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So far

Review of topics covered in inference course.
How chemical systems can be treated as samplers and can
naturally perform probabilistic inference.
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Optimal Control of Humanoids
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Control Week

This introduction to control is remarkably brief and notably
selective. We will cover basic ideas, partly through example, and
direct you to proofs in the literature for some points (you should
convince yourself of these). Despite this brevity, as before, we will
be able to use these concepts to connect to research problems
which appear in a biological context.

The next lectures will cover basics of control: feedback,
feedforward, stability, controllability, observability, the relevance of
linear systems, block diagrams, Bode’s integral formula,
proportional integral derivative control, internal model control and
Kalman filters.
We will then move on to topics in Optimal control.
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Control is a point of view

Control is a point of view: it lies within dynamical systems and
often involves breaking dynamical systems up into elements like
controlling input signals, controlled output signals, feedback,
feedforward, and plant (the system being controlled). Because it is
a point of view developed in the context of designed systems some
of the notation and model choices can seem obscure to people who
study non-manmade systems. In physical systems we presume that
it is the system itself that guides model choice and we are not
accustomed to breaking things into parts. For biological systems,
though, since we are studying (possibly) selected systems, the
perspective can be natural, and identifying plant and control is
quite sensible. We will also see that the widespread use of linear
systems in the theory is very sensible, even if the systems we would
like to control are nonlinear.
Because of these issues, make particularly sure you ask me at the
end if you don’t understand something.
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Control theory and Natural Systems

Weak claim. Nature is a designer and so are (control) engineers:
we should observe similarities between designed and evolved
systems.
More powerful claim. (Optimal) Control can put provable bounds
on what constrained systems can achieve. These bounds will limit
biological systems and, with the strong assertion that natural
systems are optimal, we can expect them to lie on these
boundaries. The task then becomes identifying what optimization
tasks are relevant.
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Reading

There is a shortage of brief introductions to control that are both
suitable for generic mathematical scientists and impart ready
intuition. Most engineering texts assume a skill profile and learning
style which isn’t a great fit to Mathematicians and Physicists. Ref.
[1] is good (free online) but is probably a bit too basic (use of
Laplace Transforms and use of the complex plane is only slowly
introduced) but very good for examples. Ref. [2] is the best brief
introduction I’ve seen (more for physicists though) but it is dense
and requires experience to perceive priority areas. A short
introductory account which is certainly worth a look is [3]. I’ll be
presenting material which draws on both [1, 2, 3]. Note the books
by Zabczyk and Sontag which are also good relevant texts [4, 5]
(this last is free online and the former free from IC library online).
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Definitions

We will consider dynamical systems ẏ = f (y , u) with u a control
(or input or strategy) and an output or solution y . We define:

1 Open/Closed Loop: ẏ = f (y , u) vs ẏ = f (y , g(y)).

2 Feedback: g(y)

3 Controllability

4 (Feedback) Stabilizability

5 Observability: ẏ = f (y , u) but observe ν = h(y)

6 Optimality: often of the form
∫ T

0 w(y(t), u(t))dt + W (y(T ))

for observation can, more generally have, ν = h(y , u).
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Linear dynamical systems with control and observation

We imagine a vector of n states y and controls u and n
observations ν (in fact all of these three could have different
dimensions but we can always pad-out) and consider matrices
A,B,C,D:

Linear setting

ẏ = Ay + Bu (1)

ν = Cy + Du (2)

we often suppose D is zero.

The second equation ν might seem artificial to a theoretical
physical scientist - but to an experimentalist it is very natural.
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Warmup + the Transfer function

We will consider the Laplace Transform of:

ẏ = −ω0y(t) + ω0u(t)

with y(0) = 0. Defining the transfer function:

G (s) ≡ y(s)

u(s)

in this case G (s) = 1
1+s/ω0

. For s = iω we will sketch the Bode

magnitude plot |G (iω)| and phase plot argG (iω) with ω. We will
discuss how the system is acting like a low-pass filter. This kind of
view of a linear dynamical system is central for control theory
discussions you’ll encounter.
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A chain of systems

If we feed the output y of our system into another e.g.:

µ̇ = −µ+ y(t)

It follows that our new output is µ(s) = H(s)G (s)u(s) i.e. a
system with a transfer function H(s)G (s) (H(s) = 1

