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Probabilistic Modelling

• A model describes data that one could observe from a system

• If we use the mathematics of probability theory to express all

forms of uncertainty and noise associated with our model...

• ...then inverse probability (i.e. Bayes rule) allows us to infer

unknown quantities, adapt our models, make predictions and

learn from data.



Bayesian Modelling

Everything follows from two simple rules:

Sum rule: P (x) =
∑
y P (x, y)

Product rule: P (x, y) = P (x)P (y|x)

P (θ|D,m) =
P (D|θ,m)P (θ|m)

P (D|m)

P (D|θ,m) likelihood of parameters θ in model m

P (θ|m) prior probability of θ

P (θ|D,m) posterior of θ given data D

Prediction:

P (x|D,m) =

∫
P (x|θ,D,m)P (θ|D,m)dθ

Model Comparison:

P (m|D) =
P (D|m)P (m)

P (D)

P (D|m) =

∫
P (D|θ,m)P (θ|m) dθ



Bayesian Occam’s Razor and Model Comparison

Compare model classes, e.g. m and m′, using posterior probabilities given D:

p(m|D) = p(D|m) p(m)

p(D) , p(D|m) =

∫
p(D|θ,m) p(θ|m) dθ

Interpretations of the Marginal Likelihood (“model evidence”):

• The probability that randomly selected parameters from the prior would generate D.

• Probability of the data under the model, averaging over all possible parameter values.

• log2

(
1

p(D|m)

)
is the number of bits of surprise at observing data D under model m.

Model classes that are too simple are unlikely
to generate the data set.

Model classes that are too complex can
generate many possible data sets, so again,
they are unlikely to generate that particular
data set at random.

too simple

too complex

"just right"

All possible data sets of size n

P
(D

|m
)

D



Bayesian Model Comparison: Occam’s Razor at Work
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Model Evidence

For example, for quadratic polynomials (m = 2): y = a0 + a1x + a2x
2 + ε, where

ε ∼ N (0, σ2) and parameters θ = (a0 a1 a2 σ)

demo: polybayes



Learning Model Structure

How many clusters in the data?

What is the intrinsic dimensionality of the data?

Is this input relevant to predicting that output?

What is the order of a dynamical system?

How many states in a hidden Markov model?

SVYDAAAQLTADVKKDLRDSWKVIGSDKKGNGVALMTTY

How many auditory sources in the input?

What is the structure of a graphical model?

A

D

C

B

E



Approximate Inference

P (x|D,m) =

∫
P (x|θ,D,m)P (θ|D,m)dθ

P (D|m) =

∫
P (D|θ,m)P (θ|m) dθ

How do we compute these integrals in practice?

• Laplace Approximation
• Bayesian Information Criterion (BIC)
• Variational Bayesian approximations
• Expectation Propagation (and loopy belief propagation)
• Markov chain Monte Carlo
• Sequential Monte Carlo
• ...



Bayesian Nonparametrics



Why...

• Why Bayesian?

Simplicity (of the framework)

• Why nonparametrics?

Complexity (of real world phenomena)



Parametric vs Nonparametric Models

• Parametric models assume some finite set of parameters θ. Given the parameters,
future predictions, x, are independent of the observed data, D:

P (x|θ,D) = P (x|θ)

therefore θ capture everything there is to know about the data.

• So the complexity of the model is bounded even if the amount of data is
unbounded. This makes them not very flexible.

• Non-parametric models assume that the data distribution cannot be defined in
terms of such a finite set of parameters. But they can often be defined by
assuming an infinite dimensional θ. Usually we think of θ as a function.

• The amount of information that θ can capture about the data D can grow as
the amount of data grows. This makes them more flexible.



Why nonparametrics?

• flexibility

• better predictive performance

• more realistic
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All successful methods in machine learning are essentially nonparametric1:

• kernel methods / SVM / GP

• deep networks / large neural networks

• k-nearest neighbors, ...

1or highly scalable!



Overview of nonparametric models and uses

Bayesian nonparametrics has many uses.

