Web-based supporting material for “Bayesian Inference
for Dynamic Cointegration Models: a case study on the
Soybean Crush Spread”

Maciej Marowka

Department of Mathematics, Imperial College London, UK.
E-mail: maciej.marowkal4@imperial.ac.uk

Gareth W. Peters

Department of Actuarial Mathematics and Statistics, Heriot-Watt University, Edin-
burgh, UK.

Nikolas Kantas

Department of Mathematics, Imperial College London, UK.
Guillaume Bagnarosa

ESC Rennes School of Business, France.

Summary. In this document we provide the derivations for the posterior conditional
distributions and numerical results for the Markov Chain Monte Carlo (MCMC) sam-
pler on simulated data.

1. Introduction

Recall we interested to simulate from the following posterior:

pla, B, H, R, B,Q,&, X|Y) o p(Y|e, 3, H, R, §, X)p(X|B, Q)
x p(a|B)p(B)p(§)p(B)p(Q)p(H)p(R)

where the likelihood is from

Vi=Yi1+aBYia+m+g+e, e~NOR), (2)

with
e = HX, (3)
Xy =BX; 146, 6 ~N(0,Q), x9=0 (4)

and

g=b+Y &lpery, (5)
=2
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where Z; denotes a specific interval in time such as the i-th week or month. For the
priors we use

~ Nii(0,08Ik, 05 1r),

~ Wl (v, 051k),
Nio(0, 0% 1, 0h Ii),

~ Wl vg,o%1,),
Ny (0 Ué[n,Ué m)s

mD O W
2

and for the hyper parameters:

0-12'-1 ~ [G(aHaﬁH)7
O-QB ~ IG(aBaﬁB)v
012_2 ~ G(OéR,,@R).

1.1.  Notation

We will use the following notation: N (u, ) will be multivariate normal with mean
vector € R™ ! and covariance matrix ¥ € R"*". We denote a Gaussian random
(nxT) matrix by Y ~ N, 7(p, X, ¥) with row dependence in (n x n) covariance ma-
trix 3 and column dependence in (7" x T") matrix ¥. Matrix variate Inverse Wishart
distribution with the support on symmetric positive definite matrices (n x n) with
v > n — 1 degrees of freedom and scale matrix ¥ is W~ (v, ¥). Gamma and Inverse
Gamma distributions will be denoted as G(cy, 5y) and IG(cv, 5) respectively with
scale and shape parameters o, and 3,. By I, € R™*" we will refer to the square
identity matrix; Vec(M) denotes the matrix vectorization operator which transform
a matrix M into column vector in which columns of M are successively stacked.
Furthermore we denote the Kronecker product or tensor product between two ma-
trices by ® and Kronecker sum as ¢. For a sequence y1, 2, ..., yr, we will also use
the concise notation y.7.

2. Expressions for the posterior conditionals

For the convenience of the reader we state again Algorithm 1 used in the paper.
The expressions of all distributions used in this algorithm are stated below in the
Proposition 1. The derivations are presented in Section 3.3
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Algorithm 1 A Partially Collapsed Gibbs Sampler to simulate from (1)

Initialization: Draw the parameters from their respective prior distributions For

1=1,2,...,N: Sample
Vec(B?) ~
L ogt~p(|BY),

. Q' ~p(|B' 2",
Vec(H') ~

o 1.

o 2
3
o 4.
5
6
7. 0%’ ~p(|RY),

Vec(a*) ~

9. Vec((B*) )
and o' = A*(B*TB*)1/2

e 10. Vec(&) ~

e 8.

e 11. Sample z* ~ p(-ly,

p("Qi_lvxi_lyo'

B

p(.|y7aifl’6i71’Ri71 .I‘Z 1 {z 1

. Rl ~ p(’ya ai_176i_17 Hivx

Y

21 1)

9

i—l’gi 1 21 1)7

OR

p(ly, A*, H', R', BY, Q%,¢1). Compute

_ B*(B*TB*)fl/Z

aia Bia Hi7Ri7 Biv QZ)7
ai76i7§ia Hiv Ria Bia Ql)

Proposition 1. The conditional distributions used in Algorithm 1 are as follows:

pB(Vec(B)|Q, X)

pQ(Q|B, X)

pu(Vec(H)|a, B,Y,€)
pr(R[Y, o, B,€)
pa(Vec(a)|Y,8,H, R, B,Q,§)
ps(Vee(BD)|Y, A,H,R,B,Q,¢€)
pe(Vec(§)|Y,o, B, H, R, B,Q)

