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The „Systems Biology“ Approach
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Erythropoiesis - A Closed-Loop Control System
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Erythropoiesis - A Closed-Loop Control System 

•  Epo: key regulator of 
  erythropoiesis 

•  feedback via red blood   
  cell mass: 
  establishing a closed-loop 
  control circuit 

•  normal conditions: 
  low levels of plasma Epo 

 15 mU/ml 

•  hypoxic conditions: 
  increased Epo levels 

 up to 10000 mU/ml 



Epo and Epo receptor interaction and trafficking
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Goals:
• Estimation of model parameters
• Prediction of receptor abundance & dynamics
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2 A. Raue and others

that are utilised in cell biology, parameters such as reaction rate constants, amount
of molecular compounds, detection sensitivities or measurement backgrounds are
often unknown. Before a model can be used for prediction reliably, the unknown
parameters have to be estimated by comparing model output to experimental data.

For a realistic assessment of the accuracy of model predictions, it is important
that uncertainties in the experimental data and in prior assumptions are propa-
gated correctly via the parameters to the desired predictions. Bayesian Markov
chain Monte Carlo (MCMC) sampling facilitates this propagation of uncertainties
by sampling from the posterior probability distribution [5]. However, if experimen-
tal data is limited and the mathematical models are non-linear and contain many
unknown parameters the posterior probability distribution can be insu�ciently con-
strained. For such insu�ciently constrained posterior the probability mass can be
distributed widely in a high dimensional parameter space. Consequently, MCMC
sampling can quickly become infeasible.

Alternatively, one can resort to frequentist methods in this situation. Here,
insu�cient experimental data and prior assumptions can be interpreted as non-
identifiability of the model parameters [6]. We applied a generic approach that
uses the profile likelihood to detect both structural and practical non-identifiability
[7]. Furthermore, this approach allows one to design new experiments that resolve
non-identifiability. Therefore, it is beneficial to further constrain the posterior prob-
ability distribution until MCMC sampling can be applied reliably and e�ciently.

We compared the results of both MCMC sampling and profile likelihood meth-
ods. In the absence of non-identifiability the results of both methods are in good
agreement. However, in the presence of non-identifiability their results can be sub-
stantially di↵erent. Our results imply that MCMC sampling in the presence of
non-identifiability can be misleading. Therefore, we suggest a successive applica-
tion of both methods that ensures a realistic assessment of uncertainty in model
predictions.

(a) Frequentist methods

Maximum likelihood estimation of model parameters is a theoretically well de-
veloped area [8]. Based on an assumption on the distribution of the measurement
noise, the likelihood function L(y|✓) of the data y given the parameters ✓ describes
the agreement of model output and experimental data. In case of normally dis-
tributed measurement noise ✏ ⇠ N(0, �

2) the likelihood reads as
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where m model outputs y
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k

data instances for each model output such
as time points t

l

can be considered. The maximum of L(y|✓), i.e. the best fit of the
model to the data, provides a point estimate ✓̂ of the parameters. This maximum
likelihood estimate (MLE) can be calculated for non-linear models by numerical
optimisation methods, see e.g. the trust region algorithm in [9] and for a general
introduction in [10, 11]. The uncertainty of the estimate ✓̂ is buried in the shape
of the likelihood function. Figure 1 shows an illustration of the likelihood for three
typical cases.
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Predicted Model Dynamics
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Are the predictions reliable?
Are the model parameters well identified?



Identifiability is a matter of flatness of the likelihood ...

Parameter Identifiability

↵̇x(t) = f(↵x(t), ↵u(t), ↵p, t)
↵y(t) = g(↵x(t),↵s) + ↵�(t)
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Figure 1. Identifiability analysis using likelihood profiles: The upper panels show as illus-
tration the shape of the likelihood L(y|✓) in two dimensions for three typical cases. The
traces of the profiles in parameter space are indicated as red lines. The lower panels shows
the respective profile likelihood PL(y|✓1) for the dimension of parameter ✓1 as red lines.
In all panels the asterisks denote the MLE in cases where a unique solution exists and
the dashed lines denote the threshold �

↵

that yields a likelihood based confidence region
[10, 19]. Three typical cases can arise: (A) A flat profile indicates structural non-iden-
tifiability. In this case, no unique solution for MLE exist. (B) A profile that decreases but
tails out to a plateau to one or both sides indicates practical non-identifiability. (C) A
profile that tails out to zero on both sides quickly enough, i.e. at least exponentially fast,
indicates structural and practical identifiability. The confidence interval of ✓1, for (A) is
infinite, for (B) has only a lower bound, for (C) has a finite range.