Some modelling goals and examples of associated nonparametric Bayesian models:

Modelling goal Example process
Distributions on functions Gaussian process
Distributions on distributions Dirichlet process

Polya Tree
Clustering Chinese restaurant process

Pitman-Yor process
Hierarchical clustering Dirichlet diffusion tree

Kingman’s coalescent
Sparse binary matrices Indian buffet processes
Survival analysis Beta processes
Distributions on measures Completely random measures
... ...



Gaussian and Dirichlet Processes

• Gaussian processes define a distribution on functions
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f ∼ GP(·|µ, c)

where µ is the mean function and c is the covariance function.
We can think of GPs as “infinite-dimensional” Gaussians

• Dirichlet processes define a distribution on distributions

G ∼ DP(·|G0, α)

where α > 0 is a scaling parameter, and G0 is the base measure.
We can think of DPs as “infinite-dimensional” Dirichlet distributions.

Note that both f and G are infinite dimensional objects.



Outline

Bayesian nonparametrics applied to models of other structured objects:

• Time Series

• Sparse Matrices

• Networks



Time Series



Hidden Markov Models

Hidden Markov models (HMMs) are widely used sequence models for speech
recognition, bioinformatics, biophysics, text modelling, video monitoring, etc.
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In an HMM, the sequence of observations y1, . . . ,yT is modelled by assuming that
it was generated by a sequence of discrete hidden states s1, . . . , sT with Markovian
dynamics.

If the HMM has K states (st ∈ {1, . . .K}) the transition matrix has K×K elements.

HMMs can be thought of as time-dependent mixture models.



Infinite hidden Markov models (iHMMs)

Let the number of hidden states K →∞.

Here are some typical state trajectories for an
iHMM. Note that the number of states visited
grows with T .
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• Introduced in (Beal, Ghahramani and Rasmussen, 2002).

• Teh, Jordan, Beal and Blei (2005) showed that iHMMs can be derived from hierarchical Dirichlet

processes, and provided a more efficient Gibbs sampler.

• We have recently derived a much more efficient sampler based on Dynamic Programming

(Van Gael, Saatci, Teh, and Ghahramani, 2008). http://mloss.org/software/view/205/

• And we have parallel (.NET) and distributed (Hadoop) implementations

(Bratieres, Van Gael, Vlachos and Ghahramani, 2010).



Infinite HMM: Changepoint detection and video segmentation

Experiment:  Changepoint Detection
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(w/ Tom Stepleton, 2009)



Sparse Matrices



From finite to infinite sparse binary matrices

Figure 5: Binary matrices and the left-order

znk = 1 means object n has feature k:

znk ∼ Bernoulli(θk)

θk ∼ Beta(α/K, 1)

• Note that P (znk = 1|α) = E(θk) = α/K
α/K+1, so as K grows larger the matrix

gets sparser.

• So if Z is N×K, the expected number of nonzero entries is Nα/(1+α/K) < Nα.

• Even in the K → ∞ limit, the matrix is expected to have a finite number of
non-zero entries.

• K →∞ results in an Indian buffet process (IBP)2

2Naming inspired by analogy to “Chinese restaurant process” (CRP) from probability theory.



Indian buffet process
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“Many Indian restaurants
in London offer lunchtime
buffets with an apparently
infinite number of dishes”

• First customer starts at the left of the buffet, and takes a serving from each dish,
stopping after a Poisson(α) number of dishes as his plate becomes overburdened.

• The nth customer moves along the buffet, sampling dishes in proportion to
their popularity, serving himself dish k with probability mk/n, and trying a
Poisson(α/n) number of new dishes.

• The customer-dish matrix, Z, is a draw from the IBP.

(w/ Tom Griffiths 2006; 2011)



Properties of the Indian buffet process

P ([Z]|α) = exp
{
− αHN

} αK+∏
h>0Kh!

∏
k≤K+

(N −mk)!(mk − 1)!

N !

Shown in (Griffiths and Ghahramani 2006, 2011):

• It is infinitely exchangeable.

• The number of ones in each row is Poisson(α)

• The expected total number of ones is αN .