)

P2 (ORIR

Po2, (U%I|H)

Po3 (05|B)

:N( ost? EB

=N

=I1G (a2,

=1G(ags,

post)

=W v + T, XX + 04 Ix),
:N(:U’;Ii)st’ EH

post)

W 1w+ T,YYT + o1,

:N(:U’gosh post) (6)

:N(Nfosn Zpost) (7)
(Mf;ostu post)

:G(%m%,ﬁg 4 ;tr(R ),

+ 77 Boz, + §V66(H)TVGC(H))7

K? 1 T
+ 7,60123 + §Vec(B) Vec(B)).
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The parameters of each distribution are given by

(52.)7 = (X ol (@@ )X @ Ix) + (08) ke,
st = Smat(Xg @ Ig) T (92,Q 7 vec(X)),

(SH)" = XTelk) (@R YXT @ 1) + (on) ke,
:U’g)st = E;ﬁist((XT®IK)T(@tT:1R_1)V€C(?))a

(Zpost) = MIVIM. + ()71,
:u;)ost = E}Jost(M-TV_lzj):

where we use - for either o, B,§ and define V= ol R+ HVHT, y=Vec(Y) —
(TT@ITL)&') Ma :~}/()TB®ITH MB = }/()T@Oéy X = (1'1 - Bx07 T y T — BIET—I) ) XO =

(o, ..., xr_1), H=(Ir®H), V= (ATal  Q 'A)" and A = Iy —(Ir®B)PM,
with

P _ [ O s i (T-1) Ik xk }
Ixr-1yxxmr-1) Ox(T-1)xK

M - [IK(T—l)xK(T—l) 0K><K(T—1):|'
Or(r-1)xK Ok x K

3. Numerical examples using Simulated Data

In this section we demonstrate the performance of Algorithm 1 for a simulated
data-set using n = 4, R = diag(1,1,1,1) and @ = diag(1,1). The numerical exam-
ples presented in this section aim to assess the accuracy of the estimation and the
improvement of Algorithm 1 over a standard Gibbs sampler based on data augmen-
tation; Carter and Kohn [1994], Frithwirth-Schnatter [1994], De Jong and Shephard
[1995]. In these experiments we ran Algorithm 1 for N = 10° and discarded 10*
samples for burn-in. Furthermore, throughout this section we will resort to using
the posterior means as point estimates.

Posterior credible intervals, estimated path and true data generating p are pre-
sented in Figure 2, posterior densities for IT = a7 in Figure 3 and box plots for
the seasonal components £ in Figure 4. The estimation seems to be very accurate.
Furthermore, for a sample output II) = a® 0T we compare Algorithm 1 with
a standard Gibbs sampler in terms of autocorrelation functions in Figure 1 and
Effective Sample Size (ESS) presented in Table 3. It is clear that in terms of mixing
and efficiency Algorithm 1 shows superior performance.

3.1.  Derivations for the posterior conditional distributions in Algorithm 1

We begin with some auxiliary results and then proceed withe the proof of Proposi-
tion 1
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M, |, | Ils | I, M, |, | Ils | I,
I, | 0.40 | 0.63 | 0.44 | 0.31 T, | 0.34 | 0.31 | 0.24 | 0.17
T, | 0.74 | 0.70 | 0.48 | 0.53 M, | 033014022015
;. | 0.62 | 0.51 | 0.49 | 0.39 T | 0.20 | 0.09 | 0.10 | 0.10
T, | 0.40 | 0.46 | 0.37 | 0.35 T, | 0.19 | 0.03 | 0.09 | 0.10

Table 1. ESS for each of sixteen entries of Il = af with Algorithm 1 (left table) and standard Gib

sampler (right table). The values suggest that the proposed algorithm is consistenly better than a stand:z
systematic scan Gibbs.

