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Abstract

These notes are meant to provide a comprehensive introduction to sequential Monte Carlo. We will focus
mainly on inference nonlinear non-Gaussian state-space models. The reason is two-fold: these models are
ubiquitous in Statistics, Econometrics, Engineering and Signal Processing and it is these models where particle
filters owe much of their success. Particle methods, also known as Sequential Monte Carlo (SMC) methods,
provide reliable numerical approximations to the associated state inference problem of non-linear filtering. We
will illustrate fundamental strengths and weaknesses of the methodology. We will concentrate on practical
aspects of the method, but will also briefly touch on the theory behind the SMC and its relevance in improving
the methodology.

1 Introduction
State-space models, also known as hidden Markov models (HMMs), are a very popular class of time series models
that have found numerous of applications in fields as diverse as Statistics, Ecology, Econometrics, Engineering and
Environmental sciences; see [10], [26], [69]. Loosely speaking a HMM is a bivariate stochastic processes {Xn}n≥0

and {Yn}n≥0, where {Xn}n≥0 is the hidden component and {Yn}n≥0 is the sequence of observations. The popularity
of state-space models stems from the fact that they are flexible and easily interpretable. They include models as
diverse as smoothing splines, discretised stochastic differential equations (SDEs) and dynamic generalised linear
models. Applications of state-space models include stochastic volatility models where Xn is the volatility of an
asset and Yn its observed log-return [42], biochemical network models where Xn corresponds to the population
of various biochemical species and Yn are imprecise measurements of the size of a subset of these species [70],
neuroscience models where Xn is a state vector determining the neuron’s stimulus-response function and Yn some
spike train data [55].

However, nonlinear non-Gaussian state-space models are also notoriously difficult to fit to data, and in many
scientific disciplines this means one could not realise the potential of using HMM models. The aim of this course is
to introduce very recent powerful simulation techniques to achieve this. The main aims of the course is to introduce:
a) inference for HMMs b) the statistical methodology behind non-linear filtering, c) particle filtering and how it can
applied to fit HMMs to data. Non assessed home-works will be given from time to time in the notes (and lectures).
These will not be marked, but the intention is that they assist you in completing the work and programming
gradually and in particular to familiarise with coding and implementation. There are quite a few reference books
on HMMs one can use to complement the course notes and slides:

• [63] is a very nice introductory text-book at the right level and is available on-line at the following link:

– https://users.aalto.fi/~ssarkka/pub/cup_book_online_20131111.pdf

• Another nice reference is [25] and also has some nice examples coded in R.

• [10] is a more advanced book, and is available online through the library.

Finally there are some portals with a lot of resources, such papers, links to code and a good overview on various
developments on SMC:

• The SMC page maintained by Arnaud Doucet: http://www.stats.ox.ac.uk/~doucet/smc_resources.html

• The portal by Pierre Del Moral: http://people.bordeaux.inria.fr/pierre.delmoral/simulinks.html
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2 Non-linear Filtering in discrete time

2.1 Hidden Markov models
A HMM is described in Figure 1 as a directed graphical model. To put it in more mathematical terms, consider
a canonical probability space (Ω,F ,P) with Ω =

∏∞
n=0 (X × Y)

n and F the associated Borel σ algebra. We can
write the HMM quite formally for 0 ≤ n ≤ T as:

P [Xn ∈ A|(X0:T = x0:T , Y0:T = x0:T )] =
∫
A
fθ(x|xn−1)dx,

P [Yn ∈ B|(X0:T = x0:T , Y0:T = x0:T )] =
∫
B
gθ(y|xn)dy,

This means that the hidden process {Xn}n≥0 (that we will call the state) is a X -valued latent Markov process of
initial density ηθ (x) and Markov transition density fθ(x′|x), that is

X0 ∼ ηθ (x0) , {Xn| (X0:T = x0:T , Y0:T = y0:T )} = {Xn| (Xn−1 = xn−1)} ∼ fθ(xn|xn−1), (1)

whereas the Y-valued observations Yn are conditional on Xn i.i.d and satisfy:

{Yn| (X0:T = x0:T , Y0:T = y0:T )} = {Yn| (Xn = xn)} ∼ gθ(yn|xn), (2)

where gθ(y|x) denotes the conditional likelihood density.
Here we use subscripts to denote θ ∈ Θ being static parameters of the model and zi:j denotes (zi, zi+1, ..., zj) for

any sequence {zn}. In this course we will mainly take X and Y to be Euclidean spaces, but what follows applies to
more general state spaces as well. Most of the times we will avoid excessive mathematical details and write casually:

Xn ∼ fθ(·|xn−1),
Yn ∼ gθ(·|xn),

(3)

In many practical situations, this model depends on an unknown vector parameter θ that needs to be inferred
from the data either in an on-line or off-line manner. In fact, inferring the parameter θ is often the primary
problem of interest; e.g. for volatility models we are typically not interested in the latent volatility values but in
some features of this latent process that are captured by parameters of the transition prior fθ(x′|x). Similarly for
biochemical networks, we are not interested in the population of the species per se, but we want to infer some
chemical rate constants, which are parameters of the transition prior fθ(x′|x). In other applications the parameters
θ are available and the interest is geared more towards inferring the hidden state sequence {Xn}n≥0, e.g. target
tracking and navigation in engineering, communications etc.

HMMs are often described in terms of nonlinear and non-Gaussian state space models

Xn+1 = ψθ (Xn, Vn+1) , Yn = φθ (Xn,Wn) , (4)

where {Vn}n≥1 and {Wn}n≥0 are arbitrary iid noise sequences and (ψθ, φθ) are nonlinear functions. Often these
models are time discretisations of continuous time models, e.g. stochastic differential equations. We will see below
some examples.

2.1.1 Examples of HMMs as state space models

We start by the Linear Gaussian State Space Model. Let X = Y = R and consider

Xn = αXn−1 + σvVn,
Yn = Xn + σwWn,

(5)

where Wn, Vn
iid∼ N (0, 1), X0 ∼ N (0, 1). In this case: θ = (α, σv, σw). One can also define a multi-dimensional

version with X = Rdx and Y = Rdy

Xn = AXn−1 +BWn, Yn = CXn +DVn, (6)

Wn, Vn iid zero mean Gaussian vectors and A,B,C,D are appropriate matrices. The Linear Gaussian model is
quite a generic model that has been used in many applications, mainly because one can perform many calculations
analytically.
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Figure 1: A Hidden Markov Model

Another popular model with X = Y = R is the Stochastic Volatility Model:

Xn = αXn−1 + σvVn,
Yn = β exp(Xn2 )Wn,

(7)

where Wn, Vn
iid∼ N (0, 1). In this case: θ = (α, σv, β). Here Xn is the volatility of an asset and Yn its observed

return [42].
Finally, we present a model from the engineering literature that relates to target tracking. Let Xn denote the

state of an arbitrary moving target on X = R2 and A the position of a static observer that takes (passive) bearing
observations with additive noise. So write

Xn = GXn−1 +HWn,

Yn = tan−1

(
Xn(1)−A(1)

Xn(3)−A(2)

)
+ Vn,

where Wn, Vn iid zero mean noise sequences from arbitrary distributions and

G =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 , H =


T 2

2 0
T 0

0 T 2

2
0 T

 .
G and H can be viewed as coming from appropriate discretisations of continuous time kinematic models with
constant acceleration.

2.2 Bayesian Filtering
Estimation of θ is a very challenging problem, so we will consider first the scenario where the parameter θ is known.
We will introduce filtering as a sequential Bayesian inference problem on the latent state process {Xn} given the
observations {Yn}. We will see that this is only feasible analytically for simple models such as linear Gaussian
state-space models, so later we will introduce simulation based methods.

2.2.1 Filtering, Smoothing and Prediction

In the most general case, the object of interest is the whole path X0:n|Y0:n and the joint filtering distribution

Πn [·] = P [X0:n ∈ ·|Y0:n] (8)

whose density we will write as pθ (x0:n|y0:n). In other cases we are only interested in its marginal and the so called
filtering distribution or filter

πn [· ] = P [Xn ∈ ·|Y0:n] (9)
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with density pθ (xn|y0:n). We would like at time n, as yn becomes available, to use Πn−1 and yn to get Πn recursively
(and similarly for πn). Filtering usually denotes this task of estimating recursively in time the sequence of marginal
posteriors {pθ (xn| y0:n)}n≥0. However we will adopt here a more general definition and will refer to filtering as the
task of estimating the sequence of joint posteriors {pθ (x0:n| y0:n)}n≥0 recursively in time, but we will still refer to
the marginals {pθ (xn| y0:n)}n≥0 as the filtering densities.

Similarly one can define other quantities such as:

• the joint smoothing density p(x0:n|y0:T ), T > n (or the marginal smoothing density p(xn|y0:T ))

• the joint prediction density p(x0:n+p|y0:n), p ≥ 1 (or the marginal prediction density p(xn+p|y0:n))

These are important quantities, whose computation hinges upon having Πn or πn available.

2.2.2 Filtering recursions using Bayes rule

Given observed data y0:n, inference about the states X0:n may be based on the following posterior density

pθ (x0:n|y0:n) =
pθ (x0:n, y0:n)

pθ (y0:n)
(10)

where, from (2), the joint density of (X0:n, Y0:n) is

pθ (x0:n, y0:n) = ηθ (x0)

n∏
k=1

fθ (xk|xk−1)

n∏
k=0

gθ (yk|xk) (11)

and the marginal likelihood is given by

pθ (y0:n) =

∫
pθ (x0:n, y0:n) dx0:n. (12)

It is easy to verify that the posterior pθ (x0:n|y0:n) and the likelihood pθ (y0:n) satisfy the following fundamental
recursions: for n ≥ 1,

pθ (x0:n| y0:n) = pθ (x0:n−1| y0:n−1)
fθ (xn|xn−1) gθ (yn|xn)

pθ (yn| y0:n−1)
(13)

and
pθ (y0:n) = pθ (y0:n−1) pθ (yn| y0:n−1) (14)

where
pθ (yn| y0:n−1) =

∫
gθ (yn|xn) fθ (xn|xn−1) pθ (xn−1| y0:n−1) dxn−1:n. (15)

Similarly for the marginals one can write a two step recursion:

pθ (xn| y0:n−1) =

∫
pθ (xn, xn−1| y0:n−1) dxn−1 (16)

=

∫
fθ (xn|xn−1) pθ (xn−1| y0:n−1) dxn−1 (17)

and

pθ (xn| y0:n) =
pθ(xn, yn|y0:n−1)

pθ(yn|y0:n−1)
(18)

=
pθ (xn| y0:n−1) gθ (yn|xn)

pθ (yn| y0:n−1)
(19)

=
pθ (xn| y0:n−1) gθ (yn|xn)∫
pθ (xn| y0:n−1) gθ (yn|xn) dxn

(20)

Notice that the normalising constant in both the full path and the marginal case are the same. The Bayesian

formulation is clear in each case: ηθ (x0)
n∏
k=1

fθ (xk|xk−1) plays the role of the prior,
n∏
k=0

gθ (yk|xk) the role of the

likelihood and pθ (y0:n) is the evidence or marginal likelihood. In a sequential setting one may also view this as the
posterior in time n− 1 becoming part of the prior in time n. In (13), pθ (x0:n−1| y0:n−1) fθ (xn|xn−1) is the prior,
gθ (yn|xn) is the likelihood and pθ (yn| y0:n−1) the evidence term.
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Remark 1. An important byproduct of this so-called filtering task from a parameter estimation viewpoint is that
it provides us with a way to compute the likelihood of the observations given θ. The marginal likelihood is a high
dimensional integral of the form

pθ (y0:n) =

∫
pθ (x0:n, y0:n) dx0:n =

∫
ηθ (x0)

n∏
k=1

fθ (xk|xk−1)

n∏
k=0

gθ (yk|xk) dx0:n

The particle approximation of this likelihood is a key ingredient of numerous parameter inference techniques. The
recursive formulation of the filtering problem allows to view pθ (y0:n) as a product of lower dimensional integrals

pθ (y0:n) =

n∏
k=1

p(yk| y0:k−1) =

n∏
k=1

∫
gθ (yk|xk) pθ (xk| y0:k−1) dxk.

Being able to compute p(yn| y0:n−1) (using pθ (xk| y0:k−1) or an approximation of it) simplifies the problem and
eventually we will approximate it using a Monte Carlo approach.

It should be clear by now that being able to compute integral is an essential component of the filtering problem.
This is rarely possible for general models, but there are essentially two classes of models for which pθ (x0:n|y0:n)
and pθ (y0:n) can be computed exactly: the class of linear Gaussian models, for which the above recursions may be
implemented using Kalman techniques, and when X is a finite state-space; see for example [10]. For other models
these quantities are typically intractable, i.e. the densities in (13)-(15) cannot be computed exactly, so one needs
to resort to approximations.

2.3 The Kalman filter and its variants
Consider the Linear Gaussian model in (6). For convenience we omit using θ in the subscripts. Assume that the
initial distribution η = N (µ0|0,Σ0|0) and known. Given the initial distribution and f, g in in (6) are all Gaussian,
it is clear from standard conjugate properties that when performing recursively the calculations for (17)-(20), we
will always obtain a Gaussian distribution. Lets write (17)-(20) as follows:

p(xn|y1:n−1) =

∫
f(xn|xn−1)p(xn−1|y1:n−1)dxn−1 (21)

= Nxn(µn|n−1,Σn|n−1)

p(yn|y1:n−1) =

∫
gn(yn|xn)p(xn|y1:n−1)dxn (22)

= Nyn(mn, Sn)

p(xn|y1:n) =
gn(yn|xn)p(xn|y0:n−1)∫
gn(yn|xn)p(xn|y0:n−1)dxn

(23)

= Nxn(µn|n,Σn|n)

The Kalman Filter (KF) computes µn|n,Σn|n,mn, Sn, µn|n−1,Σn|n−1 recursively as follows:

µn|n−1 = Aµn−1|n−1 (24)

Σn|n−1 = AΣn−1|n−1A
T

+BB
T

(25)
mn = Cµn|n−1 (26)

Sn = CΣn|n−1C
T

+DD
T

(27)

Kn = Σn|n−1C
T

S−1
n (28)

µn|n = µn|n−1 +Kn(Yn −mn) (29)
Σn|n = Σn|n−1 −KnCΣn|n−1 (30)

It is quite easy (but tedious) to derive or check the calculations leading to (24)-(30). There are usually two
approaches. One invokes properties of the multivariate Gaussian random variables, related to linear transformations
(for (24)-(27)) and conditioning ((28)-(30)), and some linear algebra. Another one is more probabilistic and aims
to compute the integrals and distributions in (21)-(23). In this case the main tools are:
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• The Gaussian integral for a scalar ∫ ∞
−∞

e−ax
2+bx+c dx =

√
π

a
e
b2

4a+c

or in Nx dimensions ∫
e−

1
2x
TAx+xT bdx =

√
(2π)Nx

detA
e

1
2 b
TA−1b.

This is useful to derive (24)-(27) from (21)-(22).

• Taking log transforms and rearranging terms in (23) so that they gather in quadratic form − 1
2x

TΣ−1
n x+xTµn

and with some algebra one gets (28)-(30).

We leave it to the interested student to perform the full derivation.

Remark 2. A useful observation that is not sometimes emphasised enough in the literature is that the KF can be
used to compute pθ(y0:n) =

∏n
k=1 p(yk|y1:k−1) using (26)-(27). This is quite useful in the context of parameter

estimation.

The KF recursion is deterministic update requires propagation of the the moments of πn, i.e. deterministic
quantities. This is easy to implement, and can be quite cheap computationally. Having said that (24)-(30) are not
the only possible recursion. In fact there are versions such as the Information KF that avoid certain matrix inversion
steps and hence could be more efficient in practice. Often in practice practitioners use the KF when Vn,Wn are not
actually Gaussian. Clearly this is an approximation whose performance will depend on “how far” the distributions
of Vn,Wn are from a Gaussian..

2.3.1 The Extended Kalman Filter (EKF)

It is possible to extend these ideas for non-linear state space models of the form of (4) using linearisations and first
order Taylor approximations. This is known as the Extended Kalman Filter (EKF). To get the EKF one needs to
replace (4) with an approximate linear Gaussian model

Xn = an +AnXn−1 +BnVn, Yn = cn + CnXn +DnWn, (31)

Linearisation of ψ, φ around µn−1|n−1 and µn|n−1 resp. gives

An = ∇xψθ|µn−1|n−1
, Cn = ∇xφθ|µn|n−1

and similarly assuming the noises are zero mean we can set

Bn = ∇V ψθ|0, Dn = ∇Wφθ|0,

so ignoring the higher order terms of they Taylor expansion one gets

an = ψθ
(
µn−1|n−1, 0

)
−Anµn−1|n−1, cn = φθ

(
µn|n−1, 0

)
− Cnµn|n−1

The EKF computes µn|n,Σn|n,mn, Sn, µn|n−1,Σn|n−1 recursively as

µn|n−1 = an +Anµn−1|n−1 (32)

Σn|n−1 = AnΣn−1|n−1A
T

n +BnB
T

n (33)
mn = cn + Cnµn|n−1 (34)

Sn = CnΣn|n−1C
T

n +DnD
T

n (35)

Kn = Σn|n−1C
T

nS
−1
n (36)

µn|n = µn|n−1 +Kn(Yn −mn) (37)
Σn|n = Σn|n−1 −KnCnΣn|n−1 (38)

The differences from the KF implementation are minor. The main difference are the additive terms from the
linearisations and the time varying matrices An, Bn, Cn, Dn.
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The EKF is quite easy to implement as the recursion is deterministic and simply propagates the same quantities
as the KF. Derivations related derivatives can be done off-line it can be quite cheap and fast computationally.
Sometimes it can give reasonable answers, and this is typically for models like

Xn = ψθ (Xn−1) +BVn, Yn = φθ (Xn) +DWn,

where the nonlinearities in φ, ψ are smooth (so locally close to being linear), and Vn,Wn Gaussian, so in some way
we are “close to” a linear Gaussian model regime. On the other hand it is hard to predict whether it will work and
how well. It consists of an approximation that is hard to justify in many cases: when higher order terms in Taylor
series can be significant, noise is non-Gaussian, when φ, ψ non differentiable everywhere to name a few cases. This
has motivated the past 50 years or so the quest for improved non-linear filters.

2.4 Non-linear filters without using simulation (optional reading)
The question that rises is whether we can improve the performance EKF, while at the same time keeping its core idea
of propagating moments or other sufficient statistics. In nonlinear non-Gaussian scenarios, over the past decades
numerous approximation schemes following these principles have been proposed. Common ideas that appeared
could be related to using improved deterministic numerical integration methods. We will look at some popular
ones, such as the Gaussian sum filter [1] or the Unscented KF (UKF) [37, 38]. Not many details will be provided on
the derivation or implementation of these schemes. We will restrict to a critical discussion to serve as a motivation
for particle filters and using simulation.

2.4.1 Some finite dimensional filters

Consider for a minute the KF, which propagates the first two moments of πn recursively. In the linear Gaussian
case due to conjugacy of Gaussian distribution, it is sufficient to propagate only the filter mean and covariances
to capture the full distribution of πn. Would it be possible to apply the same ideas related to conjugate priors
for the non-Gaussian cases and propagating fixed number of moments or other sufficient statistics to to capture a
non Gaussian πn in closed form? Such filters are often called finite dimensional. In principle is a good idea but
unfortunately there are very few cases that this is possible in practice: [62, 67, 68].