• The number of nonzero columns grows as O(α logN).
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• Has a stick-breaking representation (Teh, et al 2007)

• Has as its de Finetti mixing distribution the Beta process (Thibaux and Jordan 2007)

• More flexible two and three parameter versions exist (w/ Griffiths & Sollich 2007; Teh

and Görür 2010)



Posterior Inference in IBPs

P (Z, α|X) ∝ P (X|Z)P (Z|α)P (α)
Gibbs sampling: P (znk = 1|Z−(nk),X, α) ∝ P (znk = 1|Z−(nk), α)P (X|Z)

• If m−n,k > 0, P (znk = 1|z−n,k) =
m−n,k
N

• For infinitely many k such that m−n,k = 0: Metropolis steps with truncation∗ to
sample from the number of new features for each object.
• If α has a Gamma prior then the posterior is also Gamma → Gibbs sample.

Conjugate sampler: assumes that P (X|Z) can be computed.

Non-conjugate sampler: P (X|Z) =
∫
P (X|Z, θ)P (θ)dθ cannot be computed,

requires sampling latent θ as well (e.g. approximate samplers based on (Neal 2000)

non-conjugate DPM samplers).

Slice sampler: works for non-conjugate case, is not approximate, and has an
adaptive truncation level using an IBP stick-breaking construction (Teh, et al 2007)

see also (Adams et al 2010).

Deterministic Inference: variational inference (Doshi et al 2009a) parallel inference
(Doshi et al 2009b), beam-search MAP (Rai and Daume 2011), power-EP (Ding et al 2010)



The Big Picture:
Relations between some models
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Modelling Data with Indian Buffet Processes

Latent variable model: let X be the N ×D matrix of observed data, and Z be the
N ×K matrix of sparse binary latent features

P (X,Z|α) = P (X|Z)P (Z|α)

By combining the IBP with different likelihood functions we can get different kinds
of models:

• Models for graph structures (w/ Wood, Griffiths, 2006; w/ Adams and Wallach, 2010)

• Models for protein complexes (w/ Chu, Wild, 2006)

• Models for choice behaviour (Görür & Rasmussen, 2006)

• Models for users in collaborative filtering (w/ Meeds, Roweis, Neal, 2007)

• Sparse latent trait, pPCA and ICA models (w/ Knowles, 2007, 2011)

• Models for overlapping clusters (w/ Heller, 2007)



Infinite Independent Components Analysis

Model: Y = G(Z⊗X) +E

x ⊗ z

G

y

...

where Y is the data matrix, G is the mixing matrix Z ∼ IBP(α, β) is a mask
matrix, X is heavy tailed sources and E is Gaussian noise.

(w/ David Knowles, 2007, 2011)



Networks



Modelling Networks

We are interested in modelling networks.

Real Networks Are Complex

Taken from Barabasi & Oltvai, 2004. A protein-protein interaction

network of budding yeast.

CBL: Network Models RCC, Feb 2012 2

Biological networks: protein-protein interaction networks

Social networks: friendship networks; co-authorship networks

We wish to have models that will be able to

• predict missing links,

• infer latent properties or classes of the objects,

• generalise learned properties from smaller observed networks to larger networks.

Figure from Barabasi and Oltvai 2004: A protein-protein interaction network of budding yeast



What is a network?

• A set V of entities (nodes, vertices) and

• A set Y of pairwise relations (links, edges) between the entitiesA Network
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Nodes (vertices) and edges (links) comprise the network.

CBL: Network Models RCC, Feb 2012 3

We can represent this as a graph with a binary adjacency matrix Y where element
yij = 1 represents a link between nodes vi and vj

We’ll focus on undirected graphs (i.e. networks of symmetric relations) but much of
what is discussed extends to more general graphs.



What is a model?

Descriptive statistics: identify interesting properties of a network (e.g. degree
distribution)

Predictive or generative model: A model that could generate random networks
and predict missing links, etc.



Erdös-Rényi Model
A Network
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Nodes (vertices) and edges (links) comprise the network.

CBL: Network Models RCC, Feb 2012 3

A very simple model that assumes each link is independent, and present with
probability π ∈ [0, 1]

yij ∼ Bern(π)

This model is easy to analyse but does not have any interesting structure or make
any nontrivial predictions. The only thing one can learn from such a model is the
average density of the network.



