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The course so far

We looked at how biological systems might perform inference and
connected to samplers.

We looked at instantiations of deterministic control in two different
chemical circuits.

We moved to studying optimal control and closed by looking at
stochastic optimal control and at tractable versions.

We will move to considering ways in which biological systems
power themselves and how to analyse this.

First we will connect inference, control and driving. Support
reading for this lecture material can be found in Refs. [1, 2] (with
more context in Refs. [3, 4, 5]). This bridge is a lively area with
contributions by authors including Kappen, Toussaint, Todorov and
their collaborators.
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To cover

To come

@ briefly introduce Markov Decision Problems.

@ consider a Kullback-Leibler divergence-based class of costs for
MDPs which are linearly solvable.

© consider a particular inference task and show that its solution
is the same as calculating the preceding optimal cost-to-go.

@ show how there is a minimum energy cost for transforming one
distribution into another and this is the same cost as above.

© connect this back to biological systems

We will thus find that a particular cost-function is the minimum energy cost of control and that this minimum
energy cost has a close connection to a natural inference task: bridging inference, control and energy supply. This
will build on remarks | made at the close of the last lecture (but will consider a slightly simpler discrete time

setting).
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A note on dual control

Thus far we have considered optimal control when parameters and
dynamics are known and the state is known or unknown. In
principle there could be unknown parameters. One way of thinking
about this is in terms of priors over unknown parameters. If these
priors are parameterized then learning more about unknowns will
change the values of the parameters. We can thus think about
control as steering not just the state x but also parameters
governing our beliefs about unknowns 6. The optimal control will
thus yield a sequence of (vector) pairs ...(x¢, 0¢), (Xt+1,0¢41).... It
might be globally optimal to start off (when we have uncertain
beliefs) by implementing controls that lead to refined beliefs about
the relevant parameters 6 but which might not help change our
state x towards a desired location (an exploration before
exploitation approach) [5].
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A note on dual control |l

It might be globally optimal to start off (when we have uncertain
beliefs) by implementing controls that lead to refined beliefs about
the relevant parameters 6 but which might not help change our
state x towards a desired location (an exploration before
exploitation approach). E.g. you spend time and energy finding
out how the gearbox works before going on the motorway (or
babies don’t have holding forks as a priority). In this dual control
we expect our control moves to help us both learn/infer and obtain
our objective in x space. In nature x might encode the orientation
of a bacterium and its velocity but 0 is also physical and might be
encoded by the degree of phosphorylation of some of its proteins.
When we analyse a biological system the distinction between x and
6 might thus seem arbitrary.
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There is a connection between Kalman filters and linear quadratic
Gaussian control which can be explored here: [1].

Introduce a natural class of control problems.

Introduce a particular inference problem.

Show that the inferred probability satisfies the same equation as
(an exponentiated version of ) the optimal cost-to-go.
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Markov Decision Problems

An MDP is an optimal control problem with finite controls and
states and probabilistic state transitions (which are conditional on
the controls).

We can suppose that our uncontrolled system has dynamics:
p(x'|x).

We suppose that the controlled dynamics yields a different
distribution h(x'|x, u(x)) we will refer to this conditional
distribution as u(x’|x) for short (tracking the notation in [1] as we
mostly will for the discussion of the duality Todorov pointed out).
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A natural choice of cost function

We will consider costs of the form:

w(x, u, t) = q(x) + D(u(x'|x)||p(x’|x)) (and will be considering
final costs W(x, T) = 0).

D(u(x'|x)||p(x"|x)) is the Kullback-Leibler Divergence. In the
discrete case this is >, u(x’|x) log zgjm The form of g(x) is
unconstrained.

We will relate this, at the close of the (extended) lecture, to a
lower bound on the amount of work that needs to be done to go
from p(x’|x) to u(x’|x). The Kullback-Leibler Divergence is not
symmetric and has a diversity of elegant interpretations.

