Joining Forces of Bayesian and Frequentist Methodology: A Study for Inference in the Presence of Non-Identifiability

Jens Timmer

Center for Systems Biology Freiburg Institute for Advanced Studies Department of Mathematics and Physics University of Freiburg, Germany

The "Systems Biology" Approach

Identification of potential drug targets

Erythropoiesis - A Closed-Loop Control System

• Epo: key regulator of erythropoiesis

Erythropoiesis - A Closed-Loop Control System

- Epo: key regulator of erythropoiesis
- feedback via red blood cell mass: establishing a closed-loop control circuit
- normal conditions: low levels of plasma Epo

15 mU/ml

 hypoxic conditions: increased Epo levels

up to 10000 mU/ml

Epo and Epo receptor interaction and trafficking

Epo and Epo receptor interaction and trafficking

Raue et al. Chaos 2010

Initial Experimental Setup

Maximum Likelihood Estimation

$$L(y|\theta) = \prod_{k=1}^{m} \prod_{l=1}^{d_k} \frac{1}{\sqrt{2\pi\sigma_{kl}^2}} \exp\left(-\frac{1}{2}\left(\frac{y_{kl} - y_k(t_l,\theta)}{\sigma_{kl}}\right)^2\right)$$

Predicted Model Dynamics

Are the model parameters well identified? Are the predictions reliable?

Parameter Identifiability

Identifiability is a matter of flatness of the likelihood ...

ODE Observables

Likelihood

$$\begin{aligned} \dot{\vec{x}}(t) &= f(\vec{x}(t), \vec{u}(t), \vec{p}, t) \\ \vec{y}(t) &= g(\vec{x}(t), \vec{s}) + \vec{\epsilon}(t) \end{aligned}$$
$$L(y|\theta) = \prod_{k=1}^{m} \prod_{l=1}^{d_k} \frac{1}{\sqrt{2\pi\sigma_{kl}^2}} \exp\left(-\frac{1}{2}\left(\frac{y_{kl} - y_k(t_l, \theta)}{\sigma_{kl}}\right)^2\right) \end{aligned}$$

Parameter Identifiability

Identifiability is a matter of flatness of the likelihood ...

→ Profile Likelihood Approach

$$L(y|\theta) = \prod_{k=1}^{m} \prod_{l=1}^{d_k} \frac{1}{\sqrt{2\pi\sigma_{kl}^2}} \exp\left(-\frac{1}{2}\left(\frac{y_{kl} - y_k(t_l,\theta)}{\sigma_{kl}}\right)^2\right)$$

Profile Likelihood

Likelihood

$$PL(y|\theta_i) = \max_{\theta_{j\neq i}} [L(y|\theta)]$$

Parameter Identifiability

Identifiability is a matter of flatness of the likelihood ...

MCMC Sampling

Markov process with transitions $\theta \rightarrow \theta'$

Metropolis-Hastings algorithm

Proposal function $q(\theta'|\theta) \sim N(0, s \cdot \mathbb{I})$

Acceptance probability

 $\alpha(\theta'|\theta) = \min[1, (L(y|\theta')/L(y|\theta)) \cdot (q(\theta|\theta')/q(\theta'|\theta))]$

→ simplified MMALA algorithm Girolami et al. J. R. Statist. Soc. B 2011

MCMC Sampling

MCMC Sampling

Results for Initial Setup

-5 -4 -3

kex

-2

-5

0

kon

5

_5

0

kt

5

EpoR 6000 편 ¹⁰⁰⁰ <u> 전</u> 4000 conc. 500 2000 150 200 250 150 200 250 50 100 300 350 100 300 350 0 0 50 Epo_EpoR Epo_EpoR_i 2000 3000 [Wd] 1500 1000 500 <u>¥</u> 2000 9 8 1000 500 50 100 150 200 250 300 350 50 100 150 200 250 300 350 0 0 dEpo_i dEpo_e 1500 10000 8000 편 1000 [Md] 6000 500 conc. 4000 2000 100 150 200 250 300 350 50 150 200 250 300 350 0 100 0 50 time [min] Еро EpoR 1000 2000 90 된 ¹⁵⁰⁰ [M] 800 i 1000 700 conc. 600 500 50 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 Epo_EpoR Epo_EpoR_i 50 300 400 <u>전</u> 300 Md 200 200 100 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 dEpo_i dEpo_e 300 1500 <u>전</u> 200 M 1000 9 100

50

0

100 150 200 250 300 350

50 100

150 200

time [min]

250 300 350

0

Non-observability of model dynamics:

Non-observability of model dynamics:

0.04 📻 0.03 marginalised MCMC sc 0.02 💆 0.02 0.02 10 0.01 0.01 b 0.01 5 0 <u>-</u>2 0 0 -1.9 -1.8 -1.7 -1.6 -3 -4 -1.3 kdi kde ke practically non-identifiable practically 0.04 g 0.8 0.04 0.25 marginalised MCMC samples 0.2 0.03 0.03 0.0 0.15 0.02 0.1 .05 0.01 0.05 ال⊔₀ ٥٢ 0 ٥, -5 -4 -3 -2 -5 0 5 _5 0 5

kon

kt

kex

Extended Experimental Setup

Results for Extended Setup

Predicted Model Dynamics

Predicted Model Dynamics - Biological Interpretation

Becker et al. Science 2010

Predicted Model Dynamics - Biological Interpretation

Becker et al. Science 2010

Predicted Model Dynamics - Biological Interpretation

Summary

Cellular information processing through EpoR

- → linear relation of Epo levels and integral EpoR activation over a broad range of ligand concentrations
- → accurate translation of ligand input into erythrocyte production

Summary

Comparison of profile likelihood and MCMC sampling

Summary

Comparison of profile likelihood and MCMC sampling

Acknowledgements

Requirements for Profile Likelihood Approach

- Profile Likelihood Approach is not limited to ODE models
- Only requirement: a working Maximum Likelihood Estimation
- Freely available software implementation:

PottersWheel Toolbox (MATLAB)

Scaling of Profile Likelihood Approach

Runtime analysis for increasing number of parameters:

Calculation can also be parallelized perfectly!

Model of downstream signaling events:

25 ODEs 24 experimental conditions 541 data points 115 free parameters

~10 minutes per profile

Bachmann et al. Molecular Systems Biology 2011

Model-Based Experimentation

(a) scenario 1

model predictions affected by non-identifiability → model predictions not reliable

experimental design:

(b) scenario 2

model predictions not or only negliglibly affected by non-identifiability

model reduction:

Raue et al. IET Systems Biology 2011