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Distributed Maximum Likelihood for

Simultaneous Self-localization and Tracking in

Sensor Networks
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Abstract

We show that the sensor self-localization problem can be cast as a static parameter estimation

problem for Hidden Markov Models and we implement fully decentralized versions of the Recursive

Maximum Likelihood and on-line Expectation-Maximization algorithms to localize the sensor network

simultaneously with target tracking. For linear Gaussian models, our algorithms can be implemented

exactly using a distributed version of the Kalman filter and a novel message passing algorithm. The

latter allows each node to compute the local derivatives of the likelihood or the sufficient statistics

needed for Expectation-Maximization. In the non-linear case, a solution based on local linearization in

the spirit of the Extended Kalman Filter is proposed. In numerical examples we demonstrate that the

developed algorithms are able to learn the localization parameters.

Index Terms

Collaborative tracking, sensor localization, target tracking, maximum likelihood, sensor networks

I. INTRODUCTION

This paper is concerned with sensor networks that are deployed to perform target tracking. A network

is comprised of synchronous sensor-trackers where each node in the network has the processing ability
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to perform the computations needed for target tracking. A moving target will be simultaneously observed

by more than one sensor. If the target is within the field-of-view of a sensor, then that sensor will collect

measurements of the target. Traditionally in tracking a centralized architecture is used whereby all the

sensors transmit their measurements to a central fusion node, which then combines them and computes

the estimate of the target’s trajectory. However, here we are interested in performing collaborative

tracking, but without the need for a central fusion node. Loosely speaking, we are interested in developing

distributed tracking algorithms for networks whose nodes collaborate by exchanging appropriate messages

between neighboring nodes to achieve the same effect as they would by communicating with a central

fusion node.

A necessary condition for distributed collaborative tracking is that each node is able to accurately

determine the position of its neighboring nodes in its local frame of reference. (More details in Section II.)

This is essentially an instance of the self-localization problem. In this work we solve the self-localization

problem in an on-line manner. By on-line we mean that self-localization is performed on-the-fly as the

nodes collect measurements of the moving target. In addition, given the absence of a central fusion node

collaborative tracking and self-localization have to be performed in a fully decentralized manner, which

makes necessary the use of message passing between neighboring nodes.

There is a sizable literature on the self-localization problem. The topic has been independently pursued

by researchers working in different application areas, most notably wireless communications [1], [2],

[3], [4], [5]. Although all these works tend to be targeted for the application at hand and differ in

implementation specifics, they may however be broadly summarized into two categories. Firstly, there

are works that rely on direct measurements of distances between neighboring nodes [2], [3], [4], [5].

The latter is usually estimated from the Received Signal Strength (RSS) when each node is equipped

with a wireless transceiver. Given such measurements, it is then possible to solve for the geometry of the

sensor network but with ambiguities in translation and rotation of the entire network remaining. These

ambiguities can be removed if the absolute position of certain nodes, referred to as anchor nodes, are

known. Another approach to self-localization utilizes beacon nodes which have either been manually

placed at precise locations, or their locations are known using a Global Positioning System (GPS). The

un-localized nodes will use the signal broadcast by these beacon nodes to self-localize [1], [6], [7], [8].

We emphasize that in the aforementioned papers self-localization is performed off-line. The exception

is [8], where they authors use Maximum Likelihood (ML) and Sequential Monte Carlo (SMC) in a

centralized manner.

In this paper we aim to solve the localization problem without the need of a GPS or direct measurements
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of the distance between neighboring nodes. The method we propose is significantly different. Initially, the

nodes do not know the relative locations of other nodes, so they can only behave as independent trackers.

As the tracking task is performed on objects that traverse the field of view of the sensors, information is

shared between nodes in a way that allows them to self-localize. Even though the target’s true trajectory

is not known to the sensors, localization can be achieved in this manner because the same target is being

simultaneously measured by the sensors. This simple fact, which with the exception of [9], [10], [11]

seems to have been overlooked in the localization literature, is the basis of our solution1. However, our

work differs from [9], [10] in the application studied as well as the inference scheme. Both [9], [10]

formulate the localization as a Bayesian inference problem and approximate the posterior distributions of

interest with Gaussians. [10] uses a moment matching method and appears to be centralized in nature.

The method in [9] uses instead linearization, is distributed and on-line, but its implementation relies on

communication via a junction tree (see [13] for details) and requires an anchor node as pointed out in [14,

Section 6.2.3]. In this paper we formulate the sensor localization problem as a static parameter estimation

problem for Hidden Markov Models (HMMs) [15], [16] and we estimate these static parameters using a

ML approach, which has not been previously developed for the self-localization problem. We implement

fully decentralized versions of the two most common on-line ML inference techniques, namely Recursive

Maximum Likelihood (RML) [17], [18], [19] and on-line Expectation-Maximization (EM) [20], [21],

[22]. A clear advantage of this approach compared to previous alternatives is that it makes an on-line

implementation feasible. Finally, [11] is based on the principle shared by our approach and [9], [10].

In [11] the authors exploit the correlation of the measurements made by the various sensors of a hidden

spatial process to perform self-localization. However for reasons concerned with the applications being

addressed, which is not distributed target tracking, their method is not on-line and centralized in nature.

In the signal processing literature for sensor networks one may find various related problems. In [23]

a distributed EM algorithm was developed to estimate the parameters of a Gaussian mixture used to

model the measurements of a sensor network deployed for environmental monitoring (see [24] for an

on-line version.) In [25] a similar problem is treated using a distributed gradient method. We emphasize

that in each of these papers the measurements correspond to a static source instead of a dynamically

evolving target. In addition, a related problem is that of sensor registration, which aims to compensate

for systematic biases in the sensors and has been studied by the target tracking community [26], [27].

However, the algorithms devised in [26], [27] are centralized. Yet another related problem is the problem

1A short preliminary version of the this work was published in the conference proceedings [12].
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of average consensus [28]. The value of a global static parameter is measured at each node via a linear

Gaussian observation model and the aim is to obtain a maximum likelihood estimate in a distributed

fashion. Note that all the aforementioned papers, except [9] and [10], do not deal with a distributed

localization and tracking task.

The structure of the paper is as follows. We begin with the specification of the statistical model for

the localization and tracking problem in Section II. In Section III we show how message passing may

be utilized to perform distributed filtering. In Section IV we derive the distributed RML and on-line

EM algorithms. Section V presents several numerical examples on small and medium sized networks.

In Sections VI we provide a discussion and a few concluding remarks. The Appendix contains more

detailed derivations of the distributed versions of RML and EM.

II. PROBLEM FORMULATION

We consider the sensor network (V, E) where V denotes the set of nodes of the network and E is

the set of edges (or communication links between nodes.) We will assume that the sensor network is

connected, i.e. for any pair of nodes i, j ∈ V there is at least one path from i to j. Nodes i, j ∈ V

are adjacent or neighbors provided the edge (i, j) ∈ E exists. Also, we will assume that if (i, j) ∈ E ,

then (j, i) ∈ E as well. This implies is that communication between nodes is bidirectional. The nodes

observe the same physical target at discrete time intervals n ∈ N. We will assume that all sensor-trackers

are synchronized with a common clock and that the edges joining the different nodes in the network

correspond to reliable communication links. These links define a neighborhood structure for each node

and we will also assume that each sensor can only communicate with its neighboring nodes.

The hidden state, as is standard in target tracking, is defined to comprise of the position and velocity

of the target, Xr
n = [Xr

n(1), X
r
n(2), X

r
n(3), X

r
n(4)]

T, where Xr
n(1) and Xr

n(3) is the target’s x and y

position while Xr
n(2) and Xr

n(4) is the velocity in the x and y direction. Subscript n denotes time while

superscript r denotes the coordinate system w.r.t. which these quantities are defined. For generality we

assume that each node maintains a local coordinate system (or frame of reference) and regards itself as

the origin (or center of) its coordinate system.

