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SUMMARY

In this paper we consider a specific Air Traffic Management problem, where multiple aircraft in

a specific region are required to reach a different target zone in minimum expected time, while

maintaining safe separation. The problem is complicated by the presence of random wind disturbances.

We propose a realistic policy to automatically generate optimal and safe manoeuvres for each aircraft.

The parameters of the optimal policy are computed using a Sequential Monte Carlo approach.
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1. Introduction

In this paper we address specific Air Traffic Management (ATM) problems, where multiple
aircraft are interested in cruising through a monitored area in order to reach some specific
point or area in the minimum expected time. The problem is complicated by the necessity of
all aircraft maintaining safe separation. Although we will consider here only level flight, our
proposed methodology is generic for a wide class of problems such as approaching terminal
areas or changing flight levels. Our approach can be extended without much effort, for various
aircraft dynamics, and for most established statistical wind models.

Planning aircraft trajectories to cross an area in expected minimum time in the presence
of constraints can be posed as a non-convex optimisation problem. This is common in many
problems in Air Traffic Management and the resulting costs or rewards in general exhibit often
many local minima or maxima. This motivates the use of global optimisation algorithms,
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which in some cases guarantee asymptotic convergence to a global optimum. In most cases
such algorithms employ a randomised search strategy to ensure that the search process is not
trapped in some local optimum. A popular example is Simulated Annealing (SA).

In addition to the issue of multiple local optima, solving such problems becomes more
complicated when stochastic processes are used to represent model uncertainties, such as
the effect of the wind velocity on each aircraft. The underlying distribution of the wind
field is usually modelled by time-varying spatial stochastic processes. The resulting costs or
rewards that need to be optimised are usually expectations over high-dimensional probability
distributions, for which it seems impossible to devise analytical solutions or approximations
except for a few very simple cases. Even computing such high-dimensional integrals can be a
formidable task.

Markov Chain Monte Carlo (MCMC) methods [22], and Sequential Monte Carlo (SMC)
methods [4, 7, 18] are currently the most successful methods for evaluating such expectations
over relatively high-dimensional spaces under very weak assumptions, and have been widely
applied in many areas such as finance, robotics and communications. An interesting point, often
overlooked by the applied optimisation community, is that Monte Carlo has also been applied
for performing global optimisation, mainly in inference problems such as Bayesian optimal
design of experimental settings, standard Maximum Likelihood or Maximum a Posteriori
estimation [1, 14, 15, 21]. Considerable theoretical support exists for both MCMC and SMC
under very weak assumptions [22, 4].

Recently, in [17] a MCMC algorithm similar to Simulated Annealing (SA) developed in
[21] has been applied for scheduling approaching aircraft to a terminal area and computing
optimal way points for their manoeuvres. In order to avoid the long execution times that
are typically needed for stochastic optimisation routines, it is important to consider carefully
the computational complexity of the algorithms and take advantage of any structure that
might be available in the problem to speed up computation. In the problems we will be
considering this seems to be easier to manage when the SMC framework is used, yielding
computationally more efficient algorithms, that are usually easier to implement. In addition,
the implementation of SMC algorithms can be easily parallelised. In practice, this can lead
to much shorter execution times, when these algorithms are implemented on conventional
Graphics Processor Units (GPU) [16].

The outline of this paper is as follows: in Section 2 we formulate the problem as an open-loop
control problem by constructing a dual mode policy, which can be easily parameterised. In
Section 3 we present a Bayesian interpretation of Simulated Annealing and in Section 4 we
show how SMC can be used to compute the parameters of the optimal policy. In Section 5 we
illustrate the performance of our approach using simulations. Finally, in Section 6 we provide
some concluding remarks.

2. Problem Formulation

In this section we provide a probabilistic framework for a specific conflict resolution problem.
We will consider level flight between M aircraft cruising with constant speed in a specified
region. First, we will present the dynamics of each aircraft separately and then define the
constraint region so that each aircraft maintains a safe separation from the rest, given some pre-
specified tolerance probability. Then, we will consider the problem of finding optimal control
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OPTIMAL DESIGN OF AIRCRAFT TRAJECTORIES FOR AIR TRAFFIC MANAGEMENT 3

inputs to meet these constraints, so that each aircraft arrives at a target exit region in minimum
expected time. Finally, we will use the following notation: for a j dimensional vector we denote
z1:j= (z1, · · · , zj), �z� = (z21 + · · ·+ z

2
j
)

1
2 , δy(dz) the Dirac unit mass delta measure centered

at z = y and IA(z) the indicator function of set A.

2.1. Dynamics

2.1.1. Dynamic model for each aircraft We consider a standard two-dimensional Cartesian
fixed-speed model for each aircraft i [8], whose state x

i

t
(∈ R2) is composed of the x and y

Cartesian coordinates of the aircraft. Let the true aircraft speed of aircraft i be v
i

tas
(∈ R),

and let also the control input at each time be the heading, hi

t
(∈ [−π

2 ,
π

2 ]), giving the following
recursive dynamics for the state:

x
i

t
= x

i

t−1 +

�
coshi

t

sinhi

t

�
v
i

tas
δ + wt−1(x

i

t−1)δ (1)

where δ is the common time discretisation interval, and wt(x) is a random disturbance
representing the wind velocity at point x of the state space at time t. We assume that the
sequence of headings h

i

1:t can be parameterised by some fixed (possibly low) dimensional
parameter θ

i and wt−1 is a spatio-temporal varying random variable defined on some open
subset of R2. Also, for each aircraft i, we will assume there exists some exit point e

i (∈ R2).
The aim of the control inputs is to drive each aircraft i to some neighbourhood of ei, denoted
by B

i (⊂ R2), which we will refer to frequently in the paper as the ‘target set’ or ‘exit region’.

