
Elements of Optimal Control: ICDNS
MSci/MSc

Nick Jones

nick.jones@imperial.ac.uk



Optimal Control

What we will cover.
Why this is biologically relevant.

Reviews by Todorov and Kappen [1, 2] are short-ish introductions
and the Bechhoefer review [3] also includes a brief treatment of
Optimal control - I’ll be drawing on these treatments in the
following. The text on Reinforcement learning by Sutton and Barto
[4] covers similar material and is available online in a browsable
format. The books [5, 6] cover optimal control but not in the
stochastic setting.

Nick Jones Elements of Optimal Control: ICDNS



The simplest case

Optimal control is devoted to finding a set of controls which
minimize an appropriately chosen cost function C .
We will consider a control problem which must be completed in
finite, discrete, time T (finite horizon) and in which there is no
noise (though we will consider the effect of unanticipated
perturbations to the trajectory).

Nick Jones Elements of Optimal Control: ICDNS



The simplest case II

Discrete time dynamics: xt+1 = xt + f (ut , xt , t). We’ll switch to
calling our state variable x (not y used previously).
Local cost of action u at time t and location x : w(x , u, t). This
might be the petrol cost of flying between two locations x and x ′

in one timestep t → t + 1: I start at x at t and arrive at x ′ at time
t + 1 and do so under control u (and under dynamics f (u, x , t)).
Final cost of destination location: W (xT ). Measures how
good/costly my final location is: does being in John o’Groats have
a higher cost than being in Honolulu? It says nothing about the
cost of getting to these locations.

Nick Jones Elements of Optimal Control: ICDNS



Cost function

Consider starting at x0 with a sequence of T controls:
u0:T−1 = u0, u1...uT−1.
If I know the controls and the dynamics (f (u, x , t)) I know the
corresponding sequence of states x1:T .
Cost: C (x0, u0:T−1) =

∑T−1
t=0 w(ut , xt , t) + W (xT ).

What is u? As well as being an external control signal, r , it could
be constrained to be a function of the existing state g(x , f): in this
case (for given g) optimizing the control means finding the best
values of the parameters f to minimize our cost.

Nick Jones Elements of Optimal Control: ICDNS



Cost function II

Cost: C (x0, u0:T−1) =
∑T−1

t=0 w(ut , xt , t) + W (xT ).
(the petrol cost of flying between successive points x0:T−1 + how
much my final destination is desirable).
Minimum Cost:

J(0, x0) = min
u0:T−1

[C (x0, u0:T−1)]

Optimal control:

u∗0:T−1 = argmin
u0:T−1

[C (x0, u0:T−1)]

Nick Jones Elements of Optimal Control: ICDNS



Optimal cost-to-go

Cost: C (x0, u0:T−1) =
∑T−1

t=0 w(ut , xt , t) + W (xT ).

Minimum Cost:
min
u0:T−1

[C (x0, u0:T−1)]

Optimal control:

u∗0:T−1 = arg min
u0:T−1

[C (x0, u0:T−1)]

Cost-to-go:

C (xt , ut:T−1) =
T−1∑
t

w(ut , xt , t) + W (xT )

Optimal cost-to-go:

J(t, x) = min
ut:T−1

[C (xt , ut:T−1)]

This expression (sometimes called the optimal value function) will
help us use Dynamic Programming to find the optimal control.

Nick Jones Elements of Optimal Control: ICDNS



Approach to finding the optimal control

We want to find the T controls u∗0:T−1 which minimize
C (x0, u0:T−1).

It turns out that it is easiest to calculate the following vector field:
u′(t, x). This is the optimal control for time t → t + 1 at all points
in space x and time t.

If we have u′(t, x) then we can find u∗0:T−1 by finding out our
initial condition x0 then finding u′(t = 0, x0). We then use
u′(t = 0, x0) to calculate the new co-ordinate x1 (given knowledge
of the dynamics f (u, x , t)). We then set t = 1 and plug x1 into
u′(t, x) and continue until we’ve found the full vector u∗0:T−1.

This works if we have the vector field u′(t, x). How do we find
u′(t, x)?

It’ll turn out that we get u′(t, x) for free when we recursively
construct the optimal cost-to-go scalar field: J(t, x).

Nick Jones Elements of Optimal Control: ICDNS



Interpreting u′(t, x)

� The field u′(t, x) is a magical object (and this hints at how
computationally challenging some optimal control problems can be). It
says ‘if you are at location x , t I know what you should do next. If you
follow my advice for this timestep t and refer to me at all successive
timesteps then I guarantee you’ll minimize your cost from now on.’
� As such, even if at the last time step t − 1 you did something stupid,
were buffeted by a random force, and you are at a suboptimal x , t you
don’t need to worry: referring to u′(t, x) and recursively calculating your
controls from now on will take you to your destination at minimum total
expense. Thus, although we are not considering a noisy scenario, if we
think that randomizing events are rare (and we don’t have a model for
them, or they have a very simple structure) using u′(t, x) will be useful.

� We might think that u′(t, x) is somehow an ‘open-loop control’ vector

field since we have precomputed it based on knowledge of our dynamics.

However u′(t, x) specifies the optimal control under all circumstances

(x , t) and, as noted above, it might be that u = g(x , f) involves

state-feedback. u′(t, x) is precomputed but it could be either open or

closed loop control.