As a specific example, consider the following linear Gaussian model:

Xr
n = AnX

r
n−1 + brn + Vn, n ≥ 1, (1)

where Vn is zero mean Gaussian additive noise with variance Qn and brn are deterministic inputs. The

measurement Y r
n made by node r is also defined relative to the local coordinate system at node r. For
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a linear Gaussian observation model the measurement is generated as follows:

Y r
n = Cr

nX
r
n + drn +W r

n , n ≥ 1, (2)

where W r
n is zero mean Gaussian additive noise with variance Rr

n and drn is deterministic. Note that the

time varying observation model {(Cr
n, d

r
n, R

r
n)}n≥1 is different for each node. A time-varying state and

observation model is retained for an Extended Kalman Filter (EKF) implementation in the non-linear

setting to be defined below. It is in this setting that the need for sequences {brn}n≥1 and {drn}n≥1 arises.

Also, the dimension of the observation vector Y r
n need not be the same for different nodes since each

node may be equipped with a different sensor type. For example, node r may obtain measurements of

the target’s position while node v measures bearing. Alternatively, the state-space model in (1)-(2) can

be expressed in the form of a Hidden Markov Model (HMM):

Xr
n|Xr

n−1 = xrn−1 ∼ fn(.|xrn−1), (3)

Y r
n |Xr

n = xrn ∼ grn(.|xrn), (4)

where fn denotes the transition density of the target and grn the density of the likelihood of the observations

at each node r.

Figure 1 (a) illustrates a three node setting where a target is being jointly observed and tracked by

three sensors. (Only the position of the target is shown.) At node 1, X1
n is defined relative to the local

coordinate system of node 1 which regards itself as the origin. Similarly for nodes 2 and 3. We define

θi,j∗ to be the position of node i in the local coordinate system of node j. This means that the vector Xi
n

relates to the local coordinate system of node j as follows (see Figure 1):

Xj
n = Xi

n + θi,j∗ .

The localization parameters {θi,j∗ }(i,j)∈E are static as the nodes are not mobile. We note the following ob-

vious but important relationship: if nodes i and j are connected through intermediate nodes j1, j2, . . . , jm

then

θi,j∗ = θi,j1∗ + θj1,j2∗ + θj2,j3∗ + . . .+ θ
jm−1,jm
∗ + θjm,j

∗ . (5)

This relationship is exploited to derive the distributed filtering and localization algorithms in the next

section. We define θi,j∗ so that the dimensions are the same as the target state vector. When the state

vector is comprised of the position and velocity of the target, only the first and third components of θi,j∗

are relevant while the other two are redundant and set to θi,j∗ (2) = 0 and θi,j∗ (4) = 0. Let

θ∗ ≡ {θi,j∗ }(i,j)∈E , θi,i∗ ≡ 0, (6)
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(a) Three node joint tracking example
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(b) Joint tracking error vs number of nodes

Figure 1. Left: a three node network tracking a target traversing its field of view. The trajectory of the target is shown with

the solid line. Each node regards itself as the center of its local coordinate system. At time n a measurement is registered by

all three nodes. The ellipses show the support of the observation densities for the three nodes, i.e. the support of g1n(Y
1
n |.)

is defined as all x1
n such that g1n(Y 1

n |x1
n) > 0 ; similarly for the rest. The filtering update step at node 1 will clearly benefit

from the observations made by nodes 2 and 3. The localization parameters θ1,2∗ , θ1,3∗ are the coordinates of node 1 in the local

coordinate systems of node 2 and 3 respectively. While Xr
n was defined to be the state of the target, which includes its velocity,

for this illustration only, Xr
n is to be understood as the position of the target at time n w.r.t. the coordinate system of node r.

Right: Average absolute tracking error is plotted against the number of nodes to illustrate the benefit of collaborative tracking.

The results are obtained using a centralized implementation with 50 independent runs, 104 time steps for a chain sensor network

of different length and An = Bn = Qn = Ci
n = Di

n = Ri
n = 1, bin = din = 0.

where θi,i∗ for all i ∈ V is defined to be the zero vector.

Let Yn denote all the measurements received by the network at time n, i.e. Yn ≡ {Y v
n }v∈V . We also

denote the sequence (Y1, ..., Yn) by Y1:n. In the collaborative or joint filtering problem, each node r

computes the local filtering density:

prθ∗(x
r
n|Y1:n) ∝ prθ∗(Yn|x

r
n)p

r
θ∗(x

r
n|Y1:n−1), (7)

where prθ∗(x
r
n|Y1:n−1) is the predicted density and is related to the filtering density of the previous time

through the following prediction step:

prθ∗(x
r
n|Y1:n−1) =

ˆ
fn(x

r
n|xrn−1)p

r
θ∗(x

r
n−1|Y1:n−1)dx

r
n−1. (8)
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The likelihood term is

prθ∗(Yn|x
r
n) =

∏
v∈V

gvn(Y
v
n |xrn + θr,v∗ ), (9)

where the superscript on the densities indicate the coordinate system they are defined w.r.t. (and the node

the density belongs to) while the subscript makes explicit the dependence on the localization parameters.

Let also µrn|n−1 and µrn denote the predicted and filtered mean of the densities prθ∗(x
r
n|Y1:n−1) and

prθ∗(x
r
n|Y1:n) respectively, where the dependence on θ∗ is suppressed in the notation. The prediction

step in (8) can be implemented locally at each node without exchange of information, but the update

step in (7) incorporates all the measurements of the network. Figure 1 (a) shows the support of the

three observation densities as ellipses where the support of g1n(Y
1
n |·) is defined to be all x1 such that

g1n(Y
1
n |·) > 0; similarly for the rest. The filtering update step at node 1 can only include the observations

made by nodes 2 and 3 provided the localization parameters θ1,2∗ and θ1,3∗ are known locally to node 1,

since the likelihood p1θ∗(Yn|x
1
n) defined in (9) is

g1n(Y
1
n |x1n)g2n(Y 2

n |x1n + θ1,2∗ )g3n(Y
3
n |x1n + θ1,3∗ ).

The term joint filtering is used since each sensor benefits from the observation made by all the other

sensors. An illustration of the benefit w.r.t. the tracking error is in Figure 1 (b). We will show in Section

III that it is possible to implement joint filtering in a truly distributed manner, i.e. each node executes a

message passing algorithm (with communication limited only to neighboring nodes) that is scalable with

the size of the network. However joint filtering hinges on knowledge of the localization parameters θ∗

which are unknown a priori. In Section IV we will propose distributed estimation algorithms to learn

the localization parameters, which refine the parameter estimates as new data arrive. These proposed

algorithms in this context are to the best of our knowledge novel.

A. Non-linear Model

Most tracking problems of practical interest are essentially non-linear non-Gaussian filtering problems.

