EE2 Mathematics
Example Sheet 3: Complex Integration

The residue of a complex function F(z) at a pole z = a of multiplicity m is given by
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1. By taking the contour C as the unit circle |z| = 1 (positive is anti-clockwise), evaluate the
following contour integrals ¢, F(z)dz:

(a) F(z) = (2" —22)7",
(b) F(z) = (z+1)(42° — 2)71,
(c) F(z) =2(1+92%)7".

Remember to include only those poles which lie inside C'.

Pick your answers from: i) 7 ii) 33 iii) 27i/9 iv) 0 v) —1 vi) —mi
2. Use the Residue Theorem to evaluate

where the contour C' is the rectangle with vertices at +1 4 27 and £1 — 2¢.

Pick your answer from: i)—27i ii) 273 iii) 3mi
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Pick your answers from: i) i ii) - 1 iii) O

3. Evaluate

4. Given the real integral
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show that the substitution z = e converts it into
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where C' is the unit circle |z| = 1. Evaluate the residues at the poles and hence check
whether the equalities below hold

(i) I=—2r(p2—1)"" when |p| <1,
(i) I =+2m (p* — 1)_l when |p| > 1.
Pick your answers from: i) Yes ii) No

5. By choosing a suitable contour in the upper half of the complex plane, use the Residue
Theorem & Jordan’s Lemma to test whether the equality below holds for for a > b > 0
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Pick your answer from: i) yes it holds ii) no it doesn’t




