EE2 Mathematics Example Sheet 3: Complex Integration

The residue of a complex function F(z) at a pole z = a of multiplicity m is given by

$$\lim_{z \to a} \frac{1}{(m-1)!} \left[\frac{d^{m-1}}{dz^{m-1}} \left\{ (z-a)^m F(z) \right\} \right].$$

- 1. By taking the contour C as the unit circle |z| = 1 (positive is anti-clockwise), evaluate the following contour integrals $\oint_C F(z)dz$:
 - (a) $F(z) = (z^2 2z)^{-1}$, (b) $F(z) = (z+1)(4z^3 - z)^{-1}$, (c) $F(z) = z(1+9z^2)^{-1}$.

Remember to include only those poles which lie inside C.

Pick your answers from: i) π ii) $3\pi i$ iii) $2\pi i/9$ iv) 0 v) -1 vi) $-\pi i$

2. Use the Residue Theorem to evaluate

$$\oint_C \frac{z\,dz}{(z-i)^2}$$

where the contour C is the rectangle with vertices at $\pm \frac{1}{2} + 2i$ and $\pm \frac{1}{2} - 2i$. Pick your answer from: i) $-2\pi i$ ii) $2\pi i$ iii) $3\pi i$

3. Evaluate

$$\int_{-\infty}^{\infty} \frac{dx}{(1+x^2)^2}$$

Pick your answers from: i) $\frac{1}{2}\pi$ ii) - $\frac{1}{2}\pi$ iii) 0

4. Given the real integral

$$I = \int_0^{2\pi} \frac{d\theta}{1 - 2p\cos\theta + p^2} \qquad (|p| \neq 1)$$

show that the substitution $z = e^{i\theta}$ converts it into

$$I = \frac{i}{p} \oint_C \frac{dz}{(z-p)(z-p^{-1})},$$

where C is the unit circle |z| = 1. Evaluate the residues at the poles and hence check whether the equalities below hold

(i) $I = -2\pi (p^2 - 1)^{-1}$ when |p| < 1, (ii) $I = +2\pi (p^2 - 1)^{-1}$ when |p| > 1.

Pick your answers from: i) Yes ii) No

5. By choosing a suitable contour in the upper half of the complex plane, use the Residue Theorem & Jordan's Lemma to test whether the equality below holds for for a > b > 0

$$\int_{-\infty}^{\infty} \frac{\cos x \, dx}{(x^2 + a^2)(x^2 + b^2)} = \frac{\pi}{a^2 - b^2} \left(\frac{e^{-b}}{b} - \frac{e^{-a}}{a}\right) \,.$$

Pick your answer from: i) yes it holds ii) no it doesn't