Nick Jones Elements of Optimal Control: ICDNS



Finding the optimal cost-to-go field yields the optimal
control field

We know our optimization has T steps and that J(T , x) = W (x).
We further know that the optimal cost-to-go, at time T-1 and
location x , is the cheapest combination of a) the cost of moving to
point x + f (t, x , u) (or deploying control u) and b) the optimal
cost-to-go from point x + f (t, x , u):

J(T − 1, x) = min
uT−1

[(w(uT−1, x , t) + J(T , x + f (t, x , u))]

u′(x ,T − 1) = argmin
uT−1

[(w(uT−1, x , t) + J(T , x + f (t, x , u))]

Here J(T , x + f (T − 1, x , u)) = W (x + f (T − 1, x , u)).
Thus for all points T − 1, x we calculate the optimal cost-to-go to
the (horizon) time T

Nick Jones Elements of Optimal Control: ICDNS



Finding the optimal cost-to-go field yields the optimal
control field II

We can find ∀x :

J(T − 1, x) = min
uT−1

[(w(uT−1, x , t) + J(T , x + f (t, x , u))]

Given this we can then back-up a time-step and find:

J(T − 2, x) = min
uT−2

[(w(uT−2, x , t) + J(T − 1, x + f (t, x , u))] .

We proceed in this manner moving back in time and calculate the
scalar optimal cost-to-go field J(t, x). To find J(t, x) we are also
calculating u′(x , t) (that’s why I said we get the optimal control
field for free).
The trick is that we are keeping track of J(t, x) as we progress
back-in time - we only need to refer to J(t, x) when we calculate
J(t − 1, x).

Nick Jones Elements of Optimal Control: ICDNS



Dynamic programming

Dynamic programming

1 Initialise with J(T , x) = W (x)

2 Backwards: for t = T − 1, ..., 0 and all x find

u′(x , t) = argmin
u

[(w(u, x , t) + J(t + 1, x + f (t, x , u))]

J(t, x) =
[
w(u′(x , t), x , t) + J(t + 1, x + f (t, x , u′(x , t)))

]
3 Forwards: For t = 0, ...,T and using i.c. t = 0, x = x0.

x∗t+1 = x∗t + f (t, x∗t , u
′(x∗t , t))

This is after Ref. [2] and will be used in our practical.

Nick Jones Elements of Optimal Control: ICDNS



What is dynamic programming?

An informal answer:

Break the problem into sub-problems (find J(t, x) given
J(t + 1, x)) and store the results as you progress through the
algorithm (store J(t, x) to help find J(t − 1, x)).
In our case if we had m points in space, we solved the optimization
problem by performing T ×m optimizations. You might have
thought that you’d need something like mT timesteps as we test
each possible trajectory for optimality. Note that the DP solution
is still disgusting if we have our space being d dimensional since we
then have T ×md steps.

Nick Jones Elements of Optimal Control: ICDNS



Continuous time setting

Dynamics:
xt+dt = xt + f (ut , xt , t)dt

Cost:

C (x0, u(0→ T )) = W (xT ) +

∫ T

0
dτw(x(τ), u(τ), τ)

where u(0→ T ) is a function (of time) (we had u0:T−1 previously).
Optimal cost-to-go:

J(t, x) = min
u

(w(x , t, u)dt + J(t + dt, x + f (x , u, t)dt))

Where our min is over the control at time t and location x . This is
the same as previously: our optimal cost-to-go from (x , t) is the
best combination of a control that moves us to
(x + f (x , u, t)dt, t + dt) and then the optimal cost-to-go from
(x + f (x , u, t)dt, t + dt).

Nick Jones Elements of Optimal Control: ICDNS



Continuous time setting II

Optimal cost-to-go:

J(t, x) = min
u

(w(x , t, u)dt + J(t + dt, x + f (x , u, t)dt))

Taylor expanding:

J(t, x) ' min
u

(w(x , t, u)dt+J(t, x)+∂tJ(t, x)dt+∂xJ(t, x)f (x , u, t)dt))

Setting dt → 0 yields the below.

Hamilton-Jacobi-Bellman Equation

−∂tJ(t, x) = min
u

(w(x , t, u) + f (x , u, t)∂xJ(t, x))

with boundary condition
J(T , x) = W (x).
The corresponding optimal control field is

u′(x , t) = argmin
u

(w(x , t, u) + f (x , u, t)∂xJ(t, x))

Nick Jones Elements of Optimal Control: ICDNS



Interpreting HJB

Hamilton-Jacobi-Bellman Equation

−∂tJ(t, x) = min
u

(w(x , t, u) + f (x , u, t)∂xJ(t, x))

with boundary condition
J(T , x) = W (x).

min
u

(w(x , t, u)dt + {∂tJ(t, x) + f (x , u, t)∂xJ(t, x)}dt) = 0

Can be interpreted as ‘for optimal controls, the cost for being at
x , t and applying u for time dt should be balanced by the
corresponding change in cost-to-go’: i.e. the cost of my move
must yield an exactly balancing decrement in my remaining cost to
go if my move f (x , u, t)dt (and thus my control, u) is optimal.
We can solve the HJB equation by initializing at J(T , x) = W (x)
and evolving this function back in time. When we perform this we
will generate the field u′(x , t).

Nick Jones Elements of Optimal Control: ICDNS



Bibliography

[1] E. Todorov, Optimal control theory, In Bayesian Brain:
Probabilistic Approaches to Neural Coding, Doya K at al (eds),
chap 12, 269, MIT Press 2006. Free online.

[2] H.J. Kappen, Optimal control theory and the linear Bellman
Equation. Book chapter. Free online.

[3] J. Bechhoefer, Feedback for physicists: A tutorial essay on
control, Reviews of Modern Physics, 77, 783, 2005. Free to you
online.

[4] R.S. Sutton and A.G. Barto, Reinforcement learning, MIT
Press, 1998. Free online.

[5] J. Zabczyk, Mathematical control theory, Birkauser, 1995. Free
to IC students.

[6] E. Sontag, Mathematical control theory, Springer, 1998. Free
online.

Nick Jones Elements of Optimal Control: ICDNS