2.1.2. Parameterisation of control inputs We will show how h
i

1:t can be represented as a
deterministic function of a parameter θ

i. Our approach uses ‘blocking’ of control inputs to
reduce the dimension of the control space. The motivation for doing this arises from both the
practical issues in the specific application and the computational aspects of the underlying
methodology. As far as the application is concerned the resulting manoeuvres need to be
simple enough to be implemented in practice either by a pilot or an autopilot. In terms of the
methodology it is also important to reduce the control space to a reasonable sized parameter
space, so that a fast and efficient search for the optimal control law can be made possible. We
will refer to the control law also as a ‘policy’ and consider the parameter of the policy to be a
deterministic variable to be computed.

More specifically for our parameterisation, we will divide the sequence of hi

1:t to a sequence
of H blocks of constant inputs as follows:

h
i

1:t = [
�
hi1, . . . , h

i

1

�
� �� �

h1

Block 1

,
�
hi2, . . . , h

i

2

�
� �� �

h2

Block 2

, . . . ,
�
hi
H
, . . . , hi

H

�
� �� �

h
H

Block H

],

In this case, for every k = 1, ..., H, each h
k

is composed by the stacked vector of every hi
k

,
which in turn can be computed by using the change in heading, namely θ

i

k
, compared to the

heading in the first block hi1. This gives the following control update for k > 1 :

hi
k
= hi1 + θ

i

k
, (2)

where we will for the time being set θ
i

1 = 0. Then the parameter is simply given by
θ
i = [hi1, θ

i

2, . . . , θ
i

H
]. Note that we have not made so far any assumptions on each block

size, which may vary with k and could be used as a design or tuning variable.
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In this paper we shall use the same length p, for each block, except the last one, which will
usually be a longer block. In the last block we propose the use of either tracking a straight-line
course or a fixed heading :
Tracking: we propose that each element in the final block is time varying in this case.
In tracking the heading counteracts the cross-track action of the wind [9]. The inputs are
computed at time t so that xi

t+1 tracks the straight line connecting x
i

t−(H−1)p to the exit point

e
i for aircraft i. Therefore, each element in h

H
=

�
hi
t−(H−1)p+1, . . . , h

i

t

�T
can be computed

recursively for m = t− (H − 1)p+ 1, . . . , t as follows:

hi
m+1 = ϕ

i

m
+ sin

−1




��wm(xi

m
)
�� sin(tan−1(wm(xi

m)(2)
wm(xi

m)(1) )− ϕ
i

m
)

δvtas



 (3)

where �.� denotes the 2-norm and for any time t and aircraft i , the current angle, ϕt, towards
the exit-point e

i, is given by

ϕ
i

t
= tan−1(

e
i(2)− x

i

t
(2)

ei(1)− x
i
t
(1)

) (4)

Fixed heading: in this case we propose that h
H

is the stacked vector composed of t−(H−1)p
repetitions of hi

H
, which is given by the heading angle after the last input of h

H−1 is applied,
i.e.

hi
H

= ϕ
i

t−(H−1)p. (5)

Note that in both cases, in contrast to the previous blocks, the size of the final block is not fixed
but varies depending on t. In our application t will keep growing until xi

t
has reached its target

set B
i. As a result the size of the last block can be thought of as random, but in each case

the input heading is given by a deterministic update scheme, as shown in (3)-(5). The benefits
of this strategy in each case is that θ

i is fixed and possibly low-dimensional, regardless of the
time required for the state trajectories to reach the target sets. The final block is somewhat
analogous to the ‘terminal control law’ that is commonly used in ‘dual-mode’ model predictive
control schemes, as introduced in [20] – we think of the first H − 1 blocks as ‘mode 1’, and of
the final block as ‘mode 2’.

2.1.3. Multiple aircraft state augmentation and constraints So far we have considered the
dynamics of each aircraft separately. Now, we will assume that M aircraft are always present
in the area of surveillance, so i = 1, ...,M. Also we denote xt to be the stacked vector of every x

i

t
,

i.e. xt = [x
1T

t
, ..., x

M
T

t
]T and similarly for the control parameters we have θ = [θi

T
, ..., θ

M
T
]T .

We will also assume that for a fixed known value of θ, Xt is a Markov chain generated by the
law Px0,θ,t(dx0:t) =

�
t

k=1 f(xk|xk−1)dx0:t with initial distribution δxo(dx). The dynamics can
be also written as a joint Markov transition density fθ with respect to the Lebesgue measure
dxt:

Px0,θ(Xt ∈ dxt|X1:t−1 = x1:t−1) = Px0,θ(Xt ∈ dxt|Xt−1 = xt−1) = fθ(xt|xi

t−1)dxt. (6)

Each individual transition density f
i

θ
(xi

t
|xt−1) with respect to dx

i

t
defined as

Px0,θ(X
i

t
∈ dx

i

t
|X1:t−1 = x1:t−1) = Px0,θ(X

i

t
∈ dx

i

t
|Xt−1 = xt−1) = f

i

θ
(xi

t
|xt−1)dx

i

t
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can be obtained through marginalisation

f
i

θ
(xi

t
|xt−1) =

ˆ
fθ(xt|xt−1)dx

−i

t
, (7)

where x
−i=[x1

, . . . , x
i−1

, x
i+1

, . . . x
M ].

