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These notes are not identical word-for-word with my lectures which will be given on the

blackboard. Some of these notes may contain more examples than the corresponding lecture

while in other cases the lecture may contain more detailed working you are therefore strongly

advised to attend lectures.
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1 Partial Differentiation and Multivariable Functions

In the following we will be considering functions of multiple variables f(x, y...). We will

principally consider the functions of just two variables, f(x, y), but most of the concepts

discussed can be generalized to multiple variables. In the lectures you will be introduced to

perspective plots and (constant) contour plots. This part of the course can be viewed as

introducing the basics of optimization: something critical for quantitative design.

1.1 Partial Differentials Reminder

From starting point (x0, y0), we will consider small changes in the x, y-plane of size (∆x,∆y)

and the small changes that they correspond to in f , of size ∆f .

Consider small changes to x with y = constant = y0. It follows that ∆f = f(x0 +

∆x, y0)− f(x0, y0) and the instantaneous slope in the x-direction is then

lim
∆x→0

∆f

∆x
= lim

∆x→0

f(x0 +∆x, y0)− f(x0, y0)

∆x
=

∂f

∂x

∣∣∣∣
y=y0

(1.1)

(if the limit exists). This is called the partial derivative of f with respect to x while keeping

y constant. There are a variety of notations for partial derivatives e.g.:

∂f

∂x

∣∣∣∣
y

=

(
∂f

∂x

)
y

=
∂f

∂x
= fx (1.2)

note that in the last two equivalences, the fact that y is held constant is simply assumed.

The partial differential with respect to y, ∂f
∂y

∣∣∣
x=x0

is defined similarly.

Example : If f(x, y) = x3 sin(xy) then ∂f
∂x

∣∣
y
= 3x2 sin(xy)+x3y cos(xy) and also ∂f

∂y

∣∣∣
x
=

x4 cos(xy).

We can also take the partial derivative of a partial derivative yielding expressions like
∂2f
∂x2 = fxx or ∂2f

∂x∂y
= fxy.

1.2 The Total Differential

What is the change in f for any small step (∆x,∆y)? We’ll use a relatively standard argument

(in the lectures we’ll use a graphical argument) to obtain the total differential:

∆f = f(x+∆x, y +∆y)− f(x, y)

∆f = f(x+∆x, y +∆y) + (−f(x, y +∆y) + f(x, y +∆y))− f(x, y)

∆f = ∆x
f(x+∆x, y +∆y)− f(x, y +∆y)

∆x
+∆y

f(x, y +∆y)− f(x, y)

∆y

(1.3)
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This resembles the definitions for the partial differentials used previously. For (∆x,∆y)

sufficiently small it becomes

∆f ≈ ∂f(x, y)

∂x
∆x+

∂f(x, y)

∂y
∆y. (1.4)

(the first term might seem to approximate ∂f(x,y+∆)
∂y

)∆x but this in turn approximates ∂f(x,y)
∂x

∆x).

In the limit ∆x,∆y → 0 this becomes the Total Differential:

df =
∂f(x, y)

∂x
dx+

∂f(x, y)

∂y
dy (1.5)

where df, dx, dy are called abstract differentials. This generalises to df = ∂f
∂x1

dx1+
∂f
∂x2

dx2+

... ∂f
∂xn

dxn for functions of n variables.

Example: Consider the function f(x, y) = x2 + xy − 3y2. The constant contour f = 1

passes through (0, 1). What is the value of y on the same contour when x = 0.1?

Along the contour ∆f = 0. It follows from Eq. 1.4 that ∂f(x,y)
∂x

∆x + ∂f(x,y)
∂y

∆y = 0 =

(2x+ y)∆x+ (x− 6y)∆y evaluated at (0, 1) so ∆y ≈ ∆x
6

and so y ≈ 1 + ∆y ≈ 1.017.