2.4.2 The Gaussian Sum filter

In the early 70’s Alspach and Sorenson proposed the Gaussian Sum filter in [1]. The key idea is to extend the
KF/EKF by propagating a mixture of Gaussians, instead of a single Gaussian distribution in time. Use a linear-
isation similar to EKF, but construct an approximation based on the following mixture

πn|n−1 =

q′n∑
i=1

w′n,iNxn(µ′n,i,Σ
′
n,i)

πn =

qn∑
i=1

wn,iNxn(µn,i,Σn,i)

where
∑q′n
i=1 w

′
n,i =

∑qn
i=1 wn,i = 1 and πn|n−1 is used as shorthand for p(xn|y1:n−1). Note that now one needs

to propagate in time the number of elements in the mixture, each weight as well as the mean and covariance for
each component in the mixture. In [1], the authors present recursions for wn, qn, µi,n,Σi,n and w′n, q

′
n, µ
′
i,n,Σ

′
i,n.

They demonstrate that this approach does indeed address some limitations of EKF such as multimodality. On the
other hand the approach is still based on linearisation (like the EKF) and qn increases linearly with time, so we
end up with increasing computational cost per time. For a particular class of models (conditionally linear Gaussian
models), these limitations were addressed much later in [14] and the so called Mixture Kalman Filter, which is uses
simulation ideas and is similar with some of the particle methods we will see in this course.

2.4.3 The Unscented KF and other approaches using deterministic integration

At the heart of the filtering problem lies the problem of numerical integration. So one may wonder whether
application of advanced quadrature or cubature techniques are useful. To get some of the intuition behind this
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rational, consider computing numerically integrals of the form:∫
A
ϕ(x)dx ≈

N∑
i=1

αkϕ(Xk).

On a very high level, these methods will provide a design for good choice {αk}Nk=1 and placement of points {Xk}Nk=1

(later referred as sigma points) using information on the structure of A and smoothness properties of ϕ. The integral
above corresponds to integrating with the uniform distribution, but there are cubature extensions for Gaussian or
other integrals that exploit symmetries, choice of appropriate basis functions and many sophisticated extensions.

Algorithm 1 The Unscented Transform for Y = h(X), where X ∼ N (µ,Σ) with Σ = QQT .
1. Initialise

X0 = µ

For i = 1, . . . , L set

Xi = µ+
√
n+ λ [Q]i

Xi+n = µ−
√
n+ λ [Q]i

with
[
Qn|n

]
i
denoting the i-th column of the matrix Q.

2. Then propagate the sigma points through h(·)

Yi = h(Xi), i = 0, . . . , 2L

Use quadrature estimates

E [h(X)] = µh ≈
2L∑
i=0

W i
mY

i

Cov [h(X)] = Σh ≈
2L∑
i=0

W i
c

(
Yi − µh

) (
Yi − µh

)T
with

W 0
m =

λ

L+ λ

W 0
c =

λ

L+ λ
+ κ

W i
m = W i

m =
1

2 (L+ λ)
, i = 1, . . . , L

Returning to the filtering problem, some of these ideas have appeared in [37, 38] as the Unscented KF (UKF)
and extended recently in [7] under the name of Cubature KF (CKF). We will discuss briefly the UKF, as it is
simpler and has been very popular especially for models that are “close” to Gaussian. The UKF builds upon the
so the Unscented Transform (UT), which is a quadrature method that computes the mean and covariance of a
Gaussian random variable that undergoes a nonlinear transformation.

Let X be a Gaussian random variable X ∼ N (µ,QQT ). Say we are interested to approximate the mean and
covariance of h(X), where h is a smooth non-linear transform. The UT procedure is presented in Algorithm 1.
Firstly we will form a set of 2L + 1 “sigma-points” to capture most of the mass in the support of the distribution
of X (Step 1) and then we will propagate the sigma points through h(·) and use quadrature estimates (Step 2) to
get an approximate mean and covariance of h(X). Here, λ, κ are tuning parameters that are used to improve on the
performance of the algorithm; see [37, 38] for some guidelines on how to choose them.

The UT method of Algorithm 1 can be useful for extending and improving some of the steps in the EKF (the
ones in (32)-(35)). Consider again the model in (4) and the EKF in (32)-(38). The UKF replaces (32)-(33) by
applying Algorithm 1 with X = (Xn−1, Vn), Y = Xn and h = ψθ to get µn|n−1,Σn|n−1. Similarly, it replaces
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(34)-(35), by applying again Algorithm 1 using X = (Xn,Wn), Y = Yn, h = φθ to get mn,Σn . For the update steps
both UKF and EKF use the same steps, i.e. (36)-(38).

2.5 Discussion
Many methods have been proposed over the past fifty years to solve the filtering problem, but these methods lack
formal justification and can be unreliable in practice in terms of accuracy, while deterministic integration methods
are difficult to implement. The more sophisticated extensions of EKF using numerical integration, such as the
UKF/CKF can work much better than EKF in many cases. The UKF is said to work well when filter is close to a
Gaussian distribution and one may view the CKF as its refinement from the perspective of numerical integration
using advanced cubature methods. On the other hand we are still in a case that requires very strong assumptions
on model, for example how close is the given model to a Gaussian one or how close φθ, ψθ are to polynomials or
smooth functions. It is also worth noting that cubature and quadrature techniques are quite cumbersome to apply
in higher than one dimensions and their performance can scale very poorly with dimension of Xn, Yn. We have seen
also the Gaussian sum filter that seem to relax some assumptions on the noise distributions, but its implementation
might result to increasing computational cost per time (at least for the vanilla version presented here).

The case so far clearly leans towards using simulation based methods. Markov chain Monte Carlo (MCMC)
methods are a possible candidate and can obviously be used, but they are impractical for on-line inference. Even for
off-line inference it can be difficult to build efficient high-dimensional proposal distributions for such algorithms. For
non-linear non-Gaussian state space models particle algorithms are the methods which have emerged as the most
successful. The widespread popularity of these SMC methods is due to the fact that they are easy to implement,
suitable for parallel implementation and more importantly, have been demonstrated in numerous settings to yield
more accurate estimates than the standard alternatives; e.g. see [10], [19], [26], [50].

2.5.1 Key points

Make sure you understand:

• The HMM structure and state space models.

• The framework of Bayesian inference for filtering when θ is known.

• The basic filtering recursions for the path space and the marginal filtering distributions.

• For linear and Gaussian state space models, filtering is analytically tractable. Familiarise yourselves with the
KF and EKF, what does it compute and ensure that you are able implement it in practice.

2.5.2 Reading list

If you find the topic in this section interesting, you could read further in:

• Sarkka [63]: Chapters 1, 2 for a general introduction, Chapter 4 for an introduction to filtering and the KF,
and Chapter 5 for a discussion on the EKF and the UKF;

• Douc et. al. [25]: Chapter 3 for a review on state space models and interesting applications.

2.5.3 Homework

You are strongly encouraged to complete the tasks below, especially the ones that are not marked by (*). The tasks
marked as (*) are more challenging, but will be useful later as the course develops.

For the scalar model Xn = ρXn−1 + τVn, Yn = Xn + σWn, where Wn, Vn
iid∼ N (0, 1), and X0 ∼ N (0, 1):

1. Run the model to synthesise a data-set y0:T for T = 50, ρ = 0.8, τ = 1, σ = 0.1. Store the real state trajectory
x∗0:T for future comparisons.

2. Implement the Kalman filter and compare µn|n, µn|n−1 with x∗0:T .

(a) Plot estimated means, true state vs time n together with confidence intervals from Σn|n−1,Σn|n and
notice any differences.
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3. (*) Assume only ρ, τ are unknown and let θ = (ρ, τ). Using the computed pθ(y0:n) from the Kalman filter
design a MCMC chain to target p(θ|y0:T ). You may use a uniform prior on [−1, 1] for ρ and and an inverse
gamma prior, IG(1, 1), for τ2

4. (*) Validate your results in 4. using a grid method to compute the posterior. If computing the two dimensional
posterior this way proves tricky, try it for just one unknown parameter.

5. Repeat some of the above steps for different data-sets, but same parameter values.

3 Monte Carlo Methods
In the previous section, we motivated the use of simulation methods based on some weaknesses of using deterministic
approximations. This is natural choice these days given computational power available. In contrast to popular
deterministic methods Monte Carlo has many advantages:

• choosing the number of samples provides an inherent control on the quality of the estimation.

• approach is simple and directly applicable in multivariate cases. Of course once dimension of X starts to
grow beyond a point (say dx > 10− 20) a naive implantation of the methodology will suffer from the curse of
dimensionality. These will manifest as increasing Monte Carlo variance in the resulting estimates.

• it is provably convergent/consistent and there is an extensive theory to explain the behaviour of the estimates.

The purpose of this section is to survey commone Monte Carlo techniques: perfect Monte Carlo, Importance
Sampling and Sequential Importance Sampling. Then later we will later use some of these tools when introducing
a basic and more advanced particle filters.

Recall integration is very relevant for the filtering problem. Monte Carlo usually refers to using simulation
and sampling from complex high dimensional distributions in order to compute integrals. Consider an arbitrary
distribution on X with a density π w.r.t to dx, written as follows

π(x) =
γ(x)

Z

where Z an is an unknown normalising constant. Let ϕ : X −→ Rnx be a bounded π measureable function (i.e.
ϕ = supϕ < +∞) and say we want to compute integrals of the form

π (ϕ) = Eπ[ϕ(X)] =

∫
X

ϕ(x)π(dx). (39)

We will mention here just some basics on Perfect Monte Carlo and Importance sampling. For a more detailed
introduction you could consult [51, 61].

3.1 Perfect Monte Carlo
Assume we can obtain N i.i.d. samples Xi ∼ π (from now on we will refer to samples also as particles). One can
use the so called perfect (or naive) Monte Carlo approximation:

π̂(ϕ) =

∫
X

ϕ(x)π̂(dx) =
1

N

N∑
i=1

ϕ(Xi). (40)

to approximate π(ϕ). We are just using sample averages here, but it might be useful for intuition to view

π̂(dx) =
1

N

N∑
i=1

δXi(dx)

as a particle approximation of π, where here δx′(dx) denotes the Dirac measure, such that δx′(A) = 1x′∈A.
Note that the estimator π̂(ϕ) is a random variable (sampled from

∏N
i=1 π(dxi)), but has some very nice properties:

• It is consistent. By the (strong) Law of Large Numbers (LLN) π̂(ϕ)→N→∞ π (ϕ).
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• It is unbiased EN [π̂(ϕ)] = π (ϕ), where EN [·] denotes the expectation w.r.t the sampling distribution (here∏N
i=1 π(dxi)). It is not hard to check that due to i.i.d. sampling

EN
[
N∑
i=1

ϕ
(
Xi
)]

=

N∑
i=1

Eπ
[
ϕ
(
Xi
)]

= NEπ [ϕ (X)]

• The Monte Carlo variance decreases with N . It is given in fact by

Var [π̂(ϕ)] =
1

N
Var

[
ϕ(Xi)

]
=

1

N

∫
X

ϕ2(x)π(dx)− π(ϕ)2

 .

In addition the rate of decrease with N is not dependent on size of X .

• One can quantify the limiting distribution of π̂(ϕ) using a Central Limit Theorem (CLT):
√
N (π̂(ϕ)− π (ϕ))⇒

N (0, σ2
ϕ) as N →∞ with σ2

ϕ =
∫
X
ϕ2(x)π(dx)− π(ϕ)2.

The problem is that in most interesting examples and applications we cannot simply sample directly from π. In
some particular cases, even if this is possible, this could lead to a very high variance , e.g. for ϕ = 1A where A is a
set with very low probability.

3.2 Importance Sampling
One way to get around not being to sample for π is to use Importance Sampling (IS). Let q be a density from a
distribution that is absolutely continuous with π. This means π(x) > 0 implies q(x) > 0 for every x (where π > 0),
i.e. in simpler terms that q has heavier tails. Then one can write

π(x) =
w(x)q(x)∫
w(x)q(x)dx

with
w(x) =

γ(x)

q(x)

where here q will play the role of the importance distribution and w is the function for the un-normalised importance
weights. Note absolute continuity conditions ensures 0 < w(x) <∞ (everywhere where π > 0).

Given Z is assumed to be unknown we will use what is commonly referred as self normalised IS. Assume we can
obtain N i.i.d. samples Xi ∼ q, then approximate π(ϕ) as

π̂(ϕ) =

N∑
i=1

W iϕ(Xi) (41)

where W i = w(Xi)∑N
j=1 w(Xj)

such that
∑N
i=1W

i = 1. Similar to before one can write a particle approximation for π as

π̂(dx) =

N∑
i=1

W iδXi(dx).

The difference with perfect Monte Carlo is that now we have to weight the samples/particles to compensate for the
fact that they are not perfect samples from π. In addition we can estimate the unknown normalising constant Z as

Ẑ =

∫
γ(x)

q(x)
q̂(dx) =

1

N

N∑
i=1

γ(Xi)

q(Xi)

where q̂(dx) = 1
N

∑N
i=1 δXi(dx). As Z =

∫
γ(x)dx is an integral w.r.t γ and not π, the estimate Ẑ is standard IS

estimate (i.e. not resulting from self normalised IS). As a result one can show that Ẑ is unbiased. Note unbiasedness
this time does not hold for π̂(ϕ) due to the non-linear terms arising in W i when dividing by

∑N
j=1 w(Xj).

Still when using IS we maintain some of the nice properties we had earlier

11



• It is asymptotically consistent, by LLN, and we can write the asymptotic bias

(π̂(ϕ)− π(ϕ)) = − 1

N

∫
X

π2(x)

q(x)
(ϕ(x)− π(ϕ)) dx

• A CLT holds
√
N (π̂(ϕ)− π (ϕ))⇒ N→∞N (0, σ2

q,ϕ) with σ2
q,ϕ =

∫
X

π2(x)
q(x) (ϕ(x)− π(ϕ))

2
dx.

• The estimate of Z is unbiased EN
[
Ẑ
]

= Z, where EN [·] denotes the expectation w.r.t the sampling distribu-

tion (here
∏N
i=1 q(dx

i)).

• The Monte Carlo variance of π(ϕ) decreases with N . In addition the variance of Z is:

V ar
[
Ẑ
]

=
Z2

N

(∫
π2(x)

q(x)
dx− 1

)
, (42)

so the 1/N rate of decrease of the variance is still relevant.

Note that from a practical perspective one needs to decide how to choose q. This is not always an easy task. One
possible attempt is to select the q which minimises the variance of the estimator π̂(ϕ) in (41). This is minimised by

q(x) =
|ϕ (x)|π (x)∫

X
|ϕ (x)|π (x) dx

.

This expression is not very useful in practice. as we are interested in estimating expectations of several test functions
(e.g. moments or simple functions) with the same set of samples. An alternative would be to minimise the variance
of Ẑ in (42). Then it is not hard to see that this will result to requiring sampling from π, which is not available.
Nevertheless, this provides useful intuition that one should aim to find a q that is very close to q in some sense.
One could construct q as an approximation of π using other methods based on the Laplace principle, Gaussian
approximations etc.

Another interesting thing to notice is that minimising the variance of Ẑ in (42) is equivalent to minimising the
variance of the importance weights. Both give q = π, which makes sense as equal weights will mean we are back to
the perfect Monte Carlo case.

3.3 Markov Chain Monte Carlo
Before we proceed with sequential implementations of IS, we will discuss a different Monte Carlo approach for
sampling from π, which is Markov chain Monte Carlo (MCMC). The principle is based on obtaining indirect samples
from π by sampling from an ergodic Markov chain with invariant distribution π. These samples are then used to
provide sample averages and approximate expectations. This topic has a long history and a rich literature and has
been for a long time a popular choice for performing Bayesian inference. Indicatively we mention [53, 35, 30, 66, 64].

Lets say we have access to a Markov Probability kernel K such that∫
π(dx)K(x, dy) = π(dy) (43)

and suppose we start from an initial distribution ν (possibly δx). Then, a MCMC sampling procedure is to iteratively
obtain a chain of samples {Xi}i=1,...,N (notice now sample index is now in subscript to follow the usual Markov
Chain notation) as follows:

X0 ∼ ν, X1 ∼ K(X0, ·), X2 ∼ K(X1, ·), . . . , XN ∼ K(XN−1, ·), . . .

and approximate π(ϕ) as

π̂(ϕ) =
1

N

N∑
i=1

ϕ(Xi).

Often to allow for the Markov Chain to converge to π, the first L iterations are discarded as a burn in (typically L
ranges between 2000-5000) and one uses π̂(ϕ) = 1

N−L
∑N
i=L+1 ϕ(Xi) instead. There are many ways to design such

12



Algorithm 2 A Metropolis Hastings MCMC algorithm
Sample X0 ∼ ν.
For k ≥ 1

1. Sample a candidate proposal: Yk ∼ Q(Xk−1, ·)

2. Compute acceptance ratio

α(Xk−1, Yk) = 1 ∧ γ(Yk)Q(Yk, Xk−1)

γ(Xk−1)Q(Xk−1, Yk)

3. With probability α(Xk−1, Yk)

• Set Xk = Yk (accept proposal)

otherwise (with probability 1− α(Xk−1, Yk))

• Set Xk = Xk−1 (reject sample)

a K for a given π, but here we will just briefly present the most popular ones, the Metropolis-Hastings sampler in
Algorithm 2 and the Gibbs sampler in Algorithm 3. These algorithms are run usually for a large number of iterations
N that could range from 104 to 106 or higher depending on the difficulty of the problem, its dimensionality, etc.

The Metropolis-Hastings procedure is designed so that K is reversible with π, i.e.

π(dx)K(x, dy) = π(dy)K(y, dx).

Q is referred as the proposal and a common choice is a random walk (RW)

Yk = Xk−1 + %Zk, Zk ∼ h(·).

If h is symmetric q(x, y) = q(y, x) then the acceptance ratio takes the following convenient form:

α(x, y) = 1 ∧ γ(y)

γ(x)
.

Very often a Gaussian random walk is used, so it is common to use h = N (0, I). Here % is a tuning parameter for
step size of the proposal and typically is used to set the acceptance ratio to some desired value, typically between
0.2-0.3. Note that there is a trade-off to be balanced: high step sizes lead to low acceptance rates and vice versa,
so a compromise of this leads to these values for α between 0.2-0.3.

In many problems one can derive conditional distributions for each variable given the rest, and this is exploited
in the Gibbs sampler presented in Algorithm 3. Let x = (x1, . . . , xd) and X = X1 × X2 × · · · × Xd and define also
x−i = (x1, . . . , , xi−1, xi+1, . . . , xd). Assume that the so called Gibbs full conditional distributions

πi(x
i|x−i) =

γ(x)∫
γ(x)dxi

=
π(x)

πi(x−i)

are available and it is possible to sample from them. Then, a Gibbs sampler samples iteratively from each conditional
distribution. This sampler is only π-invariant and not reversible w.r.t. π, but is is often very efficient and does not
waste any simulation with rejection steps.