For the purpose of air traffic management, we are primarily interested in maintaining at
least some minimum safe separation distance between each aircraft. Therefore at each time t

for the state vector xt we define the feasible state space as

Xt =
�
x
i

t
∈ R2 : ∀j �= i

���xi

i
− x

j

i

��� > d , i, j = 1, . . .M
�
, (8)

and the path space of the feasible trajectories as X0:t = X0 × · · ·×Xt. Moreover, denote Θ as
the set of admissible actions θ such that for a given t the probability of safe separation (PSSt)
satisfies

PSSt := Px0,θ,t(X0:t ∈ X0:t) ≥ 1− ε, (9)

where ε ∈ [0, 1) is some tolerance level. Note that in problems with stochastic dynamics it
might not be possible to use deterministic constraints and we therefore opt for the use of some
pre-specified tolerance level ε which can be interpreted as an allowed or safe probability of
conflict. Note that, although it was natural to pose the joint dynamics in a distributed fashion
as done for the case of each aircraft earlier, this is not straightforward for the case of the
constraints, which involve pairwise comparisons of the aircrafts’ states.

2.1.4. Feynman-Kac model for the augmented process In order to avoid dealing with the
random sets Xt defined in (8) we will use the discrete time Feynman-Kac model formalism
described in detail in [4]. For convenience, let Xt = X1:t denote the sequence of t consecutive
augmented states which is generated by the law of the Markov chain Px0,θ,t(dx0:t).We will use
the potential function Gt(x0:t) =

�
t−1
k=1 Gk(xk) where

Gk(xk) =

�
1 infi �=j

���xi

k
− x

j

k

��� > d, i, j = 1, . . .M

0 otherwise

to define the probability measure of the path of feasible state sequences up to time t as

Qx0,θ,t(Xt ∈ A) =
1

Zt

Gt(Xt)Px0,θ,t(Xt ∈ A),

where A ∈ R2M is an arbitrary set and Zt is the normalising constant given by

Zt = EPx0,θ,t

�
t−1�

k=1

Gk(xk)

�
,

with EPx0,θ,t denoting the expectation under the probability measure Px0,θ,t.
An alternative definition for the law of the feasible state sequence path up to time t can be

given using an arbitrarily chosen bounded test function Φ : R2t → R as follows:

Qx0,θ,t(Φ) =
1

Zt

EPx0,θ,t

�
Φ(X0:t)

t−1�

k=1

Gk(xk)

�
.
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Similarly, using a bounded test function φ : R2 → R we can derive a sequence of distributions
ηt for each Xt as

ηt(φ) :=
γt(φ)

γt(1)
=

1

Zt

EPx0,θ,t

�
φ(Xt)

t−1�

k=1

Gk(xk)

�
. (10)

Given ηk(Gk) =
Zk+1

Zk
it is straightforward to show that for the unnormalised measure γt that

γt(φ) = ηt(φ)
t−1�

k=1

ηk(Gk). (11)

For the problem of interest one can interpret the normalising constant γt(Gt) = γt+1(1) as
being PSSt. Consequently from (10)-(11) we obtain the recursion

PSSt = γt+1(1) = Zt+1 =
t�

k=1

ηk(Gk), (12)

which will be used later to compute PSSt numerically.

2.1.5. Monte Carlo approximations and relaxing the constraints Although the Feynman-
Kac model described earlier provides a convenient interpretation of PSSt as the normalising
constant Zt+1, we note that in most cases this normalising constant cannot be computed
analytically. In this section we will briefly sketch how to sample from Qx0,θ,t and numerically
estimate PSSt by a Monte Carlo approximation based on Importance Sampling (IS) [18]. The
aim is to relax the constraints so that they remain valid for the approximation of PSSt instead.

First we assume that it is possible to sample from the true dynamics using samples from
the transition density fθ and we can therefore obtain κ independent identically distributed
(iid) samples

�
x(l)
t

�κ

l=1
from Px0,θ,t. We can then check whether any conflicts are present at

any time and select samples as samples of Qx0,θ,t only when Gt(x
(l)
t
) = 1. The Monte Carlo

estimate of PSSt, namely �PSSt, is given by:

�PSSt =
1

κ

κ�

l=1

Gt(x
(l)
t
)

One could then soften the constraints to take the following form, �PSSt ≥ 1− ε.

In the subsequent methodology we will assume that it is indeed possible to simulate from
the true transition density fθ. Even if this is not the case our methodology can be still used
provided that one can still obtain unbiased samples x1:t from the dynamics. The minimal
requirement is that point-wise computation of fθ is available. Therefore, the methodology and
algorithms presented in the rest of the paper are generic and can be used not only for level
flight, but for example in problems with changing altitude.