Latent Class Models

Latent Class Models
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Latent class models assume each vertex has an (unknown) class

assignment. Classes: A, B, C and D.

CBL: Network Models RCC, Feb 2012 9

The basic idea is to posit that the structure of the network arises from latent (or
hidden) variables associated with each node.

We can think of latent class models as having a single discrete hidden variable
associated with each node.



Latent Class Models

Latent Class Models
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Latent class models cluster the nodes. Each node is a member of

one cluster.

CBL: Network Models RCC, Feb 2012 11

This corresponds to a clustering of the nodes.
Such models can be used for community detection.

For example, the discrete hidden variables might correspond to the political views
of each individual in a social network.



Latent Class Models
Stochastic Block Model (Nowicki and Snijders, 2001)

Latent Class Models
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Latent class models assume each vertex has an (unknown) class

assignment. Classes: A, B, C and D.

CBL: Network Models RCC, Feb 2012 9

Each node vi has a hidden class from a set of K possible classes: ci ∈ {1, . . . ,K}

For all i:
ci ∼ Discrete(p1, . . . pK)

The probability of a link between two nodes vi and vj depends on their classes:

P (yij = 1|ci = k, cj = `) = ρk`

The parameters of the model are the K×1 class proportion vector p = (p1, . . . , pK)
and the K ×K link probabillity matrix ρ where ρk` ∈ [0, 1].



Latent Class Models
Latent Class Models: A Nonparametric Extension
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CBL: Network Models RCC, Feb 2012 20

If we observe a new node, which class do we assign it to?



Nonparametric Latent Class Models
Latent Class Models: A Nonparametric Extension
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... or we may create a new class for it.

CBL: Network Models RCC, Feb 2012 22

The new node could belong to one of the previously observed classes, but might
also belong to an as yet unobserved class.

This motivates nonparametric models, where the number of observed classes can
grow with the number of nodes.3

3Nonparametric models are sometimes called infinite models since they allow infinitely many classes, features,
parameters, etc.



Nonparametric Latent Class Models
Infinite Relational Model (Kemp et al 2006)

Latent Class Models
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Latent class models assume each vertex has an (unknown) class

assignment. Classes: A, B, C and D.

CBL: Network Models RCC, Feb 2012 9

Each node vi has a hidden class ci ∈ {1, . . . ,∞}

For all i: ci|c1, . . . , ci−1 ∼ CRP(α)

As before, probability of a link between two nodes vi and vj depends on their classes:

P (yij = 1|ci = k, cj = `) = ρk`

Note that ρ is an infinitely large matrix, but if we give each element a beta prior we
can integrate it out.

Inference done via MCMC. Fairly straightforward to implement.



Latent Feature ModelsLatent Feature Models

1

2

3
4

5

6

78

9

latent feature models associate each vertex with K latent features

CBL: Network Models RCC, Feb 2012 30

• Each node posses some number of latent features.

• Alternatively we can think of this model as capturing overlapping clusters or
communities

• The link probability depends on the latent features of the two nodes.

• The model should be able to accommodate a potentially unbounded (infinite)
number of latent features.



Latent Feature Models
Nonparametric Latent Feature Relational Model (Miller et al 2010)

Latent Feature Models
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latent feature models associate each vertex with K latent features

CBL: Network Models RCC, Feb 2012 30

Let zik = 1 denote whether node i has feature k

The latent binary matrix Z is drawn from an IBP distribution: Z|α ∼ IBP(α)

The elements of the parameter matrix W are drawn iid from: wk` ∼ N(0, σ2)

The link probability is:

P (yij = 1|W,Z) = σ

∑
k,`

zik zj` wk`


where σ(·) is the logistic (sigmoid) function.



Infinite Latent Attribute model for network data

i

j

ci  = 3 0 0 1 0 0 0 4 0 0 0 1 0 0 … 

cj  = 2 1 0 2 9 0 0 1 0 8 0 0 0 0 … 

• Each object has some number of latent attributes

• Each attribute can have some number of discrete values

• Probability of a link between object i and j depends on the attributes of i and j:

P (yij = 1|zi, zj,C,W) = σ
(∑

m

zimzjmw
(m)
cmi c

m
j
+ s
)

• Potentially unbounded number of attributes, and values per attribute4

• Generalises both the IRM and the NLFRM.

