EE2 Mathematics Example Sheet 4: Fourier Transforms

Recall that a function f(t) and its Fourier Transform $\mathcal{F}{f(t)} = \overline{f}(\omega)$ are related by

$$\overline{f}(\omega) = \int_{-\infty}^{\infty} e^{-i\omega t} f(t) dt \qquad \qquad f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega t} \overline{f}(\omega) d\omega$$

and that the Convolution Theorem is $\mathcal{F}(f * g) = \overline{f}(\omega) \overline{g}(\omega)$ where $f * g = \int_{-\infty}^{\infty} f(t')g(t - t') dt'$.

- 1. What is the Fourier transform of $f(t) = e^{-|t|}$? Pick you answer from: a) $\overline{f}(\omega) = \frac{2}{1-\omega^2}$ b) $\overline{f}(\omega) = \frac{2}{1+\omega^2}$ c) $\overline{f}(\omega) = \frac{2}{\omega^2}$
- 2. (i) Show that if f(t) has Fourier transform $\overline{f}(\omega)$ and a is a real constant of either sign, then f(at) has Fourier transform

$$|a|^{-1}\overline{f}\left(\frac{\omega}{a}\right)$$

(ii) Demonstrate the shift property (in the formula sheets), namely that for a constant a

$$\mathcal{F}\{f(t-a)\} = e^{-i\omega a} \,\overline{f}(\omega)$$

- 3. Is it the case that when $f(t) = e^{-t^2}$ then $\overline{f}(\omega) = \sqrt{\pi}e^{-\frac{1}{4}\omega^2}$? Show also that the normalized auto-correlation function associated with f(t) is given by $\gamma(t) = e^{-t^2/2}$. Note: You may use the result $\int_{-\infty}^{\infty} e^{-(t+i\alpha)^2} dt = \sqrt{\pi}$ despite the complex argument in the exponential. Pick your answer from: a) yes b) no
- 4. Use the convolution theorem to evaluate the Fourier transform of

$$h(t) = \int_{-\infty}^{\infty} e^{-at'^2} e^{-b(t-t')^2} dt'$$

Pick your answer from:

a)
$$\overline{h}(\omega) = \frac{\pi}{\sqrt{ab}} e^{-\frac{\omega^2(a+b)}{4ab}}$$
 b) $\overline{h}(\omega) = \pi e^{-\frac{\omega^2(a+b)}{4ab}}$ c) $\overline{h}(\omega) = \frac{\pi}{\sqrt{ab}} e^{-\frac{\omega^2(a+b)}{2ab}}$

5. Use Plancherel's formula $\int_{-\infty}^{\infty} f(t)g^*(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{f}(\omega)\overline{g}^*(\omega) d\omega$ to evaluate

$$\int_{-\infty}^{\infty} e^{-t^2} \cos at \, dt.$$

Pick your answer from: a) $\sqrt{\pi} e^{-a}$ b) $e^{-a^2/4}$ c) $\sqrt{\pi} e^{-a^2/4}$

6. Use Parseval's theorem $\int_{-\infty}^{\infty} |f(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\overline{f}(\omega)|^2 d\omega$ to evaluate

$$\int_{-\infty}^{\infty} \frac{dt}{(1+t^2)^2} dt$$

You will need to evaluate a pair of contour integrals to find $\overline{f}(\omega)$; one in the upper $\frac{1}{2}$ -plane for $\omega < 0$ and one in the lower $\frac{1}{2}$ -plane for $\omega > 0$.

Pick your answer from: a) $\frac{\pi}{4}$ b) $\frac{1}{2}\pi$ c) $-\pi$