(b) Bayesian methods

By applying Bayes’ theorem the likelihood function (1.1) is extended by the
prior probability density function (PDF) of the parameters P (✓) and normalised
by a factor c yielding the posterior PDF of the parameters

P (✓|y) = c · L(y|✓) · P (✓). (1.3)

In analogy to the MLE, the maximum a posteriori (MAP) estimate is defined by
maximising P (✓|y). The only decisive di↵erence to frequentist methodology is the
choice of the prior P (✓). The direct computation of the normalisation factor c is not
feasible for a high dimensional parameter space. However, extensive Markov chain
Monte Carlo (MCMC) sampling o↵ers a way to evaluate P (✓|y) despite unknown c.
This intriguing feature opens the prospect of considering the full high dimensional
posterior PDF for statistical inference. Most prominently, the Metropolis-Hastings
algorithm [23, 24] defines a Markov process where transitions ✓ ! ✓

0 are generated
using a proposal function q(✓|✓0) that eventually produces a series of samples of the
posterior PDF P (✓|y). The transitions are accepted with probability

↵(✓, ✓0) = min[1, (L(y|✓0)/L(y|✓)) · (q(✓|✓0)/q(✓0|✓))]. (1.4)

Article submitted to Royal Society
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If the amount of model quantities that can be accessed by experiments is limited,
a subset of parameters can be structurally non-identifiable. This indicates that the
parametrisation of the model is such that two or more parameters can compensate
their e↵ects and yield exactly the same model outputs y

k

(t
l

, ✓). This in turn re-
sults in a constant likelihood value on a sub-manifold, see figure 1A. Consequently,
the MLE for the parameters cannot be determined uniquely. The parameter rela-
tions that cause the structural non-identifiability are akin to gauge invariances in
physical theories. However, for complex models it can be di�cult to detect struc-
tural non-identifiability. For example, if models can only be evaluated by numerical
simulation, such as in the case of detector models used in particle physics [12] or
dynamical models that are used in cell biology [4], structural non-identifiability
cannot be detected directly. In the latter case, methods for a priori structural non-
identifiability analysis exist that analyse the structure of the ordinary di↵erential
equations (ODE) without having an analytical solution. A comparison of these
methods can be found in [13]. However, a priori methods are often limited to lin-
ear ODE systems or are impractical for models containing many parameters [14].
Arguably one of the the most practical a priori methods that has also been proved
to work for larger models applies a probabilistic algorithm [15, 16].

In addition to structural non-identifiability, model parameter can be practically
non-identifiable [7]. This type of non-identifiability arises if the amount and quality
of experimental data is limited. It cannot be detected by a priori methods. However,
practical non-identifiability is of equal importance. A generic approach that allows
one to detect both structural and practical non-identifiability at the same time
uses the concept of the profile likelihood [7, 17]. The profile likelihood PL can be
calculated for each parameter ✓

i

individually by

PL(y|✓
i

) = max
✓j 6=i

[L(y|✓)]. (1.2)

The equation indicates that for each value of ✓

i

all of the remaining parameters
✓

j

are re-optimised, see figure 1 for illustration. The profiles PL(y|✓
i

) break down
the uncertainty contained in the high-dimensional likelihood L(y|✓) to a footprint
in one dimension. It allows for reliable conclusions, about whether a parameter
can be inferred from the experimental data. Three typical cases arise and can be
detected from the profiles. A flat profile with a constant value indicates structural
non-identifiability (c.f. figure 1A). A profile that decreases but tails out to a plateau
to one or both sides indicates practical non-identifiability (c.f. figure 1B). A profile
that tails out to zero on both sides quickly enough, i.e. at least exponentially fast,
indicates structural and practical identifiability (c.f. figure 1C). Experimental design
and model reduction strategies based on the profile likelihood allows one to resolve
parameter non-identifiabilities iteratively, for an application see in [18].

