
Sampling II: Inference Control and Driving of
Natural Systems

Nick Jones

nick.jones@imperial.ac.uk

Sampling II

What we have covered so far. The problem of un-normalized
distributions.

Objectives for today:

1 Intuition behind two Markov chain Monte Carlo schemes
(which is relevant for tomorrow’s practical):

Metropolis Sampling
Gibbs Sampling

2 Introduction to Probabilistic Population Coding with neurons
(not explicitly a sampling approach but relevant for today’s
practical)

Nick Jones Sampling II: Inference, Control and Driving of Natural Systems

Metropolis Hastings

Our treatment of MCMC methods will be very brief - engaging
introductory online lectures on this topic can be found by Ian
Murray on videolectures.com.
As discussed:
MCMC exploits relative probabilities - or, effectively, a local
probability estimation rather than global probability estimation - it
looks at the ratio of the unnormalized distribution at two points, x,
P∗(x) and, x′, P∗(x′). This is, of course, the same as the ratio of
P(x) and P(x′). So we can make judgements about ratios without
worrying about normalization.

Nick Jones Sampling II: Inference, Control and Driving of Natural Systems

videolectures.com

Metropolis method

We have an unnormalized distribution P∗(x) that we’d like to
sample from (or perhaps use to calculate expectations of functions
f (x) with x possibly a vector). We suppose we have a proposal
distribution Q(x ′|x (t)) (notation and argument after MacKay [1]
and Gelman et al [2]) which is symmetric so Q(xa|xb) = Q(xb|xa).
An example would be Q(x ′|x (t)) ∼ N (x (t), σ2) (where σ is a
parameter we need to choose wisely - see later).

Metropolis Algorithm

[Initialize with some well motivated choice for x (t=0)]

Draw a proposal x ′ from Q(x ′|x (t)).

If r = P(x ′)
P(x(t))

> 1 then let x (t+1) = x ′ (accept the proposal)

If r < 1 let x (t+1) = x ′ with probability r (accept) and let
x (t+1) = x (t) with probability 1− r (reject and stay put)

advance time and go back to first step until time-out.

Nick Jones Sampling II: Inference, Control and Driving of Natural Systems

Remarks about the Metropolis Algorithm

Why does it work?
We need our Markov chain to be irreducible, aperiodic and not
transient so that it has a single stationary distribution. We need
this stationary distribution to remain the same under the action of
our transitions and we require that this distribution is the one we’d
like to draw from (this is sometimes obscured in introductions):
P(x). If we can show that P(x) is invariant under the action of the
chain (and we know the chain has a unique steady state) then we
know that the only distribution we could be sampling from (in the
long time limit) is P(x).
Suppose P(xb) > P(xa). Suppose that our chain has stationary
distribution S(x). We can consider the chance of transitioning
a→ b: P(x (t−1) = xa, x

(t) = xb) = S(xa)Q(xb|xa) and the chance
of transitioning in the opposite direction: b → a
P(x (t−1) = xb, x

(t) = xa) = S(xb)Q(xa|xb)P∗(xa)/P∗(xb).

Nick Jones Sampling II: Inference, Control and Driving of Natural Systems

Remarks about the Metropolis Algorithm II

P(x (t−1) = xa, x
(t) = xb) = S(xa)Q(xb|xa) and

P(x (t−1) = xb, x
(t) = xa) = S(xb)Q(xa|xb)P∗(xa)/P∗(xb).

If S(x) = P∗(x)/Zp we discover that we have what is called
detailed balance:
P(x (t−1) = xa, x

(t) = xb) = P(x (t−1) = xb, x
(t) = xa) (check this

please). If a distribution P(X ,Y) = P(Y ,X) it has identical
marginals. Since this is true from
P(x (t−1) = xa, x

(t) = xb) = P(x (t−1) = xb, x
(t) = xa) it follows

that the distribution at time t, P(x (t)), is the same as the
distribution at time t − 1, P(x (t−1)). From this we conclude that
we have an invariant distribution over time and since there is only
one invariant distribution of the chain we know that the candidate
distribution S(x) = P∗(x)/Zp is the stationary distribution.