We now discuss the case u(x’|x) = p(x’|x) and the case x” where
u(x"|x) # 0 but p(x"|x) = 0.
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Linearly Solvable MDPs

Optimal cost-to-go is thus:
S, ) = i [a(0) + D I1p(C 1)) + Eygurpg UK £+ )]

where E,(,/|5) encodes an expectation when x" is distributed as
u(x'|x).
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Linearly Solvable MDPs I

J(x,t) = min [q(x) + D(u(x'1x)[|p(x'|x)) + By [J(, t +1)]]

u(x'x)

Defining ¢ = E(v|x) exp(—J(x', t + 1)) then a small amount of
rearrangement of the above yields:

= glx)— min ulx'|x p(x'|x) exp(—J(X, t + 1))
J(x: 1) = alx)-log &+ min. [D< OBl P >]

We can minimize this by setting
(X |x, t) = %p(x’\x) exp(—J(x, t + 1)) which sets the
KL-divergence term to zero:

J(Xa t) = q(X) - IOg Ep(x’|x)exp(_J(X,a t+ 1))
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Linearly Solvable MDPs IlI

u(X|x, t) = %p(x’\x) exp(—J(x’, t + 1)) has a simple
interpretation as rescaling the transition dynamics, under passive
distribution p(x’|x), by how expensive the states x’ will prove to be
given J(x',t +1).

We can rewrite the optimal cost-to-go as:

2(x, t) = exp(=q(x))Ep(e ) [2(X, t + 1)]

where z(x, t) = exp(—J(x, t)). This is linear in z and much easier
to solve than unconstrained MDPs [4].
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(Tick) Introduce a natural class of control problems.

Introduce a particular inference problem.

Show that the inferred probability satisfies the same equation as
(an exponentiated version of ) the optimal cost-to-go.
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An HMM forecasting task: the chance of a string of free

lunches?

A traveller moves from city state to city state according to some
transition matrix p(x’|x) (and later we'll associate a transition cost
for these moves).

Each city state x has different levels of meanness g(x) such that
the chance of her getting a free lunch p(y: = 0|x¢) = exp(—q(x¢))
is higher or lower depending on the meanness of the city (x; is the
state at time t). The probability of her getting a free lunch will be
related to a state cost and a ‘free-lunch event' tells us something
about the state x.

If all that we can observe is whether her lunch is free or not
through time then this is a Hidden Markov Model. We undergo
Markov dynamics in x according to p(x’|x) but x is hidden and we
only observe the binary variable y with probability of y = 0 being

exp(—q(xt))-
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An HMM forecasting task: the chance of a string of free

lunches? Il

A traveller moves from city state to city state according to some
transition matrix p(x’|x).

Each city state x has different levels of meanness, g(x), such that
the chance of her getting a free lunch is

p(yr = 0xt) = exp(—q(xt))-

HMM forecasting task: Given that she starts off at x, t, and given
q(x) and p(x’|x) what is the chance that she has only free lunches
until time T7 l.e. given the current state predict one particular set
of future observations y;.7 = 0. l.e. p(yr.7 = 0]x;).

The chance of a sequence of free lunches depends on both the
local meanness g(x) (state-cost) and also how likely it is that the
traveler's dynamics, p(x’|x), take her to generous places. [It's a
forecasting problem but HMM's are generically set up for the
inference task of, given observed free lunches, try to infer
quantities like x, g(x) and p(x’|x).]
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Probability of the total free lunch run?

Define r(x, t) = p(ye.7 = 0]x¢).
It follows that

r(x, 1) = plye = Olxe) 3 p(x ) (', £ + 1)

r(x,t) = exp(—q(x)) Zp "|x)r(x', t + 1)

or

r(Xa t) = eXp(_q(X))]Ep(x’|x)r(X,a t+ 1)
this has the same form as the equation we derived for the optimal
cost-to-go:

z(x, t) = eXp(_q(X))Ep(x/|x) [Z(X/’ t+1)]
where z(x, t) = exp(—J(x, t)).
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Intuition behind duality

We found that r(x, t) < exp(—J(x, t)). Meanness g(x) is state
cost q(x).

If r(x,t) is large (J(x, t) small): likely to have a run of free
lunches = low cost/ easy to control to obtain this cheap outcome.
Passive (free) dynamics takes me to places where I'm likely to get
lunch for free (low meanness g(x)).

If r(x,t) is small (J(x,t) large): Unlikely to have all free lunches
= extensive intervention (departures from passive dynamics)
required to obtain such low state cost trajectories. Controlled
(expensive) dynamics is required for many free lunches.

Initial conditions x which are unlikely, under passive dynamics, to
move through a sequence of low-cost configurations are ones which
require a high control cost.