2.2. Cost function

We define for each aircraft the time of arrival T i at the target set B
i as

T
i = inf

t≥1

�
t : Xi

t
∈ B

i
�
.
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Notice that in the context of stochastic processes the time of arrival corresponds to the random
hitting time of set B

i. We will assume that once some aircraft first enters in B
i with a the

realisation of the first hitting time T
i being τ

i, then the state corresponding sequence xi

τ i+m
,

m > 1, remains in an arbitrary absorbing feasible set, where the subsequent trajectory does
not violate the constraints.

We will write the expected time of arrival or hitting time at B
i as:

Ex0,θ[T
i] =

∞�

τ=1

τ
i
πT i,θ(τ

i) with πT i,θ(τ
i) =

Qx0,θ,τ
i+1{T i = τ

i}�∞
m=1 Qx0,θ,m+1{T i = m}

. (13)

We define the probability mass function (pmf) of the hitting times (or times of arrival),
πT i,θ(τ

i) ∝ Qx0,θ,τ
i+1{T i = τ

i}, using Qx0,θ,t instead of the natural law of the process Px0,θ,t

to avoid Gk(Xk) = 0 occuring, which would lead to an infinite T
i. Thus we ensure that all

times t ≤ τ
i, the trajectories Xi

t
remain in the feasible space X0:t. Furthermore, to avoid other

pathological cases, we will also assume that for every i, Qx0,θ{T i
< ∞} = 1 holds for some

value of θ ∈ Θ and in addition Ex0,θ(T
i) < ∞ for every θ, i.

In order to compute πT i,θ we will consider all possible feasible state sequences Xτ i , for which
the state of aircraft i just reaches the target set B

i at time τ
i given the previous part of the

trajectory has not done so. For this reason we define the function g
i

τ i : R2Mτ
i → {0, 1}

g
i

τ i(xτ i) = Ixi
τi∈Bi

τ
i−1�

k=1

Ixi
k /∈Bi (14)

and use it to compute πT i,θ(τ
i) as

πT i,θ(τ
i) ∝ Qx0,θ,τ

i+1{T i = τ
i} =

EPx0,θ,τi

�
g
i

τ i(xτ i)
�

τ
i

k=1 Gk(xk)
�

EPx0,θ,τi

��
τ i

k=1 Gk(xk)
� = ητ i+1(g

i). (15)

It is implied that by sampling any trajectory from Qx0,θ,τ
i+1, one can determine if τ

i is a
sample from πT i,θ(τ

i) by checking whether g
i

τ i(xτ i) = 1. In this case we will require that for
every time t > τ

i, gi
t
= 1 also holds, because B

i was formulated as an absorbing set.
In this paper we shall consider minimising the expected maximum time of arrival with respect

to all aircraft. More precisely we define the stopping time to be minimised as T = maxi T i

and cast the problem as to compute

θ
∗ = argmin

θ∈Θ
Ex0,θ[T ], s.t. �PSST ≥ 1− �

where the relaxed constraints impose the need of all aircraft staying within the feasible region
with some confidence probability 1 − ε. This is a difficult cost to minimise by conventional
methods, such as analytical computations or the use of gradients. This motivates the use of
simulated based methods to estimate θ

∗.
In addition, we can use that Ex0,θ(T ) < ∞ and therefore can be bounded from above

by a constant τx0 = sup
θ
Ex0,θ(T ), in order to transform the minimisation problem to a

maximisation problem and estimate θ
∗ as the maximisers of

Jx0(θ) =

ˆ
u(τ)πT,θ(τ)dτ, (16)
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where

u(τ) = τ − τ and πT,θ(τ) =
∞�

τ=1

Qx0,θ,τ+1{T = τ}�∞
m=1 Qx0,θ,m+1{T = m}

δτ (dτ) (17)

and τ > τx0 is an arbitrary constant so that u > 0. Having to solve a maximisation problem
makes it easier to use the annealing methods found in [1, 14, 15, 21].

Note that at first glance choosing such a τ might seem restrictive, but this is mitigated by
the fact that in practice it might be easy to find some τ large enough so that the problem
remains unaffected. To simplify exposition in the subsequent sections we formulated πT,θ(τ)
as a probability density function composed from a train of Dirac delta functions. As regards
to computing πT,θ(τ) one can use Qx0,θ,τ+1{T = τ} ∝ ητ+1(

�
M

i=1 g
i

τ i) similarly to equation
(15).

2.3. Wind modelling

In this section we shall discuss how the wind velocity wt(x) can be modelled at each point
x ∈ R2. Our approach is close to that of [2, 10, 19] and similar ideas have appeared in [11].
More formally, we assume that Wt is a measurable process taking values in R2. We will assume
that the mean of the process µt is a spatio-temporal varying two dimensional surface, that
depends on the past history of the process through a Markov relation

E [Wt(x)|W1:t−1 = w1:t−1] = E [Wt(x)|Wt−1 = wt−1] = µt(x; sµ(wt−1)),

where sµ(wt−1) is a vector of fixed dimensional sufficient statistics, for example some linear
combination of sµ(wt−2), the previous mean and covariance. Similarly for the variance we will
assume

E
�
(Wt(x)− µt(x; sµ(wt−1)))

2 |Wt−1 = wt−1

�
= Σt(x; sΣ(wt−1)),

with sΣ(wt−1) being a the sufficient statistics for the variance. As we are assuming a stationary
model, note that the sufficient statistics can be computed recursively.

