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A computational model for the mitochondrial respiratory chain that appropriately balances mass, charge, and free
energy transduction is introduced and analyzed based on a previously published set of data measured on isolated
cardiac mitochondria. The basic components included in the model are the reactions at complexes I, III, and IV of the
electron transport system, ATP synthesis at F1F0 ATPase, substrate transporters including adenine nucleotide
translocase and the phosphate–hydrogen co-transporter, and cation fluxes across the inner membrane including fluxes
through the Kþ/Hþ antiporter and passive Hþ and Kþpermeation. Estimation of 16 adjustable parameter values is based
on fitting model simulations to nine independent data curves. The identified model is further validated by comparison
to additional datasets measured from mitochondria isolated from rat heart and liver and observed at low oxygen
concentration. To obtain reasonable fits to the available data, it is necessary to incorporate inorganic-phosphate-
dependent activation of the dehydrogenase activity and the electron transport system. Specifically, it is shown that a
model incorporating phosphate-dependent activation of complex III is able to reasonably reproduce the observed
data. The resulting validated and verified model provides a foundation for building larger and more complex systems
models and investigating complex physiological and pathophysiological interactions in cardiac energetics.
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Introduction

As the key cellular organelle responsible for transducing
free energy from primary substrates into the ATP potential
that drives the majority of energy-consuming processes in a
cell, the mitochondrion plays a central role in the majority of
eukaryotic intracellular events. Therefore, the development
of a quantitative mechanistic understanding of cellular
function must rely on a reasonable quantitative description
of mitochondrial function. Additionally, development of
computational models of physiological systems that span
multiple scales, from intracellular biochemistry to whole-
organ function, requires a self-consistent integrated descrip-
tion of the biophysical processes observed at the molecular,
cellular, tissue, and whole-organ levels of resolution.

Recognizing the need for a computational model of
mitochondrial energetics and the need that such a model
be available for integration with other physiological systems
models, a computational model of the biophysics of the
respiratory system and oxidative phosphorylation was devel-
oped to meet the following requirements: (1) the model must
be consistent with the available experimental data, and (2) the
model must be constrained by the relevant physics/biophysics.
The utility of the first requirement is self-evident. The second
requirement is that models must obey applicable physical
laws (e.g., conservation of mass, charge, and energy; the
Second Law of Thermodynamics). The alternative to the
second requirement is to use empirically derived relation-
ships that are often useful in developing data-driven models
based on specific datasets. This approach is not used here
because the resulting models often fail when combined
together. Physics-based models, on the other hand—i.e.,
models built on principles including the laws of mechanics

and thermodynamics, in which assumptions and approxima-
tions are made explicit—operate with a common currency of
mass, charge, energy, and momentum [1–3]. Such models
naturally integrate across disparate scales.
Previous models of oxidative phosphorylation fail to meet

either one or both of the above requirements. For example,
the widely used model of Korzeniewski and Zoladz [4–6]
invokes an empirical linear relationship between the differ-
ence in pH across the mitochondrial inner membrane (matrix
pH minus cytosol pH) and the magnitude of inner membrane
potential. While the Korzeniewski model has been validated
and verified based on a number of studies and is widely
applied [7–9], the central empirical relationship between
electrostatic potential and pH difference is not expected to
apply under all conditions. For example, in the extensive
study of isolated cardiac mitochondria published by Bose et
al. [10], this relationship is not obeyed. In fact, not only is the
linear relationship violated, it is observed in the study of Bose
et al. [10] that the matrix pH is nearly constant and can even
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drop as the magnitude of membrane potential increases. For
example, the matrix can become more acidic as the
magnitude of the membrane potential increases. This
phenomenon cannot be explained by a model that collapses
the proton concentration gradient, the membrane potential,
and the proton motive force into a single state variable.

The model developed by Magnus–Keizer [11] was inte-
grated by Dudycha and Jafri and colleagues into a detailed
model of mitochondrial metabolism, including the reactions
of the TCA cycle [12,13]. The Dudycha–Jafri model has been
adopted by Cortassa and co-workers and recently extended to
account for the production of reactive oxygen species by the
respiratory chain [14,15]. The Magnus–Keizer model, devel-
oped based on Hill’s formalism for biochemical kinetics and
free energy transduction [16], is self-consistent and thermo-
dynamically balanced. While it has the advantage over the
Korzeniewski model in that the electrostatic potential is
treated as a state variable, charge is balanced, and bulk
electroneutrality is obeyed in the steady state, the Magnus–
Keizer model treats the pH gradient across the inner
membrane as a constant. Also, the Magnus–Keizer model
addresses certain aspects of mitochondrial ion transport—
specifically the transport of calcium across the inner
membrane—that are not included at the present stage in
the current model. However, details that are unique to the
present model—specifically pH buffering by potassium ion
exchange [17,18]—are necessary to analyze the extensive
experimental dataset considered here.

The goal of the current work is to introduce a quantitative
model representing the chemiosmotic theory of the respira-
tory chain and ATP synthesis that treats the proton gradient
and mitochondrial membrane potential as distinct state
variables. To be of maximal utility, this biophysically based
model of mitochondrial respiration must conserve charge,
mass, and energy, and use a treatment of the electron
transport system, ATP synthesis, and substrate transporters

that does not violate the laws of thermodynamics. The model
is developed based on the dataset of Bose et al. [10]. Values of
16 adjustable parameters are estimated based on fitting a
relatively large number of experimentally measured data
curves (nine data curves). The resulting parameterized model
is further validated by comparison to data measured at low
oxygen level in isolated mitochondria by Wilson et al. [19] and
Gnaiger and Kuznetsov [20,21].

Results

This section is organized as follows. First, a thermodynami-
cally balanced biophysical model of mitochondrial oxidative
phosphorylation is developed, along with identification of
model parameters based on the measured dependence of
NADH and cytochrome c redox states, oxygen consumption,
and matrix pH on levels of buffer phosphate. It is shown that
the developed model cannot match data on the inner
membrane electrostatic potential without incorporating
phosphate-dependent control of oxidative phosphorylation.
In the next section, the isolated mitochondrial model is
modified to include phosphate-dependent activation of
complex III and is fit to the data on inner membrane
potential. In the final section, the behavior of the model at
low oxygen level is shown to compare favorably to data
reported by Gnaiger and Kuznetsov [20,21] and Wilson et al.
[19].

Mitochondrial Model without Phosphate Control
The basic components of the mitochondrial model, which

include the reactions at complexes I, III, and IV of the
respiratory chain and ATP synthesis at F1F0 ATPase, are
illustrated in Figure 1A. Substrate transporters, including
adenine nucleotide translocase (ANT) and the phosphate–
hydrogen co-transporter (PiHt) are illustrated in Figure 1B.
Cation fluxes across the inner membrane, illustrated in Fig-
ure 1C, include fluxes through the Kþ/Hþ antiporter and
passive Hþ and Kþ permeation. The model includes two
mitochondrial compartments (matrix and intermembrane
[IM] space). In the following description of the model
equations, subscripts ‘‘x’’, ‘‘i’’, and ‘‘e’’ denote concentrations
of reactants in the matrix, IM space, and external space,
respectively; the concentration variables [fATP]i and [fATP]x,
and [fADP]i and [fADP]x, denote the magnesium-unbound
components of ATP in the IM space and the matrix, and
unbound ADP concentrations in the IM space and matrix,
respectively; variables [mATP]i and [mATP]x, and [mADP]i
and [mADP]x, denote the magnesium-bound components of
ATP in the IM space and the matrix, and magnesium-bound
ADP concentrations in the IM space and matrix, respectively.
The external space corresponds to the extra-mitochondrial
buffer used in the experiments simulated below.
Note on units. All concentrations in the following sections

are expressed in molar units—specifically moles per liter of
compartment volume. Fluxes are expressed in units of mass
per unit time per unit mitochondrial volume. To avoid
confusion, the units on flux variables are written as ‘‘mol s�1 (l
mito volume)�1’’ and not simplified to ‘‘M s�1’’, which would
be ambiguous when referring to fluxes for membrane
transporters.
Dehydrogenase flux. In this model the TCA cycle and other