Nick Jones Sampling II: Inference, Control and Driving of Natural Systems

Remarks about the Metropolis Algorithm III

Can I use all of the samples? The difference between calculating
expectations and requiring independent draws.
How long should I wait for my samples to be independent? The
problem of burn-in, convergence to stationarity and de-correlation
times.
Is my algorithm performing a random walk and how does it
perform in higher dimensions? The Metropolis algorithm performs
a biased random walk where the bias is dependent on the change
between P∗(x ′) and P∗(x t). Suppose that the characteristic
lengthscale of the proposal distribution σ is such that the proposed
x ′ is often such that P∗(x ′) ∼ P∗(x t). Our proposals will be such
that P∗(x ′)/P∗(x t) ∼ 1 and we only feel a weak bias per timestep.

Nick Jones Sampling II: Inference, Control and Driving of Natural Systems

Remarks about the Metropolis Algorithm IV

If our distribution P∗(x) has most of its mass contained within a
distance L then the minimum length of time to explore P∗(x) will
scale like T ∼ (L/σ)2 (after [1]). A simple argument shows that if
P∗(x) is a D-dimensional Gaussian with largest and smallest
lengthscales σmax and σmin by noting that σmax = L and setting
our proposal lengthscale σ = σmin we find that the time to make an
independent sample is T ∼ (σmax/σmin)2 which has the virtue that
it is independent of the dimension D (thought it is quadratically
dependent on a ratio which might be large (σmax/σmin)).

Nick Jones Sampling II: Inference, Control and Driving of Natural Systems

Gibbs Sampling

Gibbs sampling can be seen as a particular type of Metropolis
algorithm where proposals are accepted with probability 1 (r = 1).
Because it is a Metropolis sampler it can successfully sample from
a desired distribution.

It relies on an important extra condition about the unnormalized
function we’d like to sample from P∗(x): that its univariate
conditional distributions P∗(xi |x/i) can be easily normalized so
that we can draw from P(xi |x/i) for all i without problem (where

x/i is all elements of x save the i th).

Nick Jones Sampling II: Inference, Control and Driving of Natural Systems

Gibbs Sampling II

The condition that it is easy to sample from the univariate
conditional distributions needn’t be satisfied by P∗(x) (it could
have horrible conditional distributions also) but for
physical/biological implementations it is very natural: we might
imagine that each variable xi is a distinct physical system which
can generate random samples conditional on the configuration of
the rest of the system x/i . We’ll be using this insight in the
exercises in the next day’s session. Gibbs sampling is called
Glauber dynamics in the physics literature (go and have a very
brief read about Glauber dynamics).

Nick Jones Sampling II: Inference, Control and Driving of Natural Systems

Gibbs Sampling III

I’ll provide a (human) animated version of Gibbs Sampling on the
board with a 2d Gaussian.

We suppose our sampler is at location x (t) at time t and we

consider the proposal distribution Q(x ′|x (t)) = P(xi |x
(t)
/i) where we

pick the index i cyclically. Drawing from P(xi |x
(t)
/i) yields a new

value for xi at time t + 1 which we accept (deterministically) and
update the i th element of x (t) to its new value.

Nick Jones Sampling II: Inference, Control and Driving of Natural Systems

Advanced question: The energetic cost of sampling

We have considered natural systems that perform sampling. But
what is the best one can do?
Advanced question: For a given P(x) one can ask if there is a
minimum expected energy cost associated with sampling from it
repeatedly. A physical system which can be used to generate a
sample has to have its state reset after each sample. Deleting
information has an energy cost of kBT per bit (Landauer’s
principle). Is the minimum energy cost of sampling from a
distribution its entropy scaled by kBT?
Harder: if we want to be able to use randomness with a rate
λsample how does this modulate my minimum energy cost?
Not advanced and expected: find and understand a brief proof of
Landauer’s principle (if you can’t find one by the time we hit
control theory ask me).

Nick Jones Sampling II: Inference, Control and Driving of Natural Systems

Representing Probability in the Brain

There are two major strands in approaches to constructing
probabilistic models in the brain:

Probabilistic Population Coding

Sampling approaches

You’ll find them discussed in these two review papers which are a
reasonably easy read and also combine to give an introduction to
Bayesian cognitive science more generally:

Probabilistic brains: knowns and unknowns. Alexandre
Pouget, Jeffrey Beck, Wei Ji Ma and Peter Latham, Nature
Neuroscience, 2013.

