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Aspects of Stochastic Optimal Control

In this lecture we will particularly briskly investigate selected topics
in Stochastic Optimal Control. The treatment here is remarkably
brief and selective.

We will have one more lecture on topics in Control in which we will
investigate the bridge between topics in inference and control. This
will use up a practical slot. We then turn to driving in our final
week.
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Tasks
Beyond asking you to check the more obvious statements in the handouts I have made the following requests. The
objective here is to ensure you’ve actually followed up on the material and understand it. Beautiful expositions are
not required - just demonstrations of understanding.

1 I Research how rejection sampling performs for higher dimensional problems and how the number of
rejections depends on Q, P∗ and c. You’ll find answers to this in MacKay. Output: This can be
summarized in a page or less.

2 I It also helps understand the following two papers: Libby et al [4] and Kobayashi et al [5] which you are
expected to read (but you are by no means expected to understand these fully). Output: read them.

3 I These reviews are reasonably easy read and also combine to give an introduction to Bayesian cognitive
science more generally: a) Probabilistic brains: knowns and unknowns. Alexandre Pouget, Jeffrey Beck,
Wei Ji Ma and Peter Latham, Nature Neuroscience, 2013. b) Statistically optimal perception and learning:
from behavior to neural representations. József Fiser, Pietro Berkes, Gergő Orbán and Máté Lengyel,
Trends in Cognitive Sciences, 2010. Please read them (they are pretty interesting). Output: read them.

4 I Find and understand a brief proof of Landauer’s principle (if you can’t find one by the time we hit control
theory ask me). Output: half a page or less.

5 I Gibbs sampling is called Glauber dynamics in the physics literature (go and have a very brief read about
Glauber dynamics). Output: Just a few sentences.

6 C Read the introduction to Sontag [11] and, in particular, convince yourself of the role of PID control in
stabilizing an inverted pendulum. Output: A page or less of explanation of this system.

7 C “For the linear system described to be controllable we require the matrix with columns Ãib where
i = 0, .., n − 1 (and is an exponent not an index) with x ∈ Rn to be invertible. Look at the treatment of
controllability by Zabczyk [9] (or in the other sources provided) and prove that this holds.” Output: A
precis of the proof in a page.

8 C Read about, and be able to explain, the Ott, Grebogi, and Yorke algorithm for stabilizing chaotic
dynamics (you’ll find an account of it in ref. [7]). Output: A precis of the method in a page or less.

9 C Please convince yourself of the proof of Bode’s Integral Formula - you’ll find it provided in [6]. Output:
A precis of the proof in a page.

10 C Be able to derive the optimal control and cost-to-go of Linear Quadratic Gaussian control [1]. Output: A
precis of the proof in half a page. Read [12] you do not need to understand fully. Output: Read it.
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Noisy dynamics

We now consider Gaussian perturbations to our dynamical system.

dx = f (x , u, t)dt + dξ

These can be distinct for different state variables and element of
dξ can be correlated between them: < dξidξj >= νij(t, x , u)dt
(though uncorrelated in time). Note that the control and noise
need not be independent.
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Expected cost and optimal cost-to-go

dx = f (x , u, t)dt + dξ

C (x0, u(0→ T )) = 〈W (xT ) +

∫ T

0
dt w(x , u, t)〉

Any particular control u(0→ T ) (with i.c. x0) thus specifies an
ensemble of trajectories with a corresponding distribution of costs
from which we can calculate an expected cost.

J(t, x) = min
u

w(x , u, t)dt + 〈J(t + dt, xt+dt)〉

Where the expectation occurs because, while we know our location
and control precisely, we do not know precisely where this will take
us. I’ll discuss u′(x , t) here. Even though we’ve precomputed
u′(x , t), it’s useful when buffeted by (specifically unanticipated but
generally modeled) noise.
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Stochastic Hamilton Jacobi Bellman equation

J(t, x) = min
u

w(x , u, t)dt + 〈J(t + dt, xt+dt)〉

We can Taylor expand J(t + dt, xt+dt). We have to go to second
order in dx since < dx2 >= O(dt) (basics of SDEs).

