
EE2 Mathematics : Fourier and Laplace Transforms

http://www2.imperial.ac.uk/∼nsjones/teaching.htm

These notes are not identical word-for-word with my lectures which will be given on a BB/WB.

Some of these notes may contain more examples than the corresponding lecture while in other

cases the lecture may contain more detailed working. I will not be handing out copies of these

notes – you are therefore advised to attend lectures and take your own.

1. The material in them is dependent upon the material on complex variables in the second

part of this course.

2. Handouts are :

(a) on Fourier Transforms and a list of functions ;

(b) on Laplace Transforms.
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1 Fourier Transforms

1.1 Introduction

There are three definitions of the Fourier Transform (FT) of a function f(t) – see Appendix

A. The one used here, which is consistent with that used in your own Department, is1

f(ω) =

∫ ∞

−∞
f(t)e−iωt dt . (1.1)

where the frequency ω is real. Another common notation is to write F (ω) or F(ω) for f(ω).

Given the spectrum f(ω) the function f(t) can be recovered through the inverse transform

f(t) =
1

2π

∫ ∞

−∞
f(ω)eiωt dω . (1.2)

Note the factor of 1/2π in the coefficient. The interplay between the function of time f(t)

(or a sampled time series) and the FT f(ω) is subtle. Clearly, it is possible that functions f(t)

could be chosen for which the integral (1.1) is infinite – which means that this transform does

not exist. There are two conditions that must be satisfied for the FT to exist :

(i) f(t) must be absolutely integrable : that is∫ ∞

−∞
|f(t)| dt < ∞ . (1.3)

(ii) If f(t) has discontinuities then it must be finite at these.

The following is a list of common functions :

1. The sign-function

sgn(t) =

{
−1 t ≤ 0

+1 t ≥ 0
(1.4)

2. The triangle or tent function :

Λ(t) =


1− t 0 ≤ t ≤ 1

1 + t −1 ≤ t ≤ 0

0 otherwise

(1.5)

3. The rectangle function :

Π(t) =

{
1 −1

2
≤ t ≤ 1

2

0 otherwise
(1.6)

4. The filtering function :

sinc (t) =
sin(t/2)

t/2
. (1.7)

The 1
2
-factor is unusual but is the natural definition for this definition of the FT.

1The overbar notation f should not be confused with complex conjugate.
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5. The Heaviside step function :

H(t) =

{
1 t ≥ 0

0 t ≤ 0
(1.8)

6. The error function :

erf (t) =
1√
π

∫ t

−t

e−x2

dx =
2√
π

∫ t

0

e−x2

dx . (1.9)

7. The normalized autocorrelation function :

γ(t) =

∫∞
−∞ f ∗(u) f(t− u) du∫∞

−∞ |f(u)|2 du
. (1.10)

1.2 The Dirac δ-function

Observing the list of functions in the previous section, it is clear that there is one missing. How

can a spike be represented? For instance, it is intuitive that the spectrum f(ω) of a single

sine-wave f(t) = sinω0t should be a spike at ω0 but the condition of absolute integrability

(1.3) is not satisfied because of the infinite range of the integral. How can such an improper

function be represented? One way of formaizing a spiky function is to introduce the Dirac

Delta function δ(t− t0) by considering the properties of a box of unit area under a limiting

process, as in the figure below :

6

- t
t0

h

h−1

f(t)

A box of unit area : width h & height h−1 at a

point t0 on the t-axis which limits to a spike as

h → 0 but retains unit area. The curve f(t) is

some other function : The product of the two

is non-zero only within the range of the box.

From the picture we represent δ(t− t0) as

δ(t− t0) = lim
h→0

{
h−1 t0 ≤ t ≤ t0 + h

0 otherwise
(1.11)
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with the property of unit area

Area =

∫ ∞

−∞
δ(t− t0) dt = 1 . (1.12)

In the limit h → 0 the δ-function2 acts as a ‘spike’ at t0 : of course it is not a proper function

at all but it possesses a the powerful property∫ ∞

−∞
f(t)δ(t− t0) dt =

N∑
i=1

f(ti)δ(ti − t0)∆ti

= lim
h→0

[
f(t0)h

−1 h
]

= f(t0) . (1.13)

To express this in words, when multiplied on a function f(t) and integrated, the δ-function

simply picks out the value of f(t) at the point of the spike t0. This result can be expressed in

a more general way : ∫ ∞

−∞
f(t′)δ(t′ − t) dt′ = f(t) . (1.14)

This will be used many times in future sections.