MCMC algorithms are justified by many theoretical results, that are derived from the convergence properties of
Markov chains defined on general state spaces. The MCMC algorithm defines a Markov transition kernel and one
aims to establish some form of ergodicity:∥∥Kk(x0, ·)− π

∥∥ ≤ r(x0, k), r(x0, k)→k→∞ 0,

where here we denote convergence w.r.t to some defined norm (e.g. L2, total variation norm, or Wasserstein
distance). The rate function r(x0, k) is important so for a given π some algorithms are better than others and this
can be checked also in practice. Using ergodicity together with other properties (e.g. minorisation, aperiodicity
etc.), one can derive properties like

• a LLN π̂(ϕ)→N→∞ π (ϕ) for ϕ ∈ L1(π),

13



Algorithm 3 A Gibbs Sampler
Sample X0 ∼ ν.
For k ≥ 1. Sample:

• X1
k ∼ π1(·|X−ik−1)

• X2
k ∼ π2(·|X1

k , X
3
k−1, . . . , X

d
k−1)

• X3
k ∼ π3(·|X1

k , X
2
k , X

4
k−1, . . . , X

d
k−1)

...

• Xd
k ∼ πd(·|X

−d
k )

• a CLT for
√
N(π̂(ϕ) − π (ϕ)) → N (0, σ2), ϕ ∈ L2(π). The CLT variance useful to characterise asymptotic

sampling error in π̂(ϕ) and can be used to derive measure of Effective Sample Size, which is different than
then one used for IS.

3.4 Sequential Importance Sampling (SIS)
We well return our focus to sequential problems like the ones encountered in filtering. Let say we are interested to
do IS for the following target.

π(x0:T ) =
γ(x0:T )

Z
,

We will present a generic approach to perform IS recursively. Define a sequence of target distributions {π̃n(x0:n) =
γn(x0:n)
Zn }n≤T , with π = π̃T . It is not restrictive to assume that for the target density the following product

factorisation holds
γn(x0:n) = γn−1(x0:n−1)γ(xn|x0:n−1),

where γ(xn|x0:n−1) = γn(x0:n)
γn−1(x0:n−1) . In a similar manner we can construct proposal or instrumental density as follows

q(x0:n) = q(x0:n−1)qn(xn|x0:n−1).

and then obtain a recursive expression for the IS weight

w(x0:n) = w(x0:n−1)
γ(xn|x0:n−1)

qn(xn|x0:n−1)
.

This simple construction is quite useful, because in this way the proposal simply extends the path x0:n−1 with xn,
so that previous samples/particles can be reused. Then the weight can be computed recursively to correct for the
fact that we use a different distribution for the proposal than the target. A generic SIS algorithm is presented in
Algorithm 4. We will later apply this for the filtering problem targeting Πn, but SIS could be applied to a variety
of different problems, e.g sampling from a self avoiding random walk.

At time n, the approximations of π̃n and Zn after the sampling step are given by

π̂n (dx0:n) =

N∑
i=1

W i
nδXi0:n (dx0:n) ,

Ẑn =
1

N

N∑
i=1

w(Xi
0:n). (44)

One can interpret this estimate of Zn as a standard IS estimate:

Ẑn =

∫
γ(x0:n)

q(x0:n)
q̂(dx0:n) =

1

N

N∑
i=1

w(Xi
0:n)
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Algorithm 4 Sequential Importance Sampling: at each n we we have available {Xi
0:n−1,W

i
n−1}Ni=1 and then

compute Steps 1. and 2. Note that for simplicity we are using the notation q0 (·|x−1) = q0(x).
For each n ≥ 0

1. The Sampling Step: For i = 1, . . . , N ,

(a) sample particles as Xi
n ∼ qn

(
·|Xi

0:n−1

)
,

(b) Augment the path of the state as Xi
0:n =

(
Xi

0:n−1, X
i
n

)
.

2. Compute weight: For i = 1, . . . , N ,

(a) Compute un-normalised weight

W̃ i
n = W i

n−1

γ(Xi
n|XI

0:n−1)

qn
(
Xi
n|Xi

0:n−1

) .
(b) Compute normalised weight W i

n =
W̃ i
n∑N

j=1 W̃
j
n
.

where q̂(dx0:n) = 1
N

∑N
i=1 δXi0:n(dx0:n) and the sampling distribution is given by: Xi

0:n ∼
n∏
k=0

qn(dxn|x0:n−1). There

is nothing special about this estimator and and the intuition and results follow directly using standard IS arguments.
Ẑn in (44) is unbiased and its relative variance is given by

V ar
[
Ẑn
]

Z2
n

=
1

N

(∫
(π̃n (x0:n))

2

q(x0:n)
dx0:n − 1

)
Another estimator for the normalising constant can be constructed using

Ẑn =

n∏
k=0

Ẑk
Zk−1

, (45)

Ẑn
Zn−1

=

N∑
i=1

W i
n−1

γ(Xi
n|Xi

0:n−1)

q
(
Xi
n|Xi

0:n−1

) . (46)

This sequential estimator that will prove useful later and is motivated by considering the identity

Zn =

n∏
k=0

Zk
Zk−1

=

n∏
k=0

∫
γk(x0:k)dx0:k∫

γk−1(x0:k−1)dx0:k−1

=

n∏
k=0

∫
γk−1(x0:k)∫

γk−1(x0:k−1)dx0:k−1
γ(xk|x0:k−1)dx0:k

=

n∏
k=0

∫
π̃k−1(x0:k−1)γ(xk|x0:k−1)dx0:k

We can use IS and rewrite the k-th term in the product as∫
π̃k−1(x0:k−1)γ(xk|x0:k−1)dx0:k =

∫
γ(xk|x0:k−1)

q(xk|x0:k−1)
π̃k−1(x0:k−1)q(xk|x0:k−1)dx0:k

and then derive (45)-(46) as a consistent Monte Carlo approximation

Ẑn
Zn−1

=

∫
γ(xk|x0:k−1)

q(xk|x0:k−1)
[π̂k−1 ⊗ q̂] (dx0:k)dx0:k

=

N∑
i=1

W i
n−1

γ(Xi
n|Xi

0:n−1)

q
(
Xi
n|Xi

0:n−1

)
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Algorithm 5 SIS for filtering. In steps 1(b) and 2(b) we are presenting computation of un-normalised weight and
normalisation in one go. One could look at Step 2. of Algorithm 4 for details.

1. At time n = 0

(a) Sample Xi
0 ∼ qθ(x0| y0).

(b) Compute the weights w0

(
Xi

0

)
and set W i

0 ∝ w0

(
Xi

0

)
,
∑N
i=1W

i
0 = 1.

2. At time n ≥ 1

(a) Sample Xi
n ∼ qθ(xn| yn, Xi

n−1) and set Xi
0:n =

(
Xi

0:n−1, X
i
n

)
.

(b) Compute the weights wn
(
Xi
n−1:n

)
and set W i

n ∝W i
n−1wn

(
Xi
n−1:n

)
,
∑N
i=1W

i
n = 1.

with [π̂k−1 ⊗ q̂] (dx0:k) =
∑N
i=1W

i
k−1q(dxk|x0:k−1)δXi0:k−1

(dx0:k−1). The analysis of this estimator is more compli-
cated, but it will become useful when considering particle filtering.

3.4.1 SIS for the filtering problem

Lets apply SIS for the filtering on the path space. Recall, Πn (· ) = P [X0:n ∈ ·|Y0:n]. With reference to the notation
for π̃n used just before, the density of interest is

γn(x0:n) =

n∏
k=0

fθ (xk|xk−1) gθ (yk|xk)

and
Zn = p(y0:n),

where for convenience we will write f(x0|x−1) to be η(x0). Given the Markov structure of the HMM we will use
importance densities of the form qθ (x0| y0) and qθ (xn| yn, xn−1). So the importance weight can be written as

w(x0:n) =
γn(x0:n)

q(x0:n)
=

n∏
k=0

fθ (xk|xk−1) gθ (yk|xk)

qθ (xk| yk, xk−1)
:=

n∏
k=0

wk(xk−1, xk),

where we have define the incremental importance weights as follows:

w0 (x0) =
ηθ (x0) gθ (y0|x0)

qθ(x0| y0)
, (47)

wn (xn−1:n) =
γ(xn|x0:n−1)

qn(xn|x0:n−1)
=
fθ (xn|xn−1) gθ (yn|xn)

qθ (xn| yn, xn−1)
for n ≥ 1. (48)

An SIS algorithm for filtering is presented in Algorithm 5. At time n, the approximations of pθ (x0:n| y0:n) and
pθ (yn| y0:n−1) after the sampling/weighting step (step 2. of Algorithm 5) are

p̂θ (dx0:n| y0:n) =

N∑
i=1

W i
nδXi0:n (dx0:n) , (49)

p̂θ (yn| y0:n−1) =

N∑
i=1

W i
n−1wn

(
Xi
n−1:n

)
. (50)

Hence an estimate of the marginal likelihood is given either by

p̂θ (y0:n) = p̂θ (y0)

n∏
k=1

p̂θ (yk| y0:k−1) . (51)

or can be approximated using (44) with

p̃θ (y0:n) =
1

N

N∑
i=1

n∏
k=0

wk(Xi
k−1, X

i
k), (52)
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where
∏n
k=0 wk(Xi

k−1, X
i
k) can be trivially computed recursively in time.

These approximations enjoy some theoretical justification. Let ϕ : Xn → R be a bounded measureable test
function and let also the integral of interest be

In =

∫
ϕ(x0:n)pθ (x0:n| y0:n) dx0:n

and its particle approximation from SIS be

În =

∫
ϕ(x0:n)p̂θ (dx0:n| y0:n)

=

N∑
i=1

W i
nϕ
(
Xi

0:n

)
.

These estimates should enjoy the same properties seen earlier for IS. Essentially the only difference is we are
computing the weight recursively. So we maintain the following properties:

• În is asymptotically consistent as N →∞ with asymptotic bias(
În − In

)
= − 1

N

∫
Xn

(pθ (x0:n| y0:n))
2

q(x0:n)
(ϕ(x0:n)− In) dx0:n

• A CLT holds with √
N
(
În − In

)
⇒ N

(
0, σ2

SIS(ϕ, q, n)
)

where

σ2
SIS(ϕ, q, n) =

1

N

∫
Xn

(pθ (x0:n| y0:n))
2

q(x0:n)
(ϕ(x0:n)− In)

2
dx0:n


• The estimate p̃(y0:n) in (52) is unbiased and will have a relative variance (the variance of Ẑn/Zn) as follows:

V ar
[
Ẑn

]
Z2
n

=
1

N

(∫
(pθ (x0:n| y0:n))

2

q(x0:n)
dx0:n − 1

)
. (53)

The only thing we have done is substitute expressions for π with pθ (x0:n| y0:n) in the IS expressions mentioned
above. Note that despite some initial reassurance and elegance, the consistency and asymptotic normality results,
are not informative enough on whether Algorithm 5 is a practically useful algorithm. There is not discussion on how
σ2
SIS(ϕ, q, n) behaves with time or how the speed of convergence of

(
În − In

)
to 0 changes with n. Similarly we do

not know how
V ar[Ẑn]
Z2
n

grows with n. These are important questions because in principle we want to run particle
filtering algorithm for high n so how efficiency and accuracy changes with n is crucial. SIS is a basic building block
of modern particle filtering techniques, but on its own as illustrated Algorithm 5 will face some issues related to
efficiency and accuracy as nincreases. As n increases W i

n ≤ 1, low weights will remain low for each particle (in fact
most will decay exponentially) and due to normalisation most weight mass will concentrates to fewer and fewer
particles (most likely at some point to one particle), so the variance of the weights will increase and hence the
variance of the estimates eventually explodes.

We conclude the presentation of SIS for filtering with some historical remarks related to Imperial. Very soon
after Kalman a variant of this basic Monte Carlo filter appeared in [34] (Prof. David Mayne FRS is now retired
but is still a very active researcher and still works in the Control and Power Group of the Electrical and Electronic
Dept.) This was the first SIS filter proposed in the literature (to the best of my knowledge) and [34] used qn = fθ
in the proposal. We will later refer to this as the bootstrap proposal. This contribution was quite ahead of its time,
and given the lack of significant computing resources at the time, it took some decades for resampling to be used
and particle filters to develop.
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3.5 Choosing Importance Proposals for HMMs
As in standard IS case, the key to designing well performing algorithms is to find a good proposal qn. We will focus
on how this can be achieved for HMMs. Although so far, we have only presented SIS and not a full particle filtering
algorithm, the problem of finding a good proposal is the same for both cases, because the IS step is common to
both algorithms.

We now look at what criteria could be used for choosing qθ (x0| y0) and qθ (xn| yn, xn−1) . We can rule out
approaches that aim to minimise the asymptotic variance of the estimator În like

q(x0:n) ∝ |ϕ (x0:n)| pθ (x0:n| y0:n)

as these are not useful in a filtering context where we are interested in the expectations of several test functions
(e.g. moments or simple functions). One simple and popular option is to use

qθ (xn| yn, xn−1) = fθ (xn|xn−1)

and hope that wn (xn−1:n) = g(yn|xn) will not have very high variance. This option is often called the bootstrap
proposal and will perform well when pθ (x0:n| y0:n) does not change very fast with n. This will correspond to yn
being not very informative (i.e. having a fairly flat and not peaky likelihood function). When the observations are
quite accurate this approach will not very effective and we will need a mechanism to guide the particles to areas of
higher pθ (x0:n| y0:n) using some information from yn.

A better approach would be to attempt minimise the relative variance of the normalising constant Ẑn, which
is equivalent to minimising the variance of the importance weights and will result in q(x0:n) being very similar or
close to pθ (x0:n| y0:n). This can be achieved using the so called optimal proposal (w.r.t the variance of the weights)
given as:

qoptθ (xn| yn, xn−1) = pθ (xn| yn, xn−1) .

This leads to weight ratio being
woptn (xn−1, xn) = pθ(yn|xn−1).

Note both woptn , qoptn are not possible to compute analytically, so one needs to resort to approximations like the EKF
or UKF to construct a good proposal that looks similar to pθ (xn| yn, xn−1) (but then the weight will be given by
(48) and not by woptn ).

We will see an example of designing qθ (xn| yn, xn−1) based on the linearisations similar to the EKF (but not the
same). Consider the state usual state space model given by in (4) with Vn,Wn both zero mean i.i.d noise sequences
with identity variance. In particular we will use the Gaussian approximation

qθ (xn| yn, xn−1) ∝ qfθ (xn|xn−1) qgθ (yn|xn)

= Nxn(mn(xn−1),Sn(xn−1))

where here qfθ , q
g
θ here denote Gaussian approximations of fθ, gθ resp. Recall, using EKF one can approximate

f(xn|xn−1) as a Gaussian using a linearisation of ψ around the noise and its mean 0. Then the following expressions

Xn = ψθ (Xn−1, 0) +BnVn, Bn = ∇V ψθ (Xn−1, 0) , Vn ∼ N (0, I) (54)

give qfθ (xn|xn−1). Similarly a linearisation of φ around ψθ (Xn−1, 0) (the mean of Xn in (54)) to get qgθ (yn|xn) as
follows:

Yn = φθ (ψθ (Xn−1, 0) , 0) + Cn (Xn − ψθ (Xn−1, 0)) +DnWn,

with
Wn ∼ N (0, I), Cn = ∇xφθ (ψθ (Xn−1, 0) , 0) , Dn = ∇V φθ (ψθ (Xn−1, 0) , 0) .

Note Bn, Cn, Dn are all functions of Xn−1. In contrast to the EKF here we want to maintain the dependence on
Xn−1, because the proposal will need to move particle i with a transition density that depends on the value of particle
Xi
n. Straightforward calculations can give the desired expressions for the covariance and mean of qθ (xn| yn, xn−1):

S−1
n = BnB

T
n + CTn

(
DnD

T

n

)−1

Cn

and

mn(xn−1) = Sn
((
BnB

T
n

)−1
ψθ (Xn−1, 0) + CTn

(
DnD

T

n

)−1

(yn − φθ (ψθ (Xn−1, 0) , 0) + Cnψθ (Xn−1, 0))

)
.
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Alternatively one could use similar calculations to obtain a different Gaussian approximation based on the UKF,
but these are omitted here.

Suppose we have set the proposal as described above, the weight will be given by (48) and one may run the
SIS filter of Algorithm (5). How does one monitor the performance of the algorithm (and the chosen proposal)?
We mentioned earlier that the variance of the weights is a measure of the variance of Ẑn, but it might be hard to
interpret a given number for the variance of weights. To achieve interpretability often people rescale this number
to get what is known as the Effective Sample Size (ESS):

ESSn =
1(∑N

i=1 (W i
n)

2
) ,

which is designed to approximate the number of particles perfect Monte Carlo would require to result to the same
Monte Carlo variance for Zn. ESS will take values in [1, N ] and a perfect sampler would achieve the maximum
possible value. It can be shown that maxESSn = N when W i

n = N−1 (so weights have zero variance). In the
poor performance case when there exists i such that W i

n ≈ 1 , and for j 6= i, W j
n ≈ 0 (so one particle occupies

almost all the mass of the particle approximation), then we have that ESSn ≈ 1. As a rule of thumb, the higher
the ESS the better our approximation, and this gives an indication of how efficient a particle approximation is. As
you would expect similar to the construction of the proposal the ESS will be a useful tool for the standard particle
filter (presented later) and more advanced implementations.

3.6 Discussion on SIS
3.6.1 A Numerical Example

We begin by showing some numerical results for a scalar linear Gaussian model;

Xn = ρXn−1 + τVn, Yn = Xn + σWn,

where Wn, Vn
iid∼ N (0, 1), X0 ∼ N (0, 1), ρ = 0.95, τ = 1, σ = 1 and n ≤ T = 100, N = 1000. The top left panel of

Figure 2 shows a simulated data-set of observations y0:T and the top right one shows the true filter mean E[Xn|Y0:n]
computed by the KF for n = 1, . . . , T together with true simulated state sequence x∗0:T (in light blue) that was used
to generate y0:T . The bottom panel of Figure 2 shows the results for SIS when the bootstrap and optimal proposals
are used to estimate the filter mean µn = E[Xn|Y0:n] and variance vn = E[(Xn − E[Xn|Y0:n])

2 |Y0:n]. Whereas for
µn the results are fairly satisfactory (at least for the optimal proposal) the results for vn are quite poor compared
to the true values obtained from the KF.

Figure 3 shows the results when SIS is used to estimate p(y0:n) (left panel). The optimal filter is performing
well, but one cannot say the same for the bootstrap proposal. The middle panel of Figure 3 shows the ESS, which
in both cases exhibits an exponential decline with time. Finally, the right panel of Figure 3 plots the trajectory of
every particle of the bootstrap proposal (when only N = 100 is used for aesthetic purposes) and a darker shading
is used to encode higher values of weights. What seems to be happening is that the mean µn here is estimated by
almost averaging from a couple of particles close to the true mean indicated by the KF. Hence it is not surprising
that with such a low number of effective particles (and hence low ESS) one cannot capture the variance of the filter
accurately, as shown earlier in Figure 2.