1.3 The Chain Rule

This considers the setting where f(x, y) but x and y are both themselves functions of a variable

u such that x(u), y(u). This is a natural setting e.g. one might have a function (like fuel

consumption) depending on distance and speed but, in turn, both of these quantities might

be functions of time. E.g. f = bx+ xy where x = au2/2 and y = au. Since f(x, y) = f(u)

it follows that df
du

is well defined (since f is a univariate function of u).

df

du
= lim

∆u→0

∆f

∆u
= lim

∆u→0

∂f(x,y)
∂x

∆x+ ∂f(x,y)
∂y

∆y

∆u
(1.6)

from this follows the Chain Rule:

df

du
=

∂f(x, y)

∂x

dx

du
+

∂f(x, y)

∂y

dy

du
. (1.7)

Note that this only applies when f is a univariate function of u.

Example: From the example above and using Eq. (1.7) df
du

= (b + y).au + x.a which

simplifies to bau+ 3
2
a2u2.

The chain rule generalizes to functions of more variables as df
du

= ∂f
∂x1

dx1

du
+ ∂f

∂x2

dx2

du
+

.... ∂f
∂xn

dxn

du
.
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2 Change of Variables

Suppose f = f(x, y) and that x = x(u, v) and y = y(u, v) (this is a generalization of

the previous situation where we had x(t) and y(t)). So we can write f = f(x, y) =

f(x(u, v), y(u, v)) = f(u, v). It is useful to be able to toggle between these co-ordinate

systems when trying to solve problems. We can write out various versions of the total differ-

ential:

df =
∂f

∂u

∣∣∣∣
v

du+
∂f

∂v

∣∣∣∣
u

dv (since f(u, v)) (2.1)

df =
∂f

∂x

∣∣∣∣
y

dx+
∂f

∂y

∣∣∣∣
x

dy (since f(x, y)) (2.2)

dx =
∂x

∂u

∣∣∣∣
v

du+
∂x

∂v

∣∣∣∣
u

dv (since x(u, v)) (2.3)

dy =
∂y

∂u

∣∣∣∣
v

du+
∂y

∂v

∣∣∣∣
u

dv (since y(u, v)) (2.4)

We can now substitute (2.3) and (2.4) into (2.2) obtaining:

df =
∂f

∂x

∣∣∣∣
y

(
∂x

∂u

∣∣∣∣
v

du+
∂x

∂v

∣∣∣∣
u

dv) +
∂f

∂y

∣∣∣∣
x

(
∂y

∂u

∣∣∣∣
v

du+
∂y

∂v

∣∣∣∣
u

dv) (2.5)

Grouping terms in (2.5) and comparing terms in du and dv with (2.1) we find:

∂f

∂u

∣∣∣∣
v

=
∂f

∂x

∣∣∣∣
y

∂x

∂u

∣∣∣∣
v

+
∂f

∂y

∣∣∣∣
x

∂y

∂u

∣∣∣∣
v

(2.6)

which “expresses a change of variables in f”. And similarly

∂f

∂v

∣∣∣∣
u

=
∂f

∂x

∣∣∣∣
y

∂x

∂v

∣∣∣∣
u

+
∂f

∂y

∣∣∣∣
x

∂y

∂v

∣∣∣∣
u

(2.7)

Rule of thumb: One can obtain change of variables expressions from the total differential

by “multiplying through by
∂v

∣∣
u
”. I.e. we can obtain (2.6) by writing “ ∂f = ∂f

∂x

∣∣
y
∂x +

∂f
∂y

∣∣∣
x
∂y ′′ and “multiplying through by

∂v

∣∣
u
”. Note that we’re using “∂x′′ and “∂y′′ and not

dx and dy because x = x(u, v) and y = y(u, v).

Example of a change of variables:

Suppose I want to go from thinking about a function in polar co-ordinates, f(r, θ) = r2 sin θ

to representing it in Cartesian co-ordinates.

Find ∂f
∂x

∣∣
y
where x = r cos θ, y = r sin θ, r =

√
(x2 + y2) and θ = tan−1 y/x. Writing

the total differential for f(θ, r) as df = ∂f
∂r

∣∣
θ
dr+ ∂f

∂θ

∣∣
r
dθ. Using the rule of thumb above we

have
∂f

∂x

∣∣∣∣
y

=
∂f

∂r

∣∣∣∣
θ

∂r

∂x

∣∣∣∣
y

+
∂f

∂θ

∣∣∣∣
r

∂θ

∂x

∣∣∣∣
y

(2.8)
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it follows that

∂f

∂x

∣∣∣∣
y

= 2r sin θ · 1
2
(x2 + y2)−

1
2 · 2x+ r2 cos θ · 1

1 + y2/x2
.
−y

x2
(2.9)

This simplifies to ∂f
∂x

∣∣
y
= xy/

√
x2 + y2.