Example : The Shannon sampling function (see the non-examinable extra material on

the Shannon sampling Theorem in Appendix B) is a sum of δ-functions whose spikes occur at

fixed times tn :

III(t) =
∞∑

n=−∞

δ(t− tn) . (1.15)

Its product with a signal f(t) samples the signal only at discrete points tn and so the area

under the sampled signal is∫ ∞

−∞
f(t)III(t) dt =

∞∑
n=−∞

∫ ∞

−∞
f(t)δ(t− tn) dt =

∞∑
n=−∞

f(tn) . (1.16)

1.3 Integral representation of the δ-function

The definitions of the the inverse FT f(t) in (1.2) and the FT f(ω) in (1.1) can be put

together to give the Dirichlet integral

f(t) =
1

2π

∫ ∞

−∞

(∫ ∞

−∞
f(t′)e−iωt′dt′

)
eiωt dω

=

∫ ∞

−∞
f(t′)

(
1

2π

∫ ∞

−∞
eiω(t−t′)dω

)
︸ ︷︷ ︸

δ(t−t′)

dt′ (1.17)

2Another way of defining a δ-function is to take a Gaussian curve of half-width h in the limit h → 0.
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where the order of integration has been exchanged. As the underbrace in (1.17) shows,

comparison with (1.14) gives

δ(t− t′) =
1

2π

∫ ∞

−∞
eiω(t−t′)dω . (1.18)

The reverse process gives

f(ω) =

∫ ∞

−∞

(
1

2π

∫ ∞

−∞
f(ω′)eiω

′tdω′
)
e−iωtdt

=

∫ ∞

−∞
f(ω′)

(
1

2π

∫ ∞

−∞
e−i(ω−ω′)tdt

)
︸ ︷︷ ︸

δ(ω−ω′)

dω′ (1.19)

where the order of integration has been exchanged. As the underbrace in (1.19) shows,

comparison with (1.14) gives3

δ(ω − ω′) =
1

2π

∫ ∞

−∞
e−i(ω−ω′)tdt . (1.20)

Thus the ‘integral representation’ of the δ-function is :

δ(τ) =
1

2π

∫ ∞

−∞
e±iΩτdΩ , or δ(Ω) =

1

2π

∫ ∞

−∞
e±iΩτdτ . (1.21)

Every student’s first reaction is to evaluate one of the integrals in (1.21)

δ(τ) =
1

2π
lim
a→∞

∫ a

−a

e±iΩτdΩ

= lim
a→∞

(
sin aτ

πτ

)
, (1.22)

but then it is observed that as a increases the oscillations become faster so the limit does not

formally exist. As a function it has no meaning, but nevertheless, the two integral representa-

tions in (1.21) are extremely useful.

Example : Consider a (complex) function of time with one frequency in the form

f(t) = f0 e
iω0t (1.23)

and so

f(ω) = f0

∫ ∞

−∞
e−i(ω−ω0)t dt = 2πf0 δ(ω − ω0) . (1.24)

Thus the spectrum is just a single frequency – a spike at ω = ω0. The inverse transform is

f(t) =
f0
2π

∫ ∞

−∞
2πδ(ω − ω0)e

iωt dω = f0 e
iω0t . (1.25)

3Either sign ± in the exponent can be chosen : the δ-function is the same either way ; δ(t− t0) or δ(t0− t).
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1.4 Parseval’s Theorem and its generalization

Theorem 1 Given two (complex) functions of time f(t) and g(t)∫ ∞

−∞
f(t) g∗(t) dt =

1

2π

∫ ∞

−∞
f(ω) g∗(ω) dω . (1.26)∫ ∞

−∞
|f(t)|2dt = 1

2π

∫ ∞

−∞
|f(ω)|2dω . (1.27)

The physical interpretation of (1.27) is that energy in time-space equals energy in spectral-

space, as it must.