Statistically optimal perception and learning: from behavior to
neural representations. József Fiser, Pietro Berkes, Gergő
Orbán and Máté Lengyel, Trends in Cognitive Sciences, 2010.

Please read them (they are pretty interesting).

Nick Jones Sampling II: Inference, Control and Driving of Natural Systems

What’s in and what’s out

What we’re not going to do: we’re not going to give a justification
as to why it is reasonable to suppose the Brain performs Bayesian
inference or why neural models are appropriate.

We will: look at how neurally inspired models can perform
inference and comment on some of their properties.

Nick Jones Sampling II: Inference, Control and Driving of Natural Systems

Point Process Sensor Array

Today we’ll be covering the first approach: Probabilistic
Population Coding. We’ll start by considering properties of a
simple sensor system and then connect this back to the brain.

Consider the following sensor: a point process with rate

λi (g , x) = g exp[(x−µi)
2

2σ2] and inputs x and g . Where we suppose
that there is a stimulus with value x and an intensity g .

Sensor i will have a high rate if g is large and if x ∼ µi .

We can specify a population of sensors i ∈ {1, ...,N} with ordered
means µi < µi+1. If all the sensors have a common input x (with
intensity g) where the sensor i with µi closest to x shows the
greatest response.

Nick Jones Sampling II: Inference, Control and Driving of Natural Systems

Point Process Sensor Array II

An interpretation of σ is an indication of the hard-wired trust that
the system has that a value x input is really x . Alternatively one
can think of it as a tolerance to ensure that the system responds to
all possible inputs x : if µi − µi+1 ∼ σ and if the input
x ∈ [µ1 − σ, µN + σ] there will always be one sensor, i , that is
likely to respond appreciably (on a timescale 1/λi).

The sensors can be viewed as crude neurons where λ is the firing

rate exp[(x−µi)
2

2σ2] is the tuning curve of the neuron (its average
firing rate as we tune over a variety of inputs x) and g is the
strength of the input signal or gain. We will be relating g to how
convincing the stimulus is about the input value x and we’ll be
connecting it to the variance of a distribution. g could encode how
bright or dim a photo of arrow is and x could encode its
orientation.

Nick Jones Sampling II: Inference, Control and Driving of Natural Systems

Point Process Sensor Array III

We can give a chemical interpretation:

Ai + g
exp[

(x−µi)
2

2σ2]
−−−−−−−→ Bi

Bi
K−→ Ai + Ci

if K � g exp[(x−µi)
2

2σ2] ∀x , i , g then we can think of Ci as an
instantaneous counter of the reaction making Bi .
Can you construct a chemical system with a rate approximating

exp[(x−µi)
2

2σ2]?

Nick Jones Sampling II: Inference, Control and Driving of Natural Systems

Point Process Sensor Array to encode posteriors

Given a sustained input x with intensity g for a time T what is the
probability of observing n events with ni being the number of
events associated with neuron/sensor i . Since each neuron is
independent of every other then the likelihood will be a product of
Poisson distributions of the following form:
P(ni |x , g) = (Tλi)

ni exp(−Tλi)/ni !

recalling that λi (g , x) = g exp[(x−µi)
2

2σ2].

Nick Jones Sampling II: Inference, Control and Driving of Natural Systems

Point Process Sensor Array to encode posteriors II

P(n|x , g) = ΠiP(ni |x , g) = Πi (Tλi)
ni exp(−Tλi)/ni !

From Bayes theorem we can find P(x , g |n) ∝ P(n|x , g)P(g)P(x)
and assuming for simplicity that P(x) is uniform then one can
integrate out over g (please convince yourself of this) and find:

P(x |n) ∼ N (
∑

i µini∑
i ni

, σ2∑
i ni

).

To show this you’ll need to use the condition that for σ sufficiently
large

∑
i λi (x , g) is independent of x .

We’ll discuss the interpretation of the behaviour of the mean and
variance but note that, by construction, < ni >= Tλi so this
expression for P(x |n) implicitly depends on T and g . In particular

the variance σ2∑
i ni

is inversely proportional to the intensity/gain g .