3.6.2 Discussion

The numerical results shown so far show the serious limitations of SIS when used for filtering, even in this most
favourable example. Even when the optimal proposal is tractable one fails to capture the mean with high level of
accuracy and cannot track the posterior variance. On the bright side the particles seem to explore the state space
nicely, but due to the low weights at one point in time having extremely low or zero chance to increase in the future,
the posterior mass in the particle approximations concentrates on few particles (here it seems on 2/100) and the
weight variance eventually explodes (and ESS goes to zero). We conclude with a positive note: a well designed
proposal is crucial can make a massive different in performance. Here the optimal proposal results seem acceptable
at least compared to the bootstrap ones. The necessity of a good importance proposal holds in general for IS based
methods and is something that will be also useful in the particle filters we will present later on.
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Figure 2: Top left: Generated observations y0:T . Top right: real state trajectory x∗n and KF mean µn = E[Xn|Y0:n].
Bottom left: SIS estimates for the filter mean E[Xn|Y0:n] at each n = 1, . . . , T for qn = fθ (prior - red) and
qn = qoptn (optimal - green); blue shows KF mean µn. Bottom right: SIS estimates and KF computed filter variance
E[(Xn − E[Xn|Y0:n])

2 |Y0:n].

3.6.3 Reading List

For the topics in this section, you could find more material for further study in:

• Sarkka [63]: Chapter 7.0-7.3 for SIS

• Douc et. al. [25]: Section 10.2

• The paper in [27] is an excellent tutorial for the material so far and is available on-line in two versions:
a) the actual paper
http://www.stats.ox.ac.uk/~doucet/doucet_godsill_andrieu_sequentialmontecarloforbayesfiltering.
pdf (material so far is covered up to Section III before Resampling in p. 201.) and
b) the slightly more comprehensive preprint
http://www.cs.ubc.ca/~arnaud/doucet_tr310_sequentialmontecarlofiltering.pdf (material so far is
covered up to p. 12 before Resampling.)

Figure 3: Left: SIS and KF estimates the marginal likelihood p(y0:n) (colour coding and proposals for SIS as in
Figure 2). Middle: ESSn against n for each SIS proposal. Right: We plot the full simulated trajectories of the
bootstrap proposal, Xi

0:T , (i = 1, . . . , N) for N = 100 (just for this plot); darker and bolder black lines indicate
higher weights and blue is KF mean µn for comparison.
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3.6.4 Homework

For the following scalar model

Xn = ρXn−1 + σVn, Yn = β exp(
Xn

2
)Wn,

where Wn, Vn
iid∼ N (0, 1), X0 ∼ N

(
0, σ2

1−ρ2

)
.

1. Run the model to synthesise a data-set with y0:T for T = 200, ρ = 0.91, σ = 1, β = 0.5. Store the real state
trajectory x∗0:T for future comparisons.

2. Implement the EKF and compare µn|n, µn|n−1 with x∗0:T .

3. Implement a SIS filter and compare with EKF. Use N = 50, 500, 2000.

4. (*) Using a few multiple runs (50-500) compute an approximation the Monte Carlo variance of the estimator
for the first and second moment of the filter as a function of time when computed with SIS.

5. Repeat some of the above steps for different data-sets or different parameter values.

4 Particle Filtering: the basics

4.1 Sequential Importance Resampling (SIR)
We identified an issue related to the low weights W i

n for some or many i-s not contributing much on the estimation
procedure, especially for large n. A natural thing to do is to attempt to remove weak particles with low values of
W i
n and replace them with stronger particles. This is reminiscent of some genetic algorithms, where only strong

particles are allowed to generate new particles in the future and the computations focus only on the most promising
paths. In the context of filtering it was first introduced in [33] (and coincidentally the first and last authors were
members of our Statistics Section). In [33] the authors proposed to use fθ as proposal qn and then considered
sampling from the weighted population or approximation in (49) in a manner inspired by bootstrap techniques and
hence coined the term bootstrap filter. This is what we refer today as resampling, which is a probabilistic selection
method that only keeps particles with high weights W i

n and allows them to generate future samples/particles. Each
particle is copied a number of times on average proportional to NW i

n and after resampling every particle is assigned
a weight of 1

N . Hence the weights can be stabilised and their exponential decay in time is avoided.
This approach was later studied in more detailed and extended in many works, see [44, 52, 27, 11] for some

early papers and [26] for an early edited volume with the state of the art around the late 90-s. In Algorithm 6 we
present an algorithm that uses SIS and resampling, which often is referred as Sequential Importance Resampling
(SIR). This is a basic particle filtering or SMC algorithm. At time n, the approximations of pθ (x0:n| y0:n) and
pθ (yn| y0:n−1) after the sampling step are

p̂θ (dx0:n| y0:n) =

N∑
i=1

W i
nδXi0:n (dx0:n) , (55)

p̂θ (yn| y0:n−1) =
1

N

N∑
i=1

wn
(
Xi
n−1:n

)
. (56)

Hence an estimate of the marginal likelihood is given by

p̂θ (y0:n) = p̂θ (y0)

n∏
k=1

p̂θ (yk| y0:k−1) . (57)

After the resampling step, an alternative approximation of pθ (x0:n| y0:n) is

pθ (dx0:n| y0:n) =
1

N

N∑
i=1

δ
X
i
0:n

(dx0:n) . (58)
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Algorithm 6 Sequential Importance Resampling (SIR) for filtering
At time n = 0

1. Sample Xi
0 ∼ qθ(x0| y0).

2. Compute the weights w0

(
Xi

0

)
and set W i

0 ∝ w0

(
Xi

0

)
,
∑N
i=1W

i
0 = 1.

3. Resample
{
W i

0, X
i
0

}
to obtain N equally-weighted particles

{
1
N , X

i

0

}
.

At time n ≥ 1

1. Sample Xi
n ∼ qθ(xn| yn, X

i

n−1) and set Xi
0:n ←

(
X
i

0:n−1, X
i
n

)
.

2. Compute the weights wn
(
Xi
n−1:n

)
and set W i

n ∝ wn
(
Xi
n−1:n

)
,
∑N
i=1W

i
n = 1.

3. Resample
{
W i
n, X

i
0:n

}
to obtain N new equally-weighted particles

{
1
N , X

i

0:n

}
.

Algorithm 7 Multinomial resampling
• Sample

(on(1), . . . , on(N)) ∼Multinomial(N ;W 1
n , . . . ,W

N
n )

• Set k = 0;

• For i = 1 : N

– IF on(i) > 0: For j = 1 : on(i),

∗ X̄k
0:n = Xi

0:n;
∗ k ← k + 1

4.1.1 The Resampling step

We will concentrate a bit more on resampling in steps 3 in Algorithm 6. In time n, after step 2 we have available
an approximation like in (49) or (55). This will be a weighted sample

{
Xi

0:n,W
i
n

}N
i=1

. Consider the problem of

producing an equally weighted sample set of particles
{
X̄i

0:n, N
−1
}N
i=1

from the weighted sample
{
Xi

0:n,W
i
n

}N
i=1

.
This sampling (or sub-sampling) step is often of more interest than producing approximations like (55), as one may
just wish to obtain samples from Πn. So one needs to design a procedure that takes as an input p̂θ (dx0:n| y0:n) in
(55) and outputs another empirical approximation pθ (dx0:n| y0:n) shown in (58). The latter can be used to construct
estimators of Πn(ϕ) as follows:

Īn =

∫
ϕ(x0:n)p̄θ (dx0:n| y0:n)

= 1
N

N∑
i=1

ϕ
(
X̄i

0:n

)
.

Given,
∑N
i=1W

i
n = 1 we can interpretW i

n as probability of selection, so one could assign each X̄i
0:n in

{
X̄i

0:n, N
−1
}N
i=1

,

by copying a suitable ancestor from
{
Xj

0:n

}N
j=1

according to

P [an(i) = j] = W j
n.

That is for each i = 1, . . . , N , we select the ancestor of i, an(i), based on
{
W j
n

}N
j=1

and then copy to get

X̄i
0:n = X

an(i)
0:n . This is a simple with replacement scheme and in this example one could allow for instance

an(1), . . . , an(N) ∼ Cat(W 1
n , . . . ,W

N
n ) (i.i.d sampling from a categorical distribution).

22



Algorithm 8 Systematic resampling
• Sample

U1 ∼ Uniform[0,
1

N
),

on(1) =

{
k :

k−1∑
l=1

W l
n ≤ U1 ≤

k∑
l=1

W l
n

}

• For k = 2 : N ,

Uk = U1 +
k − 1

N
,

on(k) =

{
j :

j−1∑
l=1

W l
n ≤ Uk ≤

j∑
l=1

W l
n

}

The procedure we just described comes under the name multinomial resampling, shown in Algorithm 7. There
we interpret the resampling step as each Xj

0:n in the weighted approximations producing a random number of
offsprings. This is actually equivalently to trying to find ancestors for X̄0:n and seems a more natural viewpoint
from an algorithm design perspective. In this case, the offsprings will then follow a multinomial distribution. Let
on(i) denote number of offsprings of particle i. Then (on(1), . . . , on(N)) ∼Multinomial(N ;W 1

n , . . . ,W
N
n ) and one

could construct the following particle approximation:

pθ (dx0:n| y0:n) =
1

N

N∑
i=1

on(i)δXi0:n (dx0:n) .

=
1

N

N∑
i=1

δ
X
i
0:n

(dx0:n)

Multinomial sampling is unbiased as E (on(i)) = NW i
n and also ensures that we always have N particles as∑N

j=1 on(j) = N . On the other hand, subsampling of p̂θ (dx0:n| y0:n) to get p̄θ (dx0:n| y0:n) adds some noise to
the particle approximations, so one could assess a resampling scheme based on the variance of on(i). From this
perspective better performing resampling schemes exist such as residual or systematic resampling.

We would like to perform better in terms of the variance of estimators using resampled particles and at the
same time we wish to preserve unbiasedness of o(i) and the accuracy in estimates. There are quite a few methods
that have been proposed in the literature, see [23] for a comparison and more detailed discussion. Here we will
present briefly only two different methods: systematic resampling shown in Algorithm 8 and residual resampling
shown in Algorithm 9. Systematic resampling is a common method used in discrete probability sampling, is quite
convenient in terms of implementation and efficient regarding accuracy. The downside is that its analysis is more
complicated. Residual resampling can be viewed as a refinement of multinomial resampling, so that each particle
i is guaranteed to produce at least

⌊
NW i

n

⌋
offsprings, i.e. on(i) ≥

⌊
NW i

n

⌋
with c = bxc being the highest integer

such that c ≤ x. This achieved by assigning first
⌊
NW i

n

⌋
offsprings and then calculating a residual weight, which

is used in a multinomial distribution to assign more offsprings to each particle. In this way there is less variance in
on(i)-s as one eliminates “unlucky” instances where on(i) <

⌊
NW i

n

⌋
.

Remark 3. Multinomial resampling as presented in Algorithm 7 has a cost is proportional to N logN , but there are
better implementations with lower cost proportional to N . Systematic resampling has a cost proportional to N .

4.2 Discussion on SIR
4.2.1 Numerical Example

We will now apply the SIR algorithm with multinomial resampling and N = 1000 on the scalar linear Gaussian
example of Section 3.6.1. In Figure 4 we see an massive improvement to the ones seen in Figure 2 both for the
filter mean and variance. The errors are smaller when the optimal proposal is used. Here this is apparent only for
estimation of the filter variance, but one could check it is true for the mean by plotting errors separately.

Figure 5 shows the results when SIR is used to estimate p(y0:n), where both methods seem to have a very
good performance. The top right panel of Figure 5 shows the ESS, which in clearly better for optimal proposal.

23



Algorithm 9 Residual resampling

• Let Ñ i
n =

⌊
NW i

n

⌋
and Ñn =

∑N
i=1

⌊
NW i

n

⌋
• Set W̄ i

n = W i
n −

Ñin
N and normalise to get

W̃ i
n =

W̄ i
n∑N

j=1 W̄
j
n

• Sample
(õn(1), . . . , õn(N)) ∼Multinomial(N − Ñn; W̃ 1

n , . . . , W̃
N
n )

• For k = 1 : N , compute on(k) = õn(k) + Ñk
n

Figure 4: Left: SIR estimates for the filter mean E[Xn|Y0:n] at each n = 1, . . . , T for qn = fθ (prior - red) and
qn = qoptn (optimal - green); blue shows KF mean µn. Right: SIR estimates and KF computed filter variance
E[(Xn − E[Xn|Y0:n])

2 |Y0:n]. (Thanks to P. Jacob for lending this figure.)

The bottom left panel of Figure 5 show X̄i
n for each i when generated at time n, which is used to provide the

approximation for πn. This can be interpreted as a random grid generated by the algorithm at each n. Finally,
the bottom right panel of Figure 5 final simulated trajectories of the bootstrap proposal, Xi

0:T . The figure is quite
different that the one in the bottom left panel of Figure 3 and shows a tree that has many nodes near T but consists
only of a single particle for n < 70. This has been generated by the successive resampling/selection steps applied
to earlier paths (whose end points were shown earlier as X̄i

n at time n).

4.2.2 Discussion

The massive improvement in terms of performance over SIS is very clear. This appears when integral of interest is
of the form

In =

∫
ϕ(xn)pθ (x0:n| y0:n) dx0:n

This is because of an interesting property of SIR and particle filtering in general, which we will later attribute to the
exponential forgetting property of πn and the HMM in question. At time T , while the approximation of πT can be
very good, but in the approximation of ΠT (x0:T ) one relies on few or a single particle for n� T and pθ (x0:n| y0:T )
will eventually be approximated by a single unique particle as T − n increases. This is a fundamental weakness
of particle filtering approximations referred to as path degeneracy. For many tracking applications it not a major
issue, but we will see later that it is a weakness that needs to be overcome when performing parameter estimation
and smoothing. In the latter case, the diversity in the path space for all k ≤ n is crucial and the fact that the
number of unique particles decreases as we go backwards in time is an issue. The bottom right panel in Figure
5 suggest that if

∫
ϕ(x0:n)pθ (x0:n| y0:n) dx0:n depends on the full path or a big part of it we should have a poor

approximation. Given a fixed number of particles N , it is impossible to approximate pθ (x0:n|y0:n) “well” when n is
large (typically as soon as n ≈ N).
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Figure 5: Top Left: SIR and KF estimates the marginal likelihood p(y0:n) (colour coding and proposals for SIS as
in Figure 4). Top Right: ESSn against n for each SIR proposal. Bottom Left: we plot X̄i

n when generated at time
nand contrast with KF mean (in blue). Bottom Right: we plot the final simulated trajectories of the bootstrap
proposal, Xi

0:T , (i = 1, . . . , N). For the two bottom plots only we use N = 100. (Thanks to P. Jacob for lending
this figure.)

4.3 Some convergence results
We will present some basic convergence results and try to interpret them in terms of what we have seen so far.
Let εθ,n (dx0:n) = p̂θ (dx0:n| y0:n) − pθ (dx0:n| y0:n). If w0 (x0) and wn (xn−1:n) are upper bounded, then for any
bounded test function ϕn : Xn+1 → R, there exists constants Cθ,n,p <∞ such that for any p > 0,

EN
[∣∣∣∣∫ ϕn(x0:n)εθ,n (dx0:n)

∣∣∣∣p]
1
p

≤ Cθ,n,pϕn
N1/2

, (59)

where ϕn = supx0:n∈Xn+1 |ϕn(x0:n)|. In this Lp bound the expectation EN [·] is taken w.r.t to the sampling
distribution being the probability law of the particle filter (i.e. the joint distribution of all the simulated variables
in the SIR algorithm). The Lp bound in (59) is weak result because without making particular assumptions on
fθ, gθ one should expect in general Cθ,n,p to grow exponentially/ polynomially with n and exponentially with dx.
This should not come as a surprise as the dimension of the target density pθ (x0:n| y0:n) we are approximating is
increasing with n. This also means that if one is interested in achieving a prescribed accuracy then it will not be
possible to do this fixed N as n grows.

Fortunately this is not always the case. Many state-space models possess the so-called exponential forgetting
property. For any x0, x

′
0 ∈ X and observation record y0:n,∫

|pθ (xn| y0:n, x0)− pθ (xn| y0:n, x
′
0)| dxn ≤ Cλn, (60)

where λ ∈ [0, 1) and C is a constant. This means that if one computes πxn for X0 = x and πx
′

n for X0 = x′ then
eventually πxn and πx

′

n will converge and this will happen at an exponential rate. Then one can show that for a
small integer L > 0 and any bounded test function ϕL : XL → R, there exists constants Dθ,L,p <∞ such that for
any p > 0

EN
[∣∣∣∣∫ ϕL(xn−L+1:n)εθ,L (dxn−L+1:n)

∣∣∣∣p]
1
p

≤ Dθ,L,pϕL
N1/2

, (61)

where here εθ,L (dxn−L+1:n) =
∫
Xn−L+1 εθ,n (dx0:n) . Notice Dθ,L,p does not depend on n and hence we have a

uniform in time error bound. This means that any degree of accuracy can be achieved using a particular N for any
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n. This explains why particle filters seem to work very well when estimating pθ (xn|y0:n) or pθ (xn−L:n|y0:n) for a
low L.

Apart from the Lp bound, there is a plethora of more convergence results in the literature, from mainstream
ones to more exotic; see for instance the book by Del Moral [19] for a detailed analysis. We mention here briefly:

• a CLT also applies for SIR (and SMC in general) and its asymptotic variance is much lower than SIS, e.g.
[16].

• The SIR algorithm results in an unbiased estimation of the marginal likelihood

EN [p̂θ′ (y0:T )] = pθ′ (y0:T ) (62)

assuming the resampling method is unbiased, e.g. this holds for multinomial case. This is a non-trivial result,
that will be extremely useful when discussing particle MCMC.

• p̂θ (y0:n) has a non-asymptotic relative variance (i.e. variance of p̂θ(y0:n)
pθ(y0:n) ) that increases linearly with n, [13].

We conclude this section with a negative result, that motivates the use of more advanced smoothing methods. Even
if (60) holds, then the asymptotic variance of the SMC estimate of an expected additive functional ϕn(x0:n) =∑n
k=0 ϕ (xk) will grow with a super-linear rate. Say we are interested in

In =

∫ [ n∑
k=0

ϕ (xk)

]
pθ (x0:n| y0:n) dx0:n, (63)

and this estimated by

În =

∫ [ n∑
k=0

ϕ (xk)

]
p̂θ (dx0:n| y0:n) , (64)

then in [60] the authors show that

Var
(
În

)
≥ Dθ

n2

N
. (65)

This motivates the use of dedicated smoothing algorithms (especially for parameter estimation).

4.3.1 Key points

Make sure you understand:

• particle filtering and its ingredients, Importance Sampling and Resampling. Try to understand how resampling
addresses address weight degeneracy of SIS when n is large. Also spend some time to think how the algorithms
presented here can be implemented in practice. For resampling you might find routines related to sampling
from discrete probability distributions useful.

• the strengths of particle filtering when estimating pθ (xn|y0:n) or pθ (xn−L:n|y0:n) for a low L and appreciate
that this is inherited from the exponential property of πn and the mixing in the HMM.

• the possible weaknesses of the method. There are two types of degeneracy:

– weight degeneracy due to Importance Sampling. This is due to a mismatch between the proposal and
evolved particles and the target distribution in one step of the SMC algorithm. This can be crucial when
dx is high.

– path degeneracy: due to successive resampling selections in the particle approximation. This results in
the particle approximation having a diverse population only for close to final times n (or T ).