Proof : Firstly take the LHS of (1.26) and write f(t) and g∗(t) as inverse FTs :∫ ∞

−∞
f(t)g∗(t) dt =

(
1

2π

)2 ∫ ∞

−∞

(∫ ∞

−∞
f(ω)eiωtdω

)(∫ ∞

−∞
g∗(ω′)e−iω′tdω′

)
dt

=

(
1

2π

)2 ∫ ∞

−∞
f(ω)

{∫ ∞

−∞
g∗(ω′)

(∫ ∞

−∞
ei(ω−ω′)tdt

)
dω′
}
dω(1.28)

Now use the integral representation∫ ∞

−∞
ei(ω−ω′)tdt = 2πδ(ω − ω′) (1.29)

to re-write (1.28) as∫ ∞

−∞
f(t)g∗(t) dt =

(
1

2π

)2 ∫ ∞

−∞
f(ω)

{∫ ∞

−∞
g∗(ω′) (2πδ(ω − ω′)) dω′

}
dω

=
1

2π

∫ ∞

−∞
f(ω)g∗(ω)dω , (1.30)

which is the advertised result. (1.27) follows immediately by writing g = f . �

1.5 The Fourier Convolution Theorem

Every transform – Fourier, Laplace, Mellin, & Hankel – has a convolution theorem which

involves a convolution product between two functions f(t) and g(t). The (Fourier) convolution

is defined as4

f(t) ⋆ g(t) =

∫ ∞

−∞
f(t′)g(t− t′) dt′ . (1.31)

The delay t− t′ may be put in either function, to show this, write τ = t− t′. Then

f(t) ⋆ g(t) =

∫ ∞

−∞
f(t− τ)g(τ) dτ . (1.32)

For convenience let us introduce the notation

F [f(t)] ≡ f(ω) . (1.33)

4The ⋆ convolution product should not be confused with complex conjugate.
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Theorem 2 (Fourier convolution theorem) The transform of the convolution product in

time is the product of the transforms in frequency :

F [f(t) ⋆ g(t)] = f(ω) g(ω) or f(t) ⋆ g(t) = F−1
[
f(ω) g(ω)

]
. (1.34)

Conversely, 2π times the transform of the product in time is the convolution product of the

transforms in frequency :

2πF [f(t) g(t)] = f(ω) ⋆ g(ω) or 2πf(t) g(t) = F−1
[
f(ω) ⋆ g(ω)

]
. (1.35)

Proof of (1.34) :

F [f(t) ⋆ g(t)] =

∫ ∞

−∞
e−iωt

(∫ ∞

−∞
f(t′)g(t− t′) dt′

)
dt . (1.36)

Writing τ = t− t′ and reversing the order of integration5, (1.36) becomes

F [f(t) ⋆ g(t)] =

∫ ∞

−∞
f(t′)

(∫ ∞

−∞
e−iω(t′+τ)g(τ) dτ

)
dt′

=

(∫ ∞

−∞
f(t′)e−iωt′dt′

)(∫ ∞

−∞
g(τ)e−iωτdτ

)
= f(ω) g(ω) . (1.37)

Proof of (1.35) :

1

2π
F−1

[
f(ω) ⋆ g(ω)

]
=

(
1

2π

)2 ∫ ∞

−∞
eiωt

(∫ ∞

−∞
f(ω′)g(ω − ω′) dω′

)
dω . (1.38)

Writing Ω = ω − ω′ and reversing the order of integration the RHS becomes f(t) g(t). �

1.6 Examples of Fourier Transforms

1. As in §1.1, the rectangle function Π(t) is defined as

Π(t) =

{
1 −1

2
≤ t ≤ 1

2

0 otherwise
(1.39)

Therefore

Π(ω) =

∫ ∞

−∞
Π(t)e−iωt dt =

∫ 1
2

− 1
2

e−iωtdt

=
e

1
2
iωt − e−

1
2
iω

iω
=

sin 1
2
ω

1
2
ω

= sincω . (1.40)

5The t− t′-plane is infinite in all four directions.
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The inverse is a little trickier :

Π(t) =
1

2π

∫ ∞

−∞
eiωt sincω dω

=
1

2π

∫ ∞

−∞
eiωt

(
e

1
2
iω − e−

1
2
iω

iω

)
dω

=
1

2iπ
(I1 − I2) (1.41)

where

I1 =

∫ ∞

−∞

eip1ω

ω
dω p1 = t+ 1

2
(1.42)

and

I2 =

∫ ∞

−∞

eip2ω

ω
dω p2 = t− 1

2
(1.43)

When p1 and p2 have the same sign then I1 = I2 ; that is when t > 1
2
and t < − 1