This level of abstraction formulates the problem in its most general setting, but for the
purposes of this paper, we will use the linear Gaussian model

wt(x) = µt(x; sµ(wt−1)) + vt,

where vt
iid∼ N (0,Σt(x; sΣ(wt−1))). In [2, 10, 19] the authors assumed that sµ and sΣ depend

on the complete path of W1:t−1. This choice was influenced by the exhaustive data analysis on
weather forecasts carried out in [3]. There the datasets analysed spanned a very large period
of time, order of magnitudes larger than the few tens of minutes we are interested in. In this
paper we choose to use Markov modelling rather than using a time varying autoregressive
process as in [12]. This was further validated in the datasets used for simulations in Section 5.
Again, we stress that the methodology and the simulation based algorithm presented later in
the paper does not rely on this specific model choice.

In practice, the surface µt(x) is unknown and what is available is gridded data, which
corresponds to Rapid Update Cycle (RUC) weather forecasts [3] at specific points of the
state space. The forecasts typically appear in intervals of three hours for the next three
days. They are updated daily and can be downloaded from the National Oceanic and
Atmospheric Administration (NOAA) serverWe shall use this gridded data to provide smooth
approximations of µt and Σt both in space and time.
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OPTIMAL DESIGN OF AIRCRAFT TRAJECTORIES FOR AIR TRAFFIC MANAGEMENT 9

As far as µt is concerned, obtaining approximations for the surfaces drops to a regression
problem. For both the spatial and temporal regression we opted for the use of plain linear
interpolation as in [19]. These choices were largely influenced by the inherent simplicity and
computational efficiency. In addition early, but not exhaustive, numerical validation indicated
that using more advanced regression techniques, such as Bayesian analysis [24], or splines [11]
for the spatial regression, could yield better approximations but at a significant computational
cost. In any case, the benefit of these methods is marginal in terms of illustrating the
performance of our approach. Therefore these and other advanced methods should not be
ruled out, when it comes to implementing a more realistic or complex example, but their
further investigation is beyond the scope of this paper.

As regards obtaining approximations for Σt, we used a simplification of the work found in
[2, 19], suitable for implementation of the spatial component of a Markovian wind field. Based
on the additional assumption that the variance retains a diagonal isotropic structure for the
two dimensional model, we use the following covariance:

E [(Wt − µt(x)) (Wt − µt(x
�))|Wt−1 = wt−1] = diag

�
σ
2
σx(|x(i)− x

�(i)|)
�
i=1,2

,

where diag[ϕ(i)]
i=1,2 denotes the 2 × 2 diagonal matrix with ϕ(i) being the i-th element on

the diagonal, σ is a constant, and σx(�) = −0.006 + 1.006 exp( −�

337000 ). The authors in [10, 19]
also provide a recursive method to compute sΣ(wt−1) and Σt(x|sΣ(wt−1)) for this model.

3. Bayesian optimal design

Bayesian statistical methodology relies on the fact that all variables of the problem, such as
state, parameters, or observations if any, are modelled as random variables. Moreover prior
distributions are assigned to each one of them, which encapsulates any prior information or
expert knowledge not captured by the model. Then inference is performed using the joint
or marginal posterior appropriately. As such information is not likely to be easily available,
vague priors distributions can be used. In this section we show how Simulated Annealing can
be used to maximise the Bayesian interpretation Jx0(θ). Applying these ideas in the area of
Air Traffic Management has been initiated by [17] for a different application, but the results
were promising so that the methodology can be further exploited and used.

3.1. Bayesian inference on times of arrival

More specifically, in the case of the stopping time T , which is already defined as a random
variable, assigning a prior p(τ) can emphasise the search or sampling in more practically useful
regions, for example by considering only cases where T < τ . In this case, the simplest choice
of the prior p(τ) can be the uniform distribution U[1,τ ]. In the remainder of this paper we shall
use this prior, as typically one might be able to deduce extreme or worst case time of arrivals
τ . Of course this is not the only possible choice. Other possibly diffuse distributions with most
of its density mass concentrated in [1, τ ] can be considered, e.g. a negative binomial, without
actually requiring T < τ , Qx0,θ-almost surely (a.s.). From a Bayesian perspective we would be
actually interested in actually sampling τ from the following posterior

�πT,θ(τ) ∝ πT,θ(τ)p(τ).
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10 N. KANTAS, A. LECCHINI-VISINTINI AND J.M. MACIEJOWSKI

As expected, for the specific choice of prior being a uniform distribution, sampling from
�πT i,θi(τ) will not return any samples τ > τ .

In the context of Bayesian optimal design for the parameter θ we would be interested instead
in minimising the a posteriori mean of the time of arrival with respect to �πT,θ(τ) rather than
(18), thus yielding an alternative a posteriori reward criterion to be maximised given by

�Jx0(θ) =

ˆ
u(τ)�πT,θ(τ)dτ, (18)

It is clear that we are modifying the problem formulation of Section 2.2 here. This does not
involve the particular choice of prior, which implies T < τ , Qx0,θ-a.s.; if a negative binomial
prior was used instead this would not be the issue, but the shape of the posterior would be
a result of twisting the shape of πT,θ(τ) by multiplying it with the prior distribution. This
modification of the problem to be solved is well justified in the Bayesian statistics literature
(see [22] for a few examples) and in some sense we use the prior as a flexible means of inserting
valuable information not captured by modelling the times of arrival strictly as the hitting time
of some set B

i by the marginal of a Markov process x
i

t
.

