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These notes are not identical word-for-word with my lectures which will be given on the

blackboard. Some of these notes may contain more examples than the corresponding lecture

while in other cases the lecture may contain more detailed working you are therefore advised

to attend lectures.

The material in them is dependent upon the material on Complex Numbers you were

taught at A-level and your 1st year.
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1 Analyticity and the Cauchy-Riemann equations

1.1 Derivation of the Cauchy-Riemann equations

Functions of the complex variable z = x+ iy

w = f(z) (1.1)

are expressed in the usual manner except that the independent variable z = x+ iy is complex.

Thus f(z) has a real part u(x, y) and an imaginary part v(x, y)

f(z) = u(x, y) + iv(x, y) . (1.2)

Extra difficulties appear in differentiating and integrating such functions because z varies in

a plane and not on a line. For functions of a single real variable the idea of an incremental

change δx along the x-axis has to be replaced by an incremental change δz. Because δz is a

vector the question of the direction of this limit becomes an issue.

Firstly we look at the concept of differentiation. The definition of a derivative at a point

z0 remains the same as usual ; namely

df(z)

dz

∣∣∣∣
z=z0

= lim
δz→0

(
f(z0 + δz)− f(z0)

δz

)
. (1.3)

The subtlety here lies in the limit δz → 0 because δz is itself a vector and therefore the limit

δz → 0 may be taken in many directions. If the limit in (1.3) is to be unique (to make any

sense) it is required that it be independent of the direction in which the limit δz → 0 is taken.

If this is the case then it is said that f(z) is differentiable at the point z.

There is a general test on functions to determine whether (1.3) is independent of the

direction of the limit. The simplest way is to firstly take the limit in the horizontal direction :

that is δz = δx, in which case

df(z)

dz
=
∂u

∂x
+ i

∂v

∂x
≡ ux + ivx . (1.4)

Figure 1: The z-plane with a point at z0 and a circle of radius |δz| around it. The horizontal radius

is drawn for the case when δz = δx and the vertical for the case when δz = iδy.
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Next we take the limit in the vertical direction : that is δz = iδy

df(z)

dz
=

∂u

∂(iy)
+ i

∂v

∂(iy)
= −i∂u

∂y
+
∂v

∂y
≡ −iuy + ivy . (1.5)

If the limits in both directions are to be equal df/dz in (1.4) and (1.5) must be equal, which

makes

ux = vy , uy = −vx . (1.6)

The boxed pair of equations above are known as the Cauchy-Riemann equations. If these

hold at a point z then f(z) is said to be differentiable at z. There is no such requirement

in single variable calculus. Moreover the CR equations bring us to a further idea regarding

differentiation in the complex plane :

Definition : If f(z) is differentiable at all points in a neighbourhood of a point z0 then f(z)

is said to be analytic (regular) at z0.

Some functions are analytic everywhere in the complex plane except at certain points :

these points are called singularities. Three examples illustrate this.

Example 1 : f(z) = z2. Writing z2 = x2 − y2 + 2ixy we have

u(x, y) = x2 − y2 , v(x, y) = 2xy . (1.7)

Clearly four trivial partial derivatives show that ux = 2x, uy = −2y, vx = 2y and vy = 2x

thus demonstrating that the CR equations hold for all values of x and y. It follows that

f(z) = z2 is differentiable at all points in the z-plane and every point in this plane has an

(infinite) neighbourhood in which f(z) = z2 is differentiable. Clearly f(z) = z2 is analytic

everywhere.

Example 2 : f(z) = z−1. Writing z−1 = (x− iy)/(x2 + y2) we have

u(x, y) =
x

x2 + y2
v(x, y) = − y

x2 + y2
. (1.8)

Without giving the working it is not difficult to show that the CR equations hold everywhere

except at the origin z = 0 where the limit is indeterminate : z = 0 is the point where it fails

to be differentiable. Hence w = z−1 is analytic everywhere except at z = 0.

Example 3 : f(z) = |z|2. We have

u(x, y) = x2 + y2 , v(x, y) = 0 , (1.9)

and so

ux = 2x , uy = 2y , vx = vy = 0 . (1.10)

Clearly the CR equations do not hold anywhere except at z = 0. Therefore f(z) = |z|2 is not
differentiable anywhere except at z = 0 and there is no neighbourhood around z = 0 in which

it is differentiable. Thus the function is analytic nowhere in the z-plane.
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As a final remark on this example let us look again at the limit δz → 0 in polar co-ordinates

at a fixed point z0 about which we describe a circle z = z0 + reiθ.

df

dz

∣∣∣∣
z=z0

= lim
δz→0

(
|z + δz|2 − |z|2

δz

)
z=z0

= lim
δz→0

(
(δz)z∗ + (δz∗)z + (δz)(δz∗)

δz

)
z=z0

= z∗0 + z0 lim
δz→0

(
δz∗

δz

)
z=z0

. (1.11)

Then (1.11) can be written as

df

dz

∣∣∣∣
z=z0

= z∗0 + z0e
−2iθ . (1.12)

This result illustrates the problem : as θ varies (and thus the direction of the limit) so does

the limit. This is clearly not unique except when z0 = 0.