4.3.2 Reading List

You could read further in:

• Sarkka [63]: Chapter 7

• Doucet et. al. 1998 [27] (except section IV)

• A more modern tutorial on filtering found in [28]: Sections 1, 2.1, 2.2, 2.4, 3.1-3.5, 4.1, 4.3, 6. Can be found
on-line in http://www.stats.ox.ac.uk/~doucet/doucet_johansen_tutorialPF2011.pdf
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4.3.3 Homework

For the following scalar model

Xn = ρXn−1 + σVn, Yn = β exp(
Xn

2
)Wn,

where Wn, Vn
iid∼ N (0, 1), X0 ∼ N

(
0, σ2

1−ρ2

)
.

1. Run the model to synthesise a data-set with y0:T for T = 200, ρ = 0.91, σ = 1, β = 0.5. Store the real state
trajectory x∗0:T for future comparisons.

2. Implement the SIR with q(xn|yn, xn−1) = f(xn|xn−1) and compare estimated of the mean with EKF, SIS
and x∗0:T .

3. Implement the SIR with q(xn|yn, xn−1) obtained from an approximation of the posterior using EKF and
compare with previous estimates.

4. (*) Using a few multiple runs (50-500) compute an approximation the Monte Carlo variance of the estimator
for p(y0:n) a function of time when computed SIR. Hint: you can use the Kalman filter to get true value for
p(y0:n).

5. Repeat some of the above steps for different data-sets or different parameter values.

5 Advanced Sequential Monte Carlo
There are more elaborate particle filtering algorithms that can work better in terms of variance of estimators, ESS,
accuracy than the SIR. The methods we present here will improve the performance in terms of path degeneracy
significantly, but do not address the problem completely. Very often they postpone it for an adequate amount of
time.

We will look first at the following algorithms

• adaptive resampling,

• the resample move PF,

• the auxiliary particle filter.

These are presented separately but can be combined together in many ways and this will result to much more
powerful algorithms. We will then conclude this section with a brief introduction to SMC sampling methods for
static problems.

5.1 Adaptive Resampling
It is clear that although resampling stabilises the weights and is important to maintain good particle system ap-
proximations as n grows, it causes degeneracy when estimating Πn and tends to leave early states being represented
by one or few particles.. One approach around this is to use it only when necessary, that is resample only when
ESSn ≤ αN , e.g. α = 1/2 or 2/3. If at some n, ESSn > αN then one can apply SIS steps. This adaptive
resampling procedure is presented in Algorithm 10 for n ≥ 1. The particle approximations after step 2 will be

p̂θ (dx0:n| y0:n) =

N∑
i=1

W i
nδXi0:n (dx0:n) ,

p̂θ (yn| y0:n−1) =

N∑
i=1

W i
n−1wn

(
Xi
n−1:n

)
.

Note that if at time n−1 one has performed the resampling step then W i
n−1 = 1

N . After step 3 of the algorithm the
particle approximation for Πn will be as in (58). Adaptive resampling is useful as a simple change in the algorithm
overall results to less randomness in the particle system. The will then PF perform better in terms of accuracy
and variance of the estimates (as we inject), but it is worth pointing out that the normalising constant is no longer
unbiased, i.e. (62) does not hold when adaptive resampling is performed.
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Algorithm 10 Adaptive Resampling PF; for convenience we do not show initialisation for n = 0.
At time n ≥ 1

1. Sample Xi
n ∼ qθ(xn| yn, Xi

n−1) and set Xi
0:n ←

(
Xi

0:n−1, X
i
n

)
.

2. Compute the weights wn
(
Xi
n−1:n

)
as in (48) and set W i

n ∝W i
n−1wn

(
Xi
n−1:n

)
,
∑N
i=1W

i
n = 1.

3. IF ESSn ≤ αN

• resample
{
W i
n, X

i
0:n

}
to obtain N new equally-weighted particles

{
1
N , X

i

0:n

}
.

• set Xi
0:n ← X

i

0:n, W i
n ← 1

N

5.2 Adding MCMC steps: the Resample Move PF
One way to view path degeneracy, is that the number of unique particles is decreasing after the resampling step
(and often by a large amount) and hence we have some loss in sample diversity. One way around it would be to
aim to re-introduce some of this lost diversity by moving the particles. Of course, this needs to be done carefully.
For instance, if one moves the particles at time n after resampling using ad-hoc noise (e.g. adding a zero mean
Gaussian random variable), then this will result to having a sample whose statistical properties are are distorted
(with reference to the target Πn) and hence there will be a bias in the Monte Carlo estimates.

One way to avoid this is to move the particles using well designed MCMC moves, whose target density is

pθ (x0:n| y0:n) ∝ ηθ (x0)

n∏
k=1

fθ (xk|xk−1)

n∏
k=0

gθ (yk|xk) .

This was proposed in [31] under the name Resample-Move PF. The idea is to improve on path degeneracy by
re-inserting lost diversity in the particles using appropriate MCMC moves on the target Πn (see Section 3.3 for
some basics on MCMC). Note we are using path space to define the variable of interest, X0:n, as this is where SMC
operates on and where path degeneracy manifests. Let Kn be an appropriate MCMC kernel, which can be a small
number of iterations from any valid Πn-invariant MCMC algorithm, e.g. random walk Metropolis, Gibbs, Hybrid
Monte Carlo etc. The Resample-Move PF is presented in Algorithm 11.

Algorithm 11 The Resample Move PF
At time n ≥ 1

• Sample Xi
n ∼ qθ(xn| yn, X̃i

n−1) and set Xi
0:n ←

(
X̃i

0:n−1, X
i
n

)
.

• Compute the weights wn
(
Xi
n−1:n

)
and set W i

n ∝ wn
(
Xi
n−1:n

)
,
∑N
i=1W

i
n = 1.

• Resample
{
W i
n, X

i
0:n

}
to obtain N new equally-weighted particles

{
1
N , X

i

0:n

}
.

• Move particles by independently (for each i) sampling

X̃i
0:n ∼ Kn(·|Xi

0:n)

It is important to emphasise that when using a MCMC proposal Kn within SMC, we are only interested not
interested in the invariance property of Kn with Πn, as shown earlier in (43). We are using it to provide a jitter
in the particle population and add diversity (while preserving the statistical properties of sample), but we are not
interested in the ergodicity properties of Kn or to compute ergodic averages. This means that Kn needs not be
ergodic and does not need to move the whole trajectory X0:n. Moving only Xn−L+1:n for some small lag L can
still lead to correct algorithm that is Πn-invariant. An example of such Kn is shown in Algorithm 12, where we are
implementing Metropolis-Hastings based on a Gaussian Random Walk proposal. This is useful in practice because
we do not want from a computational perspective to run at every n a MCMC algorithm on the full path X0:n.
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Algorithm 12 A Random Walk MCMC kernel that can be used for filtering.

Set Υ0:n = X
i

0:n

• For m = 1, . . . ,M

– Sample H ∼ N (0, S), with S of appropriate dimension

– Propose Zn−L+1:n = Υn−L+1:n + %H

– Compute acceptance ratio

α = 1 ∧

n∏
k=n−L+1

fθ (Zk|Zk−1) gθ (yk|Zk)

n∏
k=n−L+1

fθ (Υk|Υk−1) gθ (yk|Υk)

– with probability α:

∗ accept Υ0:n ← (Υ0:n−L, Zn−L+1:n)

∗ otherwise reject proposal andΥ0:n remains the same

• Set X̃i
0:n = Υ0:n.

We conclude this part with some practical details on the tuning of Kn based on the presentation in in Algorithm
12 (but the intuition/comments will still apply for other implementations). Here, M can be quite small 1-5 for
simple problems to 20 − 30 for harder ones. In addition, one can use the particles to tune this algorithm. For
example one can use the empirical covariance of the particles after resampling {Xi

n} to design S and % can be tuned
for average acceptance ratio around 0.2− 0.4.

5.3 The auxiliary particle filter
Resample Move and adaptive resampling are meant to improve path degeneracy by attempting to increase particle
diversity, but both do not affect the way the weights are computed and their behaviour. When presenting IS, we
discussed on how effective good proposals are in terms of addressing weight degeneracy. The next extension would
to be to investigate whether it possible or effective to change the weights in some way, so that the particles’ weights
exhibit less variance and hence one ends up with better estimates. This idea was originally proposed as the auxiliary
particle filter in [57], where using likelihood informed proposals and transforming the weights were employed. The
main idea can be summarised as using a different target sequence of distributions than {pθ (x0:n| y0:n)}n≥0 to
propagate the particles and then post process the particles to derive particle approximations for {pθ (x0:n| y0:n)}n≥0.

Recall the Bayesian recursion for pθ (x0:n| y0:n) in (13)-(15):

pθ (x0:n| y0:n) =
1

Zn
pθ (x0:n−1| y0:n−1) fθ (xn|xn−1) gθ (yn|xn)

with Zn = pθ (yn| y0:n−1). When using a bootstrap PF we move/mutate the particles every time with fθ (xn|xn−1)
and weight with gθ (yn|xn). An alternative route would be to use the optimal proposal seen in Section 3.5, so given
approximations for pθ (x0:n−1| y0:n−1) we can first weight with pθ (yn|xn−1) and then move with pθ (xn|xn−1, yn).
Note we have reversed here the usual steps and weight first as the weight will depend only on xn−1 and recall that

pθ (xn|xn−1, yn) =
fθ (xn|xn−1) gθ (yn|xn)

pθ (yn|xn−1)
. (66)

Given it is possible to reverse the weight and sampling steps, one has some flexibility on when to resample too. One
can either:

1. weight with pθ (yn|xn−1), move pθ (xn|xn−1, yn) and then resample. This is equivalent to the standard PF
in Algorithm 6 targeting {pθ (x0:n| y0:n)}n≥0 with the optimal importance proposal.
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2. move pθ (xn|xn−1, yn), weight with pθ (yn+1|xn) and then resample. Moving the resampling step later means
that we are actually using an implementation of Algorithm 6 targeting {pθ (x0:n| y0:n+1)}n≥0.

Note that

pθ (x0:n| y0:n+1) ∝ ηθ (x0)

n∏
k=1

fθ (xk|xk−1)

(
n∏
k=0

gθ (yk|xk)

)
pθ (yn+1|xn) (67)

so when it is targeted using a IS proposal composed of
∏n
k=0 pθ (xk|xk−1, yk) this will result to a weight being

pθ (yn+1|xn)
∏n
k=0 pθ (yk|xk−1); you can check this using (66). Option 2 above uses an incremental weight of

pθ (yn+1|xn) based on the ordering implied by the resampling step. Why is this useful? The answer is that targeting
{pθ (x0:n| y0:n+1)}n≥0 uses a one step lookahead in the weights, so implicitly incorporates information on the next
observation when resampling the particles (and informative observations are taken into account earlier). Then, one
can still use another weight as in (48) to compute particle approximations for {pθ (x0:n| y0:n)}n≥0 separately.

While this is quite elegant, in general pθ (xn|xn−1, yn) and pθ (yn|xn−1) are intractable, so one needs to re-
sort to some form approximations. Lets say we obtain approximations qθ (xn|xn−1, yn) and qθ (yn+1, xn), where
qθ (xn|xn−1, yn) is a good importance distribution. Note here qθ (yn+1, xn) is not necessarily required to be a
pdf, but just an easy to evaluate non-negative function defined on (xn, yn+1) that takes into account the current
observation (it is sometimes called a score-function for the weights.) Instead of (67) consider the target:

π̃n (x0:n| y0:n) ∝ pθ (x0:n| y0:n) qθ (yn+1, xn) . (68)

One may re-write

π̃n (x0:n| y0:n+1) ∝ ηθ (x0) gθ (y0|x0) qθ (y1, x0)

×
n∏
k=1

fθ (xk|xk−1) gθ (yk|xk)
qθ (yk+1, xk)

qθ (yk, xk−1)
(69)

and note that by construction the qθ-s cancel out:

qθ (y1, x0)

n∏
k=0

qθ (yk+1, xk)

qθ (yk, xk−1)
= qθ (yn+1, xn) . (70)

Similarly one can write π̃n recursively as:

π̃n (x0:n| y0:n+1) ∝ π̃n−1 (x0:n−1| y0:n) fθ (xn|xn−1)

(
gθ (yn|xk)

qθ (yn+1, xn)

qθ (yn, xn−1)

)
The Auxiliary PF (APF) is an implementation of Algorithm 6 targeting {π̃n (x0:n| y0:n+1)}n≥0 using qθ (xn|yn, xn−1)

as a proposal. This leads to the following weights:

w̃n (xn, xn−1) =
fθ (xk|xk−1) gθ (yk|xk) qθ (yn+1, xn)

qθ (yn, xn−1) qθ (xn|yn, xn−1)

We will implement this PF and then reweight to get approximations for original Πn that is actually of interest.
This can be done by using the following set of weights

w0 (x0) =
gθ (y0|x0) ηθ (x0)

qθ (x0| y0)
,

wn (xn−1:n) =
gθ (yn|xn) fθ (xn|xn−1)

qθ (xn, yn|xn−1)
for n ≥ 1

where we denote for n ≥ 1, qθ (xn, yn|xn−1) = qθ (xn|yn, xn−1) qθ (yn, xn−1). These weights are consistent with (48)
and (68) explains why we have removed the term qθ (yn+1, xn) compared to w̃n (xn, xn−1).

The Auxiliary PF (APF) is presented in Algorithm 13. For convenience we write the evaluation of the weight w̃n
as a function wn, which needs to be computed anyway to approximate {pθ (x0:n| y0:n)}n≥0. Not surprisingly based
on the discussion above, [57] recommends using if available qθ (xn|yn, xn−1) = pθ (xn|yn, xn−1) and qθ (yn, xn−1) =
pθ (yn|xn−1) or approximations of them.
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Algorithm 13 The Auxiliary PF (APF)
At time n = 0 , for all i ∈ {1, ..., N}:

1. Sample Xi
0 ∼ qθ(x0| y0).

2. Compute W
i

1 ∝ w0

(
Xi

0

)
qθ
(
y1, X

i
0

)
,
∑N
i=1W

i

1 = 1.

3. Resample X
i

0 ∼
∑N
i=1W

i

1δXi0 (dx0).

At time n ≥ 1 , for all i ∈ {1, ..., N}:

1. Sample Xi
n ∼ qθ(xn| yn, X

i

n−1) and set Xi
0:n ←

(
X
i

0:n−1, X
i
n

)
.

2. Compute W
i

n+1 ∝ wn
(
Xi
n−1:n

)
qθ
(
yn+1, X

i
n

)
,
∑N
i=1W

i

n+1 = 1.

3. Resample X
i

0:n ∼
∑N
i=1W

i

n+1δXi0:n (dx0:n).

The approximations of pθ (x0:n| y0:n) and pθ (yn| y0:n−1) are given by:

p̂θ (dx0:n| y0:n) =

N∑
i=1

W i
nδXi0:n (dx0:n) , (71)

p̂θ (yn| y0:n−1) =

(
1

N

N∑
i=1

wn
(
Xi
n−1:n

))( N∑
i=1

W i
n−1qθ

(
yn, X

i
n−1

))
(72)

where

W i
n ∝ wn

(
Xi
n−1:n

)
,

N∑
i=1

W i
n = 1

and

p̂θ (y0) =
1

N

N∑
i=1

w0

(
Xi

0

)
.

We conclude the discussion of the APF by a summary of the procedure and the anticipated benefits. We are
changing carefully the weights by multiplying with something and dividing at the next step (notice (70)). The aim
is to obtain weights with less variance and a PF that is more stable numerically. The hope is that the new likelihood
gθ (yn|xn) qθ(yn+1,xn)

qθ(yn,xn−1) will be less “peaky” or informative and as a result π̃n is closer to π̃n−1. This strategy can
be quite effective when the dynamics of Xt mix slowly or gθ too informative. Finally, note the effectiveness of the
APF will depend on how strongly characteristics appear in a particular problem, see for instance [41] for a thorough
comparison with the bootstrap PF.
Remark 4. For problems that involve discretisations of continuous time models like SDEs one could even set

q (yk+1, xk)

q (yk, xk−1)
=

M∏
m=1

rk,m (yk+1, yk, xk,m)

rk,m−1 (yk+1, yk, xk,m−1)

and then use f(Xk|Xk−1) =
∏M
m=1 fm(Xk,m|Xk,m−1) with Xk = Xk,M and Xk−1 = Xk,0. This can be very useful

as it allows to progressively process an observation and implement a multi-step version of the APF; see [22] for
more details.
Remark 5. Following the previous remark, one could also use a tempering implementation

rk,m = g(Yk+1|xk,m)φm , rk,0 = 1,

with φM = 1 and 0 < φ1 < φ2 < . . . < φm. This was proposed originally in [32]. In the absence of expressions for
fm one could use instead appropriate MCMC moves instead of natural dynamics, similarly to the resample-move
PF. In addition, one can decide values for each φm on the fly according to the ESS falling below some prescribed
value. This combination of ideas from adaptive resampling, using MCMC steps and progressive weighting has been
very popular recently and can be very effective in high dimensional problems such as in [39].
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5.4 SMC for static problems
So far we have looked at problems targeting a sequence of distributions like {pθ (x0:n| y0:n)}n≥0 defined on on a
state space of increasing dimension Xn. We will now present briefly some ideas on how the SMC methodology is
useful also on static problems defined on a state space of fixed dimension. The ideas were introduced [15] and later
extended significantly in [20].

As an example consider the problem of performing Bayesian inference for

π̀n(θ) = p(θ| y0:n)

∝ p(θ)
n∏
k=0

p(yk| y0:k−1, θ).

This could be an inference problem for θ in a HMM or any other statistical model for θ and y0:n. Suppose that one
can design MCMC kernels that are invariant to π̀n(θ) using an approach from Section 3.3 or a more advanced one.
Lets denote such a MCMC kernel as K̀n(θ, dθ′). One can re-write π̀n as

π̀n(θ′)dθ ∝ p(yn| y0:n−1, θ
′)

∫
π̀n−1(θ)Kn−1(θ, dθ′),

which is a recursion like (17) and (20) combined, with Kn−1 providing the dynamics and p(yn| y0:n−1, θ
′) the

likelihood. Then one can implement Algorithm 6 using Kn−1 instead of q and p(yn| y0:n−1, θ
′) for wn, which is a

SMC algorithm for π̀n(θ). We have limited the presentation here on the marginal filters, which for each n coincide
with π̀n(θ). One expand this discussion to include what is happening on the path space but this goes beyond the
purpose of this course.

Similarly to the discussion for the resample-move PF, one has benefit of being able to use the particles to design
more efficient MCMC proposals. Note that in general SMC for static problems will be a sequential but not on-line
algorithm. This is because one needs to compute p(yn| y0:n−1, θ

′) at each n and design MCMC steps that target
a product p(θ)

∏n
k=0 p(yk| y0:k−1, θ) of increasing size (with n). In this case, one cannot use the fixed lag trick we

mentioned earlier for the resample-move PF, so typically the computational cost would be proportional to Nn2.

5.5 Discussion
Path degeneracy can be addressed partially by adaptive resampling (applying resampling only when necessary,) or
by adding MCMC moves to jitter the particles and reintroduce lost diversity in particle approximations. This can
improve the estimation procedure, but to a large extent path degeneracy will be still present. In addition, it is clear
that weight degeneracy can be addressed by good selection of importance proposals. If this is not sufficient due to
having too informative observations, or poorly mixing signals, then there is always an option to change the target
sequence of distribution, so that the particles propagation to an easier problem as in APF. Finally, we emphasise
that these ideas can be very useful in problems defined on static problems, with no dynamic behaviour. The SMC
algorithm can be then combined nicely with MCMC steps, but its main structure and properties are very similar
to the when used to tackle problems with HMMs.