Algorithm 1 Obtaining samples τ
i ∼ �πT i,θi and τ ∼ �πT,θ given θ, x0, τ ; i = 1, . . . ,M .

1: Initialise permitted number of restarts at each k = 1, ..., τ : set all κk = 1, κmax = κ.
2: for k = 1, ..., τ do
3: Sample xk ∼ fθ(·|xk−1)
4: if Ixk∈X = 1, then
5: Initialise I = 1, . . . ,M .
6: for each i ∈ I do
7: if Ixi

k∈(Bi) = 1, then
8: set τ

i = k, augment xi

τ
= [xi

k−1, x
i

k
], set I ← I\{i} and return τ

i
,xi

τ

9: else
10: augment xi

k
= [xi

k−1, x
i

k
] and proceed to k + 1

11: end if
12: end for
13: else if k �= τ and κk < κ then
14: set κk = κk + 1, go to step 3
15: else
16: terminate without sample.
17: end if
18: end for
19: Set τ = maxi τ i and return τ , �PSSτ =

�
τ

k=1
1
κk

.

In Algorithm 1 we present a sequential Importance Sampling algorithm that samples from
�πT,θ(τ) for a fixed θ. First we generate samples τ

i ∼ �πT i,θi for every i and then we set the
sample of the stopping time to be τ = maxi τi. A convenient by-product of Algorithm 1 is
that we can reuse the samples from �πT,θ(τ) to obtain estimates of the probability of safe
separation PSSτ . Noting that ηk(Gk) ≈ 1

κk
and using equation (12) we obtain the estimate

�PSSτ =
�

τ

k=1
1
κk

. To improve on the variance of this estimator one may use L >> 1 iid
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samples of Algorithm 1 and use the Monte Carlo estimator �PSSτ = 1
L

�
L

l=1

�
τ
(l)

k=1
1

κ(l)
k

. When

�PSSτ ≥ 1− ε, then θ can be regarded as a feasible parameter.
Clearly, the specific choice of parameterisation for the policy is crucial to obtain samples

efficiently, without wasting too much sampling effort in regions of the state space where the
probability of aircraft i reaching B

i is extremely low.

3.2. Simulated annealing

As far as θ is concerned, so far it has been treated as a deterministic parameter of the policy
that needs to be computed. Using a Bayesian approach, we will treat it as a random variable
and assign it a prior with density p(θ). In our application a possible choice of p(θ) can be a
density peaked where each hi1, θik are near ϕ

i

0 and zero respectively.
In the standard Bayesian interpretation of Simulated Annealing, we are interested in

sampling θ
i from a density �πγ

�πγ(θ) ∝ p(θ) �Jx0(θ)
γ
,

where p(θ) is the pdf of an arbitrary prior distribution, which must contain the maximisers θ∗.
Under weak assumptions, as γ → ∞, �πγ(θ) becomes concentrated on the set of maximisers of
J [13].

Alternatively, we can introduce γn artificial replicates of τ , all stacked into a joint variable
τ1:γn and define the following joint posterior density:

πn(θ, τ1:γn) ∝ p(θ)
γn�

j=1

u(τj)πT,θ(τj)p(τj) (19)

We will denote the marginal posterior as πn(θ), for which it is easy to show that it is indeed
proportional to �πγ , i.e.

�πγ(θ) ∝
ˆ

πn(θ, τ1:γn)dτ1:γn .

{γn}n≥0 is a strictly increasing integer infinite sequence , which will play the role of the
inverse temperature. Under weak assumptions, for a logarithmic schedule and large n, one can
obtain formal convergence results, and as γn → ∞, πn becomes concentrated on the set of
maximisers of Jx0(θ), [21]. It has been shown empirically that logarithmic schedules can lead to
slow convergence and therefore more quickly increasing rates, e.g. linear, are used. In addition,
as infinite sequences are impossible to use, finite ones, {γn}n=1,...nmax , are used instead. Also
note that iteration index n should not be confused with time index t.

4. Simulation based optimisation

In general it is impossible to sample directly from πn, hence various Monte Carlo simulation
schemes have been proposed. In [1, 21] this is achieved by Markov Chain Monte Carlo
(MCMC). Instead, in this paper we propose to adopt the Sequential Monte Carlo (SMC)
samplers framework of [6]. Our approach is almost identical to the application of SMC samplers
presented in [14] for Maximum Likelihood parameter estimation and later in [15] for Bayesian
decision theory. Later in this section we shall propose an algorithm similar to [14] and [15],
which differs only in the application and context used.
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12 N. KANTAS, A. LECCHINI-VISINTINI AND J.M. MACIEJOWSKI

4.1. SMC samplers

SMC methods are a sequential implementation of importance sampling to sample from a
general distribution with density π(y) = υ(y)

Z
, where υ(y) can be evaluated point-wise and

the normalisation constant Z is unknown. A swarm of samples
�
y
(l)
1:n

�L

l=1
, called particles,

evolves towards the distribution of interest by passing through a sequence of intermediate
bridging distributions of increasing dimensions with densities {πn(y1:n) =

υn(y1:n)
Zn

}n≤T , such
that y=y0:T and πT = π. This is implemented through a procedure of sampling via importance
sampling and resampling (SISR), which provide appropriate approximations {�πn (y0:n)}n≤T

. A
detailed exposition of the background theory can be found in [4]. In the context state estimation
or optimal Bayesian filtering for hidden Markov models SMC algorithms have been also known
as Particle Filters [7]. In the most general setting SMC extends beyond this popular context
[6, 18].