1.2 Properties of analytic functions

Let us consider the CR equations ux = vy and uy = −vx as a condition for the analyticity of

a function w = u(x, y) + iv(x, y). Cross differentiation and elimination of first u and then v

gives

uxx + uyy = 0 vxx + vyy = 0 , (1.13)

thus showing that u and v must always be a solution of Laplace’s equation (without boundary

conditions) : these are called harmonic functions. It also said that u(x, y) and v(x, y) are

conjugate to one another. In the following set of examples it will be shown how, given a

harmonic function u(x, y), its conjugate v(x, y) can be constructed. The pair can then put

together as u+ iv = f(z) to ultimately find f(z).

Example 1 : Given that u = x2 − y2 show (i) that it is harmonic ; (ii) find v(x, y) and then

(iii) construct the corresponding complex function f(z).

With u = x2 − y2 we have ux = 2x, uxx = 2, uy = −2y and uyy = −2. Therefore

uxx + uyy = 0 so it satisfies Laplace’s equation. This is a sufficient condition for v to exist

and for us to write vy = ux = 2x and vx = −uy = 2y. While there are two PDEs here there

can only be one solution compatible with both. Integrating them both in turn gives

v = 2xy + A(x) , v = 2xy +B(y) . (1.14)

It is clear that they are compatible if A(x) = B(y) = const = c making the result

v = 2xy + c , (1.15)

with

f(z) = x2 − y2 + 2ixy + ic = z2 + ic . (1.16)
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The ic simply moves f(z) an arbitrary distance along the imaginary axis.

Example 2 : Given that u = x3 − 3xy2 find its conjugate function v(x, y) and the corre-

sponding complex function f(z).

We first check that u = x3 − 3xy2 satisfies Laplace’s equation : ux = 3x2 − 3y2 ; uxx = 6x ;

uy = −6xy and uyy = −6x. Thus uxx + uyy = 0 and so v exists and is found from the CR

equations :

vy = 3x2 − 3y2 vx = 6xy . (1.17)

Partially integrating these gives

v = 3x2y − y3 + A(x) v = 3x2y +B(y) . (1.18)

The way to make these compatible is to choose B(y) = −y3 + c and A(x) = c finally giving

v = 3x2y − y3 + c (1.19)

with

f(z) = x3 − 3xy2 + i(3x2y − y3 + c)

= z3 + ic . (1.20)

Example 3 : Given that u = ex
(
x cos y − y sin y

)
show that it satisfies Laplace’s equation.

Also find its conjugate v and then f(z).

We find that

uxx = ex
[
(x+ 2) cos y − y sin y

]
; uyy = −ex

[
(x+ 2) cos y − y sin y

]
, (1.21)

and so Laplace’s equation is satisfied. Then

vy = ux = ex
[
(x+ 1) cos y − y sin y

]
; vx = −uy = ex

[
(x+ 1) sin y + y cos y

]
. (1.22)

Using the indefinite integrals
∫
y sin y dy = sin y − y cos y and

∫
x exdx = ex(x− 1) we find

v = ex
(
x sin y + y cos y

)
+ A(x) ; v = ex

(
y cos y + x sin y

)
+B(y) . (1.23)

For compatibility we take A(x) = B(y) = const = c. Then

w = ex
[
(x+ iy) cos y − (y − ix) sin y

]
+ ic

= ex
[
z cos y + iz sin y

]
+ ic

= zex+iy + ic

= zez + ic . (1.24)
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1.3 Orthogonality

Let us finally consider the family of curves on which u = const. From the chain rule

du =
∂u

∂x
dx+

∂u

∂y
dy (1.25)

and therefore on curves of constant u we have du = 0, giving the gradient on this family as

dy

dx

∣∣∣∣
u=const

= −ux
uy
. (1.26)

Likewise, on the family of curves of constant v

dy

dx

∣∣∣∣
v=const

= −vx
vy

(1.27)

giving
dy

dx

∣∣∣∣
u=const

× dy

dx

∣∣∣∣
v=const

=
vxux
vyuy

. (1.28)

Now if f(z) is analytic in a region R then the CR equations hold there, ux = vy and uy = −vx,
and (1.28) becomes

dy

dx

∣∣∣∣
u=const

× dy

dx

∣∣∣∣
v=const

= −1 . (1.29)

The final result is that in regions of analyticity curves of constant u and curves of

constant v are always orthogonal.

2 Mappings

2.1 Conformal mappings

Figure 2: A complex mapping w = f(z) maps a region R in the z-plane to a different region R∗ in

the w-plane.

A complex function w = f(z) can be thought of as a mapping from the z-plane to the w-plane.

Depending on f(z the mapping may not be unique. For instance, for w = z2 for the values

±z0 there is one value w0. Complex mappings do not necessarily behave in an expected way.



6

The concept of analyticity intrudes into these ideas in the following way. A mapping is said to

be conformal if it preserves angles in magnitude and sense. Moreover, a mapping has a fixed

point when w = f(z) = z. The following theorem is now stated without proof :

Theorem 1 The mapping defined by an analytic function w = f(z) is conformal except at

points where f ′(z) = 0.

Example 1 : w = z2 is conformal everywhere except at z = 0 because f ′(0) = 0. Plotting

contours of u = x2 − y2 and v = 2xy shows that conformality fails at the origin.

Figure 3: Contours of u = const and v = const in the z-plane : note their orthogonality except at

z = 0 where conformality fails.