3.2.  Auxiliary results
Proposition 2. For X = (z1,...,x7) given by x; = Bxy_1 + 0, (with xo =0,) we
have that Vec(X) ~ N(0,V), with V = (AT @, Q7'A)™! and A = Irx — (I7 ®

B)PM, with P = Ok rc(r-1) T and M — | Ix@-1  Orxk@-1)
Ixir—1y  Orr-1)xK Or(r-1xx  Orxk

Proof. We can rewrite x; = Bxy—1 + 0; in a matrix regression format by stacking
vectors of the series realizations x; in the columns of matrix X,

X = BXo + 1.1,
where Xo = (g, ...,xp_1). After applying the vectorization we get
Vec(X) = (It ® B)Vec(Xy) + W

where W ~ N(0, @ZTZIQ). Recall the permutation matrix P is invertible and hence
we can write

Vee(X) = (Ir ® BYPP Wee(Xo) + W

(X)
Vec(X) = BVec(X())+W
Vec(X)=CVec(X)+ W
AVec(X) =W (8)

where welet B = (Iy®@B)P, X}, = (z1,..., 27 1,20) C = B Ly Oxr—nxx
~ B Orkxrr-1)  Orxk
and A = Itk — C. From (8) we get

p(Vee(X)) o exp(—5 (AVee(X))" @f_, Q7 ((AVec(X))

1

2
~ exp(—%vec(X)T(ﬁT eT |, Q' A)Vee(X)).

and so Vec(X) ~ N(0,V), where V = (AT oL, Q1AL O

Note that in Proposition 2 we use partial collapsing and sample the cointegra-
tion parameters in (6), (7) without conditioning on the hidden states X,. This
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significantly reduces dimensionality in Gibbs updates and improves the mixing of
the sampler.

We will make extensive use of the lemma below, which allows for analytic rep-
resentation of the full and marginalized conditionals in Gaussian matrix variate
likelihood model.

Lemma 1. Consider a Gaussian vector regression model with output Y € R™ ! and
input X € R™™ where

Y=X0+¢

and 6 € R™! and € € R™! is an innovation error vector such that ¢ ~ N(0,Xy).
Suppose that a conjugate prior of 6 is a Gaussian vector p(f) ~ N(mg, Xg). Then

p(0|Y) ~ N(my, i;), where
o= (TS + 57
mo = Mo(XT531Y + 35 Mmy).
The proof is omitted as it follows by straightforward linear algebra.

Lemma 2. Suppose Y := [V1,Va, ..., Vn] is a matriz whose columns are i.i.d samples
from N(0,%). If & ~ W™l (1, ), then p(Z|Y) ~ W v 4+ n, T + YYT).

See Gupta and Nagar [1999] for a proof.

3.3.  Proof of Proposition 1
We consider each posterior conditional separately.
pe(Vec(B)|Q,x1.7): As in the proof of Proposition 2 above,

xy = Bry_1+ 0 V=11

can be rewritten in matrix regression format as:

X=BXy+W
with W = (61,02, ...,07). Applying matrix vectorization operator:
Vee(X) = (X @ Ix)Vee(B) + w, (9)

where w ~ N (0, @?ZlQ). Hence by multivariate normal conjugacy implied by Gaus-
sian likelihood in (9) and the results of Lemma 1, the conditional posterior of Vec(B)
is also multivariate normal

VGC(B)|Q, X ~ N(Mfostv Zfost)’

(10)
where

She = (X5 @ Ix)(®21Q ) (Xg @ Ix)" + (05) 2 Ik2)""

NpBost = E;Eost(()(g1 ® IK)T(GBthlQil)Uec(X))'
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We proceed with po(Q|B,z1.7). We can simulate from full conditional update
by exploiting conjugacy class relations of normal and inverse Wishart distributions
as well as conditional independence of () and observed time series realizations given
latent path. The hidden model likelihood can be written as

xt:Q/rt, Ty =x¢ — Bay_1, x9g =0,

with r; i.i.d. multivariate standard random normal. Since the prior for @ is
W (vg, O'éIK), then by the Lemma 2 we have

QIB,X ~ W vg+T,XX" + 0} Ix), (11)

with X = X — BXo.

