EE2 Mathematics

Solutions to Example Sheet 4: Fourier Transforms
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1) Because f(t) = e It = { Zt ’ i z 8 } the Fourier transform of f(t) is
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2) (i) Designate F{f(t)} = f(w) with a a real constant of either sign. Then F{f(at)} =
75 e ™! f(at)dt. Define T = at so dr = adt. When a > 0 the limits (—oo, 0o) for 7 correspond
to those for ¢, but when a < 0 the direction reverses. Thus

Fistan) =l [ o= 1 (2)

—00

(ii) The ‘shift property’ (in the formula sheets) F{f(t —a)} = e~ f(w) can simply be proved
by defining 7 =t — a then
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3) To find the Fourier transform of the non-normalized Gaussian f(t) = e~ we first complete

the square in the exponential
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The normalized auto-correlation function of et is
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The integrals in the numerator & denominator cancel because they are equal; the origin of the
former is shifted w.r.t. to the latter on the infinite u-axis but its value is not affected.

4) With f(t) = e~ and g(t) = et a minor re-scaling of the results of Q3 shows that




5) With f(t) = e for which f(w) = \/?e_%‘*’2 and ¢(t) = cosat for which

g(w) — / e_lwt cos at dt = %/ e_'“’-’t(elat + e—zat) dt
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Thus
/_ f(t)g(t)dt = %/_ e 1 {§(w—a) + 6(w +a)} dw = /T T

6) Write f(t) = (1 +t%)~! so that
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Hence we want to evaluate [ [f(w)[*dw. To do this we must first find f(w) = [ e;:_wttzdt. To

apply Jordan’s Lemma it is necessary to consider the two separate cases w < 0 and w > 0.

(i) w < 0: Consider the complex integral fCU %ﬁﬁ with Cpy a semi-circle in the upper i-plane

in which there is a simple pole at z = i. The residue at this pole is € /2i and the integral over
H;z_ — 0 as R — oo by Jordan’s Lemma.

For the contour Cyr in the upper i-plane (w < 0):
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(ii) w > 0: Consider the complex integral fCL % with C, a semi-circle in the lower i-plane
in which there is a simple pole at z = —i. The residue at this pole is —e~*/2i & the integral

over Hp — 0 as R — oo by Jordan’s Lemma.



For the contour Cp, in the lower l-plane (w > 0):
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Note the reverse order of the limits in the real integral.
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Thus, in the limit R — oo, we have f(w) = { } Finally we can now calculate
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