1+s with
µ(t = 0) = 0). This is a convolution in the time domain.
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A block diagram

We’ll discuss this notation

u(s)→ G (s)
y(s)−−→ H(s) → µ(s)

One reason why this notation can confuse is that one naively
thinks of u merely perturbing the system which has y as its state
variable. But here in the Laplace domain y(s) is purely specified by
u(s) and the response function.
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Feedforward

Control should be simple in principle. If we want our system
output to be our control signal then we simply feed our control
signal through something that inverts the response function of the
system. See the block diagram below: this strategy would involve
setting K (s) = G−1(s). Two issues are that we often have
disturbances which reflect additional dynamics not accounted for
by G (s) and that implementing this inverse might not be possible
(e.g. it might be divergent for some s). In practice one thus uses a
mix of feedforward and feedback.

u(s) K(s) G(s) y(s)

Figure : Feedforward
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Feedback + block diagram

We suppose we input a control signal r(t) and an error signal
e(t) = r(t)− y(t). Our system has dynamics G (s) but we apply a
control law K (s) to the error signal. The diagram below is a
central object in control theory.

_+r(s)
e(s)

K(s) G(s)
u(s) y(s) y(s)

y(s)

Figure : Feedback
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Interpreting the block diagram

From the block diagram we read off y(s) = K (s)G (s)e(s).

Eliminating e we have y(s) = K(s)G(s)
1+K(s)G(s) r(s) = L(s)

1+L(s) r(s).

We can reinterpret L(s)
1+L(s) as the response function of the full

dynamical system. L(s) is the response function when there is no
control loop.
What is r(t)? There is an implicit interpretation about r : it is
what we would like our output to be (we want our error e = r − y
to be zero). r(t) is thus more than merely an appropriate input to
give us our desired output: it is our desired output (though this
might not be attainable). This helps explain why we would even
consider open loop control (and feedforward): if r is something
fixed and handed to us (our desired output) we might want to
shape it to obtain the right output. If we could pick our input
arbitrarily to obtain the right output r then we’d just input
r ′(s) = G−1(s)r(s) and have no explicit control in our system.
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Comparing Open and Closed Loop dynamics

We now investigate the advantage of feedback for a simple
example. Fairly obviously, introducing feedback changes our
response function from y/r = L(s) to y/r = L(s)

1+L(s) .

Let’s consider the system/plant from before:

ẏ = −ω0y(t) + G0ω0u(t)

with zero i.c.’s so G (s) = G0/(1 + s
ω0

). We will now use
proportional feedback with the preceding block diagram structure
where u(t) = Kpe(t). Thus our dynamics is
ẏ = −ω0y(t) + ω0G0Kp(r − y). (We’ll interpret this).

y(s)/r(s) =
KpG0

KpG0+1 ×
1

1+ s
ω0(1+KpG0)

. Compare with G (s) (e.g. we

can expect the response frequency to be faster ω0 → ω0(1 + KpG0)
for appropriately sized G0).
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Which is the control?

We need to be careful about what we call control: I’ll labour this
since it can confuse. Sometimes the control is called u and we are
interested in the open loop response y/u. This makes sense since
the thing we manipulate is u. But here, however, we imagine a
control signal r and we are interested in y/r the closed loop
response to an input signal (we’ve thus broken down
u = Kpe(t) = Kp(r − y) into an internal part −Kpy – the
feedback that we can’t control once we’ve set our system up – and
the external part r).
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Comparing Open and Closed Loop dynamics II

Our open loop dynamics is ẏ = −ω0y(t) + ω0G0Kpr . When
r = constant = rc then at equilibrium y = KpG0r . If we can’t
guarantee G0 = 1/Kp (e.g. the gain, G0, drifts, as happens in
electronics) then we can’t ensure that y ∼ r . By contrast, the

equilibrium solution with the closed loop is y =
KpG0

1+KpG0
r which,

providing G0 is sufficiently large, ensures y ∼ r .

We will see sensitivity appearing later on so let’s consider how
sensitive the long-time response functions of the open loop (KpG0)

and closed loop (
KpG0

1+KpG0
) are to changes in G0. Sensitivity of Q

w.r.t. P is S = P
Q

dQ
dP . Convince yourself that for open loop S = 1

and for closed S = 1
1+KpG0

. So for KPG0 � 1 the closed loop is
very insensitive to gain fluctuations.

