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Probabilistic Modelling

e A model describes data that one could observe from a system

e If we use the mathematics of probability theory to express all
forms of uncertainty and noise associated with our model...

e ...then inverse probability (i.e. Bayes rule) allows us to infer
unknown quantities, adapt our models, make predictions and
learn from data.



Bayesian Modelling

Everything follows from two simple rules:
Sum rule: P(x)=>_, P(x,y)
Product rule: P(x,y) = P(x)P(y|x)

P(D|0,m) likelihood of parameters 6 in model m
P0|D,m) = P(D|0, m)P(0]m) P(0|m) prior probability of 0
P(D|m) P(0|D, m) posterior of 6 given data D
Prediction:
P(z|D,m) = /P(:L']H,D, m)P(0|D,m)dd
Model Comparison:
P(Dlm)P(m)
P(m|D) =

P(Dlm) = / P(D0, m)P(6]m) o



Bayesian Occam’s Razor and Model Comparison

Compare model classes, e.g. m and m/’, using posterior probabilities given D:

_ p(DJm) p(m)

. p(Dlm) = / p(D]6, m) p(6]m) d6

Interpretations of the Marginal Likelihood (“model evidence”):

e The probability that randomly selected parameters from the prior would generate D.

e Probability of the data under the model, averaging over all possible parameter values.

o log, (19(29—1|m)) is the number of bits of surprise at observing data D under model m.

A
Model classes that are too simple are unlikely
to generate the data set.
E
Model classes that are too complex can &
generate many possible data sets, so again, L “justright’
they are unlikely to generate that particular I 1

data set at random. D

All possible data sets of size n



Bayesian Model Comparison: Occam’s Razor at Work
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For example, for quadratic polynomials (m = 2): y = ag + a1z + asx?® + €, where
e ~ N(0,0%) and parameters 8 = (ag ay as o)

demo: polybayes



Learning Model Structure

How many clusters in the data? SR L

What is the intrinsic dimensionality of the data?

Is this input relevant to predicting that output?

What is the order of a dynamical system?

How many states in a hidden Markov model?
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How many auditory sources in the input? J)
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What is the structure of a graphical model? ()
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Approximate Inference

P(z|D.m) — / P(2]0.D.m)P(6]D, m)d6

P(Dlm) = /P(D|9,m)P(9\m)d9

How do we compute these integrals in practice?

Laplace Approximation

Bayesian Information Criterion (BIC)

Variational Bayesian approximations

Expectation Propagation (and loopy belief propagation)
Markov chain Monte Carlo

Sequential Monte Carlo



Bayesian Nonparametrics



Why...

e Why Bayesian?

Simplicity (of the framework)

e Why nonparametrics?

Complexity (of real world phenomena)



Parametric vs Nonparametric Models

Parametric models assume some finite set of parameters 6. Given the parameters,
future predictions, x, are independent of the observed data, D:

P(z|0,D) = P(x|0)
therefore 6 capture everything there is to know about the data.

So the complexity of the model is bounded even if the amount of data is
unbounded. This makes them not very flexible.

Non-parametric models assume that the data distribution cannot be defined in
terms of such a finite set of parameters. But they can often be defined by
assuming an infinite dimensional 6. Usually we think of 6 as a function.

The amount of information that # can capture about the data D can grow as
the amount of data grows. This makes them more flexible.




Why nonparametrics?

o flexibility

e better predictive performance

e more realistic

All successful methods in machine learning are essentially

e kernel methods / SVM / GP
e deep networks / large neural networks

e k-nearest neighbors, ...

Lor highly scalable!

nonparametric’:



Overview of nonparametric models and uses

Bayesian nonparametrics has many uses.