Furthermore, the profile likelihood allows one to assess likelihood based confi-
dence intervals [20–22]. A confidence interval [��
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+
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] to a confidence level ↵ = 0.95
signifies that the true value of the parameter ✓

⇤
i

is expected to be inside the interval
with 95% probability. Using a threshold �
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, ↵) which is the ↵ quantile

of the �

2–distribution with df degrees of freedom [10], confidence intervals can be
determined from the profiles by {✓
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| � 2 · log(PL(y|✓
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Figure 1. Identifiability analysis using likelihood profiles: The upper panels show as illus-
tration the shape of the likelihood L(y|✓) in two dimensions for three typical cases. The
traces of the profiles in parameter space are indicated as red lines. The lower panels shows
the respective profile likelihood PL(y|✓1) for the dimension of parameter ✓1 as red lines.
In all panels the asterisks denote the MLE in cases where a unique solution exists and
the dashed lines denote the threshold �

↵

that yields a likelihood based confidence region
[10, 19]. Three typical cases can arise: (A) A flat profile indicates structural non-iden-
tifiability. In this case, no unique solution for MLE exist. (B) A profile that decreases but
tails out to a plateau to one or both sides indicates practical non-identifiability. (C) A
profile that tails out to zero on both sides quickly enough, i.e. at least exponentially fast,
indicates structural and practical identifiability. The confidence interval of ✓1, for (A) is
infinite, for (B) has only a lower bound, for (C) has a finite range.

(b) Bayesian methods

By applying Bayes’ theorem the likelihood function (1.1) is extended by the
prior probability density function (PDF) of the parameters P (✓) and normalised
by a factor c yielding the posterior PDF of the parameters

P (✓|y) = c · L(y|✓) · P (✓). (1.3)

In analogy to the MLE, the maximum a posteriori (MAP) estimate is defined by
maximising P (✓|y). The only decisive di↵erence to frequentist methodology is the
choice of the prior P (✓). The direct computation of the normalisation factor c is not
feasible for a high dimensional parameter space. However, extensive Markov chain
Monte Carlo (MCMC) sampling o↵ers a way to evaluate P (✓|y) despite unknown c.
This intriguing feature opens the prospect of considering the full high dimensional
posterior PDF for statistical inference. Most prominently, the Metropolis-Hastings
algorithm [23, 24] defines a Markov process where transitions ✓ ! ✓

0 are generated
using a proposal function q(✓|✓0) that eventually produces a series of samples of the
posterior PDF P (✓|y). The transitions are accepted with probability

↵(✓, ✓0) = min[1, (L(y|✓0)/L(y|✓)) · (q(✓|✓0)/q(✓0|✓))]. (1.4)
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choice of the prior P (✓). The direct computation of the normalisation factor c is not
feasible for a high dimensional parameter space. However, extensive Markov chain
Monte Carlo (MCMC) sampling o↵ers a way to evaluate P (✓|y) despite unknown c.
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In all panels the asterisks denote the MLE in cases where a unique solution exists and
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that yields a likelihood based confidence region
[10, 19]. Three typical cases can arise: (A) A flat profile indicates structural non-iden-
tifiability. In this case, no unique solution for MLE exist. (B) A profile that decreases but
tails out to a plateau to one or both sides indicates practical non-identifiability. (C) A
profile that tails out to zero on both sides quickly enough, i.e. at least exponentially fast,
indicates structural and practical identifiability. The confidence interval of ✓1, for (A) is
infinite, for (B) has only a lower bound, for (C) has a finite range.