NADH-producing reactions are not explicitly modeled.
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Synopsis

Cells are able to perform tasks that consume energy (such as
producing mechanical force in muscle contraction) by using
chemical energy delivered in the form of a chemical compound
called adenosine triphosphate, or ATP. Two Nobel Prizes were
awarded (in 1978 to Peter D. Mitchell and in 1997 to Paul D. Boyer
and John E. Walker) for the determination of how ATP is synthesized
from the components adenosine diphosphate (ADP) and inorganic
phosphate in a subcellular body called the mitochondrion. The
operating theory, called the chemiosmotic theory, describes how a
driving force called the proton motive force, which arises from the
sum of contributions from the electrical potential and the hydrogen
ion concentration difference across the mitochondrial inner
membrane, is developed by reactions catalyzed by certain enzymes
and consumed in generating ATP. Yet, to date, no computer model
has successfully described the development and consumption of
both the chemical and electrical components of the proton motive
force in a thermodynamically balanced simulation. Beard introduces
such a model, which is extensively validated based on previously
published sets of data obtained on isolated mitochondria. The
model is used to test hypotheses about how intracellular respiration
is regulated; this model could serve as a foundation for investigating
the control of mitochondrial function and for developing larger
integrated simulations of cellular metabolism.



Instead, a phenomenological driving force is used to simulate
the phosphate-dependent rate of reduction of NADþ to
NADH via the reaction NADþ b NADH þ Hþ in the
mitochondrial matrix. The following expression is used to
model the dehydrogenase flux:

JDH ¼ XDH
1þ ½Pi�x=kPi;1
1þ ½Pi�x=kPi;2

� �
ðr½NAD�x � ½NADH�xÞ; ð1Þ

where [NADH]x and [NAD]x denote the concentrations of
NADH and NAD in the mitochondrial matrix; [Pi]x denotes
the matrix inorganic phosphate concentration, and XDH, r,
kPi,1, and kPi,2 are empirical parameters. Thus, the dehydro-
genase flux drives the [NADH]x/[NAD]x ratio toward r, with a
reaction rate dependent on the concentration of phosphate,
which serves as a substrate for mitochondrial dehydrogenase
enzymes.

Electron transport system fluxes. The overall reaction for
electron transfer from NADH to ubiquinol at complex I is
expressed as

Hþ þNADHþQ b NADþ þQH2 þ 4DHþ; ð2Þ

where the notation DHþ is used to indicate hydrogen ion
transferred from the matrix to the cytosol, against the
electrochemical gradient. The direction of positive flux for
the reaction of equation 2 and for all reactions introduced
below is left-to-right.
The flux through complex I is modeled using the following

expression:

JC1 ¼ XC1

�
e�ðDGo; C1þ4DGH�RT ln ð½Hþ�x=10�7Þ�RT ln ð½Q�=½QH2�ÞÞ=RT

½NADH�x � ½NAD�x
�

ð3Þ

where XC1 is an adjustable parameter, [Q] and [QH2] denote
oxidized and reduced ubiquinol, RT is the gas constant
multiplied by the absolute temperature; DGo,C1 ¼�69.37 kJ
mol�1 is the standard free energy for the reaction HþþNADH
þQ b NADþþQH2 at pH¼ 7; and DGH is the proton motive
energy, or the free energy change associated with pumping a
proton from the matrix side to the cytosol side of the
mitochondrial inner membrane. The factor of four in the
exponent of equation 3 arises from the four protons pumped
from the matrix space to the IM space for each pair of
electrons transferred from NADH to ubiquinol. The proton
motive energy is computed as follows:

DGH ¼ FDWþ RT ln ð½Hþ�e=½Hþ�xÞ; ð4Þ

where F is Faraday’s constant, DW is the membrane
potential measured as the outer potential minus the inner
potential, and [Hþ]e/[H

þ]x is the ratio of external hydrogen
ion concentration to matrix concentration. Equation 3
represents a minimal thermodynamically balanced one-
parameter model for the flux through the first step in
respiratory system—i.e., the flux described by equations 3
and 4 drives concentrations towards thermodynamic equi-
librium. Specifically, the flux is driven towards a thermo-
chemical equilibrium defined by the effective equilibrium
expression

Keq;C1ðDGHÞ ¼
½NAD�½QH2�
½NADH�½Q�

� �
eq

¼ e�ðDGo; C1þ4DGH�RT ln ð½Hþ�x=10�7ÞÞ=RT ; ð5Þ

which is an explicit function of the proton gradient and
electrostatic gradient across the inner membrane.

For complex III, it is assumed that four protons are
pumped for each pair of electrons transferred from
ubiquinol to cytochrome c [22,23]:

QH2 þ 2 cytCðoxÞ3þ b Q þ 2 cytCðredÞ2þ þ 2 Hþ þ 4DHþ; ð6Þ

where cytC(ox)3þ and cytC(red)2þ denote the oxidized and
reduced forms of cytochrome c, respectively. As indicated in
Figure 1, cytochrome c is assumed to be present in the IM
space. Although four protons are pumped across the inner
membrane for each unit flux through this reaction, the total
number of charges transferred is two, owing to the redox
transfer from ubiquinol to cytochrome c, which generates

Figure 1. Illustration of the Components Included in the Model of

Mitochondrial Oxidative Phosphorylation

(A) The major components of the electron transport system, which
transfers reducing potential from NADH to oxygen, and the F1F0 ATPase,
which transduces energy from proton motive force to ATP, are
illustrated. Complexes I, III, and IV are labeled C1, C3, and C4,
respectively.
(B) The substrate transport process included in the model is shown,
including the ANT and PiHt on the inner membrane, and passive
permeation of ATP, ADP, AMP, and phosphate across the outer
membrane. The AK reaction in the IM space is shown.
(C) Transporters for hydrogen and potassium ions on the inner
membrane, including Kþ/Hþ antiporter and passive proton and
potassium fluxes, are included. It is assumed that these cations rapidly
equilibrate across the outer membrane.
DOI: 10.1371/journal.pcbi.0010036.g001
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two matrix hydrogen ions for each turnover of the reaction.
The flux through complex III takes a form similar to
equation 3:

JC3 ¼ XC3

�
e�ðDGo; C3þ4DGHþ2RTlnð½Hþ�x=10�7Þ�2FDWþRTlnð½Q�=½QH2�ÞÞ=2RT

½cytCðoxÞ3þ� � ½cytCðredÞ2þ�
�
; ð7Þ

where XC3 is an adjustable parameter, DGo,C3 ¼ �32.53 kJ
mol�1. Below, the expression for complex III flux is modified
to test the hypothesis that phosphate modulates complex III
activity. It will be shown that, while much of the available
experimental data can be explained by the model developed
in this section, which does not consider phosphate-depend-
ent control of the respiratory chain enzymes, the observed
data are better fit by a model that incorporates phosphate-
dependent control of complex III activity.