SMC methods, also known as Particle Filters, provide very good approximations to the filtering densities

[29]. While it is possible to develop SMC methods for the problem presented here, the resulting algorithms

require significantly higher computational cost. We refer the interested reader to [14, Chapter 9] for more

details. In the interest of execution speed and simplicity, we employ the linearization procedure of the

Extended Kalman filter (EKF) when dealing with a non-linear system. Specifically, let the distributed

March 26, 2012 DRAFT



8

tracking system be given by the following model:

Xr
n = ϕn(X

r
n−1) + Vn, (10)

Y r
n = ψr

n(X
r
n) +W r

n , (11)

where ϕn : R4 → R4 and ψr
n : R4 → Rdy are smooth continuous functions. At time n, each node will

linearize its state and observation model about the filtered and predicted mean respectively. Specifically,

a given node r will implement:

Xr
n = ϕn(µ

r
n−1) +∇ϕn(µrn−1)(X

r
n−1 − µrn−1) + Vn, (12)

Y r
n = ψr

n(µ
r
n|n−1) +∇ψr

n(µ
r
n|n−1)(X

r
n − µrn|n−1) +W r

n . (13)

where for a mapping f : Rd → Rd, ∇f ≡ [∇f1, . . . ,∇fd]T. Note that after linearization extra additive

terms appear as seen in the setting described by equations (1)-(2).

B. Message passing

Assume at time n, the estimate of the localization parameters is θn = {θi,jn }(i,j)∈E , with θi,jn known to

node j only. To perform the prediction and update steps in (7)-(8) locally at each node a naive approach

might require each node to access to all localization parameters θn and all the different model parameters

{(Cr
n, d

r
n, R

r
n)}n≥1,r∈V . A scheme that requires all this information to be passed at every node would

be inefficient. It would require a prohibitive amount of communication even for relatively few nodes

and redundant computations would be performed at the different nodes. The core idea in this paper is to

avoid this by storing the parameters in θn across the network and perform required computations only

at the nodes where the parameters are stored. The results of these computations are then propagated in

the network using an efficient message passing scheme.

Message passing is an iterative procedure with k = 1, . . . ,K iterations for each time n and is steered

towards the development of a distributed Kalman filter, whose presentation is postponed for the next

section. In Algorithm 1 we define a recursion of messages which are to be communicated between all

pairs of neighboring nodes in both directions. Here ne(i) denote the neighbors of node i excluding node

i itself. At iteration k the computed messages from node i to j are matrix and vector quantities of

appropriate dimensions and are denoted as mi,j
n,k and m̈i,j

n,k respectively. The source node is indicated by

the first letter of the superscript. Note that during the execution of Algorithm 1 time n remains fixed

and iteration k should not be confused with time n. Clearly we assume that the sensors have the ability
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Algorithm 1 Generic message passing at time n
1: begin

2: At k = 1, compute:

mi,j
n,1 = F i

n, (14)

m̈i,j
n,1 = F i

nθ
j,i
n . (15)

3: for k = 2, ...,K compute:

mi,j
n,k = F i

n +
∑

p∈ne(i)\{j}

mp,i
n,k−1, (16)

m̈i,j
n,k = mi,j

n,kθ
j,i
n +

∑
p∈ne(i)\{j}

m̈p,i
n,k−1. (17)

4: endfor

5: end

to communicate much faster than collecting measurements. We proceed with a simple (but key) lemma

concerning the aggregations of sufficient statistics locally at each node.

Lemma 1: At time n, let {F v
n}v∈V be a collection of matrices where F v

n is known to node v only,

and consider the task of computing
∑

v∈V F
v
n and

∑
v∈V F

v
nθ

r,v
n at each node r of a network with a tree

topology. Using Algorithm 1 and if K is at least as large as the number of edges connecting the two

farthest nodes in the network, then
∑

v∈V F
v
n = F r

n +
∑

j∈ne(r)
mj,r

n,K and
∑

v∈V F
v
nθ

r,v
n =

∑
j∈ne(r)

m̈j,r
n,K .

(The proof, which uses (5), is omitted.) An additional advantage here is that if the network is very

large, in the interest of speed one might be interested in settling with computing the presented sums only

for a subset of nodes and thus use a smaller K. This also applies when a target traverses the field of

view of the sensors swiftly and is visible only by few nodes at each time. Finally, a lower value for K is

also useful when cycles are present in order to avoid summing each F i
n more than once, albeit summing

only over a subset of V .

III. DISTRIBUTED JOINT FILTERING

For a linear Gaussian system, the joint filter prθ(x
r
n|Y1:n) at node r is a Gaussian distribution with a

specific mean vector µrn and covariance matrix Σr
n. The derivation of the Kalman filter to implement

prθ(x
r
n|Y1:n) is standard upon noting that the measurement model at node r can be written as Yn =
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CnX
r
n+dn+Wn where the i-th block of Yn, Y i

n, satisfies Y i
n = Ci

n(X
r
n+θ

r,i)+din+W
i
n. However, there

will be “non-local” steps due to the requirement that quantities
∑
i∈V

(Ci
n)

T(Ri
n)

−1Ci
n,
∑
i∈V

(Ci
n)

T(Ri
n)

−1Y i
n

and
∑
i∈V

(Ci
n)

T(Ri
n)

−1Ci
nθ

r,i be available locally at node r. To solve this problem, we may use Lemma 1

with F i
n = (Ci

n)
T(Ri

n)
−1Ci

n and in order to compute
∑
i∈V

(Ci
n)

T(Ri
n)

−1Y i
n we will define ṁi,j

n,k that is an

additional message similar to mi,j
n,k.

Recall that bin, d
i
n are known local variables that arose due to linearization. Also to aid the development

of the distributed on-line localization algorithms in Section IV, we assume that for the time being the

localization parameter estimates {θn}n≥1 are time-varying and known to the relevant nodes they belong.

For the case where that bin, d
i
n = 0, we summarize the resulting distributed Kalman filter in Algorithm

2, which is to be implemented at every node of the network. Note that messages (18)-(20) are matrix

and vector valued quantities and require a fixed amount of memory regardless of the number of nodes in

the network. Also, the same rule for generating and combining messages are implemented at each node.

The distributed Kalman filter presented here bears a similar structure to the one found in [30]. However,

the message passing scheme is different and due to the application in mind we have extra terms relevant

to the localization parameters.

In the case bin, d
i
n ̸= 0 modifications to Algorithm 2 are as follows: in (21), to the right hand side of

µrn|n−1, the term brn should be added and all instances of Y r
n should be replaced with Y r

n −drn. Therefore

the assuming bin, d
i
n = 0 does not compromise the generality of the approach. A direct application of this

modification is the distributed EKF, which is obtained by adding the term ϕn(µ
r
n−1)−∇ϕn(µrn−1)µ

r
n−1

to the right hand side of µrn|n−1 in (21), and replacing all instances of Y r
n with Y r

n − ψr
n(µ

r
n|n−1) +

∇ψr
n(µ

r
n|n−1)µ

r
n|n−1. In addition, one needs to replace An with ∇ϕn(µrn−1).

IV. DISTRIBUTED COLLABORATIVE LOCALIZATION

Following the discussion in Section II we will treat the sensor localization problem as a static parameter

estimation problem for HMMs. The purpose of this section is to develop a fully decentralized implemen-

tation of popular Maximum Likelihood (ML) techniques for parameter estimation in HMMs. We will

focus on two on-line ML estimation methods: Recursive Maximum Likelihood (RML) and Expectation-

Maximization (EM). For the sake of completeness, we have added brief descriptions of these techniques

in Section A of the appendix.

The core idea in our distributed ML formulation is to store the parameter θn = {θi,jn }(i,j)∈E across the

network. Each node r will use the available data Y1:n from every node to estimate of θr,j∗ , which is the

component of θ∗ corresponding to edge (r, j). This can be achieved computing at each node r the ML
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Algorithm 2 Distributed Filtering
1: begin

2: for n ≥ 1:

3: Let the localization parameter be θn and the set of collected measurements be Yn = {Y v
n }v∈V .