(w/ Konstantina Palla, David Knowles, 2012)
4An IBP is used for the attribute matrix, Z and a CRP for the values of each attribute, C



Infinite Latent Attribute model for network data

i

j

ci  = 3 0 0 1 0 0 0 4 0 0 0 1 0 0 … 

cj  = 2 1 0 2 9 0 0 1 0 8 0 0 0 0 … 

Example: a student friendship network

• Each student might be involved in some activities or have some features:
person i has attributes (College, sport, politics)

person j has attributes (College, politics, religion, music)

• Each attribute has some values:
person i = (College=Trinity, sport=squash, politics=LibDem)

person j = (College=Kings, politics=LibDem, religion=Catholic, music=choir)

• Prob. of link between person i and j depends on their attributes and values.

• The attributes and values are not observed—they are learned from the network.



Infinite Latent Attribute: Results
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An Infinite Latent Attribute Model for Network Data

Table 1. NIPS coauthorship network results. The best results are highlighted in bold where statistically significant.

IRM LFIRM ILA (M = 6) ILA (M = 1)
Train error 0.0427 ± 0.0009 0.0197 ± 0.0052 0.0086 ± 0.0005 0.0058 ± 0.0005
Test error 0.0440 ± 0.0014 0.0228 ± 0.0041 0.0141 ± 0.0012 0.0106 ± 0.0007
Test log likelihood �0.0859 ± 0.0043 �0.0547 ± 0.0079 �0.0322 ± 0.0058 �0.0318 ± 0.0094

Table 2. Gene interaction network results. The best results are highlighted in bold where statistically significant.

IRM LFIRM ILA (M = 6) ILA (M = 1)
Train error 0.3562 ± 0.0008 0.2603 ± 0.0098 0.2044 ± 0.0066 0.0248 ± 0.0010
Test error 0.3608 ± 0.0031 0.2661 ± 0.0086 0.2284 ± 0.0077 0.0735 ± 0.0047
Test log likelihood �0.4669 ± 0.0097 �0.4223 ± 0.0147 �0.3596 ± 0.0156 �0.2654 ± 0.0447

experiments applying VB to this model suggest that
successful breaking symmetry is surprisingly challeng-
ing.

References

Airoldi, E. M., Blei, D. M., Xing, E. P., and Fien-
berg, S. E. (2009). Mixed membership stochastic
block models. In Advances in Neural Information
Processing Systems (NIPS) 21.

Girvan, M. and Newman, M. E. J. (2002). Com-
munity structure in social and biological networks.
Proceedings of the National Academy of Sciences,
99(12):7821–7826.

Globerson, A., Chechik, G., Pereira, F., and Tishby,
N. (2007). Euclidean embedding of co-occurrence
data. The Journal of Machine Learning Research,
8:2265–2295.

Gri�ths, T. L. and Ghahramani, Z. (2005). Infinite
latent feature models and the Indian bu↵et process.
In Advances in Neural Information Processing Sys-
tems, pages 475–482.

Ho↵, P. D. (2009). Multiplicative latent factor mod-
els for description and prediction of social networks.
Computational & Mathematical Organization The-
ory, 15(4):261–272.

Ho↵, P. D., Raftery, A. E., Handcock, M. S., and H,
M. S. (2001). Latent space approaches to social net-
work analysis. Journal of the American Statistical
Association, 97:1090–1098.

Jain, S. and Neal, R. (2000). A split-merge Markov
chain Monte Carlo procedure for the Dirichlet pro-
cess mixture model. Journal of Computational and
Graphical Statistics, 13:158–182.

Jonikas, M. C., Collins, S. R., Denic, V., Oh, E., Quan,
E. M., Schmid, V., Weibezahn, J., Schwappach, B.,
Walter, P., Weissman, J. S., and Schuldiner, M.
(2009). Comprehensive characterization of genes re-
quired for protein folding in the endoplasmic retic-
ulum. Science, 323(5922):1693–1697.