The overall reaction of complex IV involves the transfer of
two protons across the membrane and a total of four charges
[24,25]:

2 Hþþ 2 cytCðredÞ2þ þ 1
2
O2 b 2 cytCðoxÞ3þ þH2Oþ 2DHþ;

ð8Þ

with a flux computed as

JC4 ¼ XC4
1

1þ kO2=½O2�

� �
½cytCðredÞ2þ�

cytCtot�
e� DGo; C4þ2DGH�2RT lnð½Hþ�x=10�7Þ�1

2RT lnð½O2�Þð Þ=2RT

½cytCðredÞ2þ� � eþFDW=RT ½cytCðoxÞ3þ�
�
; ð9Þ

where XC4 is an adjustable parameter, DGo,C4 ¼ �122.94 kJ
mol�1, and cytCtot ¼ [cytC(ox)3þ]þ [cytC(red)2þ].

The complex IV flux of equation 9 is expressed in a form
similar to those of complexes I and III, with a few key
differences. While, as for complexes I and III, the flux is
formulated to drive the system toward thermodynamic
equilibrium, additional multiplicative factors have been
included in order to successfully reproduce the observed
data. The factor 1=ð1þ kO2=½O2�Þ is included in equation 9 to
account for the observed dependence of the rates of oxygen
consumption and ATP generation on oxygen concentration
[6,19–21,26,27]. It will be shown that the factor [cytC(red)2þ]/
cytCtot is found to provide better fits to the observed data
than are possible without it.

ATP synthesis. ADP is phosphorylated to ATP in the
matrix via the F1F0-ATPase reaction:

Hþþ ADPþ Piþ nA DHþ b ATP; ð10Þ

where nA ’ 3 is the number of protons transported each time
this reaction turns over. Since ATP synthesis requires
magnesium as a cofactor, the flux through this complex is
modeled using the thermodynamically balanced expression

JF1 ¼ XF1 e�ðDGo; ATP�nADGHÞ=RT KMg�ADP

KMg�ATP

�

½mADP�x½Pi�x � ð1MÞ½mATP�x
�
; ð11Þ

where XF1 is an adjustable parameter, DGo,ATP ¼ �36.03 kJ
mol�1 and KMg-ATP and KMg-ADP >are the equilibrium
dissociation constants for ATP and ADP binding with Mg2þ.
The factor 1 M multiplying [mATP]x is used so that the term
in parenthesis is balanced in terms of units.
Magnesium binding. Binding between magnesium ion and

ATP and ADP is driven via the following fluxes:

JMgATPx ¼ XMgAð½fATP�x½Mg2þ�x � KMg�ATP½mATP�xÞ
JMgADPx ¼ XMgAð½fADP�x½Mg2þ�x � KMg�ADP½mADP�xÞ
JMgATPi ¼ XMgAð½fATP�i½Mg2þ�i � KMg�ATP½mATP�iÞ
JMgADPi ¼ XMgAð½fADP�i½Mg2þ�i � KMg�ADP½mADP�iÞ

ð12Þ

fATP and fADP denote the concentrations of ATP and ADP
that are not bound to magnesium ion in the matrix and IM
space; mATP and mADP denote the magnesium-bound
species. The parameter XMgA is the forward binding rate
constant for these reactions; the effective unbinding constant
is computed to satisfy the equilibrium dissociation relations
for ATP and ADP binding with Mg2þ.
Substrate transport. Permeation of ATP, ADP, AMP, and

inorganic phosphate between the external buffer and the IM
space is governed by the following fluxes:

JATPt ¼ cpAð½ATP�e � ½ATP�iÞ;

JATPt ¼ cpAð½ADP�e � ½ADP�iÞ;

JAMPt ¼ cpAð½AMP�e � ½AMP�iÞ;

JPit ¼ cpPið½Pi�e � ½Pi�iÞ; ð13Þ

where the subscripts ‘‘e’’ and ‘‘i’’ denote external buffer and
IM space, respectively. The buffer concentrations are set as
constants in this study. The permeabilities of the outer
membrane to adenine nucleotides and to inorganic phos-
phate are given by pA and pPi, respectively; c denotes the ratio
of mitochondrial outer membrane area to total cardiomyo-
cyte cell volume.
ANT flux involves the displacement of one negative charge

from the matrix to the IM space, and is therefore coupled to
the electrostatic membrane potential. The following empiri-
cal expression [4,6] is used to model the ANT flux:

JANT ¼ XANT
½fADP�i

½fADP�i þ ½fATP�ie�0:35FDW=RT

�

� ½fADP�x
½fADP�x þ ½fATP�xeþ0:65FDW=RT

�
1

1þ km;ADP=½fADP�i

� �
;

ð14Þ

where the ANT is assumed to operate on magnesium-
unbound ATP and ADP in the two compartments.
Transport of inorganic phosphate between the matrix and

IM space is coupled to the hydrogen ion gradient [28]. It is
assumed that Hþ and H2PO�4 are transported by a co-
transport process, with Hþ and H2PO�4 moving together
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across the membrane in a 1:1 ratio in a net electroneutral
exchange. Hydrogen binding to inorganic phosphate via the
reaction

H2PO�4 bHPO2�
4 þ Hþ ð15Þ

is assumed to be in equilibrium on either side of the
membrane with ½H2PO�4 �i ¼ ½Hþ�i½Pi�i=ð½Hþ�i þ kdHÞ and
½H2PO�4 �x ¼ ½Hþ�x½Pi�x=ð½Hþ�x þ kdHÞ, where kdH is the disso-
ciation constant for the reaction. In these expressions Pi
represents the sum of species H2PO�4 and HPO2�

4. The
phosphate-hydrogen co-transporter flux is modeled as
reversible Michaelis–Menten flux:

JPiHt ¼ XPiHt
½H2PO�4 �i½Hþ�x � ½H2PO�4 �x½Hþ�e

½H2PO�4 �i þ kPiHt

� �
; ð16Þ

where XPiHt is an adjustable parameter, kPiHt is the
Michaelis–Menten constant for H2PO�4 on the outside of
the membrane.

Adenylate kinase reaction. High-energy phosphates are
transferred between ATP, ADP, and AMP in the IM space via
the Adenylate kinase (AK) reaction:

2 ADP b ATP þ AMP
:

ð17Þ

The AK flux in the IM space is computed as follows:

JAKi ¼ XAKðKAK½ADP�i½ADP�i � ½AMP�i½ATP�iÞ; ð18Þ

where KAK ¼ 0.4331 is the equilibrium constant for the
reaction of equation 17, and XAK is the AK enzyme activity.

Cation transport. The present work assumes that calcium
and sodium concentrations and fluxes have only secondary
effects on membrane potential compared to the primary
effects of currents associated with the respiratory chain, the
ANT current, and the proton leak. Therefore, fluxes of
sodium and calcium are not considered at this stage. Since
Kþ is required to buffer the matrix pH [17] and Mg2þ is
required for ATP synthesis and the ANT flux, these ions are
considered in the model. Expressions for Kþ and Mg2þ

channel and transporter fluxes are developed below.
The expression for the leak of Hþ across the inner

membrane is obtained by solving the one-dimensional
Nernst–Planck equation, the differential equation for dif-
fusion and drift of a charged species across a permeable
membrane. The resulting flux is calculated from the Nernst–
Goldman equation [29,30]:

JHle ¼ XHleDW
½Hþ�eeþF DW=RT � ½Hþ�x

eþF DW=RT � 1

� �
: ð19Þ

Passive flux of potassium into the matrix is modeled using a
similar expression:

JK ¼ XKDW
½Kþ�eeþF DW=RT � ½Kþ�x

eþF DW=RT � 1

� �
: ð20Þ

While significant evidence exits for passive flux of potassium
through various channels into the matrix [17,31], it is
unclear exactly what transporters are present to prevent
potassium concentrations from approaching thermochemi-
cal equilibrium across the inner membrane. It is assumed
that the outflow of potassium ions from the matrix is
coupled to the proton gradient, and outflow is modeled
using a simple reversible antiporter with flux given by mass-
action kinetics:

JKH ¼ XKHð½Kþ�e½Hþ�x � ½Kþ�x½Hþ�eÞ: ð21Þ

The above expressions for Kþ and Hþ transport assume that
these ions rapidly equilibrate across the outer membrane.
Therefore, the IM space concentrations are assumed to be
equal to the external space concentrations.
Governing equations. The flux expressions are used to

construct a kinetic model for the system; the overall system
is governed by the following set of 17 differential equations:

d½Hþ�x=dt ¼ 1
rbuff
ðþJDH � ð4þ 1ÞJC1 � ð4� 2Þ JC3
� ð2þ 2ÞJC4 þ ðnA � 1Þ JF1
þ 2JPiHt þ JHle � JKHÞ=Vx

d½Kþ�x=dt ¼ ðþJKH þ JKÞ=Vx

d½Mg2þ�x=dt ¼ ð�JMgATPx � JMgADPxÞ=Vx

d½NADH�x=dt ¼ ðþJDH � JC1Þ=Vx

d½QH2�x=dt ¼ ðþJC1 � JC3Þ=Vx

d½cytCðredÞ2þ�x=dt ¼ ðþ2JC3 � 2JC4Þ=Vx

d½ATP�x=dt ¼ ðþJF1F0 � JANTÞ=Vx

d½mATP�x=dt ¼ ðþJMgATPxÞ=Vx

d½mADP�x=dt ¼ ðþJMgADPxÞ=Vx

d½Pi�x=dt ¼ ð�JF1F0 þ JPiHtÞ=Vx

d½ATP�i=dt ¼ ðþJATPt þ JANT þ JAKiÞ=Vi

d½ADP�i=dt ¼ ðþJADPt � JANT � 2JAKiÞ=Vi

d½AMP�i=dt ¼ ðþJAMPt þ JAKiÞ=Vi

d½mATP�i=dt ¼ ðþJMgATPiÞ=Vi

d½mADP�i=dt ¼ ðþJMgADPiÞ=Vi

d½Pi�i=dt ¼ ðþJPit � JPiHtÞ=Vi

dDW=dt ¼ ð4 JC1 þ 2JC3 þ 4JC4 � nA JF1
�JANT � JHle � JKÞ=CIM

ð22Þ

where Vx and Vi are the matrix and IM space water volumes,
and rbuff is the buffering capacity of the matrix space, which is
set to rbuff

�1 ¼ (100 M�1) � [Hþ]x [32].
The stoichiometric coefficients multiplying the complex I,

III, and IV, and F1F0-ATPase fluxes include two terms, one
term representing the number of protons transported across
the inner membrane for a given reaction, and one term
representing the number of protons consumed by the
associated biochemical reaction. For example, the complex
III reaction pumps four Hþ out of the matrix and consumes
one matrix Hþ for every turnover of the reference bio-
chemical reaction HþNADHþQ b NADþþQH2, resulting in
a total of three matrix Hþ consumed. Thus, the net
stoichiometric coefficients multiplying JC1, JC3, JC4, and JF1
are �(4 þ 1), �(4 � 2), �(2 þ 2), and þ(nA � 1).
The membrane potential kinetics depends on the effective

membrane capacitance, CIM, which is estimated below.
In addition to the 17 state variables treated in equation 22,

the concentrations of oxidized matrix NAD, Q, and cyto-
chrome c, and the matrix ADP concentration, are computed
as follows:

½NAD�x ¼ NADtot � ½NADH�x
½Q� ¼ Qtot � ½QH2�
½cytCðoxÞ3þ� ¼ cytCtot � ½cytCðredÞ

2þ�
½ADP�x ¼ Atot � ½ATP�x;

ð23Þ

where NADtot, Qtot, cytCtot, and Atot, are the total concen-
trations of NAD(H), ubiquinol, cytochrome c, and adenine
nucleotide in the matrix, respectively.
Parameter values. The values of the parameters used in this

section are listed in Table 1. The units on activities are
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expressed as mass flux per unit time per unit total
mitochondrial volume, specifically mol s�1 (l mito volume)�1.
The parameters have been categorized into three classes,
denoted classes A, B, and C. The meaning of these categories
is as follows.

Class A refers to free parameters with values determined by

fitting model simulations to the data published by Bose et al.
[10]. In total, there are 14 adjustable parameters, which are
estimated by fitting to seven data curves (described below.) Of
the 14 adjustable parameters, four correspond to the
phenomenological model of dehydrogenase flux, while the
remaining ten are associated with the biophysical model of

Table 1. Mitochondrial Model Parameter Values

Name Description Value without

Phosphate

Control

Value with

Phosphate

Control

Units Sensitivity Reference Classa Equation

r Dehydrogenase model parameter 4.2530 4.5807 Unitless 4.92 — A 1

kPi,1 Dehydrogenase model parameter 0.13890 0.13413 mM 1.41 — A 1

kPi,2 Dehydrogenase model parameter 0.62396 0.67668 mM 1.01 — A 1

XDH Dehydrogenase activity 0.10990 0.09183 mol s�1 M�1

(l mito volume)�1

2.94 — A 1

XC1 Complex I activity 0.54088 0.36923 mol s�1 M�1

(l mito volume)�1

0.033 — A 3

XC3 Complex III activity 0.14483 0.091737 mol s�1 M�1

(l mito volume)�1

0.19 — A 7

XC4 Complex IV activity 2.2669 3 10�5 3.2562 3 10�5 mol s�1 M�1

(l mito volume)�1

0.33 — A 9

XF1 F1F0 ATPase activity 154.82 150.93 mol s�1 M�2

(l mito volume)�1

0.0005 — A 11

XANT ANT activity 0.010723 0.0079204 mol s�1

(l mito volume)�1

1.84 — A 14

XPiHt Hþ/Pi� co-transport activity 3.7442 3 105 3.3943 3 105 mol s�1 M�1

(l mito volume)�1

0.14 — A 16

kPiHt Hþ/Pi� co-transport parameter 0.72911 0.45082 mM 0.025 — A 16

XKH Kþ/Hþ antiporter activity 3.1775 3 107 2.9802 3 10�6 mol s�1 M�2

(l mito volume)�1

0.0022 — A 21

XK Passive potassium

transport activity

0 0 mol s�1 mV�1 M�1

(l mito volume)�1

0 — A 20

XHle Proton leak activity 250.02 250.00 mol s�1 mV�1 M�1

(l mito volume)�1

1.08 — A 19

kPi,3 Complex III/Pi parameter — 0.19172 mM 0.077 — A 24

kPi,4 Complex III/Pi parameter — 25.310 mM 0.002 — A 24

nA Hþ stoichiometric coefficient

for F1F0 ATPase

3 3 Unitless [48] b B 11, 22

KMg-ATP Mg-ATP binding constant 1.0 3 10�6 1.0 3 10�6 M [32] B 11, 12

KMg-ADP Mg-ADP binding constant 1.0 3 10�6 1.0 3 10�6 M [32] B 11, 12

kdH H2PO4�proton

dissociate constant

1.0 3 10�6 1.0 3 10�6 M [49] B 15

pPi Mitochondrial membrane

permeabilityto inorganic phosphate

327 327 lm s�1 [8] B 13

pA Mitochondrial outer membrane

permeability to nucleotides

85.0 85.0 lm s�1 [33] B 13

KAK AK equilibrium constant 0.4331 0.4331 Unitless [49]c B 18

km,ADP ANT Michaelis–Menten constant 1.0 3 10�6 1.0 3 10�6 M [6,8]d B 14

kO2 Saturation constant for

oxygen consumption

1.0 3 10�6 1.0 3 10�6 M [6,8]d B 9

NADtot Total matrix NAD(H) concentration 2.97 2.97 mM [6,8]d B 23

Qtot Total matrix ubiquinol concentration 1.35 1.35 mM [6,8]d B 23

cytCtot Total IM cytochrome c concentration 2.70 2.70 mM [6,8]e B 9, 23

Atot Total matrix ATP þ ADP concentration 10 10 mM [6,8]d B 23

Vx Matrix water volume per total mito volume 0.6435 0.6435 Unitless [50]f B 22

Vi IM water fraction per total cell volume 0.0715 0.0715 Unitless [50]f B 22

c Outer membrane area per mito volume 5.99 5.99 lm�1 [35] B 13

CIM Capacitance of inner membrane 1.0 3 10�6 1.0 3 10�6 mol (l mito volume)�1 mV�1 [34] B 22

