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Mathematics for Reasoning with Genetic Circuits (better
inference through chemistry)

In this lecture we will provide some of the mathematical tools that
are employed in building genetic circuits. These circuits are
intrinsically stochastic and will be used for inference about an
external signal.
The material presented in this lecture will help provide the
ground-work for the next two practical sessions. It also helps
understand the following two papers: Libby et al [1] and Kobayashi
et al [2] which you are expected to read.
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What we will cover

Chemical reactions
The stochiometry matrix
Point process models
The well mixed limit
Gillespie algorithm
MWC model.
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Reminder Poisson Point Processes

Poisson Point Processes are purely specified by a rate, λ, at which
events happen per unit time. A point process specifies a sequence
of times at which events occur.
A classic example is the arrivals of buses: a certain number of
buses, λ, are expected to arrive per unit time.
The intervals, τ , between the events are distributed like λexp(−λτ)
and each inter-event interval is independent of the next.
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Reminder Poisson Point Processes II

You might have been introduced to radioactive decay
NucleusA→ NucleusB + alphaparticle. There will be a rate at
which any one nucleus decays, µ, and each decay is independent of
any other, so if the population of type A nuclei is N1 the rate at
which events occur is λ = µN1. After a decay event the new rate
will be λ = µ(N1 − 1): after each event, conditional on population
size, we update the rate at which events occur.
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Reminder Poisson Point Processes III

If I had two elements one unstable, and one fairly stable, then
the decay rate of one element will be faster than the other
µ1 > µ2.

A mix of N1 atoms of the first type and N2 of the second then
the rate at which my Geiger counter (radiation detector)
registers an event will be λ = µ1N1 + µ2N2.

When an event occurs I know that the chance that the decay
came from element 1 is µ1N1/(µ1N1 + µ2N1).
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Simulating Radioactive decay

Suppose we have N1 elements of type 1, N2 elements of type 2,
and decay rates of µ1, µ2 at time t.

1 The time of the next event, t + τ , can be calculated by
drawing τ from λexp(−λτ) with λ = µ1N1 + µ2N2.

2 When an event occurs I know that the chance that the decay
came from element 1 is p1 = µ1N1/(µ1N1 + µ2N1) so draw a
uniform random variable on [0,1] and if it exceeds p1 then
N2 → N2 − 1 else N1 → N1 − 1.

3 Update N1 or N2 as above and let t → t + τ and repeat.

This is the intuition behind the Gillespie algorithm for exact
stochastic simulation. We will first explain the connection to
chemical circuits and then formalize the above.
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Chemical Reactions I

We will consider the well-mixed scenario where we suppose that
spatial effects are not relevant. The only thing we need to track
about the chemical species are their amounts.
Chemical state vector: S(t) where Si (t) returns the number of
molecules of species i .
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Chemical Reactions II

Propensity function: the probability of reaction j occurring in
interval [t, t + dt), aj(S(t))dt (it is thus a time dependent rate).
Reaction events are Poisson point processes.

S1
k1−→ φ decay a1(S(t)) = k1S1.

S2
k2−→ S1 conversion a2(S(t)) = k2S2.

Or instead we could have two diffusing species that collide:

S1 + S2
k3−→ S3 reaction a3(S(t)) = k3S1(t)S2(t).

S1 + S1
k4−→ S4 bimolecular reaction

a3(S(t)) = k4S1(t)(S1(t)− 1)/2 (from nC2).
Stoichiometry matrix: Has as many columns as there are distinct
reactions and as many rows as there are distinct chemical species.
The stoichiometry matrix tells us how the numbers of species i are
changed under reaction j .
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When and what for next reaction?

Consider p(j , τ |s(t), t)dτ the probability that the next event that
occurs is reaction j in interval [t + τ, t + τ + dτ). If we can draw
from this distribution then, given an initial s(t = 0) (or distribution
over it) we have a process that allows us to simulate successive
chemical reactions. Given reaction j is drawn we can update the
vector s(t)→ s(t + τ) appropriately (just as we did with the
nuclear decays).
Our objective in the following is to find a simple expression for
p(j , τ |s(t), t).
We’ve used the notation that S(t) represents a random variable
and s(t) a sample from it.
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Deriving the Stochastic Simulation Algorithm

This is after Higham [3] but also see [4] and [5].
Define P0(τ |s, t) as the probability that no reaction takes place in
the time interval [t, t + τ). If we have M reactions:
P0(τ + δτ |s, t) = P0(τ |s, t)(1−

∑M
j=1 aj(s)dτ).