Kemp, C. and Tenenbaum, J. B. (2006). Learning sys-
tems of concepts with an infinite relational model.
In Proceedings of the 21st National Conference on
Artificial Intelligence.

Kim, M. and Leskovec, J. (2011). Modeling social net-
works with node attributes using the multiplicative
attribute graph model. In Uncertainty in Artificial
Intelligence (UAI), pages 400–409.

Meeds, E., Ghahramani, Z., Neal, R. M., and Roweis,
S. T. (2006). Modeling dyadic data with binary
latent factors. In Advances in Neural Information
Processing Systems, pages 977–984.

Miller, K., Gri�ths, T., and Jordan, M. (2009). Non-
parametric latent feature models for link prediction.
In Advances in Neural Information Processing Sys-
tems 22, pages 1276–1284.

Morup, M., Schmidt, M., and Hansen, L. (2011). In-
finite multiple membership relational modeling for
complex networks. In Machine Learning for Sig-
nal Processing (MLSP), 2011 IEEE International
Workshop on, pages 1–6. IEEE.

Neal, R. M. (2000). Markov chain sampling methods
for Dirichlet process mixture models. Journal of
Computational and Graphical Statistics, 9(2):249–
265.

Neal, R. M. (2003). Slice Sampling. The Annals of
Statistics, 31(3):705–741.

20 40 60 80 100 120 140 160 180 200 220

20

40

60

80

100

120

140

160

180

200

220

(a) True links

20 40 60 80 100 120 140 160 180 200 220

20

40

60

80

100

120

140

160

180

200

220

(b) IRM

20 40 60 80 100 120 140 160 180 200 220

20

40

60

80

100

120

140

160

180

200

220

(c) LIFRM

20 40 60 80 100 120 140 160 180 200 220

20

40

60

80

100

120

140

160

180

200

220

(d) ILA

2 4 6

50

100

150

200

(e) ILA

Figure 3. Predictions for the three models on the NIPS 1-17 coauthorship dataset. In (a), white denotes that two people
wrote a paper together, while in (b)-(d), the lighter the entry, the more confident the model is that the corresponding
authors would collaborate. In (e), we present the clusters recovered by ILA in the 7 corresponding features. Different
colors denote the different subcluster assignments.



Summary

• Probabilistic modelling and Bayesian inference are two sides of the same coin

• Bayesian machine learning treats learning as a probabilistic inference problem

• Bayesian methods work well when the models are flexible enough to capture
relevant properties of the data

• This motivates non-parametric Bayesian methods, e.g.:

– Gaussian processes for regression and classification
– Infinite HMMs for time series modelling
– Indian buffet processes for sparse matrices and latent feature modelling
– Infinite latent attibute model for network modelling
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Appendix



Nonlinear regression and Gaussian processes

Consider the problem of nonlinear regression:
You want to learn a function f with error bars from data D = {X,y}

x

y

A Gaussian process defines a distribution over functions p(f) which can be used for
Bayesian regression:

p(f |D) = p(f)p(D|f)
p(D)

Let f = (f(x1), f(x2), . . . , f(xn)) be an n-dimensional vector of function values
evaluated at n points xi ∈ X . Note, f is a random variable.

Definition: p(f) is a Gaussian process if for any finite subset {x1, . . . , xn} ⊂ X ,
the marginal distribution over that subset p(f) is multivariate Gaussian.

Excellent textbook: Rasmussen and Williams (2006) and easy to use Matlab code:
http://www.gaussianprocess.org/gpml/code/
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Nonparametric Binary Matrix Factorization

genes × patients
users × movies

Meeds et al (2007) Modeling Dyadic Data with Binary Latent Factors.



Nonparametric Latent Class Models

Latent Class Models: A Nonparametric Extension

Taken from Kemp et al., 2006. Animal clusters, feature clusters,

and a sorted matrix showing the relationships between them. The

matrix includes seven of the twelve animal clusters and all of the

feature clusters.
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Network Modelling: Extensions

• Directed networks

• Networks with multiple kinds of relations (edges)

• Scaling to large network datasets

• Using auxiliary information (e.g. observed features of nodes)

• Dynamic networks that evolve over time

We are currently working on many of the above and would welcome potential
collaborations.