Example 2 : Consider w = 1
z−1 which is analytic everywhere except at z = 1. We have

w =
1

z − 1
=

1

(x− 1) + iy
=

(x− 1)− iy

(x− 1)2 + y2
(2.1)

in which case

u(x, y) =
x− 1

(x− 1)2 + y2
, v(x, y) = − y

(x− 1)2 + y2
. (2.2)

It is clear from (2.2) that it is always true that

u2 + v2 =
1

(x− 1)2 + y2
. (2.3)

So far we have specified no shape in the z-plane on which this map operates. Some examples

of what this map will do are these :
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1. Consider the family of circles in the z-plane : (x − 1)2 + y2 = a2. These circles are

centred at (1, 0) of radius a. Clearly they map to

u2 + v2 =
1

a2
, (2.4)

which is a family of circles in the w-plane centred at (0, 0) of radius a−1. As the value

of a is increased the circles in the z-plane widen and those in the w-plane decrease. It

is not difficult to show that the interior (exterior) of the circles in the z-plane map to

the exterior (interior) of those in the w-plane. Thus we have

z-plane w-plane

interior → exterior

exterior → interior

(2.5)

The circle centre (1, 0) in the z-plane maps to the point at infinity in the w-plane.

2. The line x = 0 in the z-plane maps to what? From (2.2) and (2.3) we know that

u(x, y) = − 1

1 + y2
, v(x, y) = − y

1 + y2
, u2 + v2 =

1

1 + y2
. (2.6)

u2 + v2 =
1

1 + y2
= −u , ⇒

(
u+ 1

2

)2
+ v2 = 1

4
. (2.7)

In the w-plane this is a circle of radius 1
2
centred at (− 1

2
, 0).

Thus we conclude that some circles can map to other circles but also straight lines can also

map to circles. This is investigated in the next subsection.

2.2 w = 1
z maps lines/circles to lines/circles

The general equation for straight lines and circles in the z-plane can be written as

α(x2 + y2) + βx+ γy +∆ = 0. (2.8)

where α, β, γ and ∆ are constants. If α = 0 this represents a straight line but when α 6= 0

(2.8) represents a circle. Writing (2.8) in terms of z

α|z|2 + β

2
(z + z∗) +

γ

2i
(z − z∗) + ∆ = 0 . (2.9)

and then transforming to an equation w and w through w = 1
z
and w∗ = 1

z∗
, (2.9) becomes

α

ww∗
+
β

2

(
1

w
+

1

w∗

)
+
γ

2i

(
1

w
− 1

w∗

)
+∆ = 0 , (2.10)

or

α +
β

2
(w + w∗)− iγ

2
(w∗ − w) + ∆ww∗ = 0 . (2.11)
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Since w = u+ iv we have

α + βu− γv +∆(u2 + v2) = 0 . (2.12)

This represents a family of circles in the u− v plane when ∆ 6= 0 and a family of lines when

∆ = 0. Notice, that when α 6= 0 and ∆ 6= 0 then the mapping maps circles to circles but a

family of lines in the z-plane (α = 0) also maps to a family of circles in the w-plane. However,

there is also the case of a family of circles in the z-plane for which ∆ = 0 which map to

a family of lines in the w-plane. Thus we conclude that w = 1
z
maps lines/circles to

lines/circles but not necessarily lines to lines and circles to circles.

In addition to this we now study the fractional linear or Möbius transformation

w =
az + b

cz + d
, ad 6= bc . (2.13)

This includes cases such as :

(i) w = 1
z
when a = d = 0, b/c = 1 .

(ii) w = 1
z−1 as in our example above where a = 0, b = 1, c = 1, d = −1 .

(2.13) can be re-written as

w = c−1
{
a+

bc− ad

cz + d

}
. (2.14)

For various special cases :

1. w = z + b ; (a = d = 1, c = 0) – translation.
2. w = az ; (b = c = 0, d = 1) – contraction/expansion + rotation
3. w = 1

z
; (a = d = 0, b = c) – maps lines/circles to lines/circles.

Thus a Möbius transformation maps lines/circles to lines/circles with contraction/expansion,

rotation and translation on top.

2.3 Extra: Mappings of the type w = ez−1
ez+1

Consider a map w = ez−1
ez+1

which can be re-written as

ez =
1 + w

1− w
=

(1 + u+ iv)(1− u+ iv)

(1− u)2 + v2
. (2.15)

Real and imaginary parts give

ex cos y =
1− u2 − v2

(1− u)2 + v2
ex sin y =

2v

(1− u)2 + v2
. (2.16)

From these we conclude that

1. The family of lines y = nπ in the z-plane map to the line v = 0 for n integer. Thus an

infinite number of horizontal lines in the z-plane all map to the u-axis in the w-plane.

2. The family of lines y = 1
2
(2n+ 1)π in the z-plane map to the unit circle u2 + v2 = 1 in

the w-plane.
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3 Line (path) integration - primer

In single variable calculus the idea of the integral∫ b

a

f(x) dx =
N∑
i=1

f(xi)δxi (3.1)

is a way of expressing the sum of values of the function f(xi) at points xi multiplied by the

length of small strips δxi : correctly it is often expressed as the area under the curve f(x).

Pictorially the concept of an area sits very well in the plane with y = f(x) plotted against

x. However, the idea of area under a curve has to be dropped in one sense when

line integration is considered because we now wish to place our curve C in 2-space

where a function f(x, y) takes values at every point in this space. Instead, we consider

a specified continuous curve C in the plane – known as the path of integration – and then work

out methods for summing the values that either ψ or F take on that curve. It is essential

to realize that the curve C sitting in 2-space and the functions f that take values

at every point in this space are wholly independent quantities and must not be

conflated.