Some modelling goals and examples of associated nonparametric Bayesian models:

Modelling goal Example process
Distributions on functions Gaussian process
Distributions on distributions Dirichlet process
Polya Tree
Clustering Chinese restaurant process
Pitman-Yor process
Hierarchical clustering Dirichlet diffusion tree
Kingman's coalescent
Sparse binary matrices Indian buffet processes
Survival analysis Beta processes

Distributions on measures Completely random measures




Gaussian and Dirichlet Processes

e Gaussian processes define a distribution on functions

where 1 is the mean function and c is the covariance function.
We can think of GPs as “infinite-dimensional”’ Gaussians

e Dirichlet processes define a distribution on distributions

G ~ DP(lGo, Oé)

where o > 0 is a scaling parameter, and G is the base measure.
We can think of DPs as “infinite-dimensional”’ Dirichlet distributions.

Note that both f and G are infinite dimensional objects.



Outline

Bayesian nonparametrics applied to models of other structured objects:

e Time Series
e Sparse Matrices

e Networks



Time Series



Hidden Markov Models

Hidden Markov models (HMMs) are widely used sequence models for speech
recognition, bioinformatics, biophysics, text modelling, video monitoring, etc.

by

In an HMM, the sequence of observations y1, ...,y is modelled by assuming that
it was generated by a sequence of discrete hidden states s, ..., s with Markovian
dynamics.

If the HMM has K states (s; € {1,... K}) the transition matrix has K x K elements.

HMMs can be thought of as time-dependent mixture models.



Infinite hidden Markov models (iHMMs)

Let the number of hidden states K — oc.

Here are some typical state trajectories for an
IHMM. Note that the number of states visited

grows with T
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e Introduced in (Beal, Ghahramani and Rasmussen, 2002).

e Teh, Jordan, Beal and Blei (2005) showed that iHMMs can be derived from hierarchical Dirichlet
processes, and provided a more efficient Gibbs sampler.

O

e \We have recently derived a much more efficient sampler based on Dynamic Programming
(Van Gael, Saatci, Teh, and Ghahramani, 2008). http://mloss.org/software/view/205/

e And we have parallel (.NET) and distributed (Hadoop) implementations
(Bratieres, Van Gael, Vlachos and Ghahramani, 2010).



Infinite HMM: Changepoint detection and video segmentation
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(w/ Tom Stepleton, 2009)



Sparse Matrices



From finite to infinite sparse binary matrices

Znk = 1 means object n has feature k:

Znk ~ Bernoulli(6y)

0. ~ Beta(a/K,1)

Note that P(z,x = lla) = E(0;) = a‘/)‘l/gil, so as K grows larger the matrix
gets sparser.

Soif Z is N x K, the expected number of nonzero entries is Na/(1+a/K) < Na.

Even in the K — oo limit, the matrix is expected to have a finite number of
non-zero entries.

K — oo results in an Indian buffet process (IBP)2

2Naming inspired by analogy to “Chinese restaurant process” (CRP) from probability theory.



Customers

Dishes
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Indian buffet process

“Many Indian restaurants
in London offer lunchtime
buffets with an apparently
infinite number of dishes”

-

e First customer starts at the left of the buffet, and takes a serving from each dish,
stopping after a Poisson(a)) number of dishes as his plate becomes overburdened.

e The n*™ customer moves along the buffet, sampling dishes in proportion to
their popularity, serving himself dish k with probability my/n, and trying a
Poisson(«/n) number of new dishes.

e The customer-dish matrix, Z, is a draw from the IBP.

(w/ Tom Griffiths 2006; 2011)



Properties of the Indian buffet process

K
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Additional properties: B ey
e Has a stick-breaking representation (Teh, et al 2007)
e Has as its de Finetti mixing distribution the Beta process (Thibaux and Jordan 2007)

e More flexible two and three parameter versions exist (w/ Griffiths & Sollich 2007; Teh
and Goriir 2010)



Posterior Inference in IBPs

P(Z,a|X) x P(X|Z)P(Z|o)P(«)
Gibbs sampling:  P(zpr = 1|Z_ (), X, ) o< P21 = 1|Z_ (1), ) P(X|Z)

m_n,k
N

e For infinitely many k& such that m_,, , = 0: Metropolis steps with truncation® to

sample from the number of new features for each object.
e |f o has a Gamma prior then the posterior is also Gamma — Gibbs sample.

o Ifm_p, x>0, Pz =1z %) =

Conjugate sampler: assumes that P(X|Z) can be computed.