XAK AK activity 1.0 3 10�6 1.0 3 10�6 mol s�1 M�2 (l mito volume)�1 — C 18

XMgA Mg2þ binding activity 1.0 3 10�6 1.0 3 10�6 mol s�1 M�2 (l mito volume)�1 — C 12

aSee text for explanation of parameter classes.
bValue consistent with accepted range.
cComputed from thermodynamic data tabulated in cited reference.
dValue used is taken from previous modeling studies, not direct experimental measure.
eValue used is ten times the value used in cited references. See text for explanation.
fMatrix volume is taken as 90% of total mitochondrial volume; IM space volume as 10%.

DOI: 10.1371/journal.pcbi.0010036.t001
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oxidative phosphorylation and electron transport system in
cardiac mitochondria.

Class B refers to 17 parameters for which values are
established in the literature. These parameter values were
fixed and not treated as adjustable. The values used for
NADtot, Atot, Qtot, and cytCtot are obtained from the previous
models of Vendelin et al. [8] and Korzeniewski and Zoladz
[4,6]. The current model assumes cytochrome c to be
distributed within the IM space, in contrast to previous
models, in which cytochrome c is in the matrix. To keep the
total mass of cytochrome c consistent, cytCtot is set to 2.7 mM,
a value that is ten times greater than that used in the
Vendelin and Korzeniewski models, since the IM volume is
assumed to be 1/10 of the mitochondrial water volume. The
value for the outer membrane permeability to adenine
nucleotides is estimated from Lee et al. [33]. Assuming the
mitochondrial inner membrane has a capacitance of 1 lF per
square centimeter of surface area [34], the inner membrane
capacitance is calculated to be 6.75 3 10�6 mol (l mito
volume)�1 mV�1 for an inner membrane area of 60 lm2. It is
observed that the steady-state model behavior presented
below is not sensitive to the assumed value of mitochondrial
membrane capacitance. The steady-state membrane potential
is determined by bulk electroneutrality, which imposes the
constraint that the sum of the various currents across the
membrane is zero. Thus, 4JC1þ 2JC3þ 4JC4� nAJF1�JANT� JHle

� JK � 2JMg ¼ 0, where each of these fluxes depends on the
membrane potential. The ratio of mitochondrial surface area
to volume c is estimated from morphological data [35] to be
5.99 lm�1. Given this value of c and the assumed values of
outer membrane permeability, the gradients obtained for
ATP and ADP across the outer membrane at maximal
respiration rate are 20 lM. In this range, the resistance to
passive transport between the inner membrane space and
buffer is not great enough to be significant and the model
behavior is not sensitive to the assumed value of c.

Class C refers to two parameters that are set to extreme
values such that the simulated model behavior is not sensitive
to the specific value chosen. The AK and magnesium-binding
activities are set to values high enough that the correspond-
ing reactions maintain equilibrium.

Table 2 lists the values for the standard free energies for
the reactions of the respiratory chain at pH ¼ 7.

Simulation of isolated mitochondria. The extensive dataset
published by Bose et al. [10] is used to parameterize the
mitochondrial model. The external Kþ, Hþ, ATP, ADP, AMP,
and inorganic potassium concentrations were set as constants
according to the buffer concentrations imposed in the
experiment in order to compare model simulations to the

experimental data. Specifically, [Hþ]e¼ 10�7.1, [ATP]e¼ 0, and
[AMP]e¼ 0; [ADP]e was set at either 0 or 1.3 mM, as described
below, and [Pi]e was varied from 0 to 10 mM. The total
magnesium concentration in the buffer was fixed at 5.0 mM;
buffer potassium concentration was fixed at 150 mM. The
simulations described in this section were computed with the
oxygen partial pressure in the matrix set to 20 mm Hg, or
[O2]¼ 2.6 3 10�5 M.
The black curves plotted in Figure 2 illustrate comparisons

between model-simulated and experimentally measured
values for the dataset used to estimate the 14 adjustable
parameters listed in Table 1. Parameters values were adjusted
to obtain the best fit (least squares error) between model
simulations and experimental measures for steady-state
values of NADH concentration, rate of oxygen consumption,
cytochrome c redox state, and matrix pH, as shown in the
figure. Optimal parameter values were found using a global
Monte-Carlo-based simulated annealing algorithm that
searched for the optimal set of parameter values to
simultaneously fit several data curves. In total, seven
independent curves were used to estimate the 14 parameter
values. It was found that best-fit model solutions are obtained
by setting the passive potassium and magnesium fluxes to
zero. Shown in Figure 2A are model simulations of steady-
state NADH (normalized to NADtot) as a function of external
inorganic phosphate, [Pi]e. The two curves correspond to two
different values of external ADP concentration, 0 and 1.3
mM, as indicated in the figure. Also shown are data from Bose
et al. [10], collected from isolated mitochondria suspensions,
with buffer ADP concentrations of 0 mM (circles) and 1.3 mM
(triangles). Figure 2B illustrates the experimentally measured
and model-simulated values of the rate of oxygen consump-
tion (MVO2) for the same conditions as described for the
NADH curves in Figures 2A. When substrate concentration
(either ADP or inorganic phosphate) goes to zero, the
nonzero MVO2 corresponds to the basal oxygen consumption
necessary to maintain the proton motive energy with a finite
proton leak across the inner membrane. Figure 2C illustrates
the model-simulated and experimentally measured values of
cytochrome c redox state; Figure 2D illustrates the model-
simulated and experimentally measured values of matrix pH.
The matrix pH is buffered at a nearly constant value via Hþ/
Kþ exchange.
Also shown as red curves plotted in Figure 2C is the best fit

to the cytochrome redox state data obtained without the
factor cytC(red)2þ]/cytCtot multiplying the JC4 flux expression
of equation 9. It is observed that the model’s fits to the
cytochrome c redox data are improved by incorporating this
multiplicative factor in the expression for complex IV flux.
Thus the best-fit model solution assumes the flux through
complex IV depends on [cytC(red)2þ]2, which may be
explained by the fact that two reduced cytochrome c
molecules are require to donate a single electron pair one
oxygen atom, generating H2O.
In contrast to the results illustrated in Figure 2, the model

described in this section is unable to reproduce data on
mitochondrial membrane potential. In Figure 3 are plotted
the model-simulated and experimentally measured values of
DW, as a function of [Pi]e for the cases of [ADP]e¼ 0 mM and
[ADP]e ¼ 1.3 mM.
In the inactive state ([ADP]e ¼ 0), as the external (buffer)

phosphate concentration is increased, the dehydrogenase flux

Table 2. Standard Free Energies of Respiratory Chain Reactions

Reaction Standard Free

Energy (kJ mol�1)

Hþ NADH þ Q b NADþ þ QH2 DGo,C1 ¼ �69.37

QH2 þ 2 cytC(ox)3þ b Q þ 2 cytC(red)2þ þ 2 Hþ DGo,C3 ¼ �32.53

2 Hþ þ 2 cytC(red)2þ þ (1/2)O2 b 2 cytC(ox)3þ þ H2O DGo,C4 ¼ �122.94

Hþ þ ADP þ Pi b ATP DGo,ATP ¼ 36.03

DOI: 10.1371/journal.pcbi.0010036.t002
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governed by equation 1 increases, providing an increased
thermodynamic driving force for electron transport and a
corresponding increase in the magnitude of the membrane
potential. However, the model-simulated rate of increase in
DW with [Pi]e is much smaller than that observed exper-
imentally. When the active state is simulated ([ADP]e ¼ 1.3
mM), the model fit is even worse than for the inactive state.
The addition of ADP to the external buffer, representing a
sink for the free energy stored in the redox state in the matrix
and the membrane potential, results in a drop in both redox
and membrane potential. The simulated magnitude of the
potential difference decreases with increasing [Pi]e, the
opposite of the trend that is observed experimentally. With
14 adjustable parameters, it is not possible to reproduce the
experimentally observed behavior of DW while maintaining
reasonable fits to the curves plotted in Figure 2.