Figure 4:

Pythagoras’ Theorem in 2-space, see Fig (4), lets us write: (δs)2 = (δx)2 + (δy)2. We’ll

consider one type of line integral : the integration of function f(x, y) along a path C∫
C

f(x, y) ds (3.2)

Remark : If the curve C is closed then we use the designation∮
C

f(x, y) ds (3.3)

3.1
∫
C f(x, y) ds

How to evaluate these integrals is best shown by a series of examples keeping in mind that,

where possible, one should always draw a picture of the curve C :
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Example 1) : Show that
∫
C
x2y ds = 1/3 where C is the circular arc in the first quadrant of

the unit circle (f = x2y).

C is the arc of the unit circle x2+ y2 = 1 represented in polars by x = cos θ and y = sin θ

for 0 ≤ θ ≤ π/2. Thus the small element of arc length is δs = 1.δθ.∫
C

x2y ds =

∫ π/2

0

cos2 θ sin θ 1.(dθ)

= 1/3 . (3.4)

Example 2) : Show that
∫
C
xy3 ds = 54

√
10/5 where C is the line y = 3x from x =

−1 → 1.

C is an element on the line y = 3x. Thus δy = 3δx so

(δs)2 = (δx)2 + 9(δx)2 = 10(δx)2

∫
C

xy3 ds = 27
√
10

∫ 1

−1
x4dx = 54

√
10/5 .
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Example 3) : Show that
∮
C
x2y ds = −

√
2/12 where C is the closed triangle in the figure.

On C1 : y = 0 so ds = dx and
∫
C1

= 0 (because y = 0).

On C2 : y = 1− x so dy = −dx and so (ds)2 = 2(dx)2.

On C3 : x = 0 so ds = dy and
∫
C3

= 0 (because x = 0).

Therefore ∮
C

=

∫
C1

+

∫
C2

+

∫
C3

= 0 +

∫ 0

1

x2(1− x)
√
2 dx+ 0 = −

√
2/12 . (3.5)

Note that we take the positive root of (ds)2 = 2(dx)2 but use the fact that following the

arrows on C2 the variable x goes from 1 → 0.

Extra Question: Find
∮
C
xy ds where C is the closed path of straight lines from (0, 0)

to (1, 0) to (0, 1) and then back to (0, 0).

4 Contour Integration

4.1 Cauchy’s Theorem

A closed contour C enclosing a region R in the z-plane around which the line integral is

considered in the counter-clockwise direction∮
C

F (z) dz . (4.1)
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With

F (z) = u+ iv z = x+ iy (4.2)

we have ∮
C

F (z) dz =

∮
C

(u+ iv)(dx+ idy)

=

∮
C

(u dx− v dy) + i

∮
C

(v dx+ u dy) . (4.3)

In lectures towards the end of the course you will find that Green’s Theorem in a plane says

that for differentiable functions P (x, y) and Q(x, y)∮
C

(P dx+Qdy) =

∫ ∫
R

(Qx − Py) dxdy . (4.4)

Where the right-hand-side is an area integral. Therefore we have∮
(u dx− v dy) =

∫ ∫
R

∫
(−vx − uy) dxdy ,∮

(v dx+ u dy) =

∫ ∫
R

(ux − vy) dxdy , (4.5)

which turns (4.3) into∮
C

F (z) dz = −
∫ ∫

R

(vx + uy) dxdy + i

∫ ∫
R

(ux − vy) dxdy . (4.6)

If F (z) is analytic everywhere within and on C then u and v must satisfy the CR

equations : ux = vy and vx = −uy, in which case both the real and imaginary parts on the

RHS of (4.6) must be zero. We have established Cauchy’s Theorem :

Theorem 2 If F (z) is analytic everywhere within and on a closed, piecewise smooth contour

C then ∮
C

F (z) dz = 0 . (4.7)

The key point is that provided F (z) is analytic everywhere within and on C singularities in

F (z) outside of C are irrelevant.
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For F (z) = z−1, the circular contour C, above, of radius a encloses a singularity • at the

origin in the z-plane. The line integral is no longer zero because of this singularity.

Now write the circular contour C as z = a exp(iθ) for θ : 0 → 2π∮
C

dz

z
=

∫ 2π

0

ia exp(iθ)dθ

a exp(iθ)
= i

∫ 2π

0

dθ = 2πi . (4.8)

The singularity at z = 0 contributes a non-zero value of 2πi to the integral. Note that it is

independent of the value of a, which is consistent with this being the only non-zero contribution

to the integral.

Given the powerful result of Cauchy’s Theorem, our task is to see, in a more formal manner,

how singularities contribute to complex integrals. Before this their nature and classification is

necessary.

4.2 Poles and Residues

Singularities of complex functions can take many forms but the simplest class is what are

called simple poles. A function F (z) has a simple pole at z = a (which could be real) if it

can be written in the form

F (z) =
f(z)

z − a
(4.9)

where f(z) is an analytic function. F (z) has a pole of multiplicity m at z = a if it can be

written in the form

F (z) =
f(z)

(z − a)m
(4.10)

where m = 1, 2, 3, 4, . . . : when m = 2 we have a double pole. While poles are singularities

not all singularities are poles. For instance, ln z has a singularity at z = 0 but this is not a

pole nor is it a pole when m is not an integer.