2
, in

which case Π(t) = 0 through cancellation in (1.41). In the range − 1
2
< t < 1

2
I1 and I2

have opposite signs where I1 = iπ (see Complex Variable notes on integration when a

pole is on the real axis) but I2 = −I1. Altogether we have the correct result

Π(t) =

{
1 − 1

2
< t < 1

2

0 otherwise
(1.44)

2. As in §1.1, the tent function Λ(t) is defined as

Λ(t) =


1− t 0 ≤ t ≤ 1

1 + t −1 ≤ t ≤ 0

0 otherwise

(1.45)

Thus we have

Λ(ω) =

∫ 0

−1

(1 + t)e−iωtdt+

∫ 1

0

(1− t)e−iωtdt (1.46)

Now we know that ∫ b

a

t e−iωtdt =
i

ω

∫ b

a

t d
[
e−iωt

]
=

i

ω

([
t e−iωt

]b
a
−
∫ b

a

e−iωtdt

)
=

i

ω

[
t e−iωt − i

ω
e−iωt

]b
a

, (1.47)

and ∫ b

a

e−iωtdt =
i

ω

[
e−iωt

]b
a
. (1.48)
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Using these in (1.46)

Λ(ω) =
i

ω

[(
1− eiωt

)
+
(
e−iωt − 1

)]
+

i

ω

[
− i

ω
−
(
−eiω − i

ω
eiω
)]

− i

ω

[(
e−iω − i

ω
e−iω

)
+

i

ω

]
= − i

ω

(
eiω − e−iω

)
+

2

ω2
+

i

ω

(
eiω − e−iω

)
− 1

ω2

(
eiω + e−iω

)
=

2(1− cosω)

ω2

=
4 sin2 1

2
ω

ω2
= sinc2ω . (1.49)

3. The auto-correlation function definition from (1.10) is

γ(t) =

∫∞
−∞ f ∗(u) f(t− u) du∫∞

−∞ |f(u)|2 du
=

f ∗(t) ⋆ f(t)∫∞
−∞ |f(u)|2 du

. (1.50)

Using the Convolution Theorem, its FT is

γ(ω) =
F
[
f ∗(t) ⋆ f(t)

]∫∞
−∞ |f(u)|2 du

=
|f(ω)|2∫∞

−∞ |f(u)|2 du
. (1.51)

Notice that the denominator has been taken outside the integral because it is a number.

Integrating the result w.r.t. ω it is found that∫ ∞

−∞
γ(ω) dω =

∫∞
−∞ |f(ω)|2dω∫∞
−∞ |f(u)|2 du

= 2π , (1.52)

where Parseval’s Theorem (1.27) has been used to obtain the last line.

4. For the Shannon sampling function in (1.15) :

III(t) =
∞∑

n=−∞

δ(t− tn) (1.53)

Then the FT of III(t) is

III(ω) =
∞∑

n=−∞

∫ ∞

−∞
e−iωtδ(t− tn) dt =

∞∑
n=−∞

e−iωtn (1.54)

so the Convolution Theorem gives

F [f(t) ⋆ III(t)] = f(ω)III(ω)

=
∞∑

n=−∞

f(ω)e−iωtn , (1.55)
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which is (correctly) the product of the transforms. Moreover, the FT of the ordinary

product between f(t) and III(t) is

2πF [f(t)III(t)] = 2π
∞∑

n=−∞

∫ ∞

−∞
f(t)e−iωtδ(t− tn) dt

= 2π
∞∑

n=−∞

f(tn)e
−iωtn , (1.56)

which should be the convolution of f(ω) and III(ω). To check this write

f(ω) ⋆ III(ω) =
∞∑

n=−∞

∫ ∞

−∞
f(ω′)e−i(ω−ω′)tn dω′

= 2π
∞∑

n=−∞

f(tn)e
−iωtn (1.57)

which agrees with (1.56). The convolution in time is

f(t) ⋆ III(t) =

∫ ∞

−∞
f(t− t′)III(t′) dt′

=
∞∑

n=−∞

∫ ∞

−∞
f(t− t′)δ(t′ − tn) dt

′

=
∞∑

n=−∞

f(t− tn) (1.58)

and so

F
[
f(t) ⋆ III(t)

]
=

∞∑
n=−∞

∫ ∞

−∞
e−iωtf(t− tn) dt

=
∞∑

n=−∞

∫ ∞

−∞
e−iω(τn+tn)f(τn) dτn

=
∞∑

n=−∞

e−iωtn

∫ ∞

−∞
e−iωτnf(τn) dτn

=
∞∑

n=−∞

e−iωtnf(ω) , (1.59)

which is (1.55), the ordinary product of the transforms.
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2 Laplace Transforms