(b) Bayesian methods

By applying Bayes’ theorem the likelihood function (1.1) is extended by the
prior probability density function (PDF) of the parameters P (✓) and normalised
by a factor c yielding the posterior PDF of the parameters

P (✓|y) = c · L(y|✓) · P (✓). (1.3)

In analogy to the MLE, the maximum a posteriori (MAP) estimate is defined by
maximising P (✓|y). The only decisive di↵erence to frequentist methodology is the
choice of the prior P (✓). The direct computation of the normalisation factor c is not
feasible for a high dimensional parameter space. However, extensive Markov chain
Monte Carlo (MCMC) sampling o↵ers a way to evaluate P (✓|y) despite unknown c.
This intriguing feature opens the prospect of considering the full high dimensional
posterior PDF for statistical inference. Most prominently, the Metropolis-Hastings
algorithm [23, 24] defines a Markov process where transitions ✓ ! ✓

0 are generated
using a proposal function q(✓|✓0) that eventually produces a series of samples of the
posterior PDF P (✓|y). The transitions are accepted with probability

↵(✓, ✓0) = min[1, (L(y|✓0)/L(y|✓)) · (q(✓|✓0)/q(✓0|✓))]. (1.4)
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[10, 19]. Three typical cases can arise: (A) A flat profile indicates structural non-iden-
tifiability. In this case, no unique solution for MLE exist. (B) A profile that decreases but
tails out to a plateau to one or both sides indicates practical non-identifiability. (C) A
profile that tails out to zero on both sides quickly enough, i.e. at least exponentially fast,
indicates structural and practical identifiability. The confidence interval of ✓1, for (A) is
infinite, for (B) has only a lower bound, for (C) has a finite range.

(b) Bayesian methods

By applying Bayes’ theorem the likelihood function (1.1) is extended by the
prior probability density function (PDF) of the parameters P (✓) and normalised
by a factor c yielding the posterior PDF of the parameters

P (✓|y) = c · L(y|✓) · P (✓). (1.3)

In analogy to the MLE, the maximum a posteriori (MAP) estimate is defined by
maximising P (✓|y). The only decisive di↵erence to frequentist methodology is the
choice of the prior P (✓). The direct computation of the normalisation factor c is not
feasible for a high dimensional parameter space. However, extensive Markov chain
Monte Carlo (MCMC) sampling o↵ers a way to evaluate P (✓|y) despite unknown c.
This intriguing feature opens the prospect of considering the full high dimensional
posterior PDF for statistical inference. Most prominently, the Metropolis-Hastings
algorithm [23, 24] defines a Markov process where transitions ✓ ! ✓

0 are generated
using a proposal function q(✓|✓0) that eventually produces a series of samples of the
posterior PDF P (✓|y). The transitions are accepted with probability

↵(✓, ✓0) = min[1, (L(y|✓0)/L(y|✓)) · (q(✓|✓0)/q(✓0|✓))]. (1.4)
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[10, 19]. Three typical cases can arise: (A) A flat profile indicates structural non-iden-
tifiability. In this case, no unique solution for MLE exist. (B) A profile that decreases but
tails out to a plateau to one or both sides indicates practical non-identifiability. (C) A
profile that tails out to zero on both sides quickly enough, i.e. at least exponentially fast,
indicates structural and practical identifiability. The confidence interval of ✓1, for (A) is
infinite, for (B) has only a lower bound, for (C) has a finite range.

(b) Bayesian methods

By applying Bayes’ theorem the likelihood function (1.1) is extended by the
prior probability density function (PDF) of the parameters P (✓) and normalised
by a factor c yielding the posterior PDF of the parameters

P (✓|y) = c · L(y|✓) · P (✓). (1.3)

In analogy to the MLE, the maximum a posteriori (MAP) estimate is defined by
maximising P (✓|y). The only decisive di↵erence to frequentist methodology is the
choice of the prior P (✓). The direct computation of the normalisation factor c is not
feasible for a high dimensional parameter space. However, extensive Markov chain
Monte Carlo (MCMC) sampling o↵ers a way to evaluate P (✓|y) despite unknown c.
This intriguing feature opens the prospect of considering the full high dimensional
posterior PDF for statistical inference. Most prominently, the Metropolis-Hastings
algorithm [23, 24] defines a Markov process where transitions ✓ ! ✓

