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Motivation

e Continuous stochastic process on a discrete state space.
¢ Transitions happening at random times.
¢ Transition rates depend on current state and unknown rate parameters.

e Markov property, p(X:|X:—1, ..., Xo) = p(X¢|Xt—1)
e Xt = (x1t,...,Xn,) System state at time t for N random variables.
e State change vectors s; = (S1,...,5n)), j € {1,..., M}

« Transition rates, fi(x, 0)dt for state change j in the interval [t, t + dft).
e Master Equation

M Z[fx s,,0, (X — 5, t1X0, 1) — £(X, 6, )p(X, t}Xo, 1) .

¢ Intractible, simulate trajectories by a Stochastic Simulation Algorithm.
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Diffusion Approximation

¢ Informal derivation, 7-leaping:
e Choose 7 > 0 such that:

);(Xl"79) ~ f/(xf70)a Vt/ S [t7t+7_]7 Vj € [17M] (1)
fi(xt, 0)T > 1, vj €1, M] 2)

e Conditions (1) and (2) can be satisfied if x; > 1.

¢ (1) implies that the number of transitions to states j are independently
Poisson distributed with mean f;(x;, 6)7.

¢ (2) implies that the number of transitions can be reasonably
approximated by a Normal distribution.

e Langevin Equation

dx, = Sf(x., 0)dt + %S\/diag(f(xt, 8))dB: 3)
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Linear Noise Approximation

e Assume that x = ¢ + %{
¢ are deterministic and £ stochastic variables.
Rewrite the transition functions and Taylor expand around ¢

fi
1(x.0) =1 (6+ —=€.0) = 1(0.0) + - Zagj;, 6+ 0@ )

Replace in the diffusion retain O(1) terms for d¢.

deb, = Sf(¢,, 0)dt

Neglect any terms higher than O(%) for d¢

de, = SJy($,0)¢dt + S\/diag(7(. 6))dB;

which is a linear SDE with analytic solution
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Likelihood for the Linear Noise Approximation

p(x7%)10) oc N'(11(6), (6))

1(0) = (¢4, .., dy,)" @ nN vector with solutions of the MRE.
e X(8) a nN x nN block matrix with blocks £(8)"” N x N

v, ifi=j
o v y
=(6) 7{ cov(xy, xy) = £(0)" " ®(t1,4)"

Fisher Information

FI(8)mn = om®)" £7'(0) 8(0) L (2_1(0)82(0)2_1(0)32(9)>

00m 0 2 a9 00n

Augment the MRE for ¢ with the lower triangular elements of V and
solve the augmented system with forward sensitivity analysis.



Mechanistic Models

Mechanistic modelling

>G>

=== p(,!;;:(,, S —>. —}\ Protein ‘_}‘\":::3:")‘ ———




Mechanistic Models

Mechanistic modelling

ooy ek
_ Protein

|
|
\

@ D
... —| Poten | ——F
@ 4

"lnmnman\‘ -
| Protein )

-->




Mechanistic Models

Mechanistic modelling

>G>

Clock @ Y
P e R

>

Inhibition
() - -- >

Protein
~AY aT
Y = A
/‘ O]
O
Phosphor




Mechanistic Models

Mechanistic modelling

Inhibition
Protein

-->




Mechanistic Models

Mechanistic modelling

I

STy Gk

mANA )

= | = o = () —> () - -- >
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Necessary condition for stable oscillations
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Posterior landscape P(6|M, D)
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MCMC trajectories
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Geometric Concepts in MCMC

e Tangent space - local metric defined by 50TG(0)60 9ki00k 0,
e Christoffel symbols - characterise Levi-Civita connection on manifold
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J. R. Statist. Soc. B (2011)
73, Part2, pp. 123-214

Riemann manifold Langevin and Hamiltonian Monte
Carlo methods

Mark Girolami and Ben Calderhead
University College London, UK

[Read before The Royal Statistical Society at a meeting organized by the Research Section on
Wednesday, October 13th, 2010, Professor D. M. Titterington in the Chair]

Summary. The paper proposes Metropolis adjusted Langevin and Hamiltonian Monte Carlo
sampling methods defined on the Riemann manifold to resolve the shortcomings of existing
Monte Carlo algorithms when sampling from target densities that may be high dimensional
and exhibit strong correlations. The methods provide fully automated adaptation mechanisms
that circumvent the costly pilot runs that are required to tune proposal densities for Metropolis—
Hastings or indeed Hamiltonian Monte Carlo and Metropolis adjusted Langevin algorithms. This
allows for highly efficient sampling even in very high dimensions where different scalings may be
required for the transient and stationary phases of the Markov chain. The methodology proposed
exploits the Riemann geometry of the parameter space of statistical models and thus automat-
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Simulated Data

10

R, mRNA molecules
P, Protein molecules

e Simulated data generated with SSA.
¢ 10 independent sample paths for each time point.
e Parameters set to

R P kp bo by b b3
0.44 052 100 150 040 7.0 3.0




Trace Plots
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Effective Sample Size

10,000 posterior samples
R P Kp bo by b2 bs
RMHMC 6532 6593 6614 5112 5384 6595 6642
SMMALA 2990 3270 3454 3124 3164 3316 3195
CWMH 201 71 73 465 339 420 239




Nonlinear Dynamic System - Circadian Clock Gene Control




Conclusions

¢ MJP common tool to describe many phenomena in physical and life
sciences.

¢ LNA provides a useful approximation in appropriate operational regimes.
e Decouples deterministic and stochastic characteristics of model.
¢ Statistical inference remains a formidable challenge over such models.

¢ Exploitation of schoolboy differential geometry in MCMC provides
effective inference tool.

¢ Phil.Trans paper describes a number of larger scale scenarios.
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