2.1 Introduction

For a function f(t) uniquely defined on 0 ≤ t ≤ ∞, its Laplace transform (LT) is defined as

L [f(t)] = f(s) =

∫ ∞

0

e−stf(t) dt , (2.1)

where s may be complex. The LT may not exist if f(t) becomes singular in [0∞]. The LT is

a one-sided transform in that it operates on [0∞] and not, like the FT, on [−∞∞]. For

this reason, LTs are useful for initial value problems, such as circuit theory, where a function

switches on at t = 0 and where f(0) has been specified.

Because s is a complex variable the inverse transform

f(t) = L−1
[
f(s)

]
=

∮
C

est f(s) ds (2.2)

is more difficult to handle because the contour C is a tricky infinite rectangle in the right-

hand-half of the s-plane. Referred to as ‘Bromwich integrals’ the evaluation of these is beyond

our present course. To circumvent this difficulty we resort firstly to a library of transforms

(see Handout 7) for the standard functions and secondly to ways of piecing combinations of

these together for those not in the list.

2.2 Library of Laplace Transforms

1. The constant function f(t) = 1 :

f(t) = 1 ; f(s) =
1

s
Re s > 0 (2.3)

Proof :

f(s) =

∫ ∞

0

e−st dt =

[
e−st

s

]∞
0

=
1

s
, (2.4)

provided Re s > 0.

2. The exponential-function f(t) = eat :

f(t) = exp(at) ; f(s) =
1

s− a
; Re s > a (2.5)

Proof :

f(s) =

∫ ∞

0

e−(s−a)t dt =

[
e−(s−a)t

s− a

]∞
0

=
1

s− a
, (2.6)

provided Re(s− a) > 0.
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3. The sine function :

f(t) = sin(at) ; f(s) =
a

s2 + a2
; Re s > 0 (2.7)

Proof : Take both the sine and cosine functions in combination : cos at+ i sin at = eiat

L
(
eiat
)
=

∫ ∞

0

e−(s−ia)tdt =
1

s− ia
=

s+ ia

s2 + a2
(2.8)

provided Re(s) > 0. Then the imaginary (real) part gives the result for sine (cosine).

4. The cosine function

f(t) = cos(at) ; f(s) =
s

s2 + a2
; Re s > 0 (2.9)

5. The polynomial function f(t) = tn :

f(t) = tn; f(s) =
n!

sn+1
; (n ≥ 0) ; Re s > 0 (2.10)

Proof : Define the LT as f(s) = In as

In =

∫ ∞

0

e−sttn dt = −1

s

∫ ∞

0

tn d
[
e−st

]
=

n

s

∫ ∞

0

e−sttn−1 dt =
n

s
In−1 (2.11)

provided Re(s) > 0. With n = 0 and L[1] = s|−1 we obtain I1 = s−2 and end up with

f(s) = In =
n!

sn+1
. (2.12)

6. The Heaviside function :

f(t) = H(t− t0) ; f(s) =
exp(−st0)

s
; Re s > 0 (2.13)

Proof : For Re s > 0

L
[
H(t− t0)

]
=

∫ ∞

0

e−stH(t− t0) dt

=

∫ ∞

t0

e−stdt =
e−st0

s
. (2.14)

7. The Dirac δ-function :

f(t) = δ(t− t0) ; f(s) = exp(−st0) ; t0 ≥ 0 (2.15)

Proof : t0 needs to reside within the positive range of t∫ ∞

0

e−stδ(t− t0) dt =

{
e−st0 t0 ≥ 0 ,

0 t0 < 0 .
(2.16)
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8. Shift theorem :

L [exp(at)f(t)] = f(s− a) (2.17)

Proof : Provided Re(s− a) > 0

L [exp(at)f(t)] =

∫ ∞

0

e−(s−a)tf(t) dt

= f(s− a) . (2.18)

9. Second shift theorem :

L [H(t− a)f(t− a)] = exp(−sa) f(s) (2.19)

Proof : let τ = t− a. Then

L [H(t− a)f(t− a)] =

∫ ∞

0

e−stH(t− a)f(t− a) dt

= e−sa

∫ ∞

−a

e−sτH(τ)f(τ) dτ

= e−sa

∫ ∞

0

e−sτf(τ) dτ = e−saf(s) . (2.20)

10. Convolution theorem :

L{f ⋆ g} = f(s) g(s) (2.21)

where the convolution between two functions f(t) and g(t) is defined as

f ⋆ g =

∫ t

0

f(t′)g(t− t′) dt′ . (2.22)

Note that the convolution is over [0, t] and not [−∞, ∞] as for the FT. he convolution

integral on the RHS can also be written with f and g reversed: that is
∫ t

0
f(t−t′)g(t′) dt′.