Initialize messages (mi,j
n,k, ṁ

i,j
n,k, m̈

i,j
n,k) and (mj,i

n,k, ṁ
j,i
n,k, m̈

j,i
n,k) for all neighboring nodes (i, j) ∈ E

as:

mi,j
n,1 = (Ci

n)
T(Ri

n)
−1Ci

n,

ṁi,j
n,1 = (Ci

n)
T(Ri

n)
−1Y i

n,

m̈i,j
n,1 = mi,j

n θ
j,i
n ,

4: for k = 2, . . . ,K exchange the messages (mi,j
n,k, ṁ

i,j
n,k, m̈

i,j
n,k) and (mj,i

n,k, ṁ
j,i
n,k, m̈

j,i
n,k) defined below

between all neighboring nodes (i, j) ∈ E :

mi,j
n,k = (Ci

n)
T(Ri

n)
−1Ci

n +
∑

p∈ne(i)\{j}

mp,i
n,k−1, (18)

ṁi,j
n,k = (Ci

n)
T(Ri

n)
−1Y i

n +
∑

p∈ne(i)\{j}

ṁp,i
n,k−1, (19)

m̈i,j
n,k = mi,j

n θ
j,i
n +

∑
p∈ne(i)\{j}

m̈p,i
n,k−1, (20)

5: end for

6: Update the local filtering densities at each node r ∈ V:

µrn|n−1 = Anµ
r
n−1, Σr

n|n−1 = AnΣ
r
n−1A

T
n +Qn, (21)

M r
n = (Σr

n|n−1)
−1 + (Cr

n)
T(Rr

n)
−1Cr

n +
∑

i∈ne(r)

mi,r
n (22)

zrn = (Σr
n|n−1)

−1µrn|n−1 + (Cr
n)

T(Rr
n)

−1Y r
n (23)

+
∑

i∈ne(r)

(
ṁi,r

n − m̈i,r
n

)
,

Σr
n = (M r

n)
−1, µrn = Σr

nz
r
n, (24)

7: end for

8: end
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estimate:

θ̃r,jn = arg max
θr,j∈R4

log prθ(Y1:n). (25)

Note that each node maximizes its “local” likelihood function although all the data across the network

is being used.

On-line parameter estimation techniques like the RML and on-line EM are suitable for sensor local-

ization in surveillance applications because we expect a practically indefinite length of observations to

arrive sequentially. For example, objects will persistently traverse the field of view of these sensors, i.e.

the departure of old objects would be replenished by the arrival of new ones. A recursive procedure is

essential to give a quick up-to-date parameter estimate every time a new set of observations is collected

by the network. This is done by allowing every node r to update the estimate of the parameter along

edge (r, j), θr,jn , according to a rule like

θr,jn+1 = Gr,j
n+1(θn, Yn), n ≥ 1, (26)

where Gr,j
n+1 is an appropriate function to be defined. Similarly each neighbor j of r will perform a similar

update along the same edge only this time it will update θj,rn . While updating both parameters associated

to each edge is redundant, it allows a fully decentralized implementation since no other communication is

needed other than the messages defined in Algorithm 1. Alternatively one could assign both parameters of

an edge to just one controlling node. For example in the three node network of Figure 1, the parameters

of edge (1, 2), θ1,2n and θ2,1n , could be assigned to node 2, with the latter having at each time n to update

θ2,1n using an expression like (26) and then send θ1,2n = −θ2,1n to node 1.

A. Distributed RML

For distributed RML, each node r updates the parameter of edge (r, j) using

θr,jn+1 = θr,jn + γrn+1

[
∇θr,j log

ˆ
prθ(Yn|xrn)prθ(xrn|Y1:n−1)dx

r
n

]
θ=θn

, (27)

where γrn+1 is a step-size that should satisfy
∑

n γ
r
n = ∞ and

∑
n (γ

r
n)

2 <∞.

The gradient in (27) is w.r.t. θr,j . The local joint predicted density prθ(x
r
n|Y1:n−1) at node r was defined

in (8) and is a function of θ = {θi,j}(i,j)∈E , and likelihood term is given in (9). Also, the gradient is

evaluated at θn = {θi,jn }(i,j)∈E while only θr,jn is available locally at node r. The remaining values θn

are stored across the network. All nodes of the network will implement such a local gradient algorithm

with respect to the parameter associated to its adjacent edge. We note that (27) in the present form is not

an on-line parameter update like (26) as it requires browsing through the entire history of observations.
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Algorithm 3 Distributed RML
1: begin

2: for n ≥ 1: let the current parameter estimate be θn. Upon obtaining measurements Yn = {Y v
n }v∈V

the following filtering and parameter update steps are to be performed.

3: Filtering step: Perform steps (3-6) in Algorithm 2.

4: Parameter update: Each node r ∈ V of the network will update the following quantities for every

edge (r, j) ∈ E :

µ̇r,jn|n−1 = Anµ̇
r,j
n−1, (28)

żr,jn = (Σr
n|n−1)

−1µ̇r,jn|n−1 −mj,r
n,K , (29)

µ̇r,jn = (M r
n)

−1żr,jn . (30)

Upon doing so the localization parameter is updated:

θr,jn+1 = θr,jn + γrn+1[−(µ̇r,jn|n−1)
T(Σr

n|n−1)
−1µrn|n−1

+ (żr,jn )T(M r
n)

−1zrn + ṁj,r
n,K − m̈j,r

n,K ].

5: end for

6: end

This limitation is removed by defining certain intermediate quantities that facilitate the online evaluation

of this gradient in the spirit of [18], [19] (see in the Appendix for more details).

The distributed RML implementation for self-localization and tracking is presented in Algorithm 3,

while the derivation of the algorithm is presented in the Appendix. The intermediate quantities (28)-(30)

take values in R4×2 and may be initialized to zero matrices. For the non-linear model, when an EKF

implementation is used for Algorithm 2, then Algorithm 3 remains the same.

B. Distributed on-line EM

We begin with a brief description of distributed EM in an off-line context and then present its on-

line implementation. Given a batch of T observations, let p be the (off-line) iteration index and θp =

{θi,jp }(i,j)∈E be the current estimate of θ∗ after p−1 distributed EM iterations on the batch of observations

Y1:T . Each edge controlling node r will execute the following E and M steps to update the estimate of
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the localization parameter for its edge. For iteration p = 1, 2, . . .

(E step) Qr(θp, θ) =

ˆ
log prθ(x

r
1:T , Y1:T )p

r
θp(x

r
1:T |Y1:T )dxr1:T ,

(M step) θr,jp+1 = argmax
θr,j

Qr(θp, (θ
r,j , θ−(r,j)

p )),

where θ−(r,j)
p = {θep}e∈E\(r,j).

To show how the E-step can be computed we write prθ(x
r
1:T , Y1:T ) as,

prθ(x
r
1:T )p

r
θ(Y1:T |xr1:T ) =

T∏
n=1

fn(x
r
n|xrn−1)p

r
θ(Yn|xrn),

where prθ(Yn|xrn) was defined in (9). Note that prθp(x
r
1:T |Y1:T ) is a function of θp = {θi,i

′

p }(i,i′)∈E (and not

just θr,jp ) and the θ-dependance of prθ(x
r
1:T , Y1:T ) arises through the likelihood term only as prθ(x

r
1:T ) is

θ-independent. This means that in order to compute the E-step, it is sufficient to maintain the smoothed

marginals:

prθ(x
r
n|Y1:T ) ∝

ˆ
prθ(x

r
1:T , Y1:T )dx

r
1:T\{n},

where 1 ≤ n ≤ T and dxr1:T\{n} means integration w.r.t. all variables except xrn. For linear Gaussian

models this smoothed density is also Gaussian, with its mean and covariance denoted by µrn|T ,Σ
r
n|T

respectively.