〈J(t+dt, xt+dt)〉 = J(x , t)+dt∂tJ(t, x)+〈dx〉∂xJ(t, x)+
1

2
〈dx2〉∂2

xJ(t, x)

Noting that < dx >= f (x , u, t)dt and < dx2 >= ν(t, x , u)dt we
obtain:

−∂tJ(t, x) = min
u

(w(x , u, t) + f (x , u, t)∂xJ(t, x) +
1

2
ν(t, x , u)∂2

xJ(t, x))

This is the Stochastic HJB equation. We have picked up a
diffusion-like term in our dynamics.
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Linear Quadratic Gaussian Control

Linear dynamics, quadratic costs, Gaussian (white) noise.
Linear Dynamics with Gaussian noise:

dx = [Ax + Bu]dt + Fdξ

Quadratic Cost:

w(x , u, t) =
1

2
uTRu +

1

2
xTQx

Final Cost:

W (x) =
1

2
xTQT x

Where we can have A,B,F ,R,Q time varying.
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Linear Quadratic Gaussian Control II

One can show (using the stochastic HJB) that the optimal
cost-to-go is of the form:

J(x , t) =
1

2
xTV (t)x + a(t)

(with V symmetric) and the corresponding optimal control:

u′(x , t) = −R−1BTV (t)x

where V (t) is obtained by solving:
−V̇ = Q + ATV + VA− VBR−1BTV :
and −ȧ = 1

2Tr(FFTV ) with conditions V (T ) = QT and a(T ) = 0.
Please prove the above - I’ve modeled my notation on Todorov [1]
so the proof presented there should be particularly straightforward.
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Linear Quadratic Gaussian Control III

Notably the optimal control is independent of F and noise effects
can thus only modulate the total cost.
Dynamics: dx = [Ax + Bu]dt + Fdξ
Cost: w(x , u, t) = 1

2u
TRu + 1

2x
TQx

Final Cost: W (x) = 1
2x

TQT x
Optimal cost-to-go: J(x , t) = 1

2x
TV (t)x + a(t)

Optimal controls: u′(x , t) = −R−1BTV (t)x
Dynamics of V: −V̇ = Q + ATV + VA− VBR−1BTV
Dynamics of a: −ȧ = 1

2Tr(FFTV )
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Non-exam extension

This is non examinable.
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A more general class of system

Dynamics: dx = (b(x , t) + Bu)dt + dξ
Uncontrolled dynamics: arbitrary. Noise: Gaussian and
uncorrelated (assumed independent of u). Control: limited to be
linear.
Cost: w(x , u, t) = 1

2u
TRu + Q(x , t)

Costs are quadratic in the control but are arbitrary otherwise.
Final cost: W (x) = φ(xT )
Constraint: ν = λBR−1B
The constraint has two notable features that we can observe in the case

B = I and R, ν diagonal. First we cannot have control in dimension i if

νii = 0. Second if my passive dynamics/noise is large in dimension i (νii
large) then it’s cheap for me to push this system around in direction i

(Rii small). This is natural for systems generically - we might think that

it is easier to control a system to something close to where it might have

gone anyway [12].
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A more general class of system II

Dynamics: dx = (b(x , t) + Bu)dt + dξ
Cost: w(x , u, t) = 1

2u
TRu + Q(x , t)

Final cost: W (x) = φ(xT )
Constraint: ν = λBR−1B
We thus have a simple control (relatively simple noise) but a
complex system we’d like to control with complex costs. We have
also introduced a constraint which is strong but natural. I
recommend reading Ref. [3] (it helps understand the
non-examinable practical). It turns out one can make analytical
progress with this system (in the examinable material we’ll look at
a discrete time variant of this system).
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A more general class of system III

Dynamics: dx = (b(x , t) + Bu)dt + dξ
Cost: w(x , u, t) = 1

2u
TRu + Q(x , t)

Final cost: W (x) = φ(xT )
Constraint: ν = λBR−1B
We can thus write the stochastic HJB as:
−∂tJ(t, x) = minu( 1

2u
TRu + Q(x , t) + (b + Bu)T∂xJ(t, x) +

1
2Tr(ν(t, x , u)∂2

xJ(t, x)).
Optimizing over u yields: u′(x , t) = −R−1B∂xJ(t, x). Plugging
this optimal control back in to the stochastic HJB, defining
J(x , t) = −λ logψ(x , t) and using the constraint discussed yields
an equation linear in ψ: ∂tψ =

(
V
λ − bT∂x − 1

2Tr(ν(t, x , u)∂2
x )
)
ψ.