Note1 What about double partial differentials? ∂2f
∂x2 = ∂

∂x
(∂f
∂x
) = [ ∂

∂x
][ ∂
∂x
]f . So

∂2f

∂x2
=

[
x

r

∂

∂r

∣∣∣∣
θ

+
−y

r2
∂

∂θ

∣∣∣∣
r

] [
x

r

∂

∂r

∣∣∣∣
θ

+
−y

r2
∂

∂θ

∣∣∣∣
r

]
f (2.10)

.

How should I interpret expressions like this? E.g. what is the first term when I expand the

above?

x

r

∂

∂r

[
x

r

∂

∂r

]
f =

x

r

∂

∂r

[
x

r

∂f

∂r

]
(2.11)

=
x

r

[
∂(x/r)

∂r

∂f

∂r
+

x

r

∂2f

∂r2

]
(2.12)

How do we obtain equations like (2.10)? Well let’s consider Equation (2.8) and ∂2f
∂x2 .

Writing g(r, θ) = ∂f
∂x

∣∣
y
we are then at liberty to consider the total differential of dg(r, θ) in

terms of the abstract differentials dr and dθ. By construction, ∂2f
∂x2 = ∂g

∂x
and we can obtain

∂g
∂x

by using the above rule of thumb and “multiplying dg(r, θ) through by ∂
∂x
”: this yields

Eq. (2.8) in terms of g not f . Now we can take this expression for ∂g
∂x

and eliminate g using

g(r, θ) = ∂f
∂x

∣∣
y
. One then obtains an expression similar to Equation (2.10).

Note2 Implicit expressions have cropped up already e.g. f(x, y, z) = 0. First of all it

might be useful to remember how, in the univariate case you have been taught to do implicit

differentation. E.g. Remind yourself how you would find dy
dx

when y2x+ x log y+3 = 0 (hint:

you don’t do it by rearranging for an expression y = h(x)). So what about the multivariate

case if I want to find e.g. ∂z
∂x

∣∣
y
? Example: for y = z3 + xz. Differentiate with respect to x

holding y constant (and noting the obvious, but perhaps helpful to some, that [ ∂
∂x

∣∣
y
]z = ∂z

∂x

∣∣
y
).

It follows from the expression for y that 0 = 3z2 ∂z
∂x

∣∣
y
+ ∂x

∂x

∣∣
y
z+x ∂z

∂x

∣∣
y
. We can then rearrange

and solve for ∂z
∂x

∣∣
y
= −z

3z2+x
.

Note3 There are two identities which hold for f(x, y, z) = 0 which you may have encoun-

tered previously. These are called the reciprocity relation and the cyclic relation.

∂x

∂y

∣∣∣∣
z

=

[
∂y

∂x

∣∣∣∣
z

]−1

(2.13)

∂x

∂y
|z.

∂y

∂z
|x.

∂z

∂x
|y = −1 (2.14)

Try and obtain these for yourself. This can be done by writing out the total differentials for

dx(y, z) and dy(x, z) and using the expression for dy to eliminate dy from the expression for
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dx. Then, by considering the scenarios first when z is constant and then when x is constant

you can obtain the above.

3 Taylor’s theorem for multi-variable functions

Reminder: in univariate case

f(x) = f(x0) + (x− x0)f
′(x0) +

(x− x0)
2

2!
f ′′(x0) + ...+

(x− x0)
n−1

(n− 1)!
fn−1(x0) + ... (3.1)

where we could also have written x− x0 = ∆x.

Generalizing to two variables:

f(x, y) = f(x0, y0) + ∆x
∂f

∂x
+∆y

∂f

∂y
+

1

2!

[
∂2f

∂x2
(∆x)2 + 2

∂2f

∂x∂y
∆x∆y +

∂2f

∂y2
(∆y)2

]
+ ...