Definition 1 : The residue of F (z) at a simple pole at z = a is

Residue of F (z) = lim
z→a

{(z − a)F (z)} . (4.11)

Definition 2 : The residue of F (z) at a pole of multiplicity1 m at z = a is

Residue of F (z) = lim
z→a

{
1

(m− 1)!

dm−1

dzm−1
[(z − a)mF (z)]

}
. (4.12)

Note that a function may have many poles and each pole has its own residue.

Example 1 : Consider F (z) = 2z
(z−1)(z−2) which has simple poles at z = 1 and z = 2

Residue at z = 1 = lim
z→1

{(z − 1)F (z)} = −2 . (4.13)

1This formula will be quoted at the bottom of an exam question : it is found from a coefficient in what is

known as a Laurent expansion – see Kreysig’s book.



14

Residue at z = 2 = lim
z→1

{(z − 2)F (z)} = 4 . (4.14)

Example 2 : F (z) = 2z
(z−1)2(z+4)

has a double pole at z = 1 and a simple pole at z = −4.

Residue at z = −4 = lim
z→−4

{(z + 4)F (z)} = −8/25 . (4.15)

Residue at double pole at z = 1 = lim
z→1

1

1!

{
d

dz

[
(z − 1)2F (z)

]}
= lim

z→1

d

dz

[
2z

z + 4

]
= 2 lim

z→1

[
(z + 4)− z

(z + 4)2

]
= 8/25 . (4.16)

It is of no significance that the residues have opposite signs.

4.3 The residue of F (z) = h(z)
g(z) when g(z) has a simple zero at z = a

We expand g(z) about its zero at z = a in a Taylor series

g(z) = g(a) + (z − a)g′(a) + 1
2
(z − a)2g′′(a) + . . . (4.17)

Thus, noting that g(a) = 0 we have

Residue at z = a = lim
z→a

{
(z − a)h(z)

g(z)

}
= lim

z→a

{
(z − a)h(z)

(z − a)g′(a) + 1
2
(z − a)2g′′(a) + . . .

}
= lim

z→a

{
h(z)

g′(a) + 1
2
(z − a)g′′(a) + . . .

}
=
h(a)

g′(a)
. (4.18)

4.4 The Residue Theorem

Now consider a simple pole at z = a as in the Figure below. As explained in the caption, the

pole is isolated by a device which consists of taking a “cut” into the contour and inscribing a

small circle of radius r around it. The full closed contour C consists of the two edges of the

cuts C± running in opposite directions, the small circle Ca and then C1 which is the rest of

C with the small piece ε removed. Thus we have

C : C1 + Ca + C+ + C− . (4.19)

This device ensures that the pole lies outside of C as it has been constructed, in which case

Cauchy’s Theorem says that ∮
C

F (z) dz = 0 (4.20)
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in which case

0 =

∮
C

F (z) dz =

(∫
C1

+

∫
Ca

+

∫
C+

+

∫
C−

)
F (z) dz . (4.21)

Two points to note are :

1. The four integrals are not closed so they don’t have the
∮
notation. In the limit ε→ 0

the integrals
∫
C+ and

∫
C− cancel as they go in opposite directions ;

2. The integral over Ca is clockwise, not counter-clockwise.

We are left with

lim
ε→0

∫
C1

F (z) dz = − lim
ε→0

∫
Ca←↩

F (z) dz =

∫
Ca ↪→

F (z) dz (4.22)

'::1

e.,

'k.

Figure 5: The top figure is the full contour C comprising the two edges of the cuts C± running in

opposite directions, the small circle Ca and then C1 which is the rest of C with the small piece ε

removed. The bottom figure shows why the equation of the small circle of radius r is z = a+r exp iθ.

We now write ∫
Ca ↪→

F (z) dz =

∫
Ca ↪→

f(z)

z − a
dz . (4.23)

As in the figure we write the equation of the circle of radius a in the complex plane as

z = a+ reiθ so∫
Ca ↪→

F (z) dz =

∫
Ca ↪→

f(z)

z − a
dz =

∫
Ca ↪→

f(a+ reiθ)

reiθ
ireiθ dθ . (4.24)
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Our next step at this stage is to take the limit r → 0

lim
r→0

∫
Ca ↪→

F (z) dz = lim
r→0

∫
Ca ↪→

f(a+ reiθ)

reiθ
ireiθ dθ = 2πif(a) (4.25)

which gives Cauchy’s integral formula∮
C

F (z) dz = lim
r→0

∫
Ca ↪→

F (z) dz = 2πif(a) . (4.26)

However, because z = a is a simple pole

At the pole at z = a the residue of F (z) = lim
z→a

{(z − a)F (z)} = f(a) (4.27)

We have proved∮
C

F (z) dz = 2πi× {Residue of F (z) at the simple pole at z = a} . (4.28)

It is clear that this procedure of making a cut and ring-fencing a pole can be performed for

many simple poles and the individual residues added. The result can also be proved (not here)

when poles have higher multiplicity. Altogether we have proved :

Theorem 3 (Residue Theorem :) If the only singularities of F (z) within C are poles then∮
C

F (z) dz = 2πi× {Sum of the residues of F (z) at its poles within C } . (4.29)

Some examples of this immensely powerful theorem follow.

Example 1 : Find ∮
Ci

2z dz

(z − 1)(z − 2)
(4.30)

where (i) C1 is the circle centred at (0, 0) of radius 3 and (ii) C2 is the circle centred at (0, 0)

of radius 3/2.