Proof : The LT of the convolution product in (2.22) is written down and then the order

of the integrals is exchanged, as in the figure, using τ = t− t′

6

-�
�

�
�
�
�

�
�
�
��

t′

t

t′ = t

r ↗ ∞
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The region of integration r can be read from the figure : the t′-integration is taken in

the vertical direction to cover r but to cover this in the reverse order, the t-integration

is taken in the horizontal direction.

L
(
f ⋆ g

)
=

∫ ∞

0

e−st

(∫ t

0

f(t′)g(t− t′) dt′
)
dt

=

∫ ∞

0

(∫ t=∞

t=t′
e−stg(t− t′) dt

)
f(t′) dt′

=

∫ ∞

0

e−st′
(∫ τ=∞

τ=0

e−sτg(τ) dτ

)
f(t′) dt′

= f(s) g(s) . (2.23)

11. Integral :

L
(∫ t

0

f(t′) dt′
)

=
f(s)

s
(2.24)

Proof : The integral in (2.24) is a convolution product between f(t) and g(t) = 1.

Thus g(s) = 1/s, giving the result from (2.23).

12. Derivative :

L [ḟ(t)] = sf(s)− f(0) (2.25)

Proof : Noting that f(0) means f(t = 0)

L
[
ḟ
]

=

∫ ∞

0

e−stḟ dt

=

∫ ∞

0

e−st df =
[
e−stf(t)

]∞
0
+ s

∫ ∞

0

e−stf dt

= sf(s)− f(0) (2.26)

provided Re s > 0.

13. Second derivative : Noting that ḟ(0) means ḟ(t = 0)

L [f̈(t)] = s2f(s)− sf(0)− ḟ(0) (2.27)

Proof :

L
[
f̈
]

=

∫ ∞

0

e−stf̈ dt

=

∫ ∞

0

e−st dḟ =
[
e−stḟ(t)

]∞
0
+ s

∫ ∞

0

e−stḟ dt

= sL
[
ḟ
]
− ḟ(0)

= s2f(s)− sf(0)− ḟ(0) , (2.28)

provided Re s > 0.
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2.3 Using the Convolution Theorem to find inverses

If we are given an inverse LT as a function F (s) which is too complicated to appear in the

Library above but can be split into composite functions F (s) = f(s) g(s) where f(s) and g(s)

do belong to the Library, then the Convolution Theorem allows us to write

F (t) = L−1
(
f(s) g(s)

)
= f(t) ⋆ g(t) . (2.29)

Example 1 : Find L−1
[

1
s(s2+1)

]
. We identify f(s) = s−1 and g(s) = (s2+1)−1. The Library

tell us that f(t) = 1 and g(t) = sin t. Thus

F (t) = 1 ⋆ sin t =

∫ t

0

sin t′ dt′ = 1− cos t . (2.30)

Example 2 : Find L−1
[

s
(s2+a2)2

]
. Identify

f(s) =
s

s2 + a2
g(s) =

1

s2 + a2
. (2.31)

The Library tell us that f(t) = cos at and g(t) = a−1 sin at, and so

F (t) = a−1 sin at ⋆ cos at = a−1

∫ t

0

sin(at′) cos a(t− t′) dt′ . (2.32)

Using sin(A+B) + sin(A−B) = 2 sinA cosB we find

sin(at′) cos a(t− t′) = 1
2
[sin at+ sin a(2t′ − t)] (2.33)

and so from (2.32)

F (t) =
1

2a

∫ t

0

[sin(at) + sin a(2t′ − t)] dt′

=
1

2a

[
t sin at− 1

2a

{
cos at− cos at

}]
=

t

2a
sin at . (2.34)

Example 3 : Find L−1
[

a2

(s2+a2)2

]
. Identify F (s) = |f(s)|2 where

f(s) =
a

s2 + a2
g(s) = f(s) . (2.35)