Rearranging we have

P0(τ+δτ |s,t)−P0(τ |s,t)
dτ = −asum(s)P0(τ |s, t)

where asum(s) ≡
∑M

j=1 aj(s). Noting P0(0|s, t) = 1 (because
nothing has happened at t) we can let dτ → 0 and solve the
corresponding ODE and obtain the solution:
P0(τ |s, t) = exp(−asum(s)τ).
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Deriving the Stochastic Simulation Algorithm II

Given P0(τ |s, t) = exp(−asum(s)τ) and recalling that
p(j , τ |s(t), t) is the joint probability on when and what the next
reaction is we can write:
p(j , τ |s(t), t)dτ = P0(τ |s, t)aj(s)dτ
The probability that nothing happens up to time t + τ and then
event j occurs in the interval [t + τ, t + τ + dτ). From the above
we have:
p(j , τ |s(t), t) = exp(−asum(s)τ)aj(s) =
aj (s)

asum(s)
asum(s)exp(−asum(s)τ) = prob event j× prob event at tau.
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Stochastic Simulation Algorithm

We found that: p(j , τ |s(t), t) = exp(−asum(s)τ)aj(s) =
aj (s)

asum(s)
asum(s)exp(−asum(s)τ) = prob event j× prob event at tau.

The distribution neatly factorizes (no surprise since we’re dealing
with independent events).
So to simulate the next chemical event we draw τ from
asum(s)exp(−asum(s)τ) and to find out what it is we use the

probability
aj (s)

asum(s)
. This is called the Gillespie algorithm [5]. This

approach exactly what we found from our intuitive treatment of
nuclear decay.
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Gillespie Algorithm

We found that: p(j , τ |s(t), t) = exp(−asum(s)τ)aj(s) =
aj (s)

asum(s)
asum(s)exp(−asum(s)τ) = prob event j× prob event at tau.

1 Given s(t) and the set aj(s(t))∀j find asum(s) ≡
∑M

j=1 aj(s).

2 Find the time t + τ of the next event by drawing from
asum(s)exp(−asum(s)τ).

3 Find the identity of the event by drawing from the discrete

distribution where the probability of the j th reaction is
aj (s)

asum(s)

4 Update s(t) to s ′(t + τ) by looking up the effect of reaction j
in the stoichiometry matrix. Repeat.

Nick Jones Inference, Control and Driving of Natural Systems



Co-operative effects

One way in which co-operative effects occur is when the binding of
one molecule to an enzyme modulates the rate at which
subsequent ones are bound. A classic example of this is the Monod
Wyman Changeux Model (their ’65 paper is worth a read).
We consider an enzyme having two states: an activated form B
and a not-activated form N. I’ll explain the notation below.

B0
k2


k−2

N0

We suppose that our enzyme binds a molecule s which then affects
the binding of subsequent molecules in a manner conditional on
whether it is in state N or B and depending on how many
molecules have previously been bound. We suppose that the N,
activated, state is faster at sequestering s than the non-activated
state. We suppose that our enzyme (whether in N state or B) has
two binding sites (The MWC-model is typically expressed for n
modifications rather than 2).
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Co-operative effects II

Toggle between activated and non-activated state: B0
k2


k−2

N0

Molecule s binding in the non-activated state:

N0
2sk1


k−1

N1

N1
sk1


2k−1

N2

and then the B state has a similar set of reactions:

B0
2sk3


k−3

B1

B1
sk3


2k−3

B2

We’ll be looking at these reactions in the practical - but there’s
slightly different notation - this reflects the variability across texts
and is worth knowing.
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Co-operative effects III

Let’s use ni and bi for i ∈ {1, 2, 3} to denote amounts of molecule
types.
Consider:

N0
2sk1


k−1

N1

If our system is in equilibrium then the flux to the left has to equal
the flux to the right:
n02sk1 = n1k−1 or n1 = 2sK1n0 where Ki = ki/k−i .
We can repeat this for each of the reactions that we considered.
We can also write an expression for the fraction of sites on
enzymes that are occupied with s molecules:

n1 + 2n2 + b1 + 2b2
2(n0 + n1 + n2 + b0 + b1 + b2)
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Co-operative effects III

Inserting expressions like n1 = 2sK1n0 into the below

n1 + 2n2 + b1 + 2b2
2(n0 + n1 + n2 + b0 + b1 + b2)

we can obtain an expression for the proportion of bound sites that
is only in terms of s:

sK−11 (1 + sK−11 ) + K−12 [sK−13 (1 + sK−13 )]

(1 + sK−11 )2 + K−12 (1 + sK−13 )2
.

If we had had n binding sites (rather than two) then the expression
becomes:

sK−11 (1 + sK−11 )n−1 + K−12 [sK−13 (1 + sK−13 )n−1]

(1 + sK−11 )n + K−12 (1 + sK−13 )n
.

The system can show a sensitive response to the amount of s. We
will be exploiting this in the following.
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What we’ve covered

Gentle introduction to Poisson point processes
Basics of chemical reactions
Stochastic simulation introduction
Co-operativity effects in chemistry
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