This treatment is after [2] and you can explore more there.
Choosing an appropriate controller, K (s), to obtain the desired
system response, lies at the heart of control theory.
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A block diagram for sources of uncertainty

Here we consider the existence of additive (environmental)
disturbances in the output and errors in measurement (sensor).
Note that this is only one of a set of possible error models. Note
further that our feedback could itself be a dynamical system with
some response H(s).

_+r(s)
e(s)

K(s) G(s)
u(s) y(s)+

+

d(s)

n(s)

Figure : Feedback with noise sources

It follows that e = r − (y + n); u = Ke; y = Gu + d
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A block diagram for sources of uncertainty II

_+r(s)
e(s)

K(s) G(s)
u(s) y(s)+

+

d(s)

n(s)

Figure : Feedback with noise sources

One can find that y(s) = KG
1+KG (r(s)− n(s)) + 1

1+KG d(s). The

expression 1
1+KG = S(s) is a sensitivity: it tells us how much our

system responds to disturbances d(s). We will come back to this.
While accounting for errors is a central part of control theory we
will not investigate this further but point you to robust and
adaptive control.
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Proportional Integral Derivative (PID) Control

A conventional form of control strategy has the following terms:
K (s) = Kp + Ki/s + Kds
We can interpret this as feeding back part of the output error (Kp)
something that indicates its rate of change (Kds) and something
about how far this error has diverged so far (Ki/s).
We might thus have an ODE like
ẏ = −ω0y(t) + Kpe + Ki

∫ t
−∞ e(t ′)dt ′ + Kd

de
dt .

Read the introduction to Sontag [5] and, in particular, convince
yourself of the role of PID control in stabilizing an inverted
pendulum.
PID control will appear in an afternoon session.
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Experimentally determining the response function

If I want to control my system, and my control strategy K (s)
depends on G (s) (the transfer function of the system before
feedback) how do I find G (s)? Since G (s) = y(s)/u(s) where y
and u are respectively the inputs and ouputs of my uncontrolled
system I simply concoct a sinusoidal input signal and look at its
output. In particular I vary the input frequency and measure the
relative amplitude and phase of the output. There are smarter
ways, but this works.
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Controllability

We call, z , a state, x-reachable if there exists a control u, and time
T , such that a system that has output x at t = 0 has output z at
t = T .

If a system is such that for any p, q we find that p is q-reachable
then we call the system controllable.

Let’s consider a linear dynamical system with a univariate input
and output (u and ν scalar) and with feedback u = −fT y . So
ẏ = Ay + ub with ν = cy with f,b, c vectors. We can thus define
a new dynamical system ẏ = Ãy s.t. Ã = A− bfT .

Controllability for this system is thus about the properties of the
matrix Ã. In particular the kinds of dynamics we can obtain (and
whether we can get from p to q for all p, q) depend on the
interplay of a constrained choice in f,b and the fixed matrix A.
Construct some examples of pairs A,b for which there exist pairs
p, q where p is not q-reachable.
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Controllability and Observability

An example in the case when x ∈ R2: A diagonal (and non-zero)
but b having a zero entry.
For the linear system described to be controllable we require the
matrix with columns Ãib where i = 0, .., n − 1 (and is an exponent
not an index) with x ∈ Rn to be invertible. Look at the treatment
of controllability by Zabczyk [3] (or in the other sources provided)
and prove that this holds.
We can see that we can have an equivalent problem for whether
we can observe the dynamics ν. If, e.g. c has zero entries. Just as
there are general conditions for controllability so too there are
conditions for observability (and you’ll find discussions of their
duality).
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Stability

We considered the system ẏ = Ãy s.t. Ã = A− bfT . If Ã is
diagonalizable then we expect the sign of the real part of its
eigenvalues to tell us about its stability. Evidently we can partly
control the eigenvalues of Ã by tuning the feedback f.
Instabilities in systems with feedback can be related to the closed
loop transfer function in Laplace space: y(s)/r(s) = KG/(1 +KG ).
This will diverge when KG = −1. A consideration of the poles of
transfer functions is thus a canonical topic in control.

This root concept is a substantial part of introductory topics in
control but we leave it here.
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Feedback linearization

Control problems are frequently posed in terms of linear dynamical
systems. This might seem a highly constrained tool-kit. E.g. Why should
we care about controllability and observability when they are specified in
the linear setting?

It’s thus worth knowing about Feedback linearization. This can be

understood in terms of two shells of feedback where we have a nonlinear

feedback next to the plant that leaves it acting as a linear system that we

can control using the tools we’ve described. The figure below is taken

from [1] we’ll discuss the slightly different notation you can encounter.

Figure : Feedback Linearization.
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Feedback linearization II

We’ll shift notation for this slide to be consistent with the figure (and
have a system with state x and observation y - not y and ν as before)
We say that a system is feedback linearizable if we can find a control
u = α(x , v) = a(x) + b(x)v such that dynamics of the form
ẋ = f (x , u) = p(x) + q(x)u with y = h(x) becomes linear with input v
and output y . E.g. one can sometimes use the form u = 1

q(x) (v − p(x)).

Feedback linearization is a very rich area and this is an elementary
treatment.

For a different approach please read about, and be able to explain, the

Ott, Grebogi, and Yorke algorithm for stabilizing chaotic dynamics (you’ll

find an account of it in ref. [2]).

Figure : Feedback Linearization.
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Internal Model Control

_+r(s)
e(s)

K(s) G(s)
u(s) y(s)

G’(s)
+

_

v(s)

Figure : Internal Model Control (after [2]). Suppose one has a model G ′

of system G . The strategy is to feedback the difference ((G − G ′)u)
between what you suspect the system does to input u (G ′u) and what it
actually does to input u (Gu).
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Internal Model Control II

We have response function y
r = GK

1+(G−G ′)K) check this by writing out

expressions for e, v , u, y . Which can be reinterpreted as a negative
feedback with controller K ′(s) = 1

1−G ′K .
Since our feedback is v = (G − G ′)y we find that a perfect internal
model G ′ = G eliminates the need for feedback, if we can invert G ′ and
have feedforward control K = 1/G ′ (as we’ve seen before). [If for
nonlinear systems we can set G ′ ∼ G then we can hope to linearize].

Internal model control has been taken up as a relevant paradigm in parts

of the (motor control) cognitive science community (we will return to

this).

_+r(s)
e(s)

K(s) G(s)
u(s) y(s)

G’(s)
+

_

v(s)
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Bode’s Integral Formula Preliminaries

Also called Bode’s sensitivity integral. Related terms are
robustness-fragility trade-off or the water-bed effect. We consider
the sensitivity of a system with feedback:
S(s) = 1

1+L(s) = 1
1+K(s)G(s) where L(s) = K (s)G (s) is the open

loop gain. S tells us something about the responsiveness of our
system at different input frequencies: more specifically it tells us
how disturbances d(s) (see the earlier figure with examples of
sources of noise d and n) are attenuated. Clearly properties of L
put constraints on the sensitivity of the system. We suppose that
L(s)→ 0 faster than 1

s → 0 as s →∞ and that it has poles pk in
the right half plane.
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Bode’s Integral Formula

Theorem

Bode’s Integral Formula
Given the above constraints on L(s) the following holds:∫ ∞

0
log |S(iω)|dω =

∫ ∞
0

log
1

|1 + L(iω)|
dω = π

∑
k

pk

Please convince yourself of the proof of this - you’ll find it provided
in [1].
We will consider the setting when L(s) has no poles in the
right-half plane. We can see that whatever K we pick (within this
class of L) the total (log) sensitivity must be constant. Thus
choosing a K (s) to diminish sensitivity at frequency s ′ necessitates
that there is another frequency s ′′ for which sensitivity is increased.
This is the waterbed effect or robustness-fragility trade off. This
conservation principle is generic and can be expected to constrain
biological systems [6].
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Discrete Time Control with Noise

Linear setting

Dynamics with additive noise in our output d :

yk+1 = φyk + uk + dk

Observation with additive noise in our observation n:

νk+1 = yk+1 + nk+1

With our state variable y , control u and observation data ν (and
time index k).
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Discrete Time Control with Noise II

yk+1 = φyk + uk + dk

νk+1 = yk+1 + nk+1

If we have a conventional negative feedback setup then the signal
we feedback is our current observation ν = y + n. This presents a
problem since our error should be e = r − y but actually it’s
e = r − (y + n). This means that a control system that tries to set
e = 0 will not set y = r : it will be very susceptible to non-zero n.
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Discrete Time Control with Noise III

yk+1 = φyk + uk + dk

νk+1 = yk+1 + nk+1

We will see that the Kalman filter helps us be smart about errors
in our observations in order to correctly work out the state y . It
combines our current state observations νk+1 with what you would
have predicted ŷk+1 about what the state actually is (yk+1). That
means that we can limit pollution by nk .
This is the heart of Kalman filters: be smart, don’t just use your
current (noise polluted) observation ν as your best guess as to y,
instead combine it with some past information that might have
averaged out n. How much you weight your current predicted state
vs your latest observation depends on how much you trust your
current information.
Since it combines estimation with feedback the Kalman filter lies
at the interface of control and inference.
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Introducing the (Univariate) Kalman filter

Kalman Filter

Actual state: yk+1 = φyk + uk + dk

Actual Observation: νk+1 = yk+1 + nk+1

Predicted state (which evolves your last best estimate in time):

ŷk+1 = φŷk|k + uk

Current Best estimate (combine predicted state with current observation):

ŷk+1|k+1 ≡ (1− K )ŷk+1 + Kνk+1

Predicted observation: ν̂k+1 = ŷk+1

I’m following [2] in this account: you’ll find a closely complementary variant there (but watch out for shifted y ’s,

n’s and x ’s).
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Introducing the (Univariate) Kalman filter II

State :yk+1 = φyk + uk + dk

Observe :νk+1 = yk+1 + nk+1

Predict :ŷk+1 = φŷk|k + uk

Estimate :ŷk+1|k+1 ≡ (1− K )ŷk+1 + Kνk+1

Predicted Observation :ν̂k+1 = ŷk+1

Questions

So what are we filtering? We are attempting to improve our
estimate of y and so filter out observation error n. We often
use this improved estimate ŷk+1|k+1 to feedback into our
control ensuring that e = r − ŷk+1|k+1 ∼ r − y .

When is this inference architecture used? d and n are
assumed Gaussian distributed and memoryless stochastic
processes (white noise).
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Introducing the (Univariate) Kalman filter III

State :yk+1 = φyk + uk + dk

Observe :νk+1 = yk+1 + nk+1

Predict :ŷk+1 = φŷk|k + uk

Estimate :ŷk+1|k+1 ≡ (1− K )ŷk+1 + Kνk+1

Predicted Observation :ν̂k+1 = ŷk+1

Questions

K? This is the trade-off constant between our predictions for
the current state y based on past evidence (ŷk+1) and our
latest data νk+1. Our best estimate of the current state
(defined as ŷk+1|k+1). How to pick K? See next slide.

What is ŷk+1? This is our prediction as to the current state if
we believe our best estimate ŷk|k from last time and assume a
noiseless evolution according to the control uk we have
applied. We assume we know uk (and φ).
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Kalman Gain

We can define our error in estimating the state as erk = yk − ŷk|k
(this is unknown to us since we never see yk).
We want to select our Kalman gain K so as to have our error as
tightly distributed about zero as possible i.e. to minimize < e2 >.
By first showing that erk+1 = (1− K )[φerk + dk ]− Knk+1 find an
expression in < er2

k+1 > and < er2
k > (using the independence of

the processes er , d , n) which can be minimized (w.r.t. K) to show
that:
K =

φ2<er2
k>+d̄2

φ2<er2
k>+d̄2+n̄2

Where d̄ and n̄ are expectations of the corresponding processes.
Recall that ŷk+1|k+1 ≡ (1− K )ŷk+1 + Kνk+1.

If environmental noise dominates then d̄ � n̄. This means K ∼ 1
and suggests we can forget the filter and trust that ν is close to y .
By contrast, if n̄� d̄ then we really need the filter, since our
estimates are relatively very untrustworthy.
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Generalizations (Kalman Filter)

You’ll find that the Kalman filter generalizes straightforwardly to
the multivariate case.
We note that if we take our timesteps sufficiently small then
nonlinear dynamics can still be incorporated within the linear
framework of the Kalman filter (Taylor expand). This is called the
extended Kalman filter.
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Topic Review + Practical

I’ll run through a reminder of the topics we’ve covered.

Implement a univariate Kalman filter. For given noise processes n
and d find the squared error in the filter as we vary the Kalman
gain.
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