The Library tell us that f(t) = g(t) = sin at so sin at is convolved with itself

F (t) = sin at ⋆ sin at

=

∫ t

0

sin at′ sin a(t− t′) dt′

=
1

2a
[sin at− at cos at] . (2.36)

having used the trig-identity cos(A−B)− cos(A+B) = 2 sinA sinB.
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2.4 Examples involving partial fractions and the Shift theorem

Example 1 : Find f(t) when

f(s) =
6s2 + 10s+ 2

s(s2 + 3s+ 2)
. (2.37)

Noting that s2 + 3s+ 2 = (s+ 1)(s+ 2) (2.37) can be split by Partial Fractions (PFs) into

f(s) =
6s2 + 10s+ 2

s(s+ 1)(s+ 2)
=

1

s
+

2

s+ 1
+

3

s+ 2
. (2.38)

Thus, using the Library

f(t) = L−1

(
1

s
+

2

s+ 1
+

3

s+ 2

)
= 1 + 2e−t + 3e−2t . (2.39)

Example 2 : Find f(t) when

f(s) =
2

s(s− 2)
. (2.40)

in which case

f(s) = −1

s
+

1

s− 2
, (2.41)

and so

f(t) = −1 + e2t . (2.42)

Example 3 : Find f(t) when f(s) = (s− 1)−4. From the Library,

L
[
t3
]
=

3!

s4
(2.43)

therefore L−1
[
s−4
]
= t3/6. With the application of the Shift Theorem with a = 1 we have

L−1
[
(s− 1)−4

]
=

1

6
t3et . (2.44)

2.5 Solving ODEs using Laplace Transforms

Many textbook methods are given to solve 2nd order ODEs of the type

ẍ+ αẋ+ ω2
0x = f(t) , (2.45)

but only the LT-method can handle those cases when the forcing function is not smooth.

Examples might be voltage inputs of the square wave or saw-tooth type. To approach this

using LTs, the transform is taken of (2.45)(
s2x(s)− sx0 − ẋ0

)
+ α (sx(s)− x0) + ω2

0 x(s) = f(s) . (2.46)
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where x0 = x(0) and ẋ0 = ẋ(0). This re-organizes into(
s2 + αs+ ω2

0

)
x(s) = f(s) + (s+ α)x0 + ẋ0 . (2.47)

Note that the final expression for x(s) divides conveniently into two parts corresponding to

the Complementary Function and the Particular Integral

x(s) =
f(s)

s2 + αs+ ω2
0︸ ︷︷ ︸

P.I.

+
(s+ α)x0 + ẋ0

s2 + αs+ ω2
0︸ ︷︷ ︸

C.F.

(2.48)

The initial conditions appear in x0 and ẋ0 as part of the Complementary Function. How to

take the inverse depends on whether the denominator has real or complex roots. These we

consider by example.

Example 1 : Solve ẍ+ ẋ− 2x = et with x0 = 3 and ẋ0 = 0.

(2.47) becomes (
s2 + s− 2

)
x(s) =

1

s− 1
+ 3(s+ 1) . (2.49)

Noting that s2 + s− 2 = (s− 1)(s+ 2) we have

x(s) =
1

(s− 1)2(s+ 2)︸ ︷︷ ︸
P.I.

+
3(s+ 1)

(s− 1)(s+ 2)︸ ︷︷ ︸
C.F.

(2.50)

Using PFs

x(s) =
1

3(s− 1)2
+

17

9(s− 1)
+

10

9(s+ 2)
(2.51)

and so the Library gives us

x(t) =
1

3
tet +

17

9
et +

10

9
e−2t . (2.52)

Example 2 : Solve ẍ+ 16x = sin 2t with x0 = 0 and ẋ0 = 1.

(2.47) becomes (
s2 + 16

)
x(s) = 1 +

2

s2 + 4
, (2.53)

and so

x(s) =
1

s2 + 16
+

2

(s2 + 4)(s2 + 16)

=
5

6(s2 + 16)
+

1

6(s2 + 4)

=
5

24

(
4

s2 + 42

)
+

1

12

(
2

s2 + 22

)
. (2.54)
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Therefore, from the Library

x(t) =
5

24
sin 4t+

1

12
sin 2t . (2.55)

Example 3 (real roots) : Solve ẍ + 3ẋ + 2x = f(t) with x0 = 1 and ẋ0 = −2. In this

example f(t) has not been specified although it must be assumed that its LT exists.