The M-step is solved by setting the derivative of Qr(θp, (θ
r,j , θ

−(r,j)
p )) w.r.t. θr,j to zero. The details

are presented in the Appendix and the main result is:

∇θr,j

ˆ
log prθ(Yn|xrn)prθp(x

r
n|Y1:T )dxrn = ṁj,r

n,K − m̈j,r
n,K − (mj,r

n,K)Tµrn|T ,

where (mj,r
n,K , ṁ

j,r
n,K , m̈

j,r
n,K), defined in (18)-(20), are propagated with localization parameter θp for all

observations from time 1 to T . Only m̈j,r
n,K is a function of θr,j . To perform the M-step, the following

equation is solved for θr,j

(

T∑
n=1

mj,r
n,K)θr,j =

T∑
n=1

(ṁj,r
n,K − (mj,r

n,K)Tµrn|T − m̈j,r
n,K + m̈j,r

n,1) (31)

Note that θr,j is a function of quantities available locally to node r only. The M-step can also be written

as the following function:

Λ(Sr,j
T,1,S

r,j
T,2,S

r,j
T,3) =

(
Sr,j
T,2

)−1 (
Sr,j
T,3 − Sr,j

T,1

)
,

where Sr,j
T,1, Sr,j

T,2, Sr,j
T,3 are three summary statistics of the form:

Sr,j
T,l =

1

T

ˆ ( T∑
n=1

sr,jn,l(x
r
n, Yn)

)
prθp(x

r
n|Y1:T )dxrn, l = 1, 2, 3,
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with sr,jn,l being defined as follows:

sr,jn,1(x
r
n, Yn) = (mj,r

n,K)Txrn, sr,jn,2(x
r
n, Yn) = mj,r

n,K ,

sr,jn,3(x
r
n, Yn) = ṁj,r

n,K − m̈j,r
n,K + m̈j,r

n,1.

Note that for this problem sr,jn,2 and sr,jn,3 are state independent.

An on-line implementation of EM follows by computing recursively running averages for each of the

three summary statistics, which we will denote as Sr,j
n,1,S

r,j
n,2,S

r,j
n,3. At each time n these will be used at

every node r to update θr,j using θr,jn+1 = Λ(Sr,j
n,1,S

r,j
n,2,S

r,j
n,3). Note that Λ is the same function for every

node. The on-line implementation of distributed EM is found in Algorithm 4. All the steps are performed

with quantities available locally at node r using the exchange of messages as detailed in Algorithm 2.

The derivation of the recursions for Sr,j
n,1, Sr,j

n,2, Sr,j
n,3 are based on (42)-(43) in the Appendix. Here γrn is

a step-size satisfying the same conditions as in RML and θ0 can be initialized arbitrarily, e.g. the zero

vector. Finally, it has been reported in [31] that it is usually beneficial for the first few epochs not to

perform the M step in (32) and allow a burn-in period for the running averages of the summary statistics

to converge.

V. NUMERICAL EXAMPLES

The performance of the distributed RML and EM algorithms are studied using a Linear Gaussian and

a non-linear model. For both cases the hidden target is given in (1) with Vn = BṼn, where Ṽn is zero

mean Gaussian additive noise with variance Q̃n, and

An =


1 τ 0 0

0 1 0 0

0 0 1 τ

0 0 0 1

 , B =


τ2

2 0

τ 0

0 τ2

2

0 τ

 , Q̃n = σ2xI,

and I is the identity matrix. For the linear model the observations are given by (2) with

Cr
n = αr

 1 0 0 0

0 0 1 0

 , Rr
n = σ2yI,

where αr are constants different for each node and are assigned randomly from the interval [0.75, 1.25].

For the non-linear model we will use the bearings-only measurement model. In this model at each node

r, the observation Y r
n is:

Y r
n = tan−1(Xr

n(1)/X
r
n(3)) +W r

n .
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Algorithm 4 Distributed on-line EM
1: begin

2: for n ≥ 1: let the current parameter estimate be θn. Upon obtaining measurements Yn = {Y v
n }v∈V

the following filtering and parameter update steps are to be performed.

3: Filtering step: Perform steps (3-6) in Algorithm 2. Also compute

Σ̃r
n =

(
Σr
n−1 +AT

nQ
−1
n An

)−1
.

4: Parameter update: Each node r ∈ V of the network will update the following quantities for every

edge (r, j) ∈ E :

Hr,j
n = γrn(m

j,r
n,K)T + (1− γrn)H

r,j
n−1

(
Σ̃r
n

)−1
AT

nQ
−1
n ,

hr,jn = (1− γrn)

(
Hr,j

n−1

(
Σ̃r
n

)−1 (
Σr
n−1

)−1
µrn−1 + hr,jn−1

)
,

Sr,j
n,1 = Hr,j

n µrn + hr,jn .

Sr,j
n,2 = γrnm

j,r
n,K + (1− γrn)S

r,j
n−1,2,

Sr,j
n,3 = γrn(ṁ

j,r
n,K − m̈j,r

n,K + m̈j,r
n,1) + (1− γrn)S

r,j
n−1,3,

Upon doing so the localization parameter is updated:

θr,jn+1 = Λ(Sr,j
n,1,S

r,j
n,2,S

r,j
n,3). (32)

5: end for

6: end

with W r
n

i.i.d.∼ N (0, 0.352). For the remaining parameters we set τ = 0.01, σx =1 and θr,j0 = 0 for all

(r, j) ∈ E . In Figure 2 we show three different sensor networks for which we will perform numerical

experiments.

In Figure 3 we present various convergence plots for each of these networks for σy = 0.5. We plot

both dimensions of the errors θr,j∗ − θr,jn for three cases:

• in (a) and (d) we use distributed RML and on-line EM respectively for the network of Figure 2(a)

and the linear Gaussian model.

• in (b) and (e) we use distributed RML for the bearings only tracking model and the networks of

Figures 2(a) and 2(b) respectively. Local linearization as discussed in Sections II-A, III and IV-A

was used to implement the distributed RML algorithm. We remark that we do not apply the online
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EM to problems where the solution to the M-step cannot be expressed analytically as some function

Λ of summary statistics.

• in (c) and (f) we use distributed RML and on-line EM for respectively for the network of Figure

2(c) and the linear Gaussian model. In this case we used K = 2.

All errors converge to zero. Although both methods are theoretically locally optimal when performing

the simulations we did not observe significant discrepancies in the errors for different initializations. For

both RML and on-line EM we used for n ≤ 103 a constant but small step-size, γrn = γ = 4× 10−3 and

0.025 respectively. For the subsequent iterations we set γrn = γ(n− 103)−0.8 . Note that if the step-size

decreases too quickly in the first time steps, these algorithms might converge too slowly. In the plots

of Figure 3 one can notice that the distributed RML and EM algorithms require comparable amount of

time to converge with the RML being usually faster. For example in Figures 3 (a) and (d) we observe

that RML requires around 1000 iterations to converge whereas on-line EM requires approximately 2000

iterations. We note that the converge rate also depends on the specific network used, the value of K and

the simulation parameters.

To investigate this further we varied K and σx

σy
and recorded the root mean squared error (RMSE)

for θn obtained for the network of Figure 2(b) using 50 independent runs. For the RMSE at time n

we will use

√
1

50|E|
∑

e∈E
∑50

m=1

∥∥∥θr,j∗ − θr,jn,m

∥∥∥2
2
, where θr,jn,m denotes the estimated parameter at epoch

n obtained from the m-th run. The results are plotted in Figure 4 for different cases:

• in (a) and (b) for σx

σy
= 2 we show the RMSE for K = 2, 4, 8, 12. We observe that in every case the

RMSE keeps reducing as n increases. Both algorithms behave similarly with the RML performing

better and showing quicker convergence. One expects that observations beyond your near immediate

neighboors are not necessary to localise adjacent nodes and hence the good performance for small

values of K.

