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The lecture aims

• Bayesian inference has profound impact in the principled 
handling of uncertainty in practical computation

• What this lecture aims to do:
– Give a conceptual overview of Bayesian inference applied to 

real-world problems in time-series modelling
– Introduce Gaussian Processes

• What it does not aim to do:
– Give endless equations – these are important and elegant, but 

are in publications and texts. 
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PART I : Bayesian basics, a gentle 
conceptual overview
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A dot-to-dot is an inference problem.
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A dot-to-dot is a problem with many possible 
solutions.
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Our prior information allows us to discriminate 
between solutions.
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Occam's Razor

 Numquam ponenda est pluralitas sine necessitate - 
“Plurality must never be posited without necessity”

"Everything should be kept as simple as possible, but no 
simpler."
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Core methodology

• Bayesian modelling allows for explicit incorporation of all desiderata
• Effort focused not only on theory development, but algorithmic implementations 

that are timely & practical for real-world, real-time scenarios

• Single, under- and over-arching philosophy…

“one method to rule them all… and in the darkness bind them”
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What does this buy us?

• Uncertainty at all levels of inference is naturally taken into account

• Optimal fusion of information: subjective, objective

• Handling missing values

• Handling of noise

• Principled inference of confidence and risk

• Optimal decision making
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PART II: more details
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The right model?

All these models explain the data equally well...
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Maximum-likelihood solution
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Draws from posterior
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Bayesian marginal integral
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Bayesian solution
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Complexity...

• Even when the models explain the data equally well, we 
somehow are urged to favour those that are “simpler”

• What we really want is somehow to work with 
probabilities over functions...

• Amazingly, Bayesian non-parametrics allows us to do 
just this!

• We now delve into the world of Gaussian Processes
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Part III : Gaussian Processes
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The humble (but useful) Gaussian
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Observe 
x_1
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Extend to continuous variable
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Probabilities over functions not samples

 x = 0.5

f(x) = 

A “X” process is a distribution over a function space such that the pdf at any 
evaluation of the function are conditionally “X” distributed.

-Dirichlet Process [infinite state HMM]

-Indian Buffet Process [infinite binary strings]  etc etc.

Shake
me



 
 

Royal Society 2012

Simple regression modelling
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Less simple regression
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• See the GP via the distribution

• If we observe a set (x,y) and want to infer y* at x*

The Gaussian process model
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The beating heart...

What about these covariances though?

Achieved using a kernel function, which describes the relationship between two 
points

What form should this take though?
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An example

What is this based upon?
- Intrinsic smoothness (infinitely differentiable)

- amplitude of expected functions is controlled by h

- typical scale of variations in time (correlation “length”) controlled 
by  
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Covariance functions

We commonly possess prior expectations that the function 
should be smooth. If we know something of the dynamics then 
this can inform our covariance functions accordingly



Royal Society 2012

Covariances
There are a huge number of covariance functions (in spite 

of the requirement that they be positive semi-definite) 
appropriate for modelling functions of different types

Elegantly, all continuous Markov time series models (AR, 
ARMA, ARIMA, GARCH, KF....) can be recast as special 
cases of Gaussian Processes

S. Reece and S. Roberts (2010). The Near Constant Acceleration Gaussian Process Kernel for Tracking. 
IEEE Signal Processing Letters. 

S. Reece and S. J. Roberts (2010). An Introduction to Gaussian Processes for the Kalman Filter Expert. 
Proceedings of Fusion 2010.
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The squared exponential and Matérn covariances 
allow us to model functions of various degrees of 
smoothness..
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We often want distances that are stationary (a 
function of x1-x2), implying that the function looks 
similar throughout its domain.

stationary functions non-stationary function
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We can create new covariance functions by adding or 
multiplying other covariance functions.

× (× + )

e.g.
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When a function is the sum of two independent 
functions, use a covariance that is the sum of the 
covariances for those two functions.
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When a function is the product of two independent 
functions, use a covariance that is (almost) the 
product of the covariances for those two functions.
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We can modify covariance functions to accommodate 
multiple input dimensions, using
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If there are multiple outputs, reframe the problem as 
having a single output, and an additional label input 
specifying the output.

x

Hence we do not need simultaneous observations of 
all outputs.
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Periodic & quasi-periodic
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Many other modifications are possible, to build 
covariances allowing for e.g. changepoints, faults and 
sets.

R. Garnett, M. A. Osborne, S. Reece, A. Rogers and S. J. Roberts (2010). Sequential Bayesian Prediction 
in the Presence of Changepoints and Faults. The Computer Journal, March 2010.
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Part IV : some examples
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In a sequential setting
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Active data selection

The Gaussian process can decide for itself which sensor to observe, and 
when, by determining which observation will be most informative.

M.A. Osborne, S.J. Roberts, A. Rogers, and N.R. Jennings (2011). Real-Time Information 
Processing of Environmental Sensor Network Data using Bayesian Gaussian Processes 
Transactions on Sensor Networks
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Demonstration

http://www.aladdinproject.org/situation/
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Changepoints

R. Garnett, M. A. Osborne, S. Reece, A. Rogers and S. J. Roberts (2010). Sequential Bayesian 
Prediction in the Presence of Changepoints and Faults, The Computer Journal. 
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Dow-Jones data

Watergate 
scandal

OPEC 
embargo

Nixon 
resigns
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Faults & fault recovery
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Potential fault types
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Posterior distribution over the fault type

Spike

Echo Stuck

Drift Bias
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Can track and fault recover sequentially

Posterior Fault
Probabilities

Observations

Posterior 
over track

+/- 1 sd
True track 
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Faults - demonstration
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Recent work – applications to time-domain 
Astronomy

W. Armour, A. Karastergiou, M. Giles, C. Williams, A. Magro, K. Zagkouris, S. Roberts, S. 
Salvini, F. Dulwich and B. Mort (2011). A GPU-based survey for millisecond radio transients 
using ARTEMIS. Proceedings of ADASS XXI.

A. McQuillan, S. Aigrain, S. Roberts (2011). Statistics of Stellar Variability from Kepler - I: 
Revisiting Quarter 1 with an Astrophysically Robust Systematics Correction. Astronomy and 
Astrophysics.

N. P. Gibson, S. Aigrain, S. Roberts, T. M. Evans, M. Osborne and F. Pont (2011). A 
Gaussian process framework for modelling instrumental systematics: application to 
transmission spectroscopy.  Monthly Notices of the Royal Astronomical Society.
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Light curves
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Quasi-periodic model for stellar flux

Problem is that stellar flux is 
highly variant... star-spots and 
stellar rotations... so first we need 
to model the quasi-periodic flux 
measurements... but there aren't 
many of them!
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Quasi-periodic Gaussian Process regression to photometric observations
of the well-known planet-host star HD 189733
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Exoplanet transit light curve. The data is fitted with a GP with an 
exoplanet transit mean function and a squared exponential covariance 
kernel to model the correlated noise process and the effects of external 
state variables
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Transient phenomena: Radio Surveys

 Transient objects
 Pulsars

 Supernovae

 ?

 ”Needle in haystack” problems
 Computationally demanding – 100s of TBs of data each night

One of our major challenges is scalability in Bayesian 
modelling...

W. Armour, A. Karastergiou, M. Giles, C. Williams, A. Magro, K. Zagkouris, S. 
Roberts, S. Salvini, F. Dulwich and B. Mort (2011). A GPU-based survey for 
millisecond radio transients using ARTEMIS. Proceedings of ADASS XXI.
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> exoByte / day
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Questions?
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The prior mean function is the function our inference 
will default to far from observations. 
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