SMC samplers [6] are a generalisation of traditional SMC methods, such as particle filtering
[7]. Given a sequence of distributions with {πn}n≥0 defined on the same or different spaces,

the aim is to generate samples
�
y
(l)
n

�L

l=1
from πn, constructed based on samples from πn−1.

The core idea is to use an artificial auxiliary distribution on a space of increasing dimension,
whose density {πn} admits the density of interest πn as its marginal. More specifically let,

πn(y1:n) = πn(yn)
1�

k=n−1

q
k
(yk|yk+1),

where q
k

is an appropriate backward Markov density. Then traditional SMC methods, e.g.
SISR, can be used to sample from πn(y1:n). New samples are proposed according to a forward
Markov transition density qn. These particles are weighted recursively as follows:

wn(yn−1:n)

wn−1(yn−2:n−1)
∝

πn(yn)qn−1(yn−1|yn)
πn−1(yn−1)qn(yn|yn−1)

to provide approximations

�πn(dy) =
L�

l=1

W
(l)
n

δ
y
(l)
n
(dy),with W

(l)
n

=
wn(y

(l)
n−1:n)�

L

l=1 wn(y
(l)
n−1:n)

.

Then a resampling procedure is introduced to copy (or multiply) particles with high weights
and therefore discarding particles with low weights. The resampling procedure serves to focus
the computational effort on the “promising” regions of the state-space. The simplest resampling
scheme is multinomial resampling: generate L independent samples from �πn(yn). We shall be
referring to {y(l)n ,W

(l)
n }L

l=1 as the particle approximation �πn to πn.
Many sharp convergence results are available for SMC algorithms; under fairly weak

assumptions one can obtain almost sure convergence results with respect to the population
size L

L�

l=1

W
(l)
n

δ
y
(l)
n
(dy)

L→∞→
a.s.

πn(dy),

as well as central limit theorems, see [6] for SMC samplers and [4] for a book length review. For
more details on traditional SMC and SMC samplers and we refer to [7, 18] and [6] respectively.
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4.2. SMC samplers for optimal policy design

In our case, we set y1:n = (θ, τ1:γn) and yn = (θ, τn) with τn = τγn−1+1:γn . A possible candidate
for πn can takes the form of (19), but we shall further generalise that formulation to include
more flexible non integer annealing schedules following the ideas in [14, 15]. Instead of (19) we
shall use

πn(θ, τ1:γn) = p(θ)




γn�

j=1

u(τj)πT,θ(τj)p(τj)



u(τγn)
νn , (20)

where {γn}n=1,...,nmax
is a monotone increasing integer sequence with γn ∈ N∗

+ and
{νn}n=1,...,nmax

is a real sequence such that νn ∈ [0, 1), with the only restriction being that
νnmax = 0. Note that when νn = 0, the marginal πn(θ) remains as before.

To obtain samples for this specific distribution sequence {πn(θn, τn)}, we propose to
propagate θ at each n using a random walk transition density for qn(θn|θn−1) and then once
θn is sampled, sample the hitting times from the true dynamics, τn ∼

�
γn

j=γn−1+1 πT,θn(τj).
We will also use the backward transition density,

q
n−1 (θn−1, τn−1|θn, τn) ∝ qn(θn|θn−1)u(τγn−1)

νn−1 ,

which serves as an approximation that can resemble closely the optimal backward transition
density with respect to the variance of the weights presented in [6]. The weights then can be
propagated according to

wn(τn)

wn−1(τn−1)
∝ u(τγn)

νn

γn�

j=γn−1+1

u(τj).

In Algorithm 2 we summarise the proposed SMC algorithm which can be used to maximise
Jx0(θ) for each aircraft.

4.3. Implementation notes and related approaches

The resampling step adds some variance to the weights in order to keep the particle-set alive, i.e.
to prevent all particles having negligible weight apart very few or even a single one. In addition,
a key element to the success of any proposed SMC algorithm is that the shape of πn should be
close to that of πn−1. This is reflected in the variance of the importance weights. Therefore it
is important to carefully choose q

n
and qn in order to achieve good mixing properties and keep

the variance of the importance weights small. Since the resampling step tends to contribute to
an increase in the variance of the weights it has been proposed to use resampling only when it
is necessary, i.e. when the variance of the unnormalised weights exceeds some threshold. This
can be implemented by monitoring the effective sample size (ESS) [18]

ESSn =

�
L�

l=1

�
W

l

n

�2
�−1

and resampling only if it drops under some pre-specified value, e.g L

2 . The ESS is always less
than L and can be interpreted as the number of perfect samples from the target distribution
that would yield the same estimator variance. Note that we expect that Algorithm 2 will yield
lower ESSn compared to the ones found in [14, 15] or in other more traditional applications of
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14 N. KANTAS, A. LECCHINI-VISINTINI AND J.M. MACIEJOWSKI

Algorithm 2 Simulation based trajectory planning

1: Initialisation, at n = 0: for each particle l = 1, ..., L : sample from the prior θ(l)0 ∼ p(·) and
assume W

l

−1 = 1
L

.
2: for n = 0, ..., nmax : do
3: for each particle l = 1, ..., L : do
4: if n ≥ 1, sample control parameter particles θ

(l)
n ∼ qn(·|θ(l)n−1)

5: for j = γn−1 + 1, ..., γn using θ
(l)
n and Algorithm 1, sample τj

(l)

6: Weighting particles: set w
(l)
n = W

(l)
n−1u(τ

(l)
γn )

νn

γn�
j=γn−1+1

u(τ (l)
j

),

7: if Algorithm 1 returns no sample, set w
(l)
n = 0.