Mitochondrial Model with Phosphate Control
Reasonable fits to the observed DW require that phosphate-

dependent control be incorporated into the model, as
proposed by Bose et al. [10]. It is found that by including
phosphate-dependent control of complex III it is possible to
obtain improved fits to the data on membrane potential. The
flux expression of equation 7 is modified as follows:

JC3 ¼ XC3
1þ ½Pi�x=kPi;3
1þ ½Pi�x=kPi;4

� �

�
�
e�ðDGo; C3þ4DGH�2FDWþRTlnð½Q�=½QH2�ÞÞ=2RT

½cytCðoxÞ3þ� � ½cytCðredÞ2þ�
�
;

ð24Þ

where two new parameters, kPi,3 and kPi,4, have been
introduced. Thus, the total number of adjustable parameters
in the model is increased from 14 in the previous section to
16. By varying model parameters, including these additional
parameters, we are able to obtain fits to the nine data curves
as illustrated in Figures 4 and 5. Thus, the large number of
parameters is offset by a relatively large number of data
curves to fit for estimation of parameter values. As for the
model described in the previous section, it is found that best-
fit model solutions are obtained by setting the passive
potassium flux to zero. Therefore, in the model parameter-
ization presented in Table 1 the activities of the correspond-
ing channels are set to zero, effectively reducing the number
of adjustable parameters. Sensitivity analysis reveals that the
activities of the channels cannot be determined based on the

Figure 2. Comparison of Model Simulations to Experimental Data on NADH, MVO2, Cytochrome C Redox, and Matrix pH for Model without Phosphate

Control

(A) Results for normalized matrix NADH as a function of buffer inorganic phosphate concentration are shown for the two experimental cases of resting
mitochondria ([ADP]e ¼ 0, state 4) and active state mitochondria ([ADP]e¼ 1.3 mM, state 3).
(B) Results for MVO2 (rate of oxygen consumption) are shown for the same experimental cases as in (A). Experimental data are not available for the
resting state, in which a minimal flux through the electron transport system is maintained to compensate for cation flux across the inner membrane.
(C) Results for cytochrome C reduced fraction are shown for the experimental cases as in (A). The black curves correspond to the model equations
developed in the text. The red curves correspond to the best-fit model simulations obtained with equation 9 modified to not include the factor
[cytC(red)2þ]/cytCtot multiplying the expression for JC4.
(D) Matrix pH (model-simulated and experimentally measured) is plotted as a function of buffer phosphate for the experimental cases as in (A).
All computed results in this figure correspond to steady-state simulations of model described under ‘‘Mitochondrial Model without Phosphate Control.’’
Model simulations for [ADP]e ¼ 1.3 mM, and [ADP]e ¼ 0 mM are plotted as solid lines and dashed lines, respectively. Experimental data (circles and
triangles) are obtained from [10].
DOI: 10.1371/journal.pcbi.0010036.g002
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present dataset. The activities of potassium channels are
known to be modulated by ischemic and anesthetic precon-
ditioning [31,36,37] and will be explored in future work.

The fits obtained using equation 24 to model the complex
III flux are plotted in Figures 4 and 5. Note that the model
simulation of NADH, MVO2, cytochrome c state, and matrix
pH plotted in Figure 4 produces values similar to those
obtained using the previous model (see Figure 2). Of
particular note is the behavior of the NADH redox state
and MVO2 curves, plotted in Figure 4A and 4B. In these cases
the mean squared error between observed data and the
model fits is slightly lower than that obtained using the model
with no phosphate control (see Figure 2A and 2B).

The major difference between the model of this section
and that of the previous section is seen in the simulated
membrane potential values, plotted in Figure 5. With the
phosphate-modulated control described by equation 24, the
model remains unable to reproduce the observed data on
membrane potential as phosphate concentration goes to
zero. Yet while the model’s fits to the observed data remain
imperfect, the agreement between simulation and exper-
imental data is significantly improved by incorporating the
expression of equation 24 to model the complex III flux.
Possible mechanisms explaining differences between model
simulations and the data observed in the limit [Pi]e ! 0 at
[ADP]e ¼ 1.3 mM are outlined in the Discussion.

The values of the parameters used in generating Figures 4
and 5 are listed in Table 1. The sensitivities of the estimated
values of model parameters are considered in the Discussion.

Behavior of Model at Low Oxygen Concentration
A key to understanding cellular energetics during hypoxia

and ischemia is a mechanistic model of mitochondrial
function at low oxygen concentration. In this section the

behavior of the model is compared to measurements of
oxygen consumption and cytochrome c reduction in isolated
mitochondria as functions of the oxygen concentration of the
medium.
The behavior of the model at low oxygen concentration is

illustrated in Figure 6. Plotted are the rate of mitochondrial
oxygen consumption and the predicted reduced fraction of
cytochrome c as functions of the oxygen content of the
medium.
The oxygen consumption curve was computed for active

state-3 respiration, with [ADP]e and [ATP]e set to 1.0 mM and
0 mM, respectively. This curve corresponds to the curves
reported in Figure 7A of [20] and Figure 2A of [21]. The
model-predicted P50 for half-maximal oxygen consumption is
0.373 lM (or an oxygen partial pressure of 0.287 mm Hg),
close to the reported value of 0.35 6 0.07 lM [20,21]. The
curve for the predicted reduced fraction of cytochrome c
(dashed line in Figure 6) was computed for state-3 respiration
([ADP]e ¼ 0.5 mM; [ATP]e ¼ 0.87 mM), corresponding to the
measurements of Wilson et al. [19]. The predicted curve can
be compared to Figures 4B and 5A of [19]. Wilson et al. found
that in mitochondria isolated from rat liver, cytochrome c is
approximately 15%–18% reduced for oxygen concentration
in the range of 40–50 lM. The current model predicts a
slightly lower value of 14% reduced at [O2]e ¼ 50 lM.
Thus, beyond the dataset used for parameterization, the

model was further validated by comparison to additional
datasets measured from mitochondria isolated from rat heart
[20,21] and liver [19] and observed at low oxygen concen-
tration. The model agrees quantitatively with the measured
dependence of oxygen consumption rate on oxygen concen-
tration in state-3 respiration. Although the observed cyto-
chrome c redox state is slightly (1%–4%) more reduced in
measurements reported for isolated rat liver mitochondrial at
low oxygen concentrations compared with the model
predictions, the predicted behavior of cytochrome c reduc-
tion relative to oxygen concentration is qualitatively similar
to the corresponding experimental observations. Allowing
for differences in the behaviors of hepatic and cardiac
mitochondria, an exact quantitative agreement may not be
expected.