This can be solved backwards in time starting with
ψ(x ,T ) = exp(−φ(x)/λ) (since J(x ,T ) = φ(xT )).
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Using diffusions to solve a large class of control problems

Without proof (though it is not complicated: see [3]) it turns out
that ∂tψ =

(
V
λ − bT∂x − 1

2Tr(ν(t, x , u)∂2
x )
)
ψ can be solved by

solving the diffusion process:

∂tρ =
(
−V
λ − ∂x(bρ) + 1

2

∑
ij νij

∂2

∂xi∂xj
ρ
)

. We discover we can use

solutions ρ of the preceding to find J(x , t) using the form
J(x , t) = −λlog

∫
dyρ(y ,T |x , t)exp(−φ(y)/λ).

This is great: we can thus evolve ρ forward in time to solve for
J(x , t). In particular we can construct J(x , t) by running Monte
Carlo simulations consistent with the dynamics of ρ (initialized at
x , t) and then taking their weighted sum at time T .
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Using diffusions to solve a large class of control problems II

∂tρ =
(
−V
λ − ∂x(bρ) + 1

2

∑
ij νij

∂2

∂xi∂xj
ρ
)

.

J(x , t) = −λlog
∫
dyρ(y ,T |x , t)exp(−φ(y)/λ).

This is great: we can thus evolve ρ forward in time to solve for
J(x , t). In particular we can construct J(x , t) by running Monte
Carlo simulations consistent with the dynamics of ρ (initialized at
x , t) and then taking their weighted sum at time T . We thus
initialize a particle i at (x , t), record its location yi at T and
weight it by exp(−φ(yi )/λ). If a particle is absorbed (by the
V (x , t) field – I’ll explain) we weight it to zero.
J(x , t) ' −λ log 1

N

∑N
i∈unabsorbed exp(−φ(yi )/λ).

ψ(x , t) = 1
N

∑N
i∈unabsorbed exp(−φ(yi )/λ)
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Using diffusions to solve a large class of control problems II

∂tρ =
(
−V
λ − ∂x(bρ) + 1

2

∑
ij νij

∂2

∂xi∂xj
ρ
)

.

J(x , t) = −λlog
∫
dyρ(y ,T |x , t)exp(−φ(y)/λ).

J(x , t) ' −λ log 1
N

∑N
i∈unabsorbed exp(−φ(yi )/λ).

ψ(x , t) ' 1
N

∑N
i∈unabsorbed exp(−φ(yi )/λ)

We can then deduce our optimal controls from our optimal
cost-to-go:
u′(x , t) = −R−1B∂xJ(t, x)
In the case where the optimal control is unique we can
approximate u(x , t) directly through the form:
u(x , tj) ' 1

ψ(x ,t)

∑N
i∈unabsorbed exp(−φ(yi )/λ)ξj where we are

considering the discrete time of our simulation and ξj is the
perturbation at time j . This is particularly cute since it tells us that
we can interpret our noise perturbations which are successful at
steering the particle as controls. We are now set for the practical.
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Remark

I’ve just taken us through what is sometimes called Path-Integral
Control [3]. It relied on this constraint (inversely) connecting my
the costs of control in a direction to whether the noise was strong
in that direction (scaled by a parameter which can be interpreted
as a temperature).
It turns out that this approach can be considered as a special case
of a more general approach to control that looks at the
Kullback-Leibler divergence between the probabilistic effect of a
control p(xt+1|xt , ut) compared to uncontrolled dynamics
p(xt+1|xt , ut = 0) [12] (take a look it’s a great read). If the
distribution associated with my control is close to that of my
passive dynamics I consider this low cost. I thus pick up a term in
my cost function which is the Kullback-Leibler divergence between
p(xt+1|xt , ut) and p(xt+1|xt , ut = 0). There is an energetic
interpretation to this since the amount of work one can extract if
p(xt+1|xt , ut) relaxes to p(xt+1|xt , ut = 0) is specified by the
Kullback-Leibler divergence.

Nick Jones Elements of Stochastic Optimal Control: ICDNS



Summarizing the week

I’ll give a summary of the ideas that we’ve investigated this week.
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