(3.2)

Where we define ∆x = x − x0 and ∆y = y − y0 and evaluate the derivatives at x0, y0.

We could write the quadratic term in different notation as (∆x ∂
∂x

+∆y ∂
∂y
)(∆x ∂

∂x
+∆y ∂

∂y
)f

where ∂
∂x

and ∂
∂y

act only on f not on ∆x or ∆y. The above expansion then becomes:

f(x, y) =
∞∑
n=0

1

n!

[(
∆x

∂

∂x
+∆y

∂

∂y

)n

f(x, y)

]
x0,y0

(3.3)

For more than two dimensions we can write this as

f(x) =
∞∑
n=0

1

n!
[(∆x · ∇)n f(x)]x=x0

(3.4)

or

f(x) = f(x0) +
∑
i

∂f

∂xi

∆xi +
1

2!

∑
i

∑
j

∂2f

∂xi∂xj

∆xi∆xj + . . . (3.5)

Hessian: If f(x1...xn) we can define Hij =
∂
∂xi

∂
∂xj

f(x1, ..., xn). The matrix H is called

the Hessian. Hij appears in the equation above (3.5).

4 Gradient

The gradient vector is called “grad f” or ∇f = (∂f
∂x
, ∂f
∂y
). If f = f(u1...un) then the same

notation holds for higher dimensions and the ith component of ∇fi =
∂f
∂ui

.

The total differential df = ∂f
∂x
dx+ ∂f

∂y
dy can be written as df = ds·∇f where ds = (dx, dy).

Instead of ds we could also think about small (finite) steps∆S = (∆x,∆y) or |∆S|∆̂S (where

∆̂S is a unit vector in direction ∆S). We can thus write



6

∆f ≃ ∆S · ∇f = |∆S|∆̂S · ∇f (4.1)

Rewriting the dot product:

∆f ≃ |∇f ||∆S| cos θ (4.2)

where θ is the angle between vectors ∇f and ∆S. Equation 4.2 is useful: it relates the

change in the function f , ∆f , to ∇f and ∆S. If ∆S is a step which is parallel to ∇f then

θ is zero and ∆f is maximized. This means that small steps in a direction parallel to ∇f are

in the direction of greatest change of f . This allows an interpretation of ∇f : it points in the

direction of greatest change of f . Similarly if ∆S is perpendicular to ∇f then Equation 4.2

tells us that the change in f is zero. In this case ∆S is a motion along a constant contour of

f (or we’re located at one of f ’s stationary points - see later).

This gives us an interpretation for the direction of ∇f but what about its magnitude?

|∇f(x, y)| tells us the gradient in the direction ∇f(x, y). In Eq. 4.2 if ∆S ∥ ∇f then θ = 0

and so rearranging we find that |∇f | ≃ ∆f
|∆S| . In the limit of infinitesimal steps ds in the

direction ∇f this becomes df
ds

= |∇f |. I.e. previously we took slices through our landscape

which were parallel to the co-ordinate axes, e.g. setting y = y0. We could then calculate

gradients like ∂f
∂x
|y=y0 . But we can also, for any point (x, y), take a slice through the function

in a direction ∇f(x, y) which passes through (x, y). The instantaneous rate of change of f

along this slice, and at (x, y), is the value of |∇f(x, y)|.

Recap: ∇f(x, y) is a vector pointing in the direction of greatest change of f at the point

(x, y). Its magnitude is equal to the rate of change of f in this direction (at (x, y)).

From above, if ds is not parallel to f then a step, ds, of infinitesimal size in direction â

has a rate of change of f specified by df
ds

= ∇f · â = |∇f | cos θ where θ is the angle between

â and ∇f .

A standard example: Consider the function f = x2y + yz. Find i) ∇f ii) Find the rate of

change of f ( df
ds
) in a direction a = (1, 2, 3) at point (1, 2,−1) iii) what is the direction of the

largest rate of change at this point, and what is its magnitude?

i) ∇f = (2xy, x2 + z, y). ii) First find â then df
ds

= ∇f · â. At (1, 2,−1) ∇f = (4, 0, 2)

so df
ds

= 10√
14
. iii) This is the direction ∇f = (4, 0, 2) and of magnitude |∇f | =

√
(20).

