EE2 Mathematics

Solutions to Example Sheet 2: Functions of a complex variable

- 1) To verify that the following satisfy the Cauchy-Riemann equations $u_x = v_y$ $v_x = -u_y$:
 - a) $u_x = 1$ $v_y = 1$; $u_y = v_x = 0$. \therefore CR equations satisfied.
 - b) $u = e^x \cos y \implies u_x = e^x \cos y$, $u_y = -e^x \sin y$. $v = e^x \sin y \implies v_y = e^x \cos y$, $v_x = e^x \sin y$. \therefore CR equations satisfied.
 - c) $u = x^3 3xy^2 \Rightarrow u_x = 3x^2 3y^2$, $u_y = -6xy$. $v = 3x^2y - y^3 \Rightarrow v_x = 6xy$, $v_y = 3x^2 - 3y^2$. \therefore CR equations satisfied.
- **2a)** With $u = x^3 3xy^2 + 3x^2 3y^2 + 1$ we have $u_x = 3x^2 3y^2 + 6x$ and $u_y = -6xy 6y$. Therefore $u_{xx} = 6x + 6$ and $u_y = -6x 6$ and so $u_{xx} + u_{yy} = 0$. Because u satisfies Laplace's equation, there exists a conjugate function v(x,y) that satisfies the CR equations: $u_x = v_y$, $v_x = -u_y$. To find v we integrate these

$$v_y = u_x = 3x^2 - 3y^2 + 6x \implies v = \int (3x^2 - 3y^2 + 6x) dy + A(x)$$

 $v_x = -u_y = 6xy + 6y \implies v = \int (6xy + 6y) dx + B(y)$

where A(x) and B(y) are arbitrary functions of x and y respectively. The solution(s) for v must be the same from each equation; together we find that $v = 3x^2y - y^3 + 6xy + c$ where A = c and $B = c - y^3$ with c as an arbitrary constant. In combination $f(z) = u + iv = z^3 + 3z^2 + \text{const.}$

2b) u = xy we have $u_x = y$ and $u_y = x$. Therefore $u_{xx} = 0$ and $u_{yy} = 0$ and so $u_{xx} + u_{yy} = 0$. Because u satisfies Laplace's equation, there exists a conjugate function v(x, y) that satisfies the CR equations: $u_x = v_y$, $v_x = -u_y$. To find v we integrate these

$$v_y = u_x = y \quad \Rightarrow \quad v = \int y \, dy + A(x)$$

 $v_x = -u_y = -x \quad \Rightarrow \quad v = -\int x \, dx + B(y)$

Together we find that $v=\frac{1}{2}(y^2-x^2)+c$ where $A(x)=-\frac{1}{2}x^2+c$ and $B(y)=\frac{1}{2}y^2+c$. In combination we find that $f(z)=u+iv=-\frac{1}{2}iz^2+c$ nst.

3) To show that the function $v(x,y) = e^x (y \cos y + x \sin y)$ satisfies Laplace's equation:

$$v_x = e^x \left(\sin y + y \cos y + x \sin y \right) \quad \Rightarrow \quad v_{xx} = e^x \left(y \cos y + 2 \sin y + x \sin y \right)$$
$$v_y = e^x \left(\cos y - y \sin y + x \cos y \right) \quad \Rightarrow \quad v_{yy} = -e^x \left(2 \sin y + y \cos y + x \sin y \right)$$

Thus Laplace's equation $v_{xx} + v_{yy} = 0$ is satisfied and we can find a conjugate function u:

$$u_y = -v_x \quad \Rightarrow \quad u = -\int e^x \left(\sin y + y \cos y + x \sin y\right) \, dy + A(x)$$
$$u_x = v_y \quad \Rightarrow \quad u = \int e^x \left(\cos y - y \sin y + x \cos y\right) \, dx + B(y)$$

1

The (partial) integrations are messy but give

$$u = e^x \left(x \cos y - y \sin y \right) + C$$

where A = B = C = const. Using $\int y \cos y dy = \cos y + y \sin y$ and $\int x \exp(x) dx = (x-1) \exp(x)$. For f(z) = u + iv together we have

$$f(z) = e^{x} (x \cos y - y \sin y + ix \sin y + iy \cos y) + c$$

$$= e^{x} z (\cos y + i \sin y) + c$$

$$= e^{x+iy} z + c$$

$$= e^{z} z + c$$

having used $e^{iy} = \cos y + i \sin y$.

4) The mapping $w = \frac{1}{z-1}$ from the z-plane to the w-plane can be written as

$$w = u + iv = \frac{1}{x - 1 + iy} = \frac{(x - 1) - iy}{(x - 1)^2 + y^2}$$
$$u = \frac{x - 1}{(x - 1)^2 + y^2} \qquad v = -\frac{y}{(x - 1)^2 + y^2} \qquad \Rightarrow \qquad u^2 + v^2 = \frac{1}{(x - 1)^2 + y^2}$$

- a) Then the circle $(x-1)^2 + y^2 = 4$ maps to $u^2 + v^2 = \frac{1}{4}$, which is a circle in the w-plane, of radius $\frac{1}{2}$ centred at (0,0).
- b) The line x = 0 in the z-plane gives values of u, v

$$u = -\frac{1}{1+u^2}$$
 $v = -\frac{y}{1+u^2}$ \Rightarrow $u^2 + v^2 = \frac{1}{1+u^2}$

Hence $u^2 + v^2 = -u$ which, on completing the square, becomes $(u + \frac{1}{2})^2 + v^2 = \frac{1}{4}$. This is a circle in the w-plane, of radius $\frac{1}{2}$ centred at $(-\frac{1}{2}, 0)$.

- **5)** a) For fixed points of $w = \frac{4z-2}{z+1} = z$ solve z(z+1) = 4z-2. Roots occur at z=1 and z=2.
- b) For $w = u + iv = \frac{4z-2}{z+1}$ we have

$$u + iv = \frac{4z - 2}{z + 1} = \frac{4x - 2 + 4iy}{x + 1 + iy}$$

Thus solving for u and v through rationalisation of the denominator

$$u = \frac{4(x^2 + y^2) + 2(x - 1)}{(x + 1)^2 + y^2} \qquad v = \frac{6y}{(x + 1)^2 + y^2} \quad \Rightarrow \quad (u - 1)^2 + v^2 = \frac{9[x^2 + y^2 - 1]^2 + 36y^2}{[(x + 1)^2 + y^2]^2}$$

- (i) When x = 0 in the z-plane then this reduces to $(u 1)^2 + v^2 = 9$. This is a circle in the w-plane of radius 3 centred at (1,0).
- (ii) For the circle |z|=1 in the z-plane we have $x^2+y^2=1$ which means that

$$u = \frac{2x+2}{2x+2} = 1 \qquad \qquad v = \frac{6y}{2x+2}$$

Hence in the w-plane we have the vertical line u = 1 for all values of v.