Nick Jones Sampling II: Inference, Control and Driving of Natural Systems

Cue Combination

Humans appear to combine information from different sensory
modalities in a simple fashion.
Suppose a stimulus x is such that the response of “sight” is
P(c1|x) and “sound” is P(c2|x) then the posterior is
P(x |c1, c2) ∝ P(c1|x)P(c2|x)P(x) (where P(x) is our prior which
we set uniform for simplicity). If P(c1|x) and P(c2|x) are Gaussian
with means µ1, µ1 and variances σ1, σ1 we can find very quickly
that the posterior P(x |c1, c2) has the following mean and variance:

µ3 =
σ2
2µ1+σ

2
1µ2

σ2
1+σ

2
2

1/σ23 = 1/σ21 + 1/σ22

Nick Jones Sampling II: Inference, Control and Driving of Natural Systems

A virtue of Probabilistic Population Coding

The array of sensors we considered was an example of Probabilistic
Population Coding. This formulates a possible neural process that
encodes a posterior distribution over our stimulus value: P(x |n).

It has the virtue that it is very easy to perform cue combination.
We suppose that we have two sensor populations corresponding to
different sensory modalities and each population might have a
different intensity of response g and ĝ .

We define a third integrator population that simply adds the
events in the i th register from modality 1 (sight) with the i th

register from modality 2 (sound).

Nick Jones Sampling II: Inference, Control and Driving of Natural Systems

Cue Combination with Chemicals

Chemically this combination of cues would look like this:

Ai + g
exp[

(x−µi)
2

2σ2]
−−−−−−−→ Bi

Bi
K−→ Ai + Ci

for sensory modality 1 (sight)
and

Âi + ĝ
exp[

(x−µi)
2

2σ2]
−−−−−−−→ B̂i

B̂i
K−→ Âi + Ci

for sensory modality 2 (sound). Where Âi and B̂i are new sets of
chemicals we’ve added to our system. Note that Ci is common to
both modalities and is acting like an integrator that counts events.

[For this to work we still need K � g exp[(x−µi)
2

2σ2] ∀x , i , g and
similarly for thêvariables]. The virtue of using chemicals to
implement this is that we can associate a temperature with our
chemical reactions and so reason about the thermodynamics of this
inference architecture.

Nick Jones Sampling II: Inference, Control and Driving of Natural Systems

Cue Combination with PPC

One can perform the calculation we did before to obtain P(x |n)
but now we have two populations which might have different
intensities/gains g and ĝ and which will generate two data sets
n, n̂.
P(ni |x , g) = (Tλi)

ni exp(−Tλi)/ni ! and

P(n̂i |x , g) = (T λ̂i)
n̂i exp(−T λ̂i)/n̂i !

Taking appropriate products we can find P(x |n, n̂). The excellent
property of the PPC approach is that the variance of P(x |n, n̂)
turns out to be σ23 ∝ g + ĝ or alternatively 1/σ23 = 1/σ̂2 + 1/σ2

where σ2 and σ̂2 are the variances of P(x |n) and P(x |n̂)
respectively. This follows from our observation that the variance of
P(x |n) was ∝ g and from the log-additivity of the PPC
formulation (see next slide): this is nothing more profound than
the outputs of the third population being the integral of the two
sensing populations.

Nick Jones Sampling II: Inference, Control and Driving of Natural Systems

Cue Combination with PPC II

It can be shown that the PPC approach (where cue-combination
closely matches what we observe in experiment) doesn’t just apply
for the specific model we constructed but to a larger class (see the
review on ‘Probabilistic brains’) and requires only that
P(n3|x) = P(n + n̂|x) ∝ P(n|x)P(n̂|x) where n3 is the number of
counts from the third population.

Nick Jones Sampling II: Inference, Control and Driving of Natural Systems

Practical

Implement the sensor array that we described earlier using the
Gillespie algorithm.
If you have time consider cue-combination.

[1] D. J. C. MacKay. Information Theory, Inference, and Learning
Algorithms. Cambridge University Press, 2003.

[2] A. Gelman et al. Bayesian Data Analysis 2nd ed. Chapman and
Hall 2003.

Nick Jones Sampling II: Inference, Control and Driving of Natural Systems