• in (b) and (c) we show the RMSE for RML and on-line EM respectively when σx

σy
= 10, 1, 0.5, 0.1.

We observe that EM seems to be slightly more accurate for lower values of σx

σy
with the reverse

holding for higher values of the ratio.

In each run the same step-size was used as before except for RML and σx

σy
= 10, where we had to reduce

the step size by a factor of 10.

VI. CONCLUSION

We have presented a method to perform collaborative tracking and self-localization. We exploited the

fact that different nodes collect measurements of a common target. This idea has appeared previously in
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(c) 11 node sensor network with cycles

Figure 2. Various sensor networks of different size and topology.
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(b) Nonlinear RML for tree network
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(c) RML for network with cycles
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(d) EM for tree network
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(e) Nonlinear RML for large network
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(f) EM for network with cycles

Figure 3. The convergence of the localization parameters’ estimates to θr,j∗ is demonstrated using appropriate error plots for

various sensor networks. Left: Parameter error after each iteration for each edge of the medium sensor network of Fig. 2(a). In

each subfigure left and right columns show the errors in the x- and y- coordinates respectively; (a) is for RML and (d) is for

EM. Middle: Same errors when using RML for the nonlinear bearings-only observation model; (b) is for medium sized network

of Fig. 2(a) and (e) for the large network of Fig. 2(b). Right: Same errors for network with cycles seen in Fig 2(c); (c) for

RML and (f) for EM.
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Figure 4. Comparison of distributed RML and on-line EM. (a) (and (b) resp.): RMSE for RML (and on-line EM resp.) against

n for K = 2 (�), 4 (⋄), 8 (◦), 12(×). (c) (and (d) resp.): RMSE for RML (and on-line EM resp.) for σx
σy

= 10 (�), 1 (⋄), 0.5

(◦), 0.1(×).

[9], [10], both of which use a Bayesian inference scheme for the localization parameters. We remark that

our distributed ML methods appear simpler to implement than these Bayesian schemes as the messages

here are nothing more than the appropriate summary statistics for computing the filtering density and

performing parameter updates. There is good empirical evidence that the distributed implementations of

ML proposed in this paper are stable and do seem to settle at reasonably accurate estimates. A theoretical

investigation of the properties of the schemes would be an interesting but challenging extension. Finally,

as pointed out by one referee, another interesting extension would be to develop consensus versions of

Algorithm 1 in the spirit of gossip algorithms in [32] or the aggregation algorithm of [33] which might

be particularly relevant for networks with cycles, which are dealt with here by using an appropriate value

for K.

APPENDIX A

MAXIMUM LIKELIHOOD PARAMETER ESTIMATION

This section does not pertain to sensor localization specifically but to the general problem of static

parameter estimation in HMMs using ML. Thus to avoid confusion with the localization problem a

different font is used the notation. Consider a HMM where {Xn}n≥1 is the hidden state-process and

{Yn}n≥1 is the observed process each taking values in taking values in Rdx and Rdy respectively.

For the transition density for {Xn}n≥1, we have Xn+1|Xn = xn ∼ f(·|xn). The observation model,

Yn|Xn = xn ∼ gϑ(·|xn) is parametrized by ϑ ∈ Θ (⊂ Rdϑ). The true static parameter generating

the sequence of observations is ϑ∗ and is to be learned from the observed data {Yn}n≥1. The ML

parameter estimate is the maximizing argument of the log-likelihood of the observed data up to time n:
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ϑ̃n = argmaxϑ∈Θ log pϑ(Y1:n). Here pϑ(Y1:n) denotes the joint density of Y1:n and the subscript makes

explicit the value of the parameter used to compute this density.

For a long observation sequence we are interested in a recursive parameter estimation procedure in

which the data is run through once sequentially. If ϑn is the estimate of the model parameter after n

observations, a recursive method would update the estimate to ϑn+1 after receiving the new data Yn. For

example, consider the following update scheme:

ϑn+1 = Gn+1(ϑn,Yn), n ≥ 1. (33)

where Gn+1 is an appropriate function to be defined. This scheme was originally suggested by [34],

[35] when {Xn}n≥1 is not a Markov chain but rather an independent and identically distributed (i.i.d.)

sequence.

A. Recursive Maximum Likelihood (RML)

To motivate a suitable choice for Gn+1(ϑn,Yn) for estimating the parameters of a HMM, consider the

following recursion:

ϑn+1 = ϑn + γn+1 ∇ log pϑ(Yn|Y1:n−1)|ϑ=ϑn
. (34)

where {γn} is the step-size sequence that should satisfy the following constraints:
∑

n γn = ∞ and∑
n γ

2
n < ∞. One possible choice would be γn = n−α, 0.5 < α < 1. Here pϑ(Yn|Y1:n−1) is the

conditional density of Yn given Y1:n−1 and the subscript makes explicit the value of the parameter used to

compute this density. Upon receiving Yn, ϑn is updated in the direction of ascent of the conditional density

of this new observation. The algorithm in the present form is not suitable for online implementation due

to the need to evaluate the gradient of log pϑ(Yn|Y1:n−1) (w.r.t. ϑ) at ϑ = ϑn. Doing so would require

browsing through the entire history of observations. This limitation is removed by defining certain

intermediate quantities that facilitate the online evaluation of this gradient [18], [19].

In particular, assume that from the previous iteration of the RML, one has computed pn(xn) ≈

pϑ(xn|Y1:n−1)|ϑ=ϑn
and ṗn(xn) ≈ ∇pϑ(xn|Y1:n−1)|ϑ=ϑn.

, where (pn, ṗn) are approximations of the

predicted density and its gradient evaluated at ϑ = ϑn. The RML is initialized with an arbitrary value

for ϑ1, p1(x1) = pϑ1
(x1), which is the prior distribution for X1 and ṗ1(x1) = ∇pϑ(x1)|ϑ=ϑ1

, i.e. the

gradient of this prior which could be zero if it does not depend on ϑ. Then the online version of (34),

which is the RML procedure of [18], [19], proceeds as follows. Given the new observation Yn, update
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the parameter:

ϑn+1 = ϑn+γn+1

(ˆ
gϑn

(Yn|xn)pn(xn)dxn
)−1(ˆ

ġϑn
(Yn|xn)pn(xn)dxn +

ˆ
gϑn

(Yn|xn)ṗn(xn)dxn
)

(35)

where n ≥ 1 and ġϑ′(y|x) ≡ ∇ϑgϑ(y|x)|ϑ=ϑ′ . In (34), the desired gradient is the ratio of the terms

pϑ(Yn|Y1:n−1)|ϑ=ϑn
and ∇pϑ(Yn|Y1:n−1)|ϑ=ϑn

. This ratio is approximated in the fraction on the right-

hand side of (35). After computing (35), one may update (pn, ṗn) to (pn+1, ṗn+1) for the next RML

iteration. Specific expressions for this update may be found for example in [14, Section 8.2.1] or [18].

The recursive propagation of (pn, ṗn) implicitly involves the previous values of the parameter, i.e. ϑ1:n,

and hence are only approximations to pϑ(xn|Y1:n−1)|ϑ=ϑn+1
, ∇pϑ(xn|Y1:n−1)|ϑ=ϑn

respectively. It has

been shown in [18] that the solution of RML converges to the true ML estimator without any loss of

efficiency. For more details on the convergence of RML for HMMs we refer the reader to [18].