0 are generated
using a proposal function q(✓|✓0) that eventually produces a series of samples of the
posterior PDF P (✓|y). The transitions are accepted with probability

↵(✓, ✓0) = min[1, (L(y|✓0)/L(y|✓)) · (q(✓|✓0)/q(✓0|✓))]. (1.4)
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For e�ciency of the sampling the choice of the proposal function q(✓0|✓) is impor-
tant. Often, proposals drawn from a multivariate normal distribution are conve-
nient. One of the most simple implementations uses q(✓0|✓) ⇠ N(0, s · I) where s · I
is a scaled identity matrix (SIM). Too small a choice of s in relation to the actual
shape of the posterior PDF will cause the process to converge slowly and to pro-
duce correlated samples. Too large a choice of s will lead to rejection of too many
proposals ✓

0 yielding a slow sampling. Assuming that the posterior PDF is a multi-
variate normal distribution the optimal acceptance rate of proposals is ⇡ 0.23 [25].
Nevertheless, in the light of complex and non-linear models with possibly limited
amount and accuracy of experimental data, this assumption is problematic because
the shape of the posterior PDF can be far from the PDF of a normal distribution.
For a high dimensional parameter space computational e�ciency also becomes an
important issue. In these cases, the Markov chain may have to move along complex
structures [19, figure 8.2.2]. To increase e�ciency more sophisticated methods take
into account the natural geometry of the posterior PDF, e.g. the manifold Metropo-
lis adjusted Langevin algorithm (MMALA) takes into account the local gradient
and curvature information [26].

Before applying an MCMC sampling method, the prior PDF of the parameters
needs to be specified. Given that empirical evidence exists about the distribution
of a parameter, such as a previous measurements or estimation, P (✓) should in-
corporate this prior knowledge accordingly [27]. If no empirical evidence about the
parameter value is available, the prior should be chosen as uninformative [19]. This
requires a flat metric in parameter space, i.e. that does not artificially favour certain
parameter values. Depending on the parametrisation of the model it can in practice
be di�cult to obtain a flat metric and hence to specify an uninformative prior [27].

The most crucial problem that MCMC sampling faces is to ensure that the
samples obtained realistically represent the actual posterior PDF. One instance
where the convergence of the Markov chain fails is if the posterior PDF is not proper
[28]. Posterior PDF’s are called proper if they are integrable [19]. This means that it
has to tail out to zero su�ciently fast over the appreciable range of the parameters
such that its integral can be normalised to one. Non-identifiable parameters cause
the posterior PDF to be non-proper [28]. This indicates that neither the prior
assumptions nor the likelihood that represents the experimental data constrain the
posterior PDF su�ciently. A practical consequence is that the Markov chain cannot
converge and hence gives inaccurate results [29]. For convergence it is required
that the Markov chain is positive recurrent which is not given in the case of non-
identifiability [30]. The user must ensure parameter identifiability before an MCMC
technique can be used securely. If models contain many unknown parameters and
the posterior PDF is not su�ciently constrained the convergence of the Markov
chain can be impractically slow even for a proper posterior PDF.

2. Results

For reliable inference in the presence of non-identifiability, we propose a joint ap-
proach that takes advantage of both profiling and MCMC sampling methods. The
profile likelihood is suitable to detect parameter non-identifiability [7]. Furthermore,
it allows for experimental design that helps to resolve parameter non-identifiability
[18]. This ensures that the posterior PDF is proper and well constrained. Subse-
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that yields a likelihood based confidence region
[10, 19]. Three typical cases can arise: (A) A flat profile indicates structural non-iden-
tifiability. In this case, no unique solution for MLE exist. (B) A profile that decreases but
tails out to a plateau to one or both sides indicates practical non-identifiability. (C) A
profile that tails out to zero on both sides quickly enough, i.e. at least exponentially fast,
indicates structural and practical identifiability. The confidence interval of ✓1, for (A) is
infinite, for (B) has only a lower bound, for (C) has a finite range.