In statistical physics we are accustomed to seeing exponentiated
energies being related to probabilities; we will refine this.

What if g(x) = 07 (equivalent to setting controlled dynamics to be
the passive dynamics
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(Tick) Introduce a natural class of control problems. MDPs with
KL costs. These can naturally be related to the formulation of
Kappen and extended to the continuous time setting.

(Tick) Introduce a particular inference problem. The probability of
a particular sequence of configurations given costs for each state
and certain transition dynamics.

(Tick) Show that the inferred probability satisfies the same
equation as (an exponentiated version of) the optimal cost-to-go.
This duality holds in the continuous time setting [1].

Now we will investigate why MDPs with KL costs - as well as
yielding simple solutions and being sensibly related to inference
tasks - are particularly appropriate. This will be tracing the nice
treatment in Ref. [2].
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Szilard Engine

Work done in compressing a single molecule of gas in a cylinder
from V to V/2. If an ideal gas in isothermal limit then PV = kg T
and W = — \\///2 PdV = kg T log2. Which half of the cylinder
contains the gas is a choice. If we know the side with the molecule
then we can recover work by inserting a partition and arranging
pulleys etc so that the molecule can collide with the partition to do
work. After doing work colliding with the partition the molecule is
then uniformly distributed in the cylinder. There is thus an
interplay between work done and information about where the
particle is (its distribution within the cylinder).
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Szilard-Landauer Correspondence

We will go through the proof showing that kg T times the
Kullback-Leibler divergence between distributions v and 7 is equal
to the free-energy difference between these states.

We suppose we have n system configurations and the it
configuration is assigned the energy E(i) and we have a
temperature T. We further assume that configuration i occurs
with probability u; under distribution u. Average energy (E),
under u is thus Y7, u;E(i) and entropy H(u) is Y. ; —ujlog u;.

Definitions
@ Free energy at temperature T: Fg 1(u) = (E), — kg TH(u)

@ Partition function: Zg 7 =Y, exp(—%
@ Gibbs distribution: m; £, = 1-exp(— . 4)

We will now discuss the interpretation of the free energy.
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Szilard-Landauer Correspondence I

Theorem

Szilard-Landauer Correspondence
Given the Gibbs distribution 7 and distribution u then
FE7T(U) — FE,T(TF) = kB TD(U||7T)

We can thus interpret taking a system with equilibrium distribution
m = p and converting it into one distributed as u as requiring
energy > kg TD(u(X'|x)||p(x’|x)). [Sometimes physical
understanding will hand us the set of E(i) but generically we can,
given a distribution 7, construct a corresponding T and set of

E(i)]
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Szilard-Landauer Correspondence Proof

Fe1(u)=(E)y — kg TH(u) = >_7_; (u;E(i) + kg Tujlog u;). From
the Gibbs distribution we can rearrange for E;:

Ei = —kpg T logm; — kg T log Z and then eliminating E; from
Fe,7(u) and rearranging yields:

Fe 1(u) = kg TD(u||7) — kg T log Z.

One can show that Fg 7(m) = —kg T log Z by writing:

FE7T(7T) = <E>ﬂ- — kg TH(7T) = 27:1 7T,'E(i) + kg T} |og7r,- and

: _ 1 E(i)
using mi g T = Eexp(— oT)
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Dualities and the Minimal cost of MDP control

Given a controlled distribution u(x’|x) and passive distribution
p(x’|x) we know that the minimum energy cost of this control is
> kg TD(u(x'[x)||p(x'|x)).

Thus the cost of control of MDPs is always greater than or equal
to kg TD(u(x'|x)||p(x’|x)). A cost function with this term is thus
always a lower bound on the actual cost.

The choice of cost function

w(x, u, t) = q(x) + D(u(x'|x)||p(x'|x)) is thus particularly natural
and the duality between inference and control particularly relevant
(since it occurs for a cost function which is arguably fundamental).
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Implications for Natural Systems

We can see that natural systems will have a cost function which
will also be bounded from below. We have previously seen a
connection between Bayesian inference and samplers. We have
discussed how some chemical and neural systems can act like
samplers. We have now seen a connection between a set of
inference tasks and a well motivated suite of optimal control tasks.
Constructing chemical samplers suitable for optimal control is a
wide-open research problem, but despite this, we know something
about their physical limits.
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