5.5.1 Key points

Make sure you understand:

• what each extension of the basic PF is trying to achieve (i.e. whether it tackles weight or path degeneracy)
and what is the mechanism in terms of the SMC algorithm.

• APF, Resample move and Adaptive resampling are generic approaches that can be combined together. This
can lead to improved performance, albeit with a more complicated algorithm.

• In order to achieve strong performance for a given HMM, one still needs to spend effort to customise and
design the algorithmic steps for the problem at hand, e.g. design qθ (xn|xn−1, yn) or qθ (yn+1, xn) in the APF
case.

• Paying attention to the model at hand is crucial for the performance of any Monte Carlo algorithm. This
extends to designing IS proposals and assessing when APF is better than a bootstrap PF. In the vast majority
of cases, there are no universal guarantees that one PF design is better than another for the same amount of
computation. This will depend on the characteristics of the problem at hand.
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• SMC can be used for static problems too when MCMC procedures are available. The advantage is that the
computation can be parallelised, which is hard with MCMC, one can easily how the posterior changes with
the more observations, but in most cases the computation has a super-linear cost with n.

5.5.2 Reading List

A good reference to use for this section is the [28] (Sections 1, 2.1, 2.2, 2.4, 3.1-3.5, 3.7, 4.1, 4.2, 4.3, 4.4, 6) and for
the static SMC you could look at [15] and [20] for a more advanced treatment.

5.5.3 Homework

For the following scalar model
Xn = ρXn−1 + τVn, Yn = Xn + σWn, (73)

where Wn, Vn
iid∼ N (0, 1), X0 ∼ N (0, 1).

1. Synthesise a data-sets y0:T for T = 5000, ρ = 0.8, τ = 1 with varying σ = 0.001, 0.01, 0.1, 1, 10. Store the
real state trajectory x∗0:T for future comparisons in each case.

(a) Implement the auxiliary PF (APF) for bootstrap or optimal importance proposals.

(b) Compare with bootstrap PF and with SIR with optimal proposal in terms of accuracy for filter mean
and variance, as well as Monte Carlo variance of the marginal likelihood.

(c) How small does σ needs to get so that the APF shows superior performance?

2. For some cases, e.g. σ = 0.1

(a) implement the resample move PF for L = 1, M = 3. Plot the ESS for the resample move and compare
with APF, bootstrap PF, and optimal proposal PF.

(b) repeat the above using adaptive resampling PF.

6 Parameter Estimation for State Space models
So far we have managed to get very good approximations of pθ(xn|y0:n) but only when θ is known. Estimation of
θ is often known as parameter inference for HMMs, model calibration, system identification. It is very crucial in
practice, as without the static parameters you cannot perform filtering, prediction and smoothing.

In applications, often ad-hoc calibration methods are used, but here we will focus on principled statistical
inference approaches. We have chosen to broadly classify the methods as follows: Bayesian or Maximum Likelihood
(ML) and whether they are implemented off-line (batch) or on-line (recursively). In the Bayesian approach, the
unknown parameter is assigned a prior distribution and the posterior density of this parameter given the observations
is to be characterised. In the ML approach, the parameter estimate is the maximising argument of the likelihood
or log-likelihood of the data. Both these inference procedures can be carried out off-line or on-line. Specifically, in
an off-line framework we infer the parameter by iterating over a fixed observation record y0:T . In contrast, on-line
methods update the parameter estimate sequentially as observations {yn}n≥0 become available.

We need to use PFs within algorithms that are meant to perform inference for θ. Although it is possible
to define an extended state including the original state Xn and the static parameter θ and then apply standard
particle methods to perform parameter inference, it was recognised very early on in [43] that this naive approach
is problematic due to the parameter space, Θ, not being explored adequately. One could relate this point to loss
of ergodicity and forgetting or exponential stability in (60) when Xn is augmented with a static parameter. This
has motivated over the past twenty years the development of many particle methods specific to the parameter
estimation problem, but numerically robust methods have only been proposed fairly recently. The main objective
of this course is to provide an introduction to the problem and familiarise with some methods that can be used.
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6.1 Bayesian approach
We begin by looking at Bayesian inference using particle methods. In this case parameter θ is a random variable
and given a a suitable prior density p (θ) one aims to compute or approximate the posterior p (θ| y0:n) is given by

p (θ| y0:n) ∝ pθ (y0:n) p (θ) . (74)

This is hard to implement directly as pθ (y0:n) is intractable, but one could use the fact that pθ (x0:n, y0:n) can be
computed point-wise and aim to approximate p (x0:n, θ| y0:n) instead. This task can be performed either:

• Off-line: given a batch of data-points y0:T one aims to compute the joint posterior density p (x0:T , θ| y0:T ).
We will look at the so called particle MCMC (PMCMC) algorithms that use particle approximations within
MCMC.

• On-line case: compute the sequence of posterior densities {p (x0:n, θ| y0:n)}n=0,...,T . For each n = 1, . . . , T
one can use the previous posterior together with yn to update the posterior. We will see that whilst this is
possible implement using simple extensions to the methodology presented so far, the approach can result to
biased estimates or high Monte Carlo variance that increases with time.

6.1.1 Sequential Bayesian estimation

One can straightforwardly augment state the x0:n with θ and attempt to implement directly a particle filtering on
the extended state (Xn, θn). One can construct a HMM using an initial density p (θ0) ηθ0 (x0) and propagate the
hidden state with a transition density like fθn (xn|xn−1) δθn−1 (θn), so that θn = θn−1. One can then implement any
particle filtering method. This approach of course is a bit naive. Applying a standard SMC algorithm like Algorithm
6 to the degenerate Markov process {Xn, θn}n≥0 will result to the parameter space would only be explored at the
initialisation of the algorithm. The successive resampling steps will deplete the diversity of the particle population,
so after a certain time n, the approximation p̂ (dθn| y0:n) will only contain a very few or even a single unique value
for θ.

From the perspective of the relevant theory, setting θn = θn−1 results to loss of ergodicity for both the augmented
state and filter so the uniform error bounds of (61) no longer apply. In addition, when the parameter is fixed to
some sampled value, say θ = θi, the linear increase with n of the variance of p̂θi (y0:n) implies we need an increasing
number of particles with n for each θi.

This means that when θn is used as a hidden state one needs to inject some noise in the parameter to maintain
some diversity in the particle population. An early pragmatic solution proposed in [43, 36, 50] was to use artificial
dynamics for θ, for example

θn = θn−1 + εn

with εn being zero mean noise with small variance. In [50] one can find some interesting approach to tune variance
of εn from the particles using shrinkage ideas. The resulting estimates for θ based on p̂ (dθn, dx0:n| y0:n) will have a
bias that is hard to quantify in general, but this method is quite easy to implement and in many cases has produced
reasonable results.

Another approach could be to tweak the resampling procedure. For a sufficiently large n the following approxi-
mation

pθ(x0:n−L|y0:n−L) ≈ pθ(x0:n−L|y0:n)

might be reasonable, so one could advocate that there is no need to resample the full path Xi
0:n at every n and just

set (
θ̄in, X̄

i
n−L+1:n

)
=
(
θan(i)
n , X

an(i)
n−L+1:n

)
,

where an(i) is the sampled ancestor of the resampled particle i. This will introduce a bias that will depend on the
value of L and some tuning is required. If L is small the bias will be large, but if it is large then the method will
suffer from path degeneracy more. The approach can be complemented with MCMC move steps like the resample
move PF in Algorithms 11-12 (note one needs to augment X0:n with θ). This fixed lag approach with MCMC steps
was proposed in [59] under the name practical filtering.

Both approaches above will introduce some bias. If one wants to avoid this, one needs to resample θn together
with the full path X0:n and one way to add noise to θ would be to use MCMC steps, like in the resample move PF
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presented in Section 5.2. With reference to Algorithm 11 changed so that it targets (θ,X0:n) one can use a MCMC
kernel with invariant density p (x0:n, θ| y0:n),(

X
(i)
0:n, θ

(i)
n

)
∼ Kn

(
·, ·|Xi

0:n, θ
i

n

)
where by construction Kn satisfies

p (x′0:n, θ
′| y0:n) =

∫
p (x0:n, θ| y0:n)Kn (x′0:n, θ

′|x0:n, θ) d (x0:n, θ) .

If the proposal is based on a Metropolis-Hastings method, one could set the proposal to move θ(i)
n and X(i)

n−L+1:n

only as done in Algorithm 12. In fact, one could even take this approach further and only move θ(i)
n in the proposal

of the MCMC step. For some models one can even use Gibbs steps to update the parameter values

Kn (dx′0:n, dθ
′|x0:n, θ) = δx0:n (dx′0:n) p(θ′|x0:n, y0:n)dθ′,

where
p (θ| y0:n, x0:n) = p(θ|sn(x0:n, y0:n))

with sn(x0:n, y0:n) being fixed dimension sufficient statistic. With some variation these ideas have appeared many
times in the literature: e.g. [2, 65, 29, 12].

As opposed to the methods relying on kernel or artificial dynamics, these MCMC-based approaches have the
advantage of adding diversity to the particles approximating p (θ|y0:n) without perturbing the target distribution.
Whilst the method is very elegant, path degeneracy is still relevant and will play a role when sn(Xi

0:n, y0:n) is
computed recursively. Unfortunately, these algorithms rely implicitly on the particle approximation of the den-
sity p (x0:n|y0:n) even if algorithmic-ally it is only necessary to store some fixed-dimensional sufficient statistics{
sn(Xi

0:n, y0:n)
}
. Hence in this respect they suffer from the degeneracy problem. This was noticed as early as in [2];

see also the word of caution in the conclusion of [29], [3] and [17]. The practical implications are that one observes
empirically that the resulting Monte Carlo estimates can display quite a lot of variability over multiple runs. This
should not come as a surprise as the sequence of posterior distributions does not have exponential forgetting prop-
erties, hence there is an accumulation of Monte Carlo errors over time. This will result to Monte Carlo variance
and sensitivity to parameter initialisation, one will rely on SMC approximations of p(sn(x0:n, y0:n)|y0:n), which for
fixed N will exhibit a error that increases with n. Of course bearing all this in mind, these methods can be still
useful as long as they are used with caution and validated carefully.

6.1.2 Batch estimation using Particle MCMC

Given a batch of data-points y0:T one use an iterative method to infer θ. Here we will focus on using MCMC. If one
attempts to use MCMC directly for p (θ| y0:T ) then (74) suggests that one will have to compute pθ (y0:T ). This will
be necessary when computing the acceptance ratio of a Metropolis Hastings method such as then one presented in
Algorithm 2:

α(θ, θ′) = 1 ∧ pθ
′ (y0:T ) p (θ′) q(θ|θ′)
pθ (y0:T ) p (θ) q(θ′|θ)

But this is not possible to compute directly as pθ (y0:T ) is intractable. One could aim to use Monte Carlo approxi-
mations for pθ (y0:T ), but this hard to justify as a sampler targeting directly p (θ| y0:n).

Another route is to target the joint posterior density p (x0:T , θ| y0:T ). Consider Algorithm 2 for this posterior
density. One would need to define a proposal for (x0:T , θ) and then compute an acceptance ratio

α((x0:T , θ) , (x
′
0:T , θ

′)) = 1 ∧ p (x′0:T , θ
′| y0:T ) q ( (x0:T , θ)| (x′0:T , θ

′))

p (x0:T , θ| y0:T ) q ( (x′0:T , θ
′)| (x0:T , θ))

= 1 ∧ pθ
′ (x′0:T , y0:T ) p (θ′) q ( (x0:T , θ)| (x′0:T , θ

′))

pθ (x0:T , y0:T ) p (θ) q ( (x′0:T , θ
′)| (x0:T , θ))

where pθ (x0:T , y0:T ) is given by (11), so can be computed point-wise. This is an algorithm that can be implemented
in practice, but a naive implementation will result in mixing and performance that will deteriorate rapidly with
increasing T . The problem is that x0:T and θ are strongly correlated, and also each xn is strongly correlated with
xn−1, so naive proposals based on random walks this will make the MCMC sampler very inefficient.
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In general for high dimensional problems, MCMC proposals aim to exploit hierarchical structure and break
conditional dependencies. One could improve the approach presented above by choosing the following proposal
density:

q ( (x′0:T , θ
′)| (x0:T , θ)) = q (θ′| θ) p (x′0:T | y0:T , θ

′) (75)

Then the acceptance probability is

1 ∧ p (x′0:T , θ
′| y0:T ) q (θ| θ′) p (x0:T | y0:T , θ)

p (x0:T , θ| y0:T ) q (θ′| θ) p (x′0:T | y0:T , θ′)

=1 ∧ pθ
′ (y0:T ) p (θ′) q(θ|θ′)
pθ (y0:T ) p (θ) q(θ′|θ)

. (76)

This is referred to as the ideal marginal Metropolis Hastings (IMMH) sampler. The proposal manages to de-couple
the correlation between t x0:T and θ, but the problem is that neither sampling from p (x′0:T | y0:T , θ

′) nor computing
pθ′ (y0:T ) is possible to do exactly.

What we will do instead is sample from a particle filter p̂ (dx′0:T | y0:T , θ
′) (or more precisely from the law of

the particle filter p̂
({{

xin, on(i)
}N
i=1

}T
n=1

∣∣∣∣ y0:T , θ
′
)

with
{{
Xi
n, On(i)

}N
i=1

}T
n=1

being all the sampled particles and

offsprings in the SMC algorithm) and then use the PF estimate p̂θ′ (y0:T ) instead of pθ′ (y0:T ) in (76). This is a
particle MCMC (PMCMC) algorithm that is usually referred to as particle marginal Metropolis Hastings (PMMH).

The PMMH algorithm is presented in Algorithm 14. It consists of a standard MCMC targeting

p

({{
xin, on(i)

}N
i=1

}T
n=1

, θ

∣∣∣∣ y0:T

)
where this denotes the joint density of the parameter θ and all the simulated variables in the SMC algorithm. One
can show that because of the unbiasedness of likelihood estimate, i.e.

EN [p̂θ′ (y0:T )] = pθ′ (y0:T )

if one marginalises out
{{
Xi
n, On(i)

}N
i=1

}T
n=1

from p

({{
xin, on(i)

}N
i=1

}T
n=1

, θ

∣∣∣∣ y0:T

)
then the MCMC procedure of

Algorithm 14 satisfies detailed balance with p (θ| y0:T ) and hence generates valid MCMC samples from p (θ| y0:T ).
This means that as far θ is concerned Algorithm 14 is an exact MCMC algorithm targeting p (θ| y0:T ) for any value
of N . The PMMH algorithm was proposed [5], where one can also find a particle Gibbs sampler implementation.
The approach follows from a general framework now called the pseudo-marginal approach, which uses appropriate
auxiliary variables that are integrated out in MCMC, see [4] for details. Here the variables used to construct SMC

algorithm
{{
Xi
n, On(i)

}N
i=1

}T
n=1

can be included together with θ as auxiliary variables and then integrated out.
The inclusion of these auxiliary variables in most setups will not affect the mixing of the PMCMC chain w.r.t θ if a
sufficient value for N is used. This can be attributed to the HMM structure and the efficiency of using a proposal
very close to (75).
The remarkable feature of this algorithm is that the invariant distribution of the Markov chain {X0:T (k), θ(k)}
is p (θ| y0:T ) whatever being N . SMC approximations do not introduce any bias and minimal tuning required
compared to usual MCMC.
Of course the higher N is, then the better the mixing properties of the algorithm will be. In fact, one can notice
that for relatively small values of N the algorithm often gets stuck for small intervals of time. This is due to the
Monte Carlo variance in p̂θ′ (y0:T ), which can result in an evaluation significantly higher than pθ′ (y0:T ). One simple
way to improve on this is to increase N . This comes at an extra computational cost, so a trade-off needs to be
balanced as after some value of N the reduction of the variance of p̂θ′ (y0:T ) might not have a drastic effect for a
fixed T . A recent rule of thumb for tuning N was proposed in [58] and there the authors recommend setting N
to achieve for log p̂θ′ (y0:T ) a variance near 1. As T increases, under favourable mixing assumptions for the HMM,
the variance of the acceptance rate of the PMMH sampler is proportional to T/N . So N should roughly increase
linearly with T and the total computational cost required for a batch of T observations should be proportional to
T 2.

6.1.3 Numerical examples

We will consider the simple scalar linear Gaussian state space model for the different comparisons to follow:

Xn = ρXn−1 + τWn, Yn = Xn + σVn (77)
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Algorithm 14 Particle Marginal Metropolis Hastings (PMMH)
At iteration k = 0,

• Set θ(0) ∼ p(·).

• Run an SMC algorithm targeting p (x0:T | y0:T , θ), sample X0:T (0) ∼ p̂ (dx0:T | y0:T , θ(0)), and compute esti-
mate ẐT (θ(0))

At iteration k ≥ 1

• Sample a proposal θ′ ∼ q (θ| θ(k − 1)).

• Run an SMC algorithm targeting p (x0:T | y0:T , θ
′), sample X ′0:T ∼ p̂ (dx0:T | y0:T , θ

′), and compute estimate
p̂θ′ (y0:T ).

• Set θ(k) = θ′, X0:T (k) = X ′0:T , with probability

1 ∧ p̂θ′ (y0:T ) p(θ′)q(θ(k − 1)|θ′)
p̂θ(k−1) (y0:T ) p(θ(k − 1))q(θ′|θ(k − 1))

,

otherwise set θ(k) = θ(k − 1), X0:T (k) = X0:T (k − 1).

where Wn, Vn
iid∼ N (0, 1) and ρ ∈ [−1, 1]. The main reason for choosing this model is that Kalman filter recursions

can be implemented with relatively inexpensive grid computations to provide a benchmark for the summary statistics
Sθn in the MLE case and true posterior densities p (θ| y0:n) in the Bayesian case. In this rather simplistic model it is
straightforward to present numerical evidence of some effects of degeneracy for parameter estimation and show how
it can be overcome by choosing an appropriate particle method. Given particle methods do not impose restrictions
on the model dynamics choice, most conclusions can be extended straightforwardly to more complex and high
dimensional settings.

We still consider the model in (77) but simplify it further by fixing either ρ or τ . This is done mainly in order
to keep the computations of the benchmarks that use Kalman computations on a grid relatively inexpensive. For
those parameters that are not fixed, we shall use the following (independent) priors: a uniform on [−1, 1] for ρ,
and inverse gamma for τ2, σ2 with the shape and scale parameter pair being (a, b) and (c, d) respectively with
a = b = c = d = 1. In all the subsequent examples, we will initialize the algorithms by sampling θ from the prior.

Off-line case with PMMH We begin with a brief illustration of PMMH in Algorithm 14 when estimating the
posterior of θ = (τ2, σ2) with ρ = 1 held fixed and known. We will use a simulated data-set with T = 500 and set
a random walk proposal with standard deviation of 0.07. In Figure 6 we display the posterior densities estimated
from the histogram of samples together with the corresponding autocorrelation function plots for each case when
N = 100, 200, 500, 1000. In each case we used 5 × 105, 2 × 105, 1.5 × 105, 105 iterations of PMMH respectively
and the average acceptance ratio was 0.04, 0.13, 0.31 and 0.44. The accuracy of the estimated densities and the
mixing of the associated Markov chain clearly improve with N and the estimated densities are quite accurate for
N = 500, 1000. On the other hand, the relative improvement from N = 500 to N = 1000 seems marginal relative to
the added computational burden. This is in agreement with [5], where the authors emphasize on how computational
savings can be made by monitoring the acceptance ratio and careful choosing of N together with the tuning of the
Metropolis-Hastings proposal; see [58] for some guidelines.