8: end for
9: Normalise weights: W (l)

n = w
(l)
n /

L�
l�=1

w
(l�)
n .

10: Resample, if ESSn <Lthresh, to get new particle set {(θ(l)n , τ
(l)
n )}L

l=1 with equal weights
W

(l)
n = 1

L
.

11: end for
12: Compute the estimate of optimal θ

SMC such as nonlinear filtering. This is because the algorithm will be rejecting samples which
violate constraints, although hopefully the frequency of the latter should reduce with n.

A common criticism can be that as in any annealing algorithm, some tuning might be
required for the annealing schedule. The tradeoff is clearly between fast convergence and the
chance to be trapped in local optima. The non integer annealing schedules {γn, νn}n=1,..nmax

can make tuning slightly easier, and it is also possible to adapt γn, νn to the drop in the ESS
and use a slower annealing schedule to spend more time exploring areas where the algorithm
is prone to get stuck. Similar ideas have been used recently in the context of approximate
Bayesian computation in [5].

Finally, as we are interested in estimating the maximisers θ
∗, using the mean of �πnmax(θ)

can be a bad estimate in the case of multi-modalities. Therefore, one should be careful to use

the mode of �πnmax(θ) or the mean of some cluster of
�
θ
(l)
nmax

�L

l=1
with significant weight as

estimates θ
∗
.

From the presentation so far it has not been clear what are the contributions in optimal
Bayesian design methodology. Our approach is based on [14, 15], but there are a number of
novel contributions. Firstly, we address problems with a different utility and more specifically
a minimum expected stopping time problem in contrast to Maximum Likelihood or Minimum
Entropy problems considered in these papers. A different feature of our problem is that
although it is possible to sample from the distribution of interest it might be hard or impossible
to evaluate it point-wise, which leads to proposing propagation of θ via a random walk. Another
important element included in our approach is the explicit handling of constraints, which has
not appeared earlier in [14, 15]. Moreover, readers familiar with the stochastic programming
literature [23] might find some resemblance to our approach. Nevertheless, we clarify that our
approach is completely different as we are approximating the solution of the true problem, i.e.
estimating the true maximiser, rather than solving an approximate problem based on sample
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(a) Velocity diagram of wind over CONUS. The
rectangle is the area where a conflict appears, which
we aim to resolve. A magnified plot of this area is
plotted in Figure 1(b).
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(b) U- and V- components of wind velocity over
CONUS at time 20:00, 21 of February 2008. with
respect to latitude and longitude.

Figure 1. Velocity diagram of wind velocity of a snapshot of the dataset recorded at time 20:00, 21 of

February 2008.

averages. In addition we avoid the restrictive setting of iid sampling and convex problems very
common to the literature of stochastic programming.

5. Simulations

We begin by discussing the details of the wind field model discussed in Section 2.3. We use
RUC2 prediction gridded data for flight level (FL) 300 over the Continental United States
(CONUS). The data was a wind velocity forecast for time 20:00, 21 of February 2008, and
was downloaded from the NOAA server three hours earlier. In order to perform interpolation
with respect to time we used also the same forecast for time 23:00. Each grid consists of 451
longitudinal and 337 points, where each point is separated by 13.545 km from others either
horizontally or vertically. In Figure 1(a) we plot a velocity diagram the of the wind velocity
for for time 20:00 and in Figure 2 we plot the u and v components separately with respect to
the longitude and latitude.

We will construct an artificial conflict involving 4 aircraft heading towards each other in the
rectangle defined by 255 to 260 degrees in longitude and 30 to 35 degrees in latitude and refer to
this area as the area of conflict. The specific part of CONUS was chosen due to the severity of
the winds appearing in that area during the time interval considered, which results in a harder
conflict resolution problem. Aircraft are initialised in the different corners of the rectangle
and are heading diagonally towards the opposite corner. We will assume that all aircraft are
cruising at the same constant speed, 253ms

−1, which is a typical value for the specific flight
level [8]. In the remainder of this section, we shall present the performance of Algorithm 2 for
each of the presented dual mode policies in Section 2.1.2, i.e. when fixed heading or tracking
is used for the last block. Algorithm 2 will be implemented using a linear annealing schedule,
with nmax = 100, L = 1000, qn a Gaussian kernel with decaying bandwidth, σ2 = 5 and for
the policy we set H = 4 and p = 3.
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16 N. KANTAS, A. LECCHINI-VISINTINI AND J.M. MACIEJOWSKI

Figure 2. U- and V- components of wind velocity over CONUS at time 20:00, 21 of February 2008.

with respect to latitude and longitude.

5.1. Fixed heading for mode 2

Here we consider the the case where in the final block the heading consists of the angle to
exit after the headings in block H − 1 have been applied. As explained in Section