B. On-line Expectation-Maximization (EM)

We begin this section with a brief description of Expectation-Maximization (EM) [36] and then present

its on-line implementation. EM is an iterative off-line algorithm for learning ϑ∗, which consists of

repeating a two step procedure given a batch of T observations. Let p be the (off-line) iteration index.

The first step, the expectation or E-step, computes

Q(ϑp, ϑ) =

ˆ
log pϑ(x1:T ,Y1:T )pϑp

(x1:T |Y1:T )dx1:T . (36)

The second step is the maximization or M-step that updates the parameter ϑp,

ϑp+1 = argmax Q(ϑp, ϑ) (37)

Upon the completion of an E and M step, the likelihood surface is ascended, i.e. pϑp+1
(Y1:T ) ≥ pϑp

(Y1:T )

[36]. When pθ(x1:T ,Y1:T ) is in the exponential family, which is the case of linear Gaussian state-space

models, this procedure can be implemented exactly. Then the E-step is equivalent to computing a summary

statistic of the form

Sϑp

T =
1

T

ˆ ( T∑
n=1

sn (xn−1:n,Yn)

)
pϑp

(x1:T |Y1:T )dx1:T . (38)

where sn : Rdx×Rdx×Rdy → Rκ. In addition, the maximizing argument of Q(ϑp, ϑ) can be characterized

in this case explicitly through a suitable function Λ : Rκ → Θ, i.e.

ϑp = Λ
(
Sϑp

T

)
. (39)
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Note that in the usual EM setup one has to compute (38) for every iteration p of the algorithm.

It is also possible to propose an on-line version of the EM algorithm. This was originally proposed

for finite state-space and linear Gaussian models in [21], [37], [20] and for exponential family models

in [22], [31]. In the online implementation of the EM, running averages of the sufficient statistics are

computed [20], [21], [22]. Let {ϑm}1≤m≤n be the sequence of parameter estimates of the online EM

algorithm computed sequentially based on Y1:n−1. When Yn is received, we compute

Sn = γn
´
sn (xn−1:n) pϑ1:n

(xn−1:n|Y1:n)dxn−1:n

+(1− γn)
∑n−1

m=1(
n−1∏

i=m+1
(1− γi))γm

´
sm (xm−1:m) pϑ1:n

(xm−1:m|Y1:n)dxm−1:m,
(40)

where the subscript ϑ1:n on pϑ1:n
(x1:T |Y1:n) indicates that the posterior density is being computed

sequentially using the parameter ϑm at time m ≤ n. The step sizes {γn}n≥1 need to satisfy
∑

n γn = ∞

and
∑

n γ
2
n <∞ as in the RML case. For the M-step one uses the same maximization step (39) used in

the batch version

ϑn+1 = Λ(Sn) . (41)

The recursive calculation of Sn can be achieved by setting V1 (x0) = 0 and computing

Vn (xn) =

ˆ
{γn sn (xn−1, xn) + (1− γn) Vn−1 (xn−1)}

× pϑ1:n
(xn−1|Y1:n−1, xn) dxn−1 (42)

and

Sn =

ˆ
Vn (xn) pϑ1:n

(xn|Y1:n)dxn. (43)

For finite state-space and linear Gaussian models, all the quantities appearing in this algorithm can be

calculated exactly [20], [21], [31].

APPENDIX B

DISTRIBUTED RML DERIVATION

Let θn = {θi,jn }(i,j)∈E be the estimate of the true parameter θ∗ given the available data Y1:n−1. Consider

an arbitrary node r and assume it controls edge (r, j). At time n, we assume the following quantities are

available: (µ̇r,jn−1 = ∇θr,jµrn−1

∣∣
θ=θn

, µrn−1

∣∣
θ=θn

,Σr
n−1). The first of these quantities is the derivative of

the conditional mean of the hidden state at node r given Y1:n−1, i.e. ∇θr,j

´
xrn−1p

r
θ(x

r
n−1|Y1:n−1)dx

r
n−1

∣∣
θ=θn

.

This quantity is a function of the localization parameter θn. Σr
n−1 is the variance of the distribution
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prθ(x
r
n−1|Y1:n−1)

∣∣
θ=θn

and is independent of the localization parameter. The log-likelihood in (27)

evaluates to:

log prθ(Yn|Y1:n−1) = −1

2

∑
i∈V

(Y i
n − Ci

nθ
r,i)TRi

n
−1(Y i

n − Ci
nθ

r,i)

− 1

2
µrn|n−1

T(Σr
n|n−1)

−1µrn|n−1 +
1

2
(zrn)

T(M r
n)

−1zrn + const

where all θ independent terms have been lumped together in the term ‘const’. (Refer to Algorithm 2 for

the definition of the quantities in this expression.) Differentiating this expression w.r.t. θr,j yields

∇θr,j log prθ(Yn|Y1:n−1) = −(∇θr,jµrn|n−1)
T(Σr

n|n−1)
−1µrn|n−1

+ (∇θr,jzrn)
T(M r

n)
−1zrn +

∑
i∈V

(∇θr,jθr,i)T(Ci
n)

T(Ri
n)

−1(Y i
n − Ci

nθ
r,i).

(27) requires ∇θr,j log prθ(Yn|Y1:n−1) to be evaluated at θ = θn. Using the equations (21)-(24) and the

assumed knowledge of (µ̇r,jn−1, µ
r
n−1

∣∣
θ=θn

,Σr
n−1) we can evaluate the derivatives on the right-hand side

of this expression:

µ̇r,jn|n−1 = ∇θr,jµrn|n−1

∣∣∣
θ=θn

= Anµ̇
r,j
n−1, (44)

żr,jn = ∇θr,jzrn|θ=θn
= (Σr

n|n−1)
−1µ̇r,jn|n−1 −

∑
i∈V

(Ci
n)

T(Ri
n)

−1Ci
n ∇θr,jθr,i

∣∣
θ=θn

, (45)

µ̇r,jn = ∇θr,jµrn|θ=θn
= (M r

n)
−1żr,jn . (46)

Using property (5) we note that for the set of vertices i for which the path from r to i includes edge

(r, j), ∇θr,jθr,i = I (the identity matrix) whereas for the rest ∇θr,jθr,i = 0. For all the nodes i for which

∇θr,jθr,i = I , let them form a sub tree (V ′
rj , E ′

rj) branching out from node j away from node r. Then

the last sum in the expression for ∇θr,j log prθ(Yn|Y1:n−1)|θ=θn
evaluates to,∑

i∈V ′
rj

(Ci
n)

T(Ri
n)

−1(Y i
n − Ci

nθ
r,i
n ) = ṁj,r

n,K − m̈j,r
n,K ,

where messages (ṁj,r
n,K , m̈

j,r
n,K) were defined in Algorithms 2. Similarly, we can write the sum in the

expression for żr,jn as mj,r
n,K (again refer to Algorithms 2) to obtain

żr,jn = (Σr
n|n−1)

−1µ̇r,jn|n−1 −mj,r
n,K . (47)

To conclude, the approximations to (µ̇r,jn = ∇θr,jµrn|θ=θn+1
, µrn|θ=θn+1

,Σr
n) for the subsequent RML

iteration, i.e. (27) at time n = n+ 1, are given by

µ̇r,jn = (M r
n)

−1żr,jn
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while (µrn|θ=θn+1
,Σr

n) are given by (21)-(24). The approximation to ∇θr,jµrn|θ=θn+1
follows from

differentiating (24). (µ̇r,jn , µrn|θ=θn+1
) are only approximations because they are computed using the

previous values of the parameters, i.e. θ1:n.

