivot row to tableau such that pivot column
entry is zero (e.g. row 1 = row 1 - 4/3× row 3; row 2 = row 2 - row 3) 1 −2/3 −11/3 0 0 −4/3 −20

0 7/3 1/3 0 1 −1/3 5
0 2/3 5/3 1 0 1/3 5

 (6)
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The simplex algorithm

I Repeat until we have no positive entries corresponding to variables in
the top row. 1 −2/3 −11/3 0 0 −4/3 −20

0 7/3 1/3 0 1 −1/3 5
0 2/3 5/3 1 0 1/3 5

 (7)

I We’re done!
I Basic feasible solution: 1 −2/3 −11/3 0 0 −4/3 −20

0 7/3 1/3 0 1 −1/3 5
0 2/3 5/3 1 0 1/3 5

 (8)

→ z = 5, s = 5, x = y = t = 0.
I Solution r = −2x − 3y − 4z = −20.
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Evolution and biological optimisation

I Is it reasonable to expect natural systems to find optimal solutions?
I Evolution is a powerful optimiser, particularly in systems with large

populations and small generation times (for example, bacteria)
I Growth rate is often explored with FBA: a reasonable proxy for ‘fitness’ in

bacterial populations
I How is growth rate predicted? Often, biomass production; also

arguments for ATP production.
I e.g. E. coli:

0.33G6P + 0.07F6P + 0.96R5P + 0.36E4P + 0.36GA3P + 0.863PG + 0.77PEP +

2.94PYR + 2.41ACCOA + 1.65OA + 1.28AKG + 15.7NADPH + 40.2ATP → BM + 3NADH

(Schuetz et al. MSB 3 119 (2007))

I Can also consider nonlinear and/or nonconvex objectives: need more
general solvers.

I As we will see, bacterial systems can evolve to find optimal solutions on
reasonable human timescales

I Variants of flux balance analysis also allow us to explore transient
phenomena
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A simple example of FBA

A

B

C

0

0

0

I All reactions irreversible
I Sources and sinks allow balance

ST =


1 0 0
−1 1 0
−1 0 1
0 −1 0
0 0 −1


I Trivial example: maximise production of B

c =


0
0
0
1
0


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A simple example of FBA

ST =


1 0 0
−1 1 0
−1 0 1
0 −1 0
0 0 −1

 ; c =


0
0
0
1
0


I Find the v that maximises c · v such that Sv = 0 and 0 6 v 6 1
I Worth knowing the appropriate MATLAB command: linprog
I v = linprog(-c, [], [], S, zeros(1,N), a, b)

I First argument −c because linprog is a minimisation tool
I Empty arguments 2 & 3 allow constraints of the form Sv 6 w

I Arguments 4 & 5 impose Sv = 0
I Arguments 6 & 7 bound v with a 6 v 6 b
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A simple example of FBA

ST =


1 0 0
−1 1 0
−1 0 1
0 −1 0
0 0 −1

 ; c =


0
0
0
1
0


I In this case v = linprog(-c, [], [], S, zeros(1,N), a, b)

with a = 1, b = 0 straightforwardly gives

v =


1
1
0
1
0



A

B

C

0

0

0
X

X
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A simple example of FBA

ST =


1 0 0
−1 1 0
−1 0 1
0 −1 0
0 0 −1

 ; c =


0
0
0
1
0


I What if the reaction A→ C keeps us alive?
I We can solve with a lower bound on flux through this reaction: a3 = 0.1.
I In this case v = linprog(-c, [], [], S, zeros(1,N), a, b)

unsurprisingly gives

v =


1

0.9
0.1
0.9
0.1



A

B

C

0

0

0
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Deleting and restricting reactions

I v = linprog(-c, [], [], S, zeros(1,N), a, b) finds v that
maximises c · v such that Sv = 0 and a 6 v 6 b

I Removing single reactions in turn allows identification of the key
reactions for production of a target (e.g. biomass)

I Many reactions are catalysed by specific enzymes: identification of
critical reactions can thus be used to choose drug targets

I Extension to multiple reaction deletions (e.g. pairwise) for promiscuous
enzymes

I Bounds in linear programming can be used to “knock down” rather than
“knock out” reactions

I Set appropriate bi = 0 or bi = bmax
i
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Evolution and optimality

I E. coli wildtype evolved to use several different food sources

I When grown on malate,

I Growth rates against oxygen and malate uptake closely match
FBA predictions

I Initial positions lie on optimal extreme path; evolution drives further
increase along this path
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Evolution and optimality

I When grown on glycerol – an unnatural, but passable, sole foodstuff –
metabolism is initially far from optimal...
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Evolution and optimality
I ... but evolution locates the optimal (and accurately predicted) metabolic

profile after 40 days (∼700 generations)
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Extensions of FBA

I Flux variability analysis: for degenerate optima, determines the range of
parameters that gives rise to the optimal solution

I Minimisation of metabolic adjustment: attempts to predict transient
behaviour in response to perturbation by minimising distance between
standard and perturbed fluxes

I Quadratic programming: minimise ||vWT − vµ||2 such that Svµ = 0
I Other approaches to dynamics: regulatory on-off minimisation; iterated

dynamic FBA


