Exploring Bayes: Bayesian Linear Regression

In this basic practical we will try and implement some of the ideas supplied in the first lecture. This is partly a warm-up and logistics exercise as we get used to the Theory Lecture/ Practical Lecture format. For those unfamiliar with the jargon then this will be a crash course.

- 1. Consider $y = x + \epsilon$ with $\epsilon \sim \mathcal{N}(\mu, \sigma^2)$ and $\mu = 0, \sigma = 1$. Simulate the output of this model.
- 2. Write down the likelihood $P(D|\alpha)$ for the linear model $y = \alpha x + \epsilon$ with noise (fix $\sigma = 1$ and $\mu = 0$).
- 3. Use your simulated data to return an α that maximizes this likelihood (fix $\sigma = 1$ and $\mu = 0$).
- 4. What priors should you consider?
- 5. What are conjugate priors?
- 6. If we fix $\sigma = 1$ and $\mu = 0$, what is the conjugate prior?
- 7. Take draws from original model 1 and estimate the maximum a-posteriori (MAP) value for α .
- 8. What is the posterior on α if its prior is conjugate?
- 9. What is the affect of conjugate prior hyperparameter choice on the ratio between the MAP estimate and the ML estimate as the amount of data goes large?
- 10. Re-use the posteriors as priors but now use these to make inferences with a new model (e.g. $y = 3x + \epsilon$). Compare the posteriors with the posteriors you'd have if you had simply used the naive priors in 6
- 11. More Advanced: What is the conjugate prior when σ and μ are not fixed as constants but are also uncertain?

This is Bayesian Linear Regression - you'll find it in lots of standard texts.