APPENDIX C

DISTRIBUTED EM DERIVATION

For the off-line EM approach, once a batch of T observations have been obtained, each node r of the

network that controls an edge will execute the following E and M step iteration n,

Qr(θp, θ) =

ˆ
log prθ(x

r
1:T , Y1:T )p

r
θp(x

r
1:T |Y1:T )dxr1:T ,

θr,jp+1 = arg max
θr,j∈Θ

Qr(θp, (θ
r,j , {θe, e ∈ E\(r, j)})),

where it is assumed that node r controls edge (r, j). The quantity prθp(x
r
1:T |Y1:T ) is the joint distribution

of the hidden states at node r given all the observations of the network from time 1 to T and is given

up to a proportionality constant,

prθp(x
r
1:T )p

r
θp(Y1:T |x

r
1:T ) =

T∏
n=1

fn(x
r
n|xrn−1)p

r
θp(Yn|x

r
n),

where prθp(Yn|x
r
n) was defined in (9). Note that prθp(x

r
1:T , Y1:T ) (and hence prθp(x

r
1:T |Y1:T )) is a function

of θp = {θi,i
′

p }(i,i′)∈E and not just θr,jp . Also, the θ-dependence of prθ(x
r
1:T , Y1:T ) arises through the

likelihood term only as prθ(x
r
1:T ) is θ independent. Note that∑

v∈V
log gvn(Y

v
n |xrn + θr,v) =

∑
v∈V

cvn − 1

2

∑
v∈V

(Y v
n − Cv

nθ
r,v)T(Rv

n)
−1(Y v

n − Cv
nθ

r,v)

+ (xrn)
T
∑
v∈V

(Cv
n)

T(Rv
n)

−1(Y v
n − Cv

nθ
r,v)− 1

2
(xrn)

T

[∑
v∈V

(Cv
n)

T(Rv
n)

−1Cv
n

]
xrn

where cvn is a constant independent of θ. Taking the expectation w.r.t. prθn(x
r
n|Y1:T ) givesˆ

log prθ(Yn|xrn)prθp(x
r
n|Y1:T )dxrn = −1

2

∑
v∈V

[
(Y v

n − Cv
nθ

r,v)T(Rv
n)

−1(Y v
n − Cv

nθ
r,v)
]

− (µrn|T )
T
∑
v∈V

(Cv
n)

T(Rv
n)

−1Cv
nθ

r,v + const

where all terms independent of θr,j have been lumped together as ’const’ and µrn|T is the mean of xrn

under prθp(x
r
n|Y1:T ). Taking the gradient w.r.t. θr,j we get and following the steps in the derivation of

the distributed RML we obtain

∇θr,j

ˆ
log prθ(Yn|xrn)prθp(x

r
n|Y1:T )dxrn = ṁj,r

n,K − m̈j,r
n,K − (mj,r

n,K)Tµrn|T
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where (mj,r
n,K , ṁ

j,r
n,K , m̈

j,r
n,K) is defined in (18)-(20). Only m̈j,r

n,K is a function of θr,j . Now to perform

the M-step, we solve(
T∑

n=1

mj,r
n,K

)
θr,j =

T∑
n=1

ṁj,r
n,K − (mj,r

n,K)Tµrn|T −
∑

j′∈ne(j)\{r}

m̈j′,j
n,K−1

 .

Note that θr,j can be recovered by standard linear algebra and so far θr,j is solved by quantities available

locally to node r and j. One can use the fact that
∑

j′∈ne(j)\{r}
m̈j′,j

n,K−1 = m̈j,r
n,K − m̈j,r

n,1 to so that the

M-step can be performed with quantities available locally to node r only. Recall that
∑T

n=1 µ
r
n|T =´ (∑T

n=1 x
r
n

)
prθp(x

r
1:T |Y1:T )dxr1:T . This implies directly that three summary statistics are needed for

node r to update θr,j . These should be defined using:

sr,jn,1(x
r
n, Yn) = (mj,r

n,K)Txrn, s
r,j
n,2(x

r
n, Yn) = mj,r

n,K , s
r,j
n,3(x

r
n, Yn) = ṁj,r

n,K − m̈j,r
n,K + m̈j,r

n,1,

where srn,1, srn,3 are each functions of xrn and Yn via µrn|T and ṁj,r
n,K − m̈j,r

n,K + m̈j,r
n,1 respectively. The

summary statistics can be written in the form of (38) as follows:

Sr,j,θp

T,1 =
1

T

ˆ ( T∑
n=1

(mj,r
n,K)Txrn

)
prθp(x

r
1:T |Y1:T )dxr1:T ,

Sr,jθp

T,2 =
1

T

T∑
n=1

mj,r
n,K , Sr,jθp

T,3 =
1

T

T∑
n=1

(
ṁj,r

n,K − m̈j,r
n,K + m̈j,r

n,1

)
,

and the M-step function becomes Λ(s1, s2, s3) = s−1
2 (s3 − s1) , where s1, s2, s3 correspond to each of

the three summary statistics. Note that Λ is the same function for every node.

We will now proceed to the on-line implementation. Let at time n the estimate of the localization

parameter be θn. Following the description of Section A-B, for every r ∈ V and (r, j) ∈ E , let Sr,j
n,1,

Sr,j
n,2, Sr,j

n,3 be the running averages (w.r.t n) for Sr,jθp

T,1 , Sr,jθp

T,2 and Sr,jθp

T,3 respectively. The recursions for

Sr,j
n,2, Sr,j

n,3 are trivial:

Sr,j
n,2 = γrnm

j,r
n,K + (1− γrn)S

r,j
n−1,2, S

r,j
n,3 = γrn(ṁ

j,r
n,K − m̈j,r

n,K + m̈j,r
n,1) + (1− γrn)S

r,j
n−1,3,

where {γrn}n≥1 needs to satisfy
∑

n≥1 γ
r
n = ∞ and

∑
n≥1 (γ

r
n)

2 < ∞. For Sr,j
n,1, we will use (42)-(43).

We first set V r,j
0 (xr0) = 0 and define the recursion

V r,j
n (xrn) = γrn(m

j,r
n,K)Txrn + (1− γrn)

ˆ
V r,j
n−1

(
xrn−1

)
prθ1:n

(
xrn−1

∣∣Y1:n−1, x
r
n

)
dxrn−1. (48)

Using standard manipulations with Gaussians we can derive that prθ1:n
(
xrn−1

∣∣Y1:n−1, x
r
n

)
is itself a

Gaussian density with mean and variance denoted by µ̃rn(xn), Σ̃
r
n respectively, where

Σ̃r
n =

(
Σr
n−1 +AT

nQ
−1
n An

)−1
, µ̃rn(xn) = Σ̃r

n

((
Σr
n−1

)−1
µrn−1 +AT

nQ
−1
n xn

)
.
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It is then evident that (48) becomes V r,j
n (xrn) = Hr,j

n xrn + hr,jn , with:

Hr,j
n = γrn(m

j,r
n,K)T + (1− γrn)H

r,j
n−1

(
Σ̃r
n

)−1
AT

nQ
−1
n ,

hr,jn = (1− γrn)

(
Hr,j

n−1

(
Σ̃r
n

)−1 (
Σr
n−1

)−1
µrn−1 + hr,jn−1

)
,

where Hr,j
0 = 0 and hr,j0 = 0. Finally, the recursive calculation of Sr,j

n,1 is achieved by computing

Sr,j
n,1 =

ˆ
V r,j
n (xrn) p

r
θ0:n(x

r
n|Y0:n)dxrn = Hr,j

n µrn + hr,jn .

Again all the steps are performed locally at node r, which can update parameter θr,j using θr,jn+1 =

Λ(Sr,j
n,1,S

r,j
n,2,S

r,j
n,3).
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