(b) Bayesian methods

By applying Bayes’ theorem the likelihood function (1.1) is extended by the
prior probability density function (PDF) of the parameters P (✓) and normalised
by a factor c yielding the posterior PDF of the parameters

P (✓|y) = c · L(y|✓) · P (✓). (1.3)

In analogy to the MLE, the maximum a posteriori (MAP) estimate is defined by
maximising P (✓|y). The only decisive di↵erence to frequentist methodology is the
choice of the prior P (✓). The direct computation of the normalisation factor c is not
feasible for a high dimensional parameter space. However, extensive Markov chain
Monte Carlo (MCMC) sampling o↵ers a way to evaluate P (✓|y) despite unknown c.
This intriguing feature opens the prospect of considering the full high dimensional
posterior PDF for statistical inference. Most prominently, the Metropolis-Hastings
algorithm [23, 24] defines a Markov process where transitions ✓ ! ✓

0 are generated
using a proposal function q(✓0|✓) that eventually produces a series of samples of the
posterior PDF P (✓|y). The transitions are accepted with probability

↵(✓0|✓) = min[1, (L(y|✓0)/L(y|✓)) · (q(✓|✓0)/q(✓0|✓))]. (1.4)
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[10, 19]. Three typical cases can arise: (A) A flat profile indicates structural non-iden-
tifiability. In this case, no unique solution for MLE exist. (B) A profile that decreases but
tails out to a plateau to one or both sides indicates practical non-identifiability. (C) A
profile that tails out to zero on both sides quickly enough, i.e. at least exponentially fast,
indicates structural and practical identifiability. The confidence interval of ✓1, for (A) is
infinite, for (B) has only a lower bound, for (C) has a finite range.

(b) Bayesian methods

By applying Bayes’ theorem the likelihood function (1.1) is extended by the
prior probability density function (PDF) of the parameters P (✓) and normalised
by a factor c yielding the posterior PDF of the parameters

P (✓|y) = c · L(y|✓) · P (✓). (1.3)

In analogy to the MLE, the maximum a posteriori (MAP) estimate is defined by
maximising P (✓|y). The only decisive di↵erence to frequentist methodology is the
choice of the prior P (✓). The direct computation of the normalisation factor c is not
feasible for a high dimensional parameter space. However, extensive Markov chain
Monte Carlo (MCMC) sampling o↵ers a way to evaluate P (✓|y) despite unknown c.
This intriguing feature opens the prospect of considering the full high dimensional
posterior PDF for statistical inference. Most prominently, the Metropolis-Hastings
algorithm [23, 24] defines a Markov process where transitions ✓ ! ✓

0 are generated
using a proposal function q(✓|✓0) that eventually produces a series of samples of the
posterior PDF P (✓|y). The transitions are accepted with probability

↵(✓, ✓0) = min[1, (L(y|✓0)/L(y|✓)) · (q(✓|✓0)/q(✓0|✓))]. (1.4)
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that yields a likelihood based confidence region
[10, 19]. Three typical cases can arise: (A) A flat profile indicates structural non-iden-
tifiability. In this case, no unique solution for MLE exist. (B) A profile that decreases but
tails out to a plateau to one or both sides indicates practical non-identifiability. (C) A
profile that tails out to zero on both sides quickly enough, i.e. at least exponentially fast,
indicates structural and practical identifiability. The confidence interval of ✓1, for (A) is
infinite, for (B) has only a lower bound, for (C) has a finite range.

(b) Bayesian methods

By applying Bayes’ theorem the likelihood function (1.1) is extended by the
prior probability density function (PDF) of the parameters P (✓) and normalised
by a factor c yielding the posterior PDF of the parameters

P (✓|y) = c · L(y|✓) · P (✓). (1.3)

In analogy to the MLE, the maximum a posteriori (MAP) estimate is defined by
maximising P (✓|y). The only decisive di↵erence to frequentist methodology is the
choice of the prior P (✓). The direct computation of the normalisation factor c is not
feasible for a high dimensional parameter space. However, extensive Markov chain
Monte Carlo (MCMC) sampling o↵ers a way to evaluate P (✓|y) despite unknown c.
This intriguing feature opens the prospect of considering the full high dimensional
posterior PDF for statistical inference. Most prominently, the Metropolis-Hastings
algorithm [23, 24] defines a Markov process where transitions ✓ ! ✓

0 are generated
using a proposal function q(✓|✓0) that eventually produces a series of samples of the
posterior PDF P (✓|y). The transitions are accepted with probability

↵(✓, ✓0) = min[1, (L(y|✓0)/L(y|✓)) · (q(✓|✓0)/q(✓0|✓))]. (1.4)
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the respective profile likelihood PL(y|✓1) for the dimension of parameter ✓1 as red lines.
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that yields a likelihood based confidence region
[10, 19]. Three typical cases can arise: (A) A flat profile indicates structural non-iden-
tifiability. In this case, no unique solution for MLE exist. (B) A profile that decreases but
tails out to a plateau to one or both sides indicates practical non-identifiability. (C) A
profile that tails out to zero on both sides quickly enough, i.e. at least exponentially fast,
indicates structural and practical identifiability. The confidence interval of ✓1, for (A) is
infinite, for (B) has only a lower bound, for (C) has a finite range.

(b) Bayesian methods

By applying Bayes’ theorem the likelihood function (1.1) is extended by the
prior probability density function (PDF) of the parameters P (✓) and normalised
by a factor c yielding the posterior PDF of the parameters

P (✓|y) = c · L(y|✓) · P (✓). (1.3)

In analogy to the MLE, the maximum a posteriori (MAP) estimate is defined by
maximising P (✓|y). The only decisive di↵erence to frequentist methodology is the
choice of the prior P (✓). The direct computation of the normalisation factor c is not
feasible for a high dimensional parameter space. However, extensive Markov chain
Monte Carlo (MCMC) sampling o↵ers a way to evaluate P (✓|y) despite unknown c.
This intriguing feature opens the prospect of considering the full high dimensional
posterior PDF for statistical inference. Most prominently, the Metropolis-Hastings
algorithm [23, 24] defines a Markov process where transitions ✓ ! ✓

0 are generated
using a proposal function q(✓|✓0) that eventually produces a series of samples of the
posterior PDF P (✓|y). The transitions are accepted with probability

↵(✓, ✓0) = min[1, (L(y|✓0)/L(y|✓)) · (q(✓|✓0)/q(✓0|✓))]. (1.4)
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[10, 19]. Three typical cases can arise: (A) A flat profile indicates structural non-iden-
tifiability. In this case, no unique solution for MLE exist. (B) A profile that decreases but
tails out to a plateau to one or both sides indicates practical non-identifiability. (C) A
profile that tails out to zero on both sides quickly enough, i.e. at least exponentially fast,
indicates structural and practical identifiability. The confidence interval of ✓1, for (A) is
infinite, for (B) has only a lower bound, for (C) has a finite range.

(b) Bayesian methods

By applying Bayes’ theorem the likelihood function (1.1) is extended by the
prior probability density function (PDF) of the parameters P (✓) and normalised
by a factor c yielding the posterior PDF of the parameters

P (✓|y) = c · L(y|✓) · P (✓). (1.3)

In analogy to the MLE, the maximum a posteriori (MAP) estimate is defined by
maximising P (✓|y). The only decisive di↵erence to frequentist methodology is the
choice of the prior P (✓). The direct computation of the normalisation factor c is not
feasible for a high dimensional parameter space. However, extensive Markov chain
Monte Carlo (MCMC) sampling o↵ers a way to evaluate P (✓|y) despite unknown c.
This intriguing feature opens the prospect of considering the full high dimensional
posterior PDF for statistical inference. Most prominently, the Metropolis-Hastings
algorithm [23, 24] defines a Markov process where transitions ✓ ! ✓

0 are generated
using a proposal function q(✓|✓0) that eventually produces a series of samples of the
posterior PDF P (✓|y). The transitions are accepted with probability

↵(✓, ✓0) = min[1, (L(y|✓0)/L(y|✓)) · (q(✓|✓0)/q(✓0|✓))]. (1.4)
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that yields a likelihood based confidence region
[10, 19]. Three typical cases can arise: (A) A flat profile indicates structural non-iden-
tifiability. In this case, no unique solution for MLE exist. (B) A profile that decreases but
tails out to a plateau to one or both sides indicates practical non-identifiability. (C) A
profile that tails out to zero on both sides quickly enough, i.e. at least exponentially fast,
indicates structural and practical identifiability. The confidence interval of ✓1, for (A) is
infinite, for (B) has only a lower bound, for (C) has a finite range.

(b) Bayesian methods

By applying Bayes’ theorem the likelihood function (1.1) is extended by the
prior probability density function (PDF) of the parameters P (✓) and normalised
by a factor c yielding the posterior PDF of the parameters

P (✓|y) = c · L(y|✓) · P (✓). (1.3)

In analogy to the MLE, the maximum a posteriori (MAP) estimate is defined by
maximising P (✓|y). The only decisive di↵erence to frequentist methodology is the
choice of the prior P (✓). The direct computation of the normalisation factor c is not
feasible for a high dimensional parameter space. However, extensive Markov chain
Monte Carlo (MCMC) sampling o↵ers a way to evaluate P (✓|y) despite unknown c.
This intriguing feature opens the prospect of considering the full high dimensional
posterior PDF for statistical inference. Most prominently, the Metropolis-Hastings
algorithm [23, 24] defines a Markov process where transitions ✓ ! ✓

0 are generated
using a proposal function q(✓|✓0) that eventually produces a series of samples of the
posterior PDF P (✓|y). The transitions are accepted with probability

↵(✓, ✓0) = min[1, (L(y|✓0)/L(y|✓)) · (q(✓|✓0)/q(✓0|✓))]. (1.4)
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Results for Extended Setup
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Predicted Model Dynamics
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Predicted Model Dynamics - Biological Interpretation
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Predicted Model Dynamics - Biological Interpretation
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Predicted Model Dynamics - Biological Interpretation
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Summary

Summary 

Information processing through EpoR: 

➜ rapid Epo depletion 

➜ fast recovery of cell surface EpoR 

➜ linear relation of Epo levels 
    and integral EpoR activation over a 
    broad range of ligand concentrations 

➜  accurate translation of ligand input  
    into erythrocyte production!

V. Becker, M. Schilling, J. Bachmann, U. Baumann, A. Raue, T. Maiwald, J. Timmer, and 

U. Klingmüller (2010). Science 328(5984):1404-1408. 

Page 5 

Erythropoiesis - Coping with Different Ligand Concentrations 

� How is ligand-encoded information 
    processed by the EpoR? 

➜ Which dynamic properties of the EpoR 
    facilitate information processing over a  
    broad ligand range?!

15 mU/ml 

normal 

10000 mU/ml 

hypoxic 

Cellular information processing through EpoR
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• Profile Likelihood Approach is not limited to ODE models
• Only requirement: a working Maximum Likelihood Estimation
• Freely available software implementation:

PottersWheel Toolbox (MATLAB)

Requirements for Profile Likelihood Approach

Raue et al. Bioinformatics 2009



Scaling of Profile Likelihood Approach
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Model of downstream signaling events:

Bachmann et al. Molecular Systems Biology 2011

25 ODEs
24 experimental conditions
541 data points
115 free parameters

~10 minutes per profile

Calculation can also be parallelized perfectly!



Model-Based Experimentation

dynamic modeldynamic model

non-identifiability

non-identifiability

model predictions

scenario 1 scenario 2

model predictions affected by non-identifiability 
➞ model predictions not reliable

model predictions not or only negliglibly affected 
by non-identifiability 

supply additional data simplify ODE system with 
respect to non-identifiability

measure additional 
species

structural

improve data quality

experimental design: model reduction:

(a) (b)

practical

model predictions

Raue et al. IET Systems Biology 2011