For computing py(Vec(H)|a, B,Y,z1.7.€): Note that, conditioning on the re-
alization of latent path, observation model parameters are independent of hidden
static parameters. Recall, Y =Y — a87Yy — Y and noting vectorized regression
format as

VecYV) = (XT @ Ix)vec(H) + E,

where E ~ N (0, @thlR), we can exploiting the same conjugacy properties and
Lemma 1 and 2 to obtain

Vec(H)|Y, o, B, X, € ~ N(ufost, zfost)

where
SH = (XTI T (@ R YXT @ Ix)" + (on) k)",

Hpost = Spost (X7 @ 1) (9= B vee(Y)).

pr(R|Y, a, B, z1.7, &) : Conditional on latent path and all remaining parameters,
Y — HX can be regarded as T vector variate normal samples with zero mean and
variance R. Hence the full conditional of R follows directly from Lemma 3:

Rla,B,Y, X, ~ W v+ T,(Y — HX)(Y — HX)" + o3 1,,). (12)

pa(Vec(a)|Y, B, H,R, B,Q,€), pg(Vec(BY)|Y, A, H, R, B,Q,&): To obtain coin-
tegration parameters’ marginalized conditionals of partially collapsed Gibbs algo-
rithm, we utilize convolution property of normal distribution, Proposition 2 and
Lemma 1 together with the following representation:

Vee(Y) = (YL B ® I,)Vec(a) + Vec(p) + (YT @ I)Vec(&) + E

(
= Yy @ A\Vee(BT) + Vee(u) + (YT @ I,)Vec(&) + E
= (Y{'B® L)Vec(a) + (YT @ I)Vec(&) + E
(

= (Y @ AVee(BT) + (YT @ I)Vec(€) + E, (13)
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where E ~ N(0,V); V = oL R+ HVHTwith H and V defined in proof of
Proposition 2 above. If we define further:
y=VecY) — (I & L);

Mo, = (Yg' B ® In);

Mg = (Yy ®a).
Then, it follows from Lemma 1 that collapsed conditionals (with marginalized latent
paths) for vectorized components of cointegration model, Vec(a) and Vec(BT) are

distributed as vector variate normals, p,, pg respectively, with variances and means
as provided below:

o N(:u’?ostv E;)[ost) (14)

bB ~ N(le;j’osw Ezl;j’ost) (15)
E;éost - (MT‘A/J’ilM + (Ea)il)ilﬂ

:upost - z]post‘(‘]\jT‘/ N) (16)
ESost (MZI;‘F}_IMB + (EB)_I)_17

:U’post = Epost(MgV IA) (17)
Using (13) again, we can define
Y = Vee®Y) - (Yd @ A)Vec(BT),
Me = (Y'®l);
Then analogously as in (16), (17) and by Lemma 1,

pg(VGC(g)‘Y, Q, B) H7 R7 B7 Q) = N(Mf}osn Ef}ost)
where

oot = (MIVIMe + (S¢)~)™!

Mgost - Epost(M Vﬁlg)’

and X¢ = a?[mn.

Po?, (0%|R) : Assuming Inverse Wishart prior of R ~ W (vg, 0%1I,) with hy-
perparameter O'R following gamma distribution O'R ~ Gamma(ag, fr), then by
straightforward algebra:

p(o%|R, y1.7) = p(ok|R)
v 1 - .
o(0%) 2 exp <_2"%¢T(R 1)> - (0%)*" ! exp(—Bro%)
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Fig. 1. Autocorrelation of o9 s(®T against lag: black is for Algorithm 1 and green for
standard standard Gibbs sampler.

so it follows clearly that p,2 (07| R) is a Gamma ("5 + a2 , 8,2 + ttr(R7Y) .

Poz (0 |H) : Assuming multivariate normal prior of Vec(H) ~ N(0,0% k)
with hyperparameter % following inverse gamma distribution 0%, ~ IG(ap, Bu),
it follows that

p(oy|H,y1.7) = p(of;|H)
_n 1 e
OC(U%I) K/2 exp <_MV60(H)TV€C(H)) . (O-%I) H 1eXp(_T),
H

50 o2, (0| H) is IG (g2, + ™55, B2 + 5Vec(H) ' Vec(H))

poz (03|B): By analogous argument as above we have p,2 (0%|B) = I1G(ay3, +
%2, Boz, + %Vec(B)TVec(B)).
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Fig. 2. Estimation of u:(I) for I = 1,...,4: in each panel we show the true u. (1) used to
simulate the data (red line), the posterior mean estimate from the Algorithm 1 (green line)
and 95% posterior confidence intervals (dashed lines).
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Fig. 3. Histograms with estimated density curves of all entries of the long-run multiplier
matrix 37. The red horizontal lines mark the true value and the green ones the estimated
posterior mean. Blue line is the fitted posterior density curve.
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Fig. 4. Boxplots for posterior of £: the green dot indicates the true value and the red one
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