5 Stationary Points

Univariate case: When we differentiate f(x) and solve for the x0 such that df
dx

= 0, the

gradient is zero at these points. What about the rate of change of gradient: d
dx
( df
dx
) at the

minimum x0? For a minimum the gradient increases as x0 → x0 +∆x (∆x > 0). It follows
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that d2f
dx2 > 0. The opposite is true for a maximum: d2f

dx2 < 0, the gradient decreases upon

positive steps away from x0. For a point of inflection d2f
dx2 = 0.

Multivariate case: Stationary points occur when ∇f = 0. In 2-d this is (∂f
∂x
, ∂f
∂y
) = 0,

namely, a generalization of the univariate case. Recall that df = ∂f
∂x
dx+ ∂f

∂y
dy can be written

as df = ds · ∇f where ds = (dx, dy). If ∇f = 0 at (x0, y0) then any infinitesimal step ds

away from (x0, y0) will still leave f unchanged, i.e. df = 0.

There are three types of stationary points of f(x, y): Maxima, Minima and Saddle Points.

We’ll draw some of their properties on the board. We will now attempt to find ways of

identifying the character of each of the stationary points of f(x, y).

Consider a Taylor expansion about a stationary point (x0, y0). We know that ∇f = 0 at

(x0, y0) so writing (∆x,∆y) = (x− x0, y − y0) we find:

∆f = f(x, y)− f(x0, y0)

≃ 0 +
1

2!

[
∂2f

∂x2
(∆x)2 + 2

∂2f

∂x∂y
∆x∆y +

∂2f

∂y2
(∆y)2

]
. (5.1)

Maxima: At a maximum all small steps away from (x0, y0) lead to ∆f < 0. From Eq.

(5.1) it follows that for a maximum:

∆x2fxx + 2∆x∆yfxy +∆y2fyy < 0 (5.2)

for all (∆x,∆y). Since this holds for all (∆x,∆y) this includes ∆y = 0. It follows that

fxx < 0 (5.3)

(also fyy < 0 by similar arguments). Since Eq. (5.2) holds for arbitrary (∆x,∆y), it must

also hold for (∆x,∆y) = (λ∆y,∆y) (i.e. along the locus ∆x = λ∆y). In this case Eq. (5.2)

becomes:

λ2fxx + 2λfxy + fyy < 0. (5.4)

Multiplying through by fxx < 0 we obtain:

λ2f 2
xx + 2λfxxfxy + fxxfyy > 0 (5.5)

f 2
xy − fxxfyy < (fxxλ+ fxy)

2, (5.6)

for all λ (this last step is a useful trick). The right-hand side of Equation (5.6) can be set to

zero (by picking λ appropriately) but can’t be smaller (because it is a squared term) so:

f 2
xy − fxxfyy < 0. (5.7)

Minima: The same type of arguments apply for minima where all small steps from

(x0, y0) lead to ∆f > 0.
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fxx > 0 (5.8)

f 2
xy − fxxfyy < 0. (5.9)

(and also fyy > 0).

Saddle Points: In the Taylor expansion for ∆f what happens if ∆x = λ∆y such that

Eq. (5.1) is zero to second order?

λ2fxx + 2λfxy + fyy = 0. (5.10)

We can use the same trick of multiplying through by fxx and rearranging as we did in Eqs.

(5.5,5.6) and noting that (fxxλ+ fxy)
2 > 0 for all λ we find:

f 2
xy − fxxfyy > 0 (5.11)

which is the condition for a stationary point to be a saddle point. Note that fxx, fyy are

unconstrained. Eq. (5.10) can be solved for real roots λ1, λ2. This specifies two directions

∆x = λ1∆y and ∆x = λ2∆y on which f(x0 + ∆x, y0 + ∆y) = f(x0, y0) to second order

(these correspond the the asymptotes of the saddle’s locally hyperbolic contours).