We obtain

x(s) =
f(s)

s2 + 3s+ 2
+

x0(s+ 3) + ẋ0

s2 + 3s+ 2
(2.56)

so from (2.48) with the specified initial conditions

x(s) =
f(s)

(s+ 1)(s+ 2)
+

1

s+ 2
. (2.57)

Using PFs we find

x(s) =
f(s)

s+ 1
− f(s)

s+ 2
+

1

s+ 2

≡ f(s)g1(s)− f(s)g2(s) + g2(s) (2.58)

where g1(s) = (s + 1)−1 and g2(s) = (s + 2)−1. From these definitions it is clear that

g1(t) = e−t and g2(t) = e−2t. From the Convolution Theorem we have

x(t) =

∫ t

0

[
e−(t−t′) − e−2(t−t′)

]
f(t′) dt′︸ ︷︷ ︸

P.I.

+ e−2t︸︷︷︸
C.F.

. (2.59)

The power of the LT-method can be seen here in that it solves, in principle, an ODE with any

forcing, provided f(s) exists.

Example 4 (complex roots) : Solve ẍ + 2ẋ + 2x = f(t) with x0 = 1 and ẋ0 = 0. In this

example f(t) has not been specified although it must be assumed that its LT exists.

From (2.48) the next step comes out to be

x(s) =
f(s)

(s+ 1)2 + 1
+

s+ 2

(s+ 1)2 + 1
(2.60)

where it has been noted that s2 + 2s+ 2 does not have real roots. Now define

g1(s) =
1

(s+ 1)2 + 1
g2(s) =

s+ 1

(s+ 1)2 + 1
. (2.61)

Therefore x(s) can be re-expressed as

x(s) = f(s)g1(s) + g2(s) + g1(s) . (2.62)

Inverse transforms can be found from the Shift Theorem and the Library

g1(t) = e−t sin t g2(t) = e−t cos t . (2.63)

The Convolution Theorem gives the final result

x(t) =

∫ t

0

f(t− t′)e−t′ sin t′ dt′ + e−t [cos t+ sin t] . (2.64)
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A Appendix : Three definitions of the Fourier Transform

1. Definition 1: (used in these notes)

f(ω) =

∫ ∞

−∞
f(t)e−iωt dt , (A.1)

with the inverse Fourier transform written as

f(t) =
1

2π

∫ ∞

−∞
f(ω)eiωt dω . (A.2)

2. Definition 2: This definition is sometimes used in signal processing :

f(s) =

∫ ∞

−∞
f(t)e−2πist dt , (A.3)

with the inverse Fourier transform written as

f(t) =

∫ ∞

−∞
f(s)e2πist ds . (A.4)

Hence s acts like the frequency with ω = 2πs.

3. Definition 3: This next definition is used more in mathematical physics because of the

symmetry in the coefficients of both the transform and its inverse :

f(ω) =
1√
2π

∫ ∞

−∞
f(t)e−iωt dt , (A.5)

with the inverse Fourier transform written as

f(t) =
1√
2π

∫ ∞

−∞
f(ω)eiωt dω . (A.6)

B Appendix : The Nyquist-Shannon Sampling Theorem

Not examinable : this result belongs to your own Signals Processing course. Let

ωs = 2π/T be the sampling rate of a band-width-limited signal which is centred around zero

with bandwidth [−ωmax, ωmax].

Theorem 3 When sampling a signal, the sampling frequency must be greater than twice the

bandwidth in order to reconstruct the signal perfectly from the sampled version.

Proof : Let f(t) be a continuous signal and let III(t) =
∑∞

n=−∞ δ(t−nT ). Then we consider

f (s)(t) = f(t)III(t) (B.1)
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with ωs = 2π/T . Then

f (s)(ω) = F

[
f(t)

n=∞∑
n=−∞

δ(t− nT )

]

=
1

2π

n=∞∑
n=−∞

f(ω) ⋆ e−iωnT

=
1

2π

n=∞∑
n=−∞

∫ ∞

−∞
f(ω′)e−i(ω′−ω)nT dω′

=
n=∞∑
n=−∞

f(nT ) eiωnT

=
n=∞∑
n=−∞

f(ω − nωs) (B.2)

where the Poisson summation formula has been used in the last step. The signal bandwidth

is 2ωmax so in order for a replicated f(ω), shifted by ωs, not to overlap then the condition

ωs > 2ωmax must hold. If ωs is not large enough then overlap occurs with aliasing. �


