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Sampling |

What we have covered so far.

In the next two lectures we will be providing an explanation of
sampling techniques. These will provide the ground-work for the
practical lectures where we will investigate mechanisms for
sampling considered in a neural setting.

What is Bayesian Cognitive Science?

Written for a popular audience:

[1] Statistics and the Bayesian Mind (2006) - Significance.
Written for a general scientific audience:

[2] How to Grow a Mind: Statistics, Structure, and Abstraction
(2011) - Science.

Or longer: A tutorial introduction to Bayesian models of cognitive
development by Perfors et al.

An example paper:

[3] Pure Reasoning in 12-Month-Old Infants as Probabilistic
Inference (2011) - Science.
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Implementing Bayesian Inference

Posterior is: P(0|D). We need to be able to sample from it in
order to calculate functions like means.
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Why is it hard to sample from P(x)? |

It is often hard to normalize P(x).

Consider P*(x) which is un-normalized.

Suppose that it is easy to evaluate P*(x) for any x.

Imagine that | evaluate P*(x) at a particular point x and it is very
large. What does this mean? Not much until | normalize.

If we consider the setting where x is N-dimensional. Imagine that
we discretize and evaluate P*(x) at S points per dimension. It's
clear that in order to normalize this discretized distribution we'd
need S" function evaluations. Bad news if S or N are moderate
sized.

See [4]. This is why the crude strategy | introduced in my first
lecture isn't such a great idea.
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Why is it hard to sample from P(x)? Il

What about, instead, sampling P*(x) at a R points by picking x
uniformly? A draw might be x,.

This helps calculate integrals of the form F = [ f(x)P(x)dx
(normalize by summing the values of P*(x) at each of the sampled
points).

F o~ SR F(x)P*(xe)/Zr with Zg = SR . P*(x,)

The issue with this strategy is that, for high dimensional functions
P*(x), it is very likely that we will get very poor sampling of the
underlying distribution (just as this strategy would give me a poor
representation of the average depth of a 10km by 10km region of
ocean including a small, Im by 1m, but terrifically deep borehole:
a random sampling of depths will miss the hole so my approximate
mean will thus be very inaccurate).

See [4]

Nick Jones Sampling |: Inference, Control and Driving of Natural Systems



Why is it hard to sample from P(x)? Solutions |

There exist a variety of methods to handle the problem of using
P*(x) to make draws from P(x) and then to calculate
expectations.

Importance and rejection sampling: guess in advance where your
distribution is localized and leverage that. This (implicitly) deals
with the issue we identified with uniform sampling from P*(x).
However you still need to be very accurate in high dimensions [4].
Importance sampling works for calculating expectations of
functions. Rejection sampling allows you to sample from P(x).
See [4] [5]
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Why is it hard to sample from P(x)? Solutions I

There exist a variety of methods to handle the problem of using
P*(x) to make draws from P(x) and then to calculate expectations.

Markov Chain Monte Carlo: walk around P*(x) in a manner which
seeks out the larger values: a mix of search and sampling.
Obviously this has the advantage that you don't need to specify in
advance where the distribution is likely to be localized. MCMC
exploits relative probabilities - or effectively - a local probability
estimation rather than global probability estimation - it looks at
the ratio of the unnormalized distribution at two points, x, P*(x)
and, x, P*(x’). This is, of course, the same as P(x) and P(x). So
we can make judgements about ratios without worrying about
normalization.

See [4] [5].
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Sampling and the brain

Authors have investigated how sampling strategies could be
implemented by neural populations. The basic logic is that if the
brain performs Bayesian inference then in order to deal with the
tricky integrals you need to sample. We will discuss this in more
detail next time.

Gibbs sampling [6] - Interpreting Neural Response Variability as
Monte Carlo Sampling of the Posterior

Importance sampling [7]- Neural Implementation of Hierarchical
Bayesian Inference by Importance Sampling

Particle filters and message passing [8] (we won't cover these).
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Rejection Sampling

We would like to draw from P(x). I'll draw on the board two
distributions P*(x) and cQ(x) where we know that we have a ¢
such that cQ(x) > P*(x)¥x.

As well as assuming we know ¢ we also suppose that it is easy to
sample from Q(x). Q(x) is called the proposal distribution.
Make two draws

@ draw xg from Q(x).
@ draw a uniform number, ug, on the range [0, cQ*(xo)]

If up > P*(xo) reject the sample and draw another.

Otherwise accept the same as a true draw from P(xp).

Research how rejection sampling performs for higher dimensional
problems and how the number of rejections depends on @, P* and
c.
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Reminder: Finding Expectations (when it is easy to

sample)

Suppose | want to find the expected value of f(x) with X
distributed as Q(x) and when it easy to draw from the normalized
distribution Q(x): F = [ f(x)Q(x)dx. We consider samples
{x1,..xn} drawn from Q(x) and evaluate F = 4; SN f(x)
(obviously N needs to be chosen carefully).
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Importance Sampling

Importance sampling is a sampling tool to approximate
expectations: F = [ f(x)P(x)dx. It is not a method to sample
directly from distributions (like Rejection Sampling).
I'll draw on the board two distributions Q(x) (from which it is easy
to sample) and un-normalized P*(x). The basic importance
sampling strategy of re-weighting draws from Q(x) can be
explained through a drawing.
We can rewrite

7 [ F)P*(x)dx = 2 [ F(x)[P*(x)/ Q(x)]Q(x)dx
Where Zy is the normahzer for P*(x) (hard to calculate and -
non—examinable - related to the Partition Function in Statistical
physics).
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Importance Sampling Il

7. [ FO)P*(x)dx = 2 [ F(x)[P*(x)/ Q(x)]Q(x)dx
We make a set of draws {xl,. xn} from Q(x) and consider
= [P*(x1)/ Q)] "
Zp = [[P*(x)/Q(x JQ(x )dX = N N i1 Wi
It follows that F = f f(x dx =

7 [ FO)IP*(x)/ Q(X)]Q( )dx = nz Li F(xi)wi
or F = —gt— L, f(x)w;

Research the shortcomings of Importance Sampling.
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What we've covered

The need for sampling

Rejection sampling

Importance sampling

Next time: Markov Chain Monte Carlo
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