In Figure 7 we plot the estimated posterior densities from 105 samples with N = 500 obtained from 25 indepen-
dent runs of the algorithm. Again we display the posterior densities computed using Kalman filtering on a grid.
We observe minimal variability across runs.

On-line case: particle methods with MCMC steps We proceed to examine the combination of particle
method with MCMC methods. We focus on an efficient implementation of this idea discussed in [12] which can
be put in practice for the simple model under consideration. We investigate the effect of the degeneracy problem
in this context. We first focus of the estimate of the posterior of θ = (τ2, σ2) given a long sequence of simulated
observations with τ = σ = 1. In this scenario, pθ(x0:n, y0:n) admits the following two-dimensional sufficient
statistics, sn(x0:n, y0:n) =

(∑n
k=1 (xk − xk−1)

2
,
∑n
k=0 (yk − xk)

2
)
, and θ can be updated using Gibbs steps. We

37



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

τ
2

p
d

f

 

 

N=100

N=200

N=500

N=1000

KF on grid

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

 σ
2

 

 

N=100

N=200

N=500

N=1000

KF on grid

0 20 40 60 80 100 120 140 160 180 200
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

 

 

N=100

N=200

N=500

N=1000

0 20 40 60 80 100 120 140 160 180 200
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

A
C

F

 

 

N=100

N=200

N=500

N=1000

Figure 6: Particle MCMC: top row: estimated posteriors for τ2 (left) and σ2 (right) obtained form a single run of
PMMH with N = 100 (∗), 200 (+), 500 (�), 1000 (dashed) together with computed using Kalman filter on a grid
(solid green line); bottom: autocorrelation plots.

use T = 5 × 104 and N = 104. We ran the algorithm over 100 independent runs over the same data-set. The top
panel of Figure 8 show the box plots for the estimates of the posterior mean. In the middle row of Figure 8 we
show how the corresponding relative variance of the estimator for the posterior mean evolves with time. Here the
relative variance is defined as the ratio of the empirical variance (over different independent runs) of the posterior
mean estimates at time n over the true posterior variance at time n, which in this case is approximated using a
Kalman filters on a fine grid. This quantity exhibits a steep increasing trend when n ≥ 15000 and confirms the
aforementioned variability of the estimates of the posterior mean. In the bottom row of Figure 8 we plot the average
(over different runs) of the estimators of the variance of p(θ|y0:n). This average variance is also scaled/normalized by
the actual posterior variance. The latter is again computed using Kalman filtering on a grid. This ratio between the
average estimated variance of the posterior over the true one decreases with time n and it shows that the supports
of the approximate posterior densities provided by this method cover on average only a small portion of support of
the true posterior. Both the experiments in the middle and bottom row of Figure 8 confirm that in this example
the particle method with MCMC steps fails to adequately explore the space of θ. Although the box plots provide
some false sense of security, the relative and scaled average variance clearly indicate that any posterior estimates
obtained from a single run of particle method with MCMC steps should be used with caution.

One might argue that these methods are meant to be used with larger N and/or shorter data sets T . We shall
consider this time a slightly different example where τ = 0.1 is known and we are interested in estimating the
posterior of θ = (ρ, σ2) given a sequence of observations obtained using ρ = 0.5 and σ = 1. In that case, the
sufficient statistics are sn(x0:n, y0:n) =

(∑n
k=1 xk−1xk,

∑n−1
k=0 x

2
k−1,

∑n
k=0 (yk − xk)

2
)
, and the parameters can be

rejuvenated through a single Gibbs update. In addition, we let T = 5000 and use N = 104 particles. In Figures 9
we display the estimated marginal posteriors p (ρ| y0:n) and p

(
σ2
∣∣ y0:n

)
obtained from 50 independent replications

of the particle method. On this simple problem, the estimated posteriors seem consistently rather inaccurate for
ρ, whereas they perform better for σ2 but with some non-negligible variability over runs. Clearly, one expects this
variability will decrease as N increases and increases as T increases. To investigate this further we will consider
the same example for T=1000 and compare with estimates provided by the Particle Gibbs sampler of [49] using
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Figure 7: Particle MCMC: estimated pdfs for τ2 (left, black dashed line) and σ2 (right, black dashed line) obtained
from 25 independent replications of the PMMH algorithm with N = 500 together with pdf computed using Kalman
filter on a grid (solid green line).

the same computational cost. In Figure 10 and 11 we plot the resulting posteriors when the particle method with
MCMC steps uses N = 7.5 × 104 and N = 6 × 105 respectively. In the same plots we present in the lower panels
the results using the Particle Gibbs sampling using N = 50 particles with 3000 and 24000 iterations respectively.
The estimates provided by the Particle Gibbs sampler appear to display less variability. For a higher dimensional
parameter θ and/or very vague priors, this comparison would be much more favorable to the Particle Gibbs sampler.
Of course, both methods require increasing N with T to achieve a specified level of accuracy.

Finally, in other related results not shown here, one can also investigate experimentally the empirical variance
of the marginal likelihood estimates {p̂ (y0:n)}n≥0. This variance increases quadratically with n for the particle
method with MCMC moves instead of linearly as it does for state-space models with good mixing properties. This
is once more due to the degeneracy problem; i.e. the implicit reliance of such algorithms on the particle estimates
of the joint distributions {p (dx0:n| y0:n)}n≥0.

6.1.4 Key points

Make sure you understand:

• for simple HMMs how to implement PMMH, PFs with θ added to the state by adding noise or using MCMC
steps or using fixed lag resampling ideas.

• the limitations of sequential Bayesian inference with PFs and the role of path degeneracy.

• why independent multiple runs are necessary to assess the performance of different algorithms.

• computational considerations and trade-offs when implementing PMCMC. The question often is whether one
should use higher N or more MCMC iterations. A simple initial approach would be to use N in the order of
T and then spend more computation in MCMC steps.

6.1.5 Reading List

You can complement your reading on PMCMC by looking first at the comprehensive book chapter in [6] and then
at [5]. For a general discussion on Bayesian inference and its challenges using particle methods you can look at
Sections 6.1, 6.2.1 of [40].

6.2 Maximum Likelihood (ML) estimations
Computational methods to perform ML estimation can be either based on a) direct optimisation approaches, b)
gradient ascent, and c) Expectation Maximisation (EM). In addition, similar to the Bayesian case, ML can be
performed either offline or online. In contrast to what we saw in the Bayesian case, certain on-line ML implementa-
tions using particle methods manage to overcome path degeneracy and are numerically very stable. This results in
them being very useful in many applications with very long data sequences. Here, in the interest of simplicity we
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will focus only on offline methods, but towards the end of the section we will sketch some ideas related to on-line
approaches and point to relevant references.

In the off-line case one is given a batch of data-points y0:T and aims to estimate of θ as the maximising argument
of the marginal log-likelihood of the observed data:

θ∗ = arg max
θ∈Θ

lT (θ) (78)

where
`T (θ) = log pθ (y0:T ) . (79)

We will see different ways on how to approximate θ∗ using particle approximations.

6.2.1 Direct Optimisation of log-likelihood

One can use the particle approximation p̂θ (y0:T ) to estimate `T (θ) as

ˆ̀
T (θ) = ̂log pθ (y0:T ).

and then perform the following maximisation directly

θ̂ = arg max
θ∈Θ

l̂T (θ) (80)

Various off-the-shelf optimisation methods can be employed, from using grid methods on θ to more elaborate such
as the popular Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS).

This approach will face two challenges:

• the Monte Carlo variance of p̂θ (y0:T ) might act as clutter on the maximising surface, so θ̂ might be very
different from θ∗.

• p̂θ (y0:T ) might not be a smooth function of θ.

• It might not be possible to maintain unbiasedness. Note that in general

EN [log p̂θ (y0:T )] 6= log pθ (y0:T )

so even if p̂θ (y0:T ) is unbiased, log p̂θ (y0:T ) is a biased estimator of the log-likelihood.

We will expand on each of these points separately.
Regarding the variance of p̂θ (y0:T ), one can describe this particle approximation as a noisy evaluation of the

true likelihood pθ (y0:T )
p̂θ (y0:T ) = pθ (y0:T ) + VNT (θ)

with VNT (θ) being some non-trivial zero mean noise (due to unbiased-ness) depending on T,N , θ (and the chosen
model). In fact, we know that (non-asymptotic) variance of VNT that increases linearly with T (with the proportion-
ality constant being proportional to pθ (y0:T )

2). This Monte Carlo variability due VNT is quite an issue for finding
maximum over θ, because it can distort the surface of pθ (y0:T ) and it can be very hard to retrieve an estimate θ̂
close to θ∗. Some brute-force fixes around this issue could include using very high values for N , smoothing the
approximation as a function of θ (e.g. using some kernel smoothing method), using common random seeds for each
θ evaluation and also averaging over independent runs for every θ value.

When optimising a function calculated with a Monte Carlo error, a popular strategy is to make the evaluated
function continuous by using common random numbers over different evaluations to ease the optimization. Un-
fortunately, this strategy is not very helpful in the particle context. Indeed, in the resampling stage, a piece-wise
constant and hence discontinuous cumulative distribution function (cdf) is defined by the weights {W i

n+1}Ni=1 and
particles {Xi

n}Ni=1. A small change in θ will cause a small change in the importance weights {W i
n+1}Ni=1 and this

will potentially generate a different set of resampled particles. As a result, the likelihood function estimate ̂̀T (θ)
will not be continuous in θ even if the true likelihood is.

A solution to this problem was proposed in [36] by using an importance sampling method but it has compu-
tational complexity O

(
N2 (T + 1)

)
and can only provide low variance likelihood estimates in the neighborhood

of a suitably pre-selected parameter value. When X ⊆ R, an elegant solution to the discontinuity problem was
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proposed in [56]. The method based on common random numbers introduces a “continuous” version of the resam-
pling step by ordering the particles {Xi

n}Ni=1 and defining a piece-wise linear resampling cdf. This method requires
O (N (T + 1) logN) operations due to the sorting of the particles. The resulting continuous estimate of the like-
lihood function can be maximized using standard optimisation techniques. An extension to the multivariate case
when X ⊆ Rnx (with nx > 1) has been proposed in [46].

The next thing to address is how we correct or reduce the bias of log p̂θ (y0:T ). A simple approach is for a given
random variable Z to use a Taylor series around Z ′:

log(Z) = logZ ′ +
1

Z ′
(Z − Z ′)− 1

2Z ′2
(Z − Z ′)2 +O(Z3)

Let Z ′ = E[Z] and after ignoring the higher then second order terms, we get:

E [log(Z)] = logE[Z]− 1

2E[Z]2
Var[Z]

Setting above Z = p̂θ (y0:T ) and Z ′ = pθ (y0:T ) we get:

E [log p̂θ (y0:T )] = log pθ (y0:T )− Var [p̂θ (y0:T )]

2pθ (y0:T )
2 .

This means that log p̂θ (y0:T ) + 1
2Var

[
p̂θ(y0:T )
pθ(y0:T )

]
will exhibit a reduced bias coming only from the higher order

terms (we are using a second order bias reduction scheme). To implement such as scheme in practice we need to
approximate the relative variance Var[p̂θ(y0:T )]

2pθ(y0:T )2
, whose accurate estimation is a very difficult task. One simple (but

fairly crude) possibility would be to use an expression like (53) and let

Var
[
p̂θ (y0:T )

pθ (y0:T )

]
≈ 1

N

(∫
(p(x0:T |y0:T ))

2

q(x0:T )
dx0:T − 1

)

≈ 1

N

(∫ ( T∏
n=0

wn(xn−1:n)

)
p(x0:T |y0:T )dx0:T − 1

)

Then one may use the particle approximation of

ŴT =
1

N

N∑
i=1

(
T∏
n=0

wn(X̄i
n−1:n)

)

and use
̂log pθ (y0:T ) = log p̂θ (y0:T ) +

ŴT − 1

2N

as a bias reduced estimator for lT . The downside of this is that we are overestimating the variance of p̂θ (y0:T ) by
using (53) that is an identity for SIS. A refinement that works around this has appeared recently in [47], but its
presentation is beyond the scope of this course.

6.2.2 Expectation Maximisation

Expectation Maximisation (EM) algorithm is a very popular alternative procedure for maximising `T (θ). The
procedure is presented in Algorithm (15). The sequence {`T (θk)}k≥0 generated by this algorithm is non-decreasing.

In particular if pθ(x0:T , y0:T ) belongs to the exponential family, then the EM consists of computing a ns-
dimensional summary statistic, SθT , that is an additive functional of the following form

SθT =

∫ [ T∑
k=0

sk (xk, xk−1, yk)

]
pθ (x0:T | y0:T ) dx0:T , (83)

Then the maximising argument of Q(θk, θ) can be characterised explicitly through a suitable function Λ : Rns → Θ,
i.e.

θk+1 = Λ
(
SθkT
)
. (84)
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Algorithm 15 Expectation Maximisation (EM) algorithm
At iteration k + 1, we set

θk+1 = arg max
θ

Q(θk, θ) (81)

where
Q(θk, θ) =

∫
log pθ(x0:T , y0:T ) pθk(x0:T |y0:T )dx0:T . (82)

A particle implementation of EM consists for each k running a standard PF such as Algorithm 6. Then we can
approximateSθkT using:

ŜθT =

∫ [ T∑
k=0

sk (xk, xk−1, yk)

]
p̂θ (dx0:T | y0:T ) ,

=
1

N

N∑
i=1

T∑
k=0

sk
(
X̄i
k, X̄

i
k−1, yk

)
.

The final step is to perform the maximisation step: θk+1 = Λ

(
ŜθkT
)
.

One potential issue with doing this using the algorithms presented so far is that due to path degeneracy the
asymptotic variance of the SMC estimate satisfies V

(
Ŝθn
)
≥ Dθ

n2

N , so this might cause some issues in cases where
n is large. This could be addressed using dedicated smoothing algorithms where this increase in the variance is only
linear.

6.2.3 Gradient ascent methods

The log-likelihood may be maximised with the following steepest ascent algorithm: a at iteration k + 1

θk+1 = θk + γk+1 ∇θ`T (θ)|θ=θk , (85)

where ∇θ`T (θ)|θ=θk is the gradient of `T (θ) w.r.t θ evaluated at θ = θk and {γk} is a sequence of small positive
real numbers, called the step-size sequence, that needs to satisfy

∑
k γk =∞ and

∑
k γ

2
k <∞. To obtain the score

vector ∇θ`T (θ) we can use Fisher’s identity

∇θ`T (θ) =

∫
∇θ log pθ (x0:T , y0:T ) pθ (x0:T |y0:T ) dx0:T . (86)

Given (11), it is easy to check that the score is of the form (83). We have

∇θ log pθ (x0:n, y0:n) = ∇θ log

n∏
p=0

fθ (xp|xp−1) gθ (yp|xp)

=

n∑
p=0

(∇ log fθ (xp|xp−1) +∇ log gθ (yp|xp))

where here
sp(xp−1:p) = ∇ log fθ (xp|xp−1) +∇ log gθ (yp|xp) .

One can use particle approximations to estimate Sθn directly, but then one faces the same issue with the variance
increase with n. This short-coming can be addressed using either very high values for N or the smoothing algorithms
below.

6.2.4 Discussion

We have looked at how filtering and particle methods can be used for ML estimation using direct optimisation
approaches, gradient ascent, and EM. From the point of view of practitioners, direct optimisation is usually very
convenient, but we saw it has some weaknesses. Notice that Monte Carlo variance affects the estimation even when
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one aims to optimise for pθ(y0:T ) instead of its log-function. Using log transforms typically results in functions that
much easier to optimise, but there are some issues related to bias reduction. Implementation of gradient ascent and
EM using particle approximations is straightforward. Gradient ascent algorithms can be sometimes numerically
unstable as they require to scale carefully the components of the score vector. Hence, EM is usually favoured by
practitioners whenever it is applicable as it is numerically more stable than gradient techniques, but both can result
in very good results.

6.3 Smoothing Algorithms

Smoothing algorithms are focused in designing better particle approximations for {pθ (xn| y0:T )}Tn=0 . This could
be either because one is interested in these smoothing marginals or because they arise in parameter estimation. For
instance, we can reverse sum and integral in (83) and integrate out terms to get

SθT =

T∑
k=0

∫
[sk (xk, xk−1, yk)] pθ (xk−1, xk| y0:n) dxk−1:k. (87)

Having particle approximations {p̂θ (xn| y0:T )}Tn=0 and {p̂θ (xn, xn+1| y0:T )}Tn=0 that do not suffer from path degen-
eracy then will be very useful to get estimates of SθT with much lower Monte Carlo variance. This will eventually
translate better (or less variable) parameter estimates. Some popular approaches are to use (a) fixed lag smoothing,
(b) forward filtering backward sampling, and (c) forward filtering backward smoothing.

6.3.1 Fixed lag approximations

In Section 6.1.1 we introduced the notion of fixed lag approximations, when discussing practical filtering. Using fixed
lag approximations for smoothing originates from [45]. For state-space models with “good” forgetting properties if
L large enough then the following approximation might be reasonable:

pθ (x0:n| y0:T ) ≈ pθ
(
x0:n| y0:(n+L)∧T

)
,

i.e. the observations collected at times k > n + L do not bring any significant additional information about X0:n.
This means that at times k > n+L one needs only to resample Xi

k−L+1:k. The fixed lag method does not resample
the components Xi

0:n of the particles Xi
0:k obtained by particle filtering. This has appeared in [45] and was used to

provide approximations {p̂θ (xn| y0:T )}Tn=0 and {p̂θ (xn, xn+1| y0:T )}Tn=0. The algorithm differs from standard SIR
implementation only in the resampling step. The approach can work in practice, but method is asymptotically
biased (in N) and it might be hard to tune L. A related theoretical study can be found in [54].

6.3.2 Forward Filtering Backward Sampling (FFBSa)

The joint smoothing distribution pθ (x0:T | y0:T ) can be expressed as a function of the filtering distributions {pθ (xn| y0:n)}Tn=0

as follows:

pθ (x0:T | y0:T ) = pθ (xT | y0:T )

T−1∏
n=0

pθ (xn| y0:n, xn+1) (88)

where we define a backward Markov density:

pθ (xn| y0:n, xn+1) =
fθ (xn+1|xn) pθ (xn| y0:n)

pθ (xn+1| y0:n)
.

=
fθ (xn+1|xn) pθ (xn| y0:n)∫
fθ (xn+1|xn) pθ (xn| y0:n) dxn

. (89)

The expression in (88) suggests we can obtain a sample from pθ (x0:T | y0:T ) by sampling initially from pθ (xT | y0:T )
and then sequentially from the backward Markov transition density pθ (xn| y0:n, xn+1) then a sample from. Clearly
in general it is not possible to perform this simulation directly, but we can use particle approximations instead.