Discussion

Model Development and Parameterization
The main contribution of the current study is the

introduction of a self-consistent thermodynamically balanced
model of oxidative phosphorylation and the electron trans-
port system in mitochondria. A biophysical model incorpo-
rating all of the components illustrated in Figure 1 required
the development of a system of 17 differential equations and
the introduction of 16 adjustable parameters. To identify
such a large number of parameters, it was necessary to make
use of a large number of independent measurements made on
mitochondria isolated from rat cardiac tissue [10]. This
previously published dataset consists of measures of NAD(H)
redox state, cytochrome c redox state, rate of oxygen
consumption, mitochondrial membrane potential, and ma-
trix pH, for a range of buffer conditions, including a range of
concentrations of inorganic phosphate and for resting and
active state mitochondria ([ADP]e ¼ 0 and 1.3 mM, respec-
tively). In total, 16 parameters were estimated by simulta-

Figure 3. Comparison of Model Simulations to Experimental Data on

Membrane Potential for Model without Phosphate Control

The model without phosphate control is not able to fit the experimental
data on mitochondrial membrane potential. Computed results in this
figure correspond to steady-state simulations of the model described
under ‘‘Mitochondrial Model without Phosphate Control.’’ Model
simulations for [ADP]e ¼ 1.3 mM, and [ADP]e ¼ 0 mM are plotted as
solid lines and dashed lines, respectively. Experimental data (circles and
triangles) are obtained from [10].
DOI: 10.1371/journal.pcbi.0010036.g003
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neously fitted model-simulated steady states to nine inde-
pendent data curves (see Figures 4 and 5), providing
quantitative estimates of the model parameters.
While an exhaustive statistical analysis of the 16-dimen-

sional parameter space is not computationally feasible, it is
possible to compute the sensitivities of the mean squared
error between the model solutions to the estimated param-
eter values. Parameter sensitivity can be estimated from the
diagonal entries of the Hessian of the error function,
@2E=@x2i , where E is the mean squared difference between
model simulations and experimental data and xi represents
ith parameter. However, the partial derivatives of E with
respect to parameter values represent local measures that do
not necessarily reflect how the error changes with finite
changes in the parameter values. To estimate the sensitivity to
finite changes in parameter values, the sensitivity to each
parameter was computed as the relative change in mean
squared error due to a 10% change in a given parameter
value:

Si ¼ max
jEðx�i 60:1x�i Þ � E�j

0:1E�

� �
; ð25Þ

where E* is the minimum mean squared difference between
model simulations and experimental data, and x�i is the
optimal value of the ith parameter. The term Eðx�i 60:1x�i Þ is
the error computed while setting parameter xi to 10% above
and below its optimal value. The relative sensitivities to the

Figure 5. Comparison of Model Simulations to Experimental Data on

Membrane Potential for Model with Phosphate Control

The model with phosphate control compares much more favorably to
the experimental measurements than the model without phosphate
control (see Figure 3). Computed results in this figure correspond to
steady-state simulations of the model described under ‘‘Mitochondrial
Model with Phosphate Control.’’ Model simulations for [ADP]e¼ 1.3 mM
and [ADP]e ¼ 0 mM are plotted as solid lines and dashed lines,
respectively; experimental data are the same as plotted in Figure 3.
DOI: 10.1371/journal.pcbi.0010036.g005

Figure 4. Comparison of Model Simulations to Experimental Data on NADH, MVO2, Cytochrome C Redox, and Matrix pH for Model with Phosphate

Control

(A) Results for normalized matrix NADH as a function of buffer inorganic phosphate concentration are shown for the two experimental cases of resting
mitochondria ([ADP]e ¼ 0, state 4) and active state mitochondria ([ADP]e¼ 1.3 mM, state 3).
(B) Results for MVO2 (rate of oxygen consumption) are shown for the same experimental cases as in (A).
(C) Results for cytochrome C reduced fraction are shown for the experimental cases as in (A).
(D) Matrix pH (model-simulated and experimentally measured) is plotted as a function of buffer phosphate for the experimental cases as in (A).
All computed results in this figure correspond to steady-state simulations of the model described under ‘‘Mitochondrial Model with Phosphate
Control.’’ Model simulations for [ADP]e¼ 1.3 mM and [ADP]e¼ 0 mM are plotted as solid lines and dashed lines, respectively; experimental data are the
same as plotted in Figure 2.
DOI: 10.1371/journal.pcbi.0010036.g004
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adjustable parameters are listed in Table 1. These sensitivity
values represent a measure of the degree to which the curves
plotted in Figures 4 and 5 are sensitive to the value of the
individual parameters. A high sensitivity value indicates that
changing a given parameter results in significant changes to
the simulated curves used to identify the set of adjustable
parameter values. Note that six of the adjustable parameters
show relative sensitivity of less than 5%, indicating that
model solutions are not particularly sensitive to these
parameters in the neighborhood of the reported values and
that these parameters are not well estimated by the present
analysis. In particular, in comparison to the dataset presented
here, the model is relatively insensitive to the values of the
activities of the potassium transporters and the F1F0 ATPase.
The best model fits were obtained with the potassium channel
activities set effectively to zero. Therefore, the relative
sensitivity to this parameter is reported to be zero as well.
The ATP synthesis activity XF1 is determined to be large
enough that the reaction is effectively maintained in equili-
brium. To estimate the parameters that are poorly identified,
it will be necessary to obtain appropriate data in the future. In
fact, because the model is parameterized based solely on
steady-state data, it may not accurately match time-dependent
behavior of mitochondrial oxidative phosphorylation. Thus, it
is expected that kinetic data, in particular, will be of great
value in refining the parameter estimates, refining the model,
and generally improving the ability of the model to predict
observed behavior.

Yet while the model represents only one component of
mitochondrial energy metabolism that one may build on and
refine, it does represent the most complete model of the

respiratory chain that is available to date. The model includes
the major components of oxidative phosphorylation and the
electron transport system and appropriately balances mass,
charge, and free energy. By integrating the components
illustrated in Figure 1 into a self-contained model, the
observations of Bose et al. [10] have been explained based on
a model that incorporates phosphate control at the dehydro-
genase flux (perhaps via mass action) and phosphate-depend-
ent activation of complex III. Of course, the model does not
reproduce the experimental data with perfect fidelity. The
major shortcomings of the current model analysis are the
inability to reproduce the observed data in state-3 mitochon-
dria as buffer phosphate concentration approaches zero and
the inability to sensitively identify parameters for membrane
ion transporters. As discussed below, the observations at [Pi]e
! 0 may be influenced by an experimental artifact; detailed
identification of the inner membrane ion transporters will
require the design of further experiments sensitive to the
kinetic behavior of these channels.