Summary: The sufficient conditions for a stationary point to be a Max, Min, Saddle are:

Max : fxx < 0 and f 2
xy − fxxfyy < 0 (5.12)

Min : fxx > 0 and f 2
xy − fxxfyy < 0 (5.13)

Saddle : f 2
xy − fxxfyy > 0 (5.14)

Note that these are not necessary conditions: consider f(x, y) = x4+y4 (a question in one

of your examples classes). To classify the stationary points in such cases the Taylor expansion

used in Eq. (5.1) must be taken to higher order.

A standard example: Find and classify the stationary points of f(x, y) = x3 − 3x2 +

2xy − y2 and sketch its contours.

From ∇f = 0 it follows that fx = 3x2 − 6x + 2y = 0 and fy = 2x − 2y = 0. It follows

that x = y and so that 3x2 − 4x = 0 and thus x = 0, 4
3
. Stationary points are thus (0, 0) and

(4
3
, 4
3
).

We can calculate the possible second derivatives (equivalent to finding the Hessian men-

tioned earlier): fxx = 6x − 6; fxy = 2; fyy = −2. At (0, 0) by substituting in the relevant

values one finds fxx < 0 and f 2
xy − fxxfyy < 0. Thus (0, 0) is a maximum. At (4

3
, 4
3
) we find

we have a saddle point, since f 2
xy − fxxfyy > 0.

In order to sketch this we need to find the asymptotes of the locally hyperbolic contours

about the saddle point. Which two directions have ∆f = 0 (to second order) at the saddle

point? I.e. what ∆x = λ1∆y and ∆x = λ2∆y are such that f(x0+∆x, y0+∆y) = f(x0, y0)

(to second order)? As above, we need to solve λ2fxx + 2λfxy + fyy = 0 at (4
3
, 4
3
): obtaining

2(λ2 + 2λ− 1) = 0 so λ1,2 = −1±
√
2.
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5.1 Characterizing stationary points with the Hessian:

We can write Eq. (5.1) in terms of the Hessian:

∆x2fxx + 2∆x∆yfxy +∆y2fyy = ∆STH∆S (5.15)

where ∆S = (∆x,∆y) and here:

H =

(
fxx fxy
fxy fyy

)
. (5.16)

A local maximum has ∆STH∆S < 0 for all ∆S. This is the same as saying the matrix

H is negative definite (later you’ll learn this means its eigenvalues are strictly negative). The

condition f 2
xy − fxxfyy < 0 can be interpreted as the statement that the determinant of H

must be positive. Recall that detH = fxxfyy − f 2
xy.

A local minimum has ∆STH∆S > 0 for all ∆S. This is equivalent to H being positive

definite (strictly positive eigenvalues). The conditions for being a minimum are thus detH > 0

and fxx > 0.

A saddle point has detH < 0 and H is called indefinite (its eigenvalues have mixed signs).

If detH = 0 higher order terms in the Taylor series are required to characterize the

stationary point.

[A notationally involved, and non-examinable, generalisation of the above, for functions

of k variables, is that a sufficient condition for a stationary point to be a maximum is to

have (−1)iD(i) > 0 for all i ≤ k where D(i) = detH(i) and where H(i) is a submatrix of H

composed of all entries Hlm with indices l,m < i + 1. H(i) is sometimes called the ith order

leading principal minor of H. For a minimum the equivalent condition is that D(i) > 0 for all

i ≤ k]

6 Leibnitz’ Integral Rule

Differentiation of integrals of functions of multiple variables

Consider:

F (x) =

∫ t=v(x)

t=u(x)

f(x, t)dt (6.1)

Leibnitz’ Integral Rule is then:

dF (x)

dx
= f(x, v(x))

dv

dx
− f(x, u(x))

du

dx
+

∫ t=v(x)

t=u(x)

∂f

∂x
dt (6.2)

Example: If F (x) =
∫ x3

x2
sinxt

t
+ tdt find dF

dx
. Using Eq. (6.2) we have
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dF (x)

dx
= (

sinx4

x3
+ x3).3x2 − (

sinx3

x2
+ x2).2x+

∫ x3

x2

cosxt dt (6.3)

Where the integral on the right-handside becomes
[
sinxt
x

]x3

x2 .