Lets say we have run a PF from time n = 0 to T, and in addition to the usual procedure in Algorithm 6 we also

store every approximate filtering distribution
{
p̂θ (dxn| y0:n) =

∑N
i=1W

i
nδXin (dxn)

}T
n=0

. For every n, the
{
Xi
n

}N
i=1

can be viewed as a random sample from which one can sample from. If the probability of sampling is given by W i
n

then this is equivalent to sampling from p̂θ (dxn| y0:n) or resampling. We can use a similar approach to sample from
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Algorithm 16 Forward Filtering Backward Sampling (FFBSa)

• Run a particle filter from time n = 0 to T, storing the approximate filtering distributions {p̂θ (dxn| y0:n)}Tn=0.

• Sample X̃T ∼ p̂θ (dxT | y0:T ) and

• For n = T − 1, T − 2, ..., 0 sample
X̃n ∼ p̂θ

(
dxn| y0:n, X̃n+1

)

a particle approximation of pθ (xn| y0:n, xn+1). Let p̂θ (dxn| y0:n, xn+1) denote this particle approximation, where
this distribution is obtained by substituting p̂θ (dxn| y0:n) for pθ (dxn| y0:n) in (89):

p̂θ (dxn| y0:n, Xn+1) =

∑N
i=1W

i
nfθ(Xn+1|Xi

n)δXin (dxn)∑N
j=1W

j
nfθ(Xn+1|Xj

n)
. (90)

Given a value for Xn+1, obtaining one sample from p̂θ (dxn| y0:n, xn+1) is equivalent to picking can sample from{
Xi
n

}N
i=1

with probabilities
{

W i
nfθ(Xn+1|Xin)∑N

j=1W
j
nfθ(Xn+1|Xjn)

}N
i=1

. One can then proceed backwards from time T to time 0

to get a sample X̃0:T ∼ p̂θ (xT | y0:T )

T−1∏
n=0

p̂θ (xn| y0:n, xn+1). This procedure is referred to as Forward Filtering

Backward Sampling (FFBSa) and is described in Algorithm 16. Note that this procedure generates a single sample

for X̃0:T so has to be repeated N times if one wants to get N equally weighted samples
{
X̃i
n

}N
i=1

. These samples

can be used to approximate SθT with

ŜθT =
1

N

T∑
k=0

N∑
i=1

[
sk

(
X̃i
k, X̃

i
k−1, yk

)]
.

This approach will address the path degeneracy issue, but will lead to a computational cost proportional to
N2T . Of course, at this cost one is able to choose randomly from NT possible paths (in contrast to NT ones that
Algorithm 6 would allow) and this can explain intuitively how path degeneracy is addressed.

6.3.3 Forward Filtering Backward Smoothing (FFBSm)

Note that the backward Markov kernel in (89) can be also used to provide a backward in time recursion for
{pθ (xn| y0:T )}Tn=0. It follows by integrating out x0:n−1 and xn+1:T in (88) while applying (89):

pθ (xn| y0:T ) =

∫
pθ (xn, xn+1| y0:T ) dxn+1

=

∫
pθ (xn| y0:n, xn+1) pθ (xn+1| y0:T ) dxn+1

=

∫
fθ (xn+1|xn) pθ (xn| y0:n)

pθ (xn+1| y0:n)
pθ (xn+1| y0:T ) dxn+1.

So the backward in time recursion for {pθ (xn| y0:T )}Tn=0 is:

pθ (xn| y0:T ) = pθ (xn| y0:n)

∫
fθ (xn+1|xn) pθ (xn+1| y0:T )

pθ (xn+1| y0:n)
dxn+1. (91)

This backward recursion can lead to a particle approximation {pθ (xn| y0:T )}Tn=0. Assume at time n we have an
approximation

pθ (dxn+1| y0:T ) =

N∑
i=1

W i
n+1|T δXin+1

(dxn+1)
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where we initialise at time T with W i
T |T = W i

T . Then using (91) and (90) together, we obtain the approximation

pθ (dxn| y0:T ) =

N∑
i=1

W i
n|T δXin(dxn)

with

W i
n|T = W i

n ×
N∑
j=1

W j
n+1|T fθ

(
Xj
n+1|Xi

n

)
∑N
l=1W

l
nfθ

(
Xj
n+1|X l

n

) . (92)

This is a standard particle approximation for {pθ (xn| y0:T )}Tn=0, so
∑N
i=1W

i
n|Tϕ(Xi

n) can be used to approximate

integrals of the form
∫
ϕ(xn)pθ (xn| y0:T ) dxn. Note that this simply uses earlier samples

{
Xi
n

}N
i=1

that were
generated during the usual forward PF of Algorithm 6 together with the new weights W i

n|T . The approach is called
Forward Filtering Backward Smoothing (FFBSm) and is presented in Algorithm 17. Due to the form of (92), the
computational cost is proportional to N2T operations in total.

Algorithm 17 Forward Filtering Backward Smoothing (FFBSm)

Run a particle filter from time n = 0 to T, storing the approximate filtering distributions {p̂θ (dxn| y0:n)}Tn=0,

• Initialise backward pass: W i
T |T = W i

T

• For n = T − 1, T − 2, ..., 0 compute weights

W i
n|T = W i

n ×
N∑
j=1

W j
n+1|T fθ

(
Xj
n+1|Xi

n

)
∑N
l=1W

l
nfθ

(
Xj
n+1|X l

n

) .
and obtain the approximation

pθ (dxn| y0:T ) =

N∑
i=1

W i
n|T δXin(dxn)

We return to the issue for approximating the smoothed additive functional Sθn in (87). This requires specifying
a particle approximation of pθ (dxn, dxn+1| y0:T ) use within (87). Notice that in earlier calculations we used

pθ (xn, xn+1| y0:T ) = pθ (xn| y0:n, xn+1) pθ (xn+1| y0:T )

=
fθ (xn+1|xn) pθ (xn| y0:n)

pθ (xn+1| y0:n)
pθ (xn+1| y0:T )

=
fθ (xn+1|xn) pθ (xn| y0:n)∫
fθ (xn+1|xn) pθ (xn| y0:n) dxn

pθ (xn+1| y0:T ) . (93)

Suppose we have an approximation

pθ (dxn+1| y0:T ) =

N∑
i=1

W i
n+1|T δXin+1

(dxn+1)

given from Algorithm 17 and are interested to obtain an approximation of the form:

pθ (dxn, dxn+1| y0:T ) =

N∑
i=1

W̃ i
n,n+1|T δXa(i)n ,Xin+1

(dxn).

One can substitute pθ (dxn+1| y0:T ) and p̂θ (dxn| y0:n) in equation (93) to get

W̃ i
n,n+1|T = W an(i)

n

W i
n+1|T fθ

(
Xi
n+1|X

an(i)
n

)
∑N
l=1W

l
nfθ

(
Xi
n+1|X l

n

) . (94)
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where Xan(i)
n is the ancestor of Xi

n+1 generated by the resampling algorithm during the forward pass. One can then
approximate approximate Sθn with

ŜθT =

T∑
k=0

N∑
i=1

W̃ i
k,k+1|T sk

(
Xi
k, X

ak(i)
k−1 , yk

)
. (95)

6.3.4 Discussion

Assuming the HMM possesses some exponential forgetting properties one can show that approximations of Sθn based
on the fixed-lag approximation will have an asymptotic variance with rate n/N with a non-vanishing (as N →∞)
bias proportional to n and a constant decreasing exponentially fast with L; see [54]. In addition, the asymptotic bias
and variance of the particle estimate of Sθn computed using the forward-backward procedures (FFBSa or FFBSm)
satisfy: ∣∣∣E(Ŝθn)− Sθn∣∣∣ ≤ Fθ nN , V

(
Ŝθn
)
≤ Hθ

n

N
. (96)

but note this is using algorithms at cost of N2T operations. The notable thing to notice here is that the expression
for bias for a standard SMC algorithm and the forward-backward estimators of Sθn are actually equal, [21]. So a
standard SMC method achieves the same bias with less computational cost, but at the same time suffers from very
high increase in variance with time. Choosing the right method for the a particular problem at hand will depend on
many factors: the size of T , the model, the allowed computational budget for N , the required accuracy. Depending
one all these choosing which approach is more suitable requires balancing the aforementioned bias-variance trade-off.

6.3.5 Numerical examples

We will consider again the simple scalar linear Gaussian state space model we saw earlier in Section 6.1.3. where
Kalman filter recursions can be implemented with relatively inexpensive grid computations to provide a benchmark
for the summary statistics Sθn in the MLE case. In this rather simplistic model it is straightforward to present
numerical evidence of some effects of degeneracy for parameter estimation and show how it can be overcome by
choosing an appropriate particle method. Given particle methods do not impose restrictions on the model dynamics
choice, most conclusions can be extended straightforwardly to more complex and high dimensional settings.

We begin by investigating the empirical variance when estimating the smoothed additive functionals Sθn given
in (83). The first method we will consider is method like Algorithm 6 that does not employ any smoothing and
uses a computational cost O(N) per time. One can use the output of Algorithm 6, and then use p̂θ (dx0:n| y0:n) in
(55) to approximate Sθn as Ŝθn recursively by storing and updating

∑n
k=1 sk(Xi

k−1, X
i
k) at each time n; note that∑n

k=1 sk(Xi
k−1, X

i
k) needs to be resampled together with Xi

0:n, see [10, Section 8.3] for more details. The second
method is the forward only implementation of FFBSm presented in Algorithm 17 using (95) to estimate of Sθn.
Recall that the latter method has a computational cost that is O(N2) per time and provides the same estimates as
the standard forward-backward implementation of FFBSm.

For the model described in (77) we will set sk(xk−1, xk) = xk−1xk and compute Sθn. We will use a simulated data-
set of size 6× 104 obtained using θ∗ = (ρ∗, τ2∗ , σ2∗) = (0.8, 0.1, 1) and then generate 300 independent replications
of each method in order to compute the empirical bias and variance of Ŝθ∗n when θ is fixed to θ∗. In order to make
a comparison that takes into account the computational cost, we will use N2 particles for the O(N) method (that
uses SIR, Algorithm (6)) and N for the O(N2) one (that uses FFBSm, Algorithm (17)). We will look separately at
the behavior of the bias of Ŝθn and the variance and mean squared error (MSE) of the re-scaled estimates Ŝθn/

√
n.

The results are presented in Figure 12 for N = 50, 100, 200.
For both methods the bias grows linearly with time, this growth being higher for the O(N2) FFBSm method.

This is in agreement with the theoretical results in the literature implying that we expect a growth proportional
to n/N2 for the O(N) method and to n/N for the O(N2) method. For the variance of Ŝθn/

√
n, we observe a linear

growth with time for the O(N) standard method with N2 particles whereas this variance appears roughly constant
for the O(N2) FFBSm method. This figure is also in agreement with theoretical results as the variance Ŝθn is
supposed to grow at least at the rate n2/N when the O(N) method is used (see [60]) and at the rate n/N when
the O(N2) method is used [21], [24]. Finally, the MSE of Ŝθn/

√
n grows for both methods linearly as expected. In

this particular scenario, the constants of proportionality are such that the MSE is lower for the O(N) method than
for the O(N2) method. In general, we can expect that the O(N) method be superior in terms of the bias and the
O(N2) method superior in terms of the variance. This motivates the development of bias reduction schemes for the
O(N2) method.
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6.4 Further topics on on-line parameter inference
6.4.1 On-line likelihood methods

For a long observation sequence computing the gradient of `T (θ) or performing EM iterations can be computationally
prohibitive. In other cases, we might be interested to know how the parameter estimate changes with time. In this
case we should use a recursive method that updates at each n the ML estimate, θn, of the model parameter after
receiving the new data yn. For these methods to be theoretically justified, it is crucial for the observation process
to be stationary for the limiting averaged likelihood function `T (θ) /T to have a well-defined limit as T → +∞.

An online gradient algorithm bypassing this problem has been proposed in the literature for a finite state-space
latent process in [48], but can easily be extended for general state spaces using particle methods. It relies on the
following update scheme

θn+1 = θn + γn+1∇ log pθ0:n(yn|y0:n−1) (97)

where the subscript θ0:n is used to denote the ‘time-varying’ score which is computed with a filter using the parameter
θp at time p (to avoid having to compute the filter from time 0 to time n using the current parameter value θn).
As in the off-line case, the Fisher identity (86) can illustrate how particle approximate can be used to compute
∇pθ0:n(yn|y0:n−1). A method that implements this using a forward only version of smoothing is proposed in [60].
The resulting method has a computational cost proportional to N2T , but using it is essential for accurate estimates
of θn.

We return to EM and mention some ideas on how it can be implemented on-line. At time n, let {θp}0≤p≤n be
the sequence of earlier parameter estimates of the on-line EM algorithm computed sequentially based on y0:n−1.
When yn is received, we can use stochastic approximation (or Robbins Monroe, [8]) to update the approximation
the smoothed additive functional in (87) as follows:

Sθ0:n = γn+1

∫
sn (xn−1:n) pθ0:n(xn−1, xn|y0:n)dxn−1:n

+ (1− γn+1)
∑n
k=0

(
n∏

i=k+2

(1− γi)

)
γk+1

∫
sk (xk−1:k) pθ0:k(xk−1:k|y0:k)dxk−1:k,

(98)

where {γn}n≥1 are standard step sizes that satisfy
∑
n γn = ∞ and

∑
n γ

2
n < ∞. Then a particle approximation

of Sθ0:n can be used in the standard maximisation step (84) to provider θn+1; see [21] or [9] for details. One could
either use a standard PF with many particles or a forward only implementation of FFBSm found in [21]. The
bias variance trade-off mentioned earlier will then apply for the estimates θn. We will illustrate this bias variance
trade-off in the example below.

6.4.2 Numerical Results for On-line implementation of EM

We will continue the numerical case study in Section 6.3.5 to see how the bias and variance of the estimates Sθn
can affect ML estimation, when the former are used within an on-line EM algorithm. For the model in (77) the
E-step corresponds to computing Sθn where sk(xk−1, xk, yk) =

(
(yk − xk)2, x2

k−1, xk−1xk, x
2
k

)
and the M-step update

function is given by Λ(z1, z2, z3, z4) =
(
z3
z2
, z4 − z23

z2
, z1

)
. We will compare the estimates of θ∗ when the E-step is

computed using the O(N) and the O(N2) methods described in the previous section with 1502 and 150 particles
respectively. A simulated data-set for θ∗ = (ρ∗, τ∗, σ∗) = (0.8, 1, .2) will be used. In both cases we will initialize
the algorithm using θ0 = (0.1, 0.1, 0.2) and assume σ∗ is known. In Figures 13 and 14 we present the the results
obtained using 100 independent replications of the on-line EM algorithm, where the step size is set as γn = n−0.8

and for the first 5000 iterations no M-step update is performed.
Both methods yield fairly accurate results. Experimentally, the properties of the estimates of Sθn discussed earlier

appear to translate into properties of the resulting parameter estimates: the O(N) method provides estimates with
less bias but more variance than the O(N2) method.

6.4.3 The SMC2 algorithm

We return to sequential Bayesian estimation. Earlier in Section 5.4 we mentioned how particle methods can be
used to approximate sequentially {p (θ| y0:n)}n≥0. The SMC2 algorithm proposed in [18] may be considered as the
particle equivalent of PMCMC. It mimics the “ideal” particle algorithm proposed in [15] (presented here in Section
5.4) where the Nθ particles (in the θ-space) at time n are re-weighted according to pθ(y0:n+1)/pθ(y0:n) at time
n+1. As these likelihood terms are unknown, we substitute to them p̂θ(y0:n+1)/p̂θ(y0:n) where p̂θ(y0:n) is a particle
approximation of the marginal likelihood pθ(y0:n), obtained by a running a particle filter of Nx particles in the
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x−dimension, up to time n, for each of the Nθ θ−particles. When particle degeneracy (in the θ−dimension) reaches
a certain threshold, θ−particles are refreshed through the succession of a resampling step, and a MCMC step, which
in these particular settings takes the form of a PMCMC update. The cost per iteration of this algorithm is not
constant, therefore it cannot be used in truly on-line scenarios. Yet there are practical situations where it may be
very useful to approximate jointly all the posteriors p(θ|y1:n), for 1 ≤ n ≤ T , for instance to assess the predictive
power of the model.

6.5 Summary
6.5.1 Key points

• Path degeneracy is a bottleneck for parameter estimation of HMMs with particle methods. It manifests as
increasing Monte Carlo variance with time of certain sufficient statistics that are used for Gibbs update steps
in the Bayesian case and EM or gradient updates for the likelihood inference case.

• There are dedicated smoothing algorithms (some with higher computational cost) that are not affected by
path degeneracy.

• To compute Ŝθn one can implement a particle method with cost N2T either (a) simple particle filter with
N2 particles or (b) a FFBSa/m particle filter with N particles. Then (a) suffers from path degeneracy, but
exhibits a bias of order T/N2 and variance at least of order T 2/N2. On the other hand (b) has bias of order
T/N and variance of order T/N . So one method is better in terms of the bias and another in terms of the
variance, but both will have a similar MSE.

• PMCMC is a very robust and easy to use tool for Bayesian off-line inference. It can be used in a similar
manner to standard MCMC algorithms and has very good performance results. The theoretical properties of
PMCMC algorithm is currently very active topic topic of study in Statistics and Applied Probability.

• There is not a fully satisfying solution for online Bayesian inference. This remains largely an open problem.
All proposed methods will be affected by path degeneracy when a computational cost of order O(N) per time
is used. They can be quite easy to implement and can produce good results in some cases especially for short
T or informative priors, but it is advised to be used with caution.

• For on-line likelihood methods, there there are a few well-performing and numerically stable methods. One
can implement using forward only implementations of FFBSm for either gradient or EM approaches [60, 21].
For the on-line gradients using this is crucial in terms of performance, see [60] for details. For on-line EM,
one could also use a standard PF with many particles. The bias variance trade-off mentioned earlier for Ŝθn
will then apply also for θn estimates.

6.5.2 Reading List

A reference with more material for this section is [40]. The numerical examples are taken from there and this section
is aimed as an introductory version of the material contained there.

7 Concluding remarks
We have reviewed the various particle algorithms that have been developed for the filtering problem. We also
looked at various ways of estimating static parameters in general HMMs. Most methods proposed originally in the
literature suffered from the degeneracy problem, so several smoothing algorithms have been proposed to deal with
this problem. The methodology presented here is also relevant to static problems, but we did not expand much on
this except some basic ideas. We conclude this course by saying that the topic is very active research area with
many problems to be solved from a computational and theoretical point of view.
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Figure 8: Top row: box plots for estimates of posterior mean at n = 1000, 2000, . . . 50000; middle row: relative
variance, i.e. empirical variance (over 100 different independent runs) for the estimator of the mean of p(θ|y0:n)
using particle method with MCMC normalized with the true posterior variance computed using Kalman filtering
on a grid; bottom row: average (over 100 different independent runs) of the estimated variance of p(θ|y0:n) using
particle method with MCMC normalized with the true posterior variance. Left column: plots for τ2; right: plots
for σ2. All plots are computed using N = 5000.
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Figure 13: On-line EM: Trace of θ̂n for each of the 100 realizations of the algorithms (blue). Left: ρ̂n, Right: τ̂2
n.

Top row: O(N) method using 1502 particles. Bottom row: O(N2) method using 150 particles. We also plot also
the exact ML estimate at time n obtained using Kalman filtering on a grid (black) as well as the ideal output of
on-line EM obtained analytically (magenta).
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Figure 14: On-line EM: Box-plots of θ̂n for n ≥ 5× 104 using 100 realizations of the algorithms. Details similar to
Figure 13.
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