Phosphate-Dependent Control of the Respiratory Chain
To obtain the model solutions illustrated in Figures 4, 5,

and 6, an expression for complex III flux was developed based
on the hypothesis that inorganic phosphate level modulates
the activity of the complex III. While no data directly
measuring the activity of complex III in intact mitochondria
as a function of phosphate concentration are available, the
hypothesis is supported by the fact that the model’s fits to the
observed data are significantly improved when phosphate-
dependent control is included compared to the case when it is
not. In work not detailed, a number of similar control
expressions were tested using phosphate and other species
(ATP, ADP, Mg2þ) as putative controllers of complexes I, III,
and IV and of F1F0 ATPase and the ANT system. It was found
that no other choice of controlled enzyme and controller
species could provide fits to the data of Figure 5 as reasonable
as that of the hypothetical control of complex III by inorganic
phosphate. Thus, 20 independent hypotheses (each formu-
lated as the activity of one of five enzymes dependent on one
of four species) were quantitatively tested and 19 were
excluded as not able to reproduce the observed data. Yet, by
increasing the complexity of the model, in particular by
hypothesizing phosphate-dependent control of a more than
one of the enzymes in the system, it is possible to obtain
improved fits to the observed data. However, doing so requires
introducing additional free parameters that cannot be well
identified. For this reason, a minimal model that satisfactorily
explains the data within a reasonable error tolerance was
developed.
An alternative hypothesis for the biophysical mechanism

behind phosphate-dependent activation of the electron trans-
port system is that phosphate modulates the redox coupling of
cytochrome b and c, as proposed by Bose et al. [10]. It has been
observed that binding to phosphate and other ions changes
the apparent redox potential for cytochrome c [38]. These
data on binding of cytochrome c and phosphate allow one to
formalize this alternative hypothesis by appropriately modify-
ing DGo,C3 and DGo,C4 to depend on phosphate concentration.
However, a simple model (results not shown) using the linear
relationship between the apparent cytochrome c redox
potential and phosphate concentration observed by Gopal et
al. [38] was unable to reproduce the phosphate-dependent

Figure 6. Behavior of Model at Low Oxygen Concentration

Predicted rate of oxygen consumption (MVO2) normalized to maximal
rate of oxygen consumption and fraction of cytochome c reduced are
plotted against oxygen concentration, which is expressed in micromoles
(lower axis) and oxygen partial pressure (upper axis). The oxygen
consumption curve was computed for state-3 respiration, corresponding
to experimental conditions reported in [18] and [19]. The cytochrome c
curve corresponds to state-4 experimental conditions reported in [17].
Inset shows predicted curves for oxygen concentrations from 0 to 5 lM.
DOI: 10.1371/journal.pcbi.0010036.g006
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behavior observed by Bose et al. [10]. Thus, the model detailed
in this work represents the most parsimonious explanation
that was found for the data illustrated in Figures 4 and 5.

In addition to reproducing the data used to parameterize
the model, the mechanism of phosphate-dependent control
of respiration matches observations in permeabilized cardi-
omyocytes indicating that phosphate represents the major
feedback signal in low and medium work loads [7].

As noted above, the model remains unable to reproduce
the observed data on membrane potential as phosphate
concentration goes to zero. Note that as [Pi]e ! 0, the
observed [NADH]/NADtot ratio, which is the driving force for
electron transport and proton pumping, is approximately 0.6
for both levels of buffer ADP concentration that were studied
(see Figure 4A). Yet the observed membrane potential, which
is ultimately driven by the matrix redox state, is approx-
imately 25 mV lower at [ADP]e¼ 1.3 mM than at [ADP]e¼ 0.
Since there can be no ATP synthesis when [Pi]e ¼ 0, this
behavior cannot be explained by a load on the F1F0 ATPase
or the ANT.

It is expected that there always exists trace phosphate in the
buffer and matrix and that nonviable mitochondria (e.g.,
mitochondria with compromised membranes) present in the
experimental isolation act as ATPases, consuming ATP and
generating phosphate [39]. Therefore, to obtain improved fits
to the membrane potential data with ADP present at low
phosphate concentration it may be appropriate to include an
ATP-consuming reaction in the model of isolated mitochon-
dria. However, introducing an ATP-consuming reaction into
themodel of isolatedmitochondria has the effect of increasing
the predicted oxygen consumption. With the current model it
is not possible to reproduce both the difference in DW
observed at [Pi]e ¼ 0 and the oxygen consumption curve by
introducing an ATP-consuming reaction into the model
(results not shown). Likely, the observed drop in membrane
potential for [ADP]e¼ 1.3 mM (and [Pi]e¼ 0) compared to at
[ADP]e¼ 0 is due to residual phosphate in the bath and in the
mitochondrial matrix, as proposed by Bose et al. [10].

Another mechanism that was considered as a possible
explanation for the drop in DW observed when [ADP] is
added to the buffer at [Pi]e ¼ 0 is that the activity of one or
more the of the components of the electron transport system
is enhanced when [ADP]e¼ 0 compared to when [ADP]e ne 0.
Using the current model, one can obtain improved fits to the
observed data by reducing the complex I or III activity, or by
reducing the dehydrogenase activity, when [ADP]e ¼ 1.3 mM
compared to the case when [ADP]e¼0. Thus, inhibition of the
activity of respiratory complexes by ADP represents a
possible mechanism to explain the observations of Bose et
al. [10] at [Pi]e ¼ 0. However, the present dataset does not
provide enough information to determine which sites in the
respiratory chain are modulated by the addition of ADP into
the buffer. Further experiments are necessary to test
competing hypotheses and to formulate a mechanistic model
that explains the phenomenon in detail.

Future Directions
As indicated above, the model remains imperfect and there

remains room for improvement to model’s fits to observed
data. One potential avenue for improving the scope and

predictive power of the model is to extend the model to
include additional components of cardiac energetic metab-
olism. This task must be undertaken under the guidelines
outlined in the Introduction. This operating philosophy
behind model development requires that the use of purely
data-driven empiricisms be avoided wherever possible. While
nonphysical empirical relationships were not introduced in
modeling the central components of the current model
illustrated in Figure 1, the model is driven by an arbitrary
four-parameter function (equation 1) used to represent
overall dehydrogenase flux in the isolated system of Bose et
al. [10]. This expression invokes a phenomenological depend-
ence of the dehydrogenase flux on phosphate concentration,
required to reproduce the observed data. In general, it is
often difficult to avoid invoking such driving functions at the
boundaries of a given model. Since it is planned to integrate
the current model of oxidative phosphorylation with other
components of cardiac metabolism [40], the data-driven
dehydrogenase flux will be replaced with realistic models of
the TCA cycle [12,13,40] and other reactions generating
intracellular reducing potential [40]. While the current model
was developed to analyze data from isolated mitochondria
respiring on complex I substrates, such an integrated model
would require a biophysical treatment of FAD(H2) redox
handling at complex II of the respiratory chain. Thermody-
namically balanced flux expressions for complex II flux could
be developed in a manner analogous to that for complexes I
and III in this study. These steps represent planned progress
toward a major long-term goal of the construction of a
complete energetic model of the cell [41].
Large-scale models of cellular energetics can be used for a

variety of applications. For example, the current model may
be linked with excitation–contraction models and calcium-
dependent control of energy metabolism by extending the
model to include sodium and calcium ion exchangers, as has
been done in previous models [11,13,40]. Simulation and
analysis of cardiac energetic requires integrating metabolic
models into models of substrate transport at the cellular and
tissue levels [42,43]. Thus, the current model provides a basis
for integrating a detailed model of mitochondrial function
into multiple-scale models of the heart.
While it was determined that the passive potassium channel

flux is effectively zero in the model parameterization
developed here, modeling the Kþ/Hþ exchanger is required
to buffer the matrix pH when both DW and [Hþ]x are treated
as state variables. Mitochondrial ATP-dependent potassium
channel flux [17,18,37,44–47] will need to be incorporated to
investigate the cardiac metabolic response to ischemia,
hypoxia, and preconditioning. In addition, kinetic data must
be obtained to effectively parameterize and validate the time-
dependent behavior of the model. In sum, while a great
number of extensions and improvements are possible, and
many are planned, the current model represents the
foundation for building larger and more complex systems
and investigating complex physiological and pathophysiolog-
ical interactions.

Materials and Methods

The model was implemented, simulated, and analyzed using the
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MATLAB (The Mathworks, Natick, Massachusetts, United States)
computing environment. All calculations were performed on a
desktop PC. Computer codes are available from the author upon
request. In addition, the model is available in the CellML exchange
format at http://www.cellml.org.
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