Non-conjugate sampler: P(X|Z) = [ P(X|Z,0)P(0)df cannot be computed,
requires sampling latent 6 as well (e.g. approximate samplers based on (Neal 2000)
non-conjugate DPM samplers).

Slice sampler: works for non-conjugate case, is not approximate, and has an
adaptive truncation level using an IBP stick-breaking construction (Teh, et al 2007)
see also (Adams et al 2010).

Deterministic Inference: variational inference (Doshi et al 2009a) parallel inference
(Doshi et al 2009b), beam-search MAP (Rai and Daume 2011), power-EP (Ding et al 2010)



The Big Picture:
Relations between some models

factorial ] factorial
model HMM
Jinite | HMM
mixture
IBP ] ifHMM
) factorial
DPM ] iIHMM

non-param.



Modelling Data with Indian Buffet Processes

Latent variable model: let X be the N x D matrix of observed data, and Z be the
N x K matrix of sparse binary latent features

P(X,Z|a) = P(X|Z)P(Z|a)

By combining the IBP with different likelihood functions we can get different kinds
of models:

e Models for graph structures (w/ Wood, Griffiths, 2006; w/ Adams and Wallach, 2010)

e Models for protein complexes (w/ Chu, Wild, 2006)
e Models for choice behaviour (Goriir & Rasmussen, 2006)
e Models for users in collaborative filtering (w/ Meeds, Roweis, Neal, 2007)
e Sparse latent trait, pPCA and ICA models (w/ Knowles, 2007, 2011)

e Models for overlapping clusters (w/ Heller, 2007)



Infinite Independent Components Analysis

Model: Y =G(Z®X)+E

where Y is the data matrix, G is the mixing matrix Z ~ IBP(«, 3) is a mask
matrix, X is heavy tailed sources and E is Gaussian noise.

1000 — v

500/ jTm 1
x )
L 0/ |
2 | ——
;_a; 4 | " - IR
& [ 500/ /
61 || | i /
50 100 150 200 1000/ /
=, -lll:“ll- as0b
5 ||
=)
= T 1] 10 11| [ log likelihood
E’l hl |. 2000 log postenor
8 u N 1P ! 2500
50 100 pse 200 10 10 10 10° 10"
Time t teration
(a) Top: True Z. Bottom: Inferred Z. (b) Plot of the log likelihood and poste-
Red box denotes test data. rior for the duration of the iICA5 run.

Fig. 1. True and inferred Z and algorithm convergence.

(w/ David Knowles, 2007, 2011)



Networks



Modelling Networks

We are interested in modelling networks.

Biological networks: protein-protein interaction networks
Social networks: friendship networks; co-authorship networks

We wish to have models that will be able to

e predict missing links,
e infer latent properties or classes of the objects,

e generalise learned properties from smaller observed networks to larger networks.

Figure from Barabasi and Oltvai 2004: A protein-protein interaction network of budding yeast



What is a network?

e A set V of entities (nodes, vertices) and

e A set ) of pairwise relations (links, edges) between the entities

We can represent this as a graph with a binary adjacency matrix Y where element
yi; = 1 represents a link between nodes v; and v;

We'll focus on undirected graphs (i.e. networks of symmetric relations) but much of
what is discussed extends to more general graphs.



What is a model?

Descriptive statistics: identify interesting properties of a network (e.g. degree
distribution)

Predictive or generative model: A model that could generate random networks
and predict missing links, etc.



Erdos-Rényi Model

A very simple model that assumes each link is independent, and present with
probability 7 € [0, 1]

Yi; ~ Bern(m)
This model is easy to analyse but does not have any interesting structure or make

any nontrivial predictions. The only thing one can learn from such a model is the
average density of the network.



Latent Class Models
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The basic idea is to posit that the structure of the network arises from latent (or
hidden) variables associated with each node.

We can think of latent class models as having a single discrete hidden variable
associated with each node.



Latent Class Models
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This corresponds to a clustering of the nodes.
Such models can be used for community detection.

For example, the discrete hidden variables might correspond to the political views
of each individual in a social network.



Latent Class Models
Stochastic Block Model (Nowicki and Snijders, 2001)
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Each node v; has a hidden class from a set of K possible classes: ¢; € {1,..., K}

For all ¢:
c¢; ~ Discrete(py, ... pk)

The probability of a link between two nodes v; and v; depends on their classes:

P(yij = llci = k,c; =) = pre

The parameters of the model are the K x 1 class proportion vector p = (p1, ..., Pk)
and the K x K link probabillity matrix p where pg, € [0, 1].



Latent Class Models
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If we observe a new node, which class do we assign it to?




Nonparametric Latent Class Models
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The new node could belong to one of the previously observed classes, but might
also belong to an as yet unobserved class.

This motivates nonparametric models, where the number of observed classes can
grow with the number of nodes.?

3Nonparametric models are sometimes called infinite models since they allow infinitely many classes, features,
parameters, etc.



Nonparametric Latent Class Models
Infinite Relational Model (Kemp et al 2006)
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Each node v; has a hidden class ¢; € {1,...,00}

For all : Ci|01,...,07;_1 ~J CRP(O&)
As before, probability of a link between two nodes v; and v; depends on their classes:

P(yij = 1llci = k,c; =) = pre

Note that p is an infinitely large matrix, but if we give each element a beta prior we
can integrate it out.

Inference done via MCMC. Fairly straightforward to implement.



Latent Feature Models

Each node posses some number of latent features.

Alternatively we can think of this model as capturing overlapping clusters or
communities

The link probability depends on the latent features of the two nodes.

The model should be able to accommodate a potentially unbounded (infinite)
number of latent features.



Latent Feature Models
Nonparametric Latent Feature Relational Model (Miller et al 2010)
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Let z;. = 1 denote whether node 7 has feature &

The latent binary matrix Z is drawn from an IBP distribution: Z|a ~ IBP(«)

The elements of the parameter matrix W are drawn iid from: wre ~ N(0, 0%)

The link probability is:

P(yi; =1|W,Z) =0 Zzzk 20 Whe
I,

where o(-) is the logistic (sigmoid) function.



Infinite Latent Attribute model for network data

¢;=30010004000100...

¢ =21029001080000...

Each object has some number of latent attributes
Each attribute can have some number of discrete values
Probability of a link between object ¢ and ;5 depends on the attributes of 7 and j:

P(yi; = 1|z;,2;,C,W) = O'(Z zimzjmwgnncg@ -+ s)

m

Potentially unbounded number of attributes, and values per attribute”
Generalises both the IRM and the NLFRM.

(w/ Konstantina Palla, David Knowles, 2012)

“An IBP is used for the attribute matrix, Z and a CRP for the values of each attribute, C



Infinite Latent Attribute model for network data

¢;=30010004000100...

¢ =21029001080000...

Example: a student friendship network

e Each student might be involved in some activities or have some features:
person_i has attributes (College, sport, politics)

person_j has attributes (College, politics, religion, music)

e Each attribute has some values:
person_i = (College=Trinity, sport=squash, politics=LibDem)

person_j = (College=Kings, politics=LibDem, religion=Catholic, music=choir)

e Prob. of link between person 7 and j depends on their attributes and values.

e The attributes and values are not observed—they are learned from the network.



Infinite Latent Attribute: Results

Table 1. NIPS coauthorship network results. The best results are highlighted in bold where statistically significant.

IRM LFIRM LA (M = 6) ILA (M = o)
Train error 0.0427 £0.0009  0.0197 = 0.0052 0.0086 = 0.0005  0.0058 -+ 0.0005
Test error 0.0440 £0.0014  0.0228 £ 0.0041 0.0141 +£0.0012  0.0106 + 0.0007

Test log likelihood —0.0859 +0.0043 —0.0547 £+ 0.0079 —0.0322 +=0.0058 —0.0318 + 0.0094

Table 2. Gene interaction network results. The best results are highlighted in bold where statistically significant.

IRM LFIRM ILA (M = 6) ILA (M = oo)
Train error 0.3562 £ 0.0008  0.2603 £ 0.0098  0.2044 £ 0.0066  0.0248 + 0.0010
Test error 0.3608 +0.0031  0.2661 +0.0086  0.2284£0.0077  0.0735 + 0.0047

Test log likelihood —0.4669 £ 0.0097 —0.4223 £0.0147 —0.3596 £0.0156 —0.2654 + 0.0447

(a) True links (b) IRM (c) LIFRM (d) ILA (e) ILA

Figure 3. Predictions for the three models on the NIPS 1-17 coauthorship dataset. In (a), white denotes that two people
wrote a paper together, while in (b)-(d), the lighter the entry, the more confident the model is that the corresponding

authors would collaborate. In (e), we present the clusters recovered by ILA in the 7 corresponding features. Different
colors denote the different subcluster assignments.



Summary

Probabilistic modelling and Bayesian inference are two sides of the same coin
Bayesian machine learning treats learning as a probabilistic inference problem

Bayesian methods work well when the models are flexible enough to capture
relevant properties of the data

This motivates non-parametric Bayesian methods, e.g.:

— Gaussian processes for regression and classification

— Infinite HMMs for time series modelling

— Indian buffet processes for sparse matrices and latent feature modelling
— Infinite latent attibute model for network modelling
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Appendix



Nonlinear regression and Gaussian processes

Consider the problem of nonlinear regression:
You want to learn a function f with error bars from data D = {X,y}

A Gaussian process defines a distribution over functions p(f) which can be used for
Bayesian regression:

_ p(f)p(DIf)
Let f = (f(x1), f(x2),..., f(xn)) be an n-dimensional vector of function values

evaluated at n points x; € X. Note, f is a random variable.

Definition: p(f) is a Gaussian process if for any finite subset {z1,...,2,} C X,
the marginal distribution over that subset p(f) is multivariate Gaussian.

Excellent textbook: Rasmussen and Williams (2006) and easy to use Matlab code:
http://www.gaussianprocess.org/gpml/code/



A picture
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Nonparametric Binary Matrix Factorization

genes X patients
users X movies

(A)

Figure 5: Gene expression results. (A) The top-left is X sorted according to contiguous features in
the final U and V in the Markov chain. The bottom-left is V7 and the top-right is U. The bottom-

right is W. (B) The same as (A). but the expected value of X, X = UWV ™. We have hilighted
regions that have both u;; and v; on. For clarity, we have only shown the (at most) two largest
contiguous regions for each feature pair.

(B)

Meeds et al (2007) Modeling Dyadic Data with Binary Latent Factors.
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Nonparametric Latent Class Models

Killer whale, blue whale, humpback, seal, walrus, dolphin
antelope, horse, giraffe, zebra, deer

monkey, gorilla, chimp

hippo, elephant, rhino

grizzly bear, polar bear

flippers, strain teeth, swims, arctic, coastal, ocean, water
hooves, long neck, horns

hands, bipedal, jungle, tree

bulbous body shape, slow, inactive

meat teeth, eats meat, hunter, fierce

walks, quadrapedal, ground

F1 23 456

Taken from Kemp et al., 2006. Animal clusters, feature clusters,

and a sorted matrix showing the relationships between them. The

matrix includes seven of the twelve animal clusters and all of the

feature clusters.



Network Modelling: Extensions

e Directed networks

e Networks with multiple kinds of relations (edges)

e Scaling to large network datasets

e Using auxiliary information (e.g. observed features of nodes)

e Dynamic networks that evolve over time

We are currently working on many of the above and would welcome potential
collaborations.