F (z) has two simple poles : the first at z = 1 and the second at z = 2. Their residues have

been found in (4.13) and (4.14). For C1 both poles lie inside C1∮
C1

F (z) dz = 2πi× (−2 + 4) = 4πi , (4.31)

whereas for C2 only the pole at z = 1 lie inside, thus∮
C2

F (z) dz = 2πi× (−2) = −4πi . (4.32)
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Example 2 : Find ∮
C

2z dz

(z − 1)2(z + 4)
(4.33)

where C is the circle of radius 5 centred at z = 0. For this C both poles lie inside so both

must be included. From the residues computed in (4.15) and (4.16) we find that∮
C

2z dz

(z − 1)2(z + 4)
= 2πi× {−8/25 + 8/25} = 0 . (4.34)

As remarked before, the zero sum of the residues has no significance.

Example 3 : Find ∮
C

dz

(z3 − 1)2
(4.35)

where C is the circle |z − 1| = 1.

The contour is the circle |z − 1| = 1 in the z-plane. The double pole lies at z = 1

whereas the two other double poles lies outside C at z = exp 2πi/3 and z = exp−2πi/3.

z3 − 1 = 0 factors into (z − 1)(z2 + z + 1) = 0 so it has zeroes at 1, z = exp(±2πi/3).

These are double poles for F (z) but only the double pole at z = 1 lies inside C. Its residue

there is

lim
z→1

d

dz

{
(z − 1)2

(z3 − 1)2

}
= lim

z→1

d

dz

{
1

(z2 + z + 1)2

}
= −2 lim

z→1

{
2z + 1

(z2 + z + 1)3

}
= −2/9 . (4.36)

Therefore we deduce from the Residue Theorem that∮
C

dz

(z3 − 1)2
= −4πi/9 . (4.37)

Example 4 : (2006) Find ∮
C

z dz

(z − 1)2(z − i)
(4.38)

where C is the circle |z| = 2.
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For the double pole at z = 1, the residue there is

lim
z→1

d

dz

{
z(z − 1)2

(z − 1)2(z − i)

}
= lim

z→1

d

dz

{
z

(z − i)

}
= − i

(1− i)2
= 1

2
. (4.39)

For the simple pole at z = i the residue there is

lim
z→i

{
z(z − i)

(z − 1)2(z − i)

}
=

i

(1− i)2
= − 1

2
. (4.40)

Both poles must be included within C so we conclude from the Residue Theorem that∮
C

z dz

(z − 1)2(z − i)
= ( 1

2
− 1

2
) = 0 . (4.41)

Example 5 : (2006) Find ∮
C

z2dz

(z − i)3
(4.42)

where C is the circle |z| = 2 as above.

For the triple pole at z = i the residue there is

lim
z→1

1

2!

d2

dz2

{
z2(z − i)3

(z − 1)3

}
= 1 . (4.43)

Hence ∮
C

z2dz

(z − i)3
= 2πi . (4.44)

4.5 Improper integrals and Jordan’s Lemma

The Residue Theorem can be used to evaluate real integrals of the type∫ ∞
−∞

eimxF (x) dx , m ≥ 0 , (4.45)

provided F (x) has certain convergence properties : these are called improper integrals because

of the infinite nature of their limits. Formally we write them as∫ ∞
−∞

eimxF (x) dx = lim
R→∞

∫ R

−R
eimxF (x) dx . (4.46)

The main idea is to consider a class of complex integrals∮
C

eimzF (z) dz (4.47)
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where C consists of the semi-circular arc as in the figure below. The two essential parts are

the arc of the semicircle of radius R denoted by HR and the real axis [−R, R]. Hence we can
re-write (4.47) as ∮

C

eimzF (z) dz =

∫ R

−R
eimxF (x) dx︸ ︷︷ ︸

real integral

+

∫
HR

eimzF (z) dz︸ ︷︷ ︸
complex integral

(4.48)

In principle the closed complex integral over C on the LHS can be evaluated by the Residue

Theorem. Our next aim is to evaluate the real integral on the RHS in the limit R → ∞. This

requires a result which is called Jordan’s Lemma.

Jordan’s Lemma deals with the problem of how a contour integral behaves on the semi-

circular arc H+
R of a closed contour C.

Lemma 1 (Jordan) If the only singularities of F (z) are poles, then

lim
R→∞

∫
HR

eimzF (z) dz = 0 (4.49)

provided that m > 0 and |F (z)| → 0 as R → ∞. If m = 0 then a faster convergence to

zero is required for F (z).

Proof: Since HR is the semi-circle z = Reiθ = R(cos θ + i sin θ) and dz = iReiθdθ

lim
R→∞

∣∣∣∣∫
HR

eimzF (z) dz

∣∣∣∣ = lim
R→∞

∣∣∣∣∫
HR

eimR cos θ−mR sin θF (z)Reiθdθ

∣∣∣∣
≤ lim

R→∞

∫
HR

e−mR sin θ|F (z)|Rdθ (4.50)

having recalled that |eiα| = 1 for any real α and
∣∣∫ f(z) dz∣∣ ≤ ∫

|f(z)| dz. Note that in the

exp-term on the RHS of (4.50), sin θ > 0 in the upper half plane. Hence, provided m > 0,

the exponential ensures that the RHS is zero in the limit R → ∞ (see remarks below). �
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Remarks:

a) When m > 0 forms of F (z) such as F (z) = 1
z
, F (z) = 1

z+a
or rational functions of z such

as F (z) = zp...
zq+...

(for 0 ≤ p < q and p and q integers) will all converge fast enough as these

all have simple poles and |F (z)| → 0 as R → ∞.

b) If, however, m = 0 then a modification is needed: e.g. if F (z) = 1
z
then |F (z)| → 0 but

limR→∞ z|F (z)| = 1. We need to alter the restriction on the integers p and q to 0 ≤ p < q−1

which excludes cases like F (z) = 1
z
, F (z) = 1

z+a
.

c) What about m < 0? To ensure that the exponential is decreasing for R → ∞ we need

sin θ < 0. This is true in the lower half plane. Hence in this case we take our contour in the

lower half plane (call this H−R as opposed to H+
R in the upper) but still in an anti-clockwise

direction.

A contour in the lower 1
2
-plane with semi-circle H−R taken in the counter-clockwise direction

which is used for cases when m < 0. See the notes on Fourier Transforms for cases when this

is useful.

The conclusion is that if F (z) satisfies the conditions for Jordan’s Lemma then∫ ∞
−∞

eimxF (x) dx = 2πi×{Sum of the residues of the poles of eimzF (z) in the upper 1
2
-plane} .

(4.51)

Example 1 : Show that ∫ ∞
−∞

dx

1 + x2
= π . (4.52)
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C is comprised of a semi-circular arc H+
R and a section on the real axis from −R to R. Only

the simple pole at z = i lies within C. Thus we consider the complex integral over the

semicircle C in the upper half-plane ∮
C

dz

1 + z2
(4.53)

with m = 0. The simple pole at z = i and the quadratic nature of the denominator is enough

for convergence and so from Jordan’s Lemma

lim
R→∞

∫
HR

dz

1 + z2
= 0 . (4.54)

The residue of F (z) at the pole in the upper-half-plane at z = i is 1/2i and so from the

Residue Theorem 2 ∮
C

dz

1 + z2
= 2πi× 1/2i = π . (4.55)

Finally we have the result

π = lim
R→∞

∫ R

−R

dx

1 + x2
. (4.56)

Example 2 : Show that ∫ ∞
−∞

dx

1 + x4
= π/

√
2 . (4.57)

We consider the complex integral over the semicircle C in the upper half-plane∮
C

dz

1 + z4
(4.58)

with m = 0. The existence of poles as the only singularities and the quartic nature of the

denominator allows us to appeal to Jordan’s Lemma

lim
R→∞

∫
HR

dz

1 + z4
= 0 . (4.59)

2Note that this result could have been found by direct integration but this can only be done for the case

n = 1 when the denominator is 1 + x2n. See Examples 2 and 3.



22

The only simple poles in the upper half-plane at eiπ/4, e3iπ/4 lie within C. z4 = −1 has four

zeroes lying at eiπ/4, e3iπ/4 in the upper half-plane and e−iπ/4, e−3iπ/4 in the lower half-plane.

Only the first two are relevant. Now we use the trick in (4.18) to find the residues of the two

poles in the upper half-plane. Using h(z) = 1 and g(z) = 1 + z4 the residues at eiπ/4 and

e3iπ/4 are
1

4z3

∣∣∣∣
z=eiπ/4

= 1
4
e−3iπ/4 and

1

4z3

∣∣∣∣
z=e3iπ/4

= 1
4
e−9iπ/4 (4.60)

Thus our final result is ∫ ∞
−∞

dx

1 + x4
= 1

2
πi

(
e−3iπ/4 + e−9iπ/4

)
= 1

2
πi

(
−eiπ/4 + e−iπ/4

)
= π sin

(π
4

)
= π/

√
2 . (4.61)

Example 3 : Show that ∫ ∞
−∞

dx

1 + x6
= 2π/3 . (4.62)

Thus we consider the complex integral over the semicircle C in the upper half-plane∮
C

dz

1 + z6
(4.63)

with m = 0. The sextic nature of the denominator is enough for fast convergence and so from

Jordan’s Lemma

lim
R→∞

∫
HR

dz

1 + z6
= 0 . (4.64)

The only simple poles in the upper half-plane at eiπ/6, eiπ/2 and e5iπ/6 lie within C. z6 = −1

has six zeroes lying at eiπ/6, eiπ/2 and e5iπ/6 in the upper half-plane and a further three in the

lower half-plane. Now we use the trick in (4.18) to find the residues of the three poles in the

upper half-plane. Using h(z) = 1 and g(z) = 1 + z6 the residues at eiπ/6 and eiπ/2 and e5iπ/6

are

1

6z5

∣∣∣∣
z=eiπ/6

= 1
6
e−5iπ/6 ;

1

6z5

∣∣∣∣
z=eiπ/2

= 1
6
e−5iπ/2 ;

1

6z5

∣∣∣∣
z=e5iπ/6

= 1
6
e−25iπ/6 (4.65)
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Thus our final result is∫ ∞
−∞

dx

1 + x6
=

2πi

6

(
e−5iπ/6 + e−5iπ/2 + e−iπ/6

)
= −2πi2

6
(2 sin 1

6
π + sin π/2) = 2π/3 . (4.66)

Example 4 : For m > 0 show that∫ ∞
−∞

cosmxdx

a2 + x2
=
π

a
e−ma . (4.67)

We consider the complex integral over the semicircle C in the upper half-plane∮
C

eimzdz

a2 + z2
. (4.68)

The integrand has only one simple pole at z = ia in the upper half-plane whose residue is

lim
z→ia

{(
z − ia

a2 + z2

)
eimz

}
=
e−ma

2ia
. (4.69)

Therefore, from the Residue Theorem∮
C

eimz dz

a2 + z2
= 2πi× e−ma

2ia
=
π

a
e−ma . (4.70)

Moreover, from Jordan’s Lemma

lim
R→∞

∫
HR

eimzdz

a2 + z2
= 0 . (4.71)

Therefore
π

a
e−ma =

∫ ∞
−∞

eimx dx

a2 + x2
+ 0 . (4.72)

What happens to the imaginary part ∫ ∞
−∞

sinmxdx

a2 + x2
? (4.73)

Notice that the integrand is an odd function : therefore, over (−∞, ∞) the part over (−∞, 0)

will cancel with that over (0, ∞), leaving zero as a result. Thus we have∫ ∞
−∞

cosmxdx

a2 + x2
=
π

a
e−ma . (4.74)

Example 5 : For m > 0 show that∫ ∞
−∞

cosmxdx

(a2 + x2)2
=
πe−ma

2a3
(1 +ma) . (4.75)
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We consider the complex integral over the semicircle C in the upper half-plane∮
C

eimzdz

(a2 + z2)2
. (4.76)

The integrand has only one double pole at z = ia in the upper half-plane whose residue is

lim
z→ia

d

dz

[
(z − ia)2eimz

(a2 + z2)2

]
= −ie

−ma

4a3
(1 +ma) . (4.77)

Therefore, from the Residue Theorem∮
C

eimz dz

(a2 + z2)2
= −2πi× ie−ma

4a3
(1 +ma)

=
πe−ma

2a3
(1 +ma) (4.78)

Moreover, from Jordan’s Lemma, with m > 0

lim
R→∞

∫
HR

eimzdz

(a2 + z2)2
= 0 . (4.79)

Therefore
πe−ma

2a3
(1 +ma) =

∫ ∞
−∞

eimx dx

(a2 + x2)2
+ 0 . (4.80)

Aa in Example 4, the imaginary part is zero because the integrand is an odd function leaving∫ ∞
−∞

cosmxdx

(a2 + x2)2
=
πe−ma

2a3
(1 +ma) . (4.81)

4.6 Integrals around the unit circle

We consider here integrals of the type
∫ 2π

0
f(cos θ, sin θ) dθ. Let us do this by example :

I =

∫ 2π

0

dθ

a+ cos θ
, a > 1 . (4.82)

Take C as the unit circle z = eiθ. Therefore dz = ieiθ dθ and

I =

∮
C

dz

iz(a+ 1
2
(z + z−1)

= −2i

∮
C

dz

z2 + 2az + 1
. (4.83)

The next task is to determine the roots of z2 + 2az + 1 = 0.

z2 + 2az + 1 = (z − α+)(z − α−) (4.84)
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where α± = −a±
√
a2 − 1. Note that when a > 1, while α+ lies within C, α− lies without.

Therefore we exclude the pole at z = α− and compute the residue of the integrand at z = α−,

which is
1

α+ − α−
. (4.85)

The Residue Theorem then gives

T = −2i× 2πi× 1

α+ − α−
=

2π√
a2 − 1

. (4.86)

4.7 Poles on the real axis

When an integrand has a pole on the real axis this means that it causes problems by sitting

on the semicircular contour. Let us do this by example.

The contour is deformed by a small semi-circle of radius r centred at the origin that

excludes the pole at z = 0. Following the direction of the arrows, the big semicircle of radius

R is designated as HR (θ : 0 → π) and the little semicircle of radius r is designated as Hr

(θ : π → 0). To calculate ∫ ∞
−∞

sinx dx

x
(4.87)

we consider the complex integral ∮
C

eiz dz

z
. (4.88)

The integrand has no poles in C because that z = 0 is excluded in the above construction.

Cauchy’s Theorem can be invoked to give

0 =

∮
C

eiz dz

z
=

∫ −r
−R

eix dx

x
+

∫
Hr←↩

eiz dz

z
+

∫ R

r

eix dx

x
+

∫
HR↪→

eiz dz

z
. (4.89)

Now we take the limit R → ∞ and, with m = 1 Jordan’s Lemma tell us that
∫
HR

= 0 because

the only singularity is a pole and the integrand decays to zero as R → ∞. Given that the

small circle has the equation z = r(cos θ + i sin θ) for θ : π → 0, and noting that sin θ ≥ 0

in this range

lim
r→0

∫
Hr

eiz

z
dz = i lim

r→0

∫ 0

π

e−r sin θeir cos θdθ = −πi . (4.90)
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Taking the two limits R → ∞ and r → 0 together, we have

0 =

∫ ∞
−∞

eix

x
dx− πi+ 0 . (4.91)

The real part of the integrand cosx/x is odd so the contributions on (−∞, 0) and (0, ∞)

cancel leaving us with ∫ ∞
−∞

sinx

x
dx = π . (4.92)

If the small circle is taken below the origin indented into the lower half-plane then its contribu-

tion is πi and, because the pole at z = 0 is now included with residue unity, the contribution

from the Residue Theorem is 2πi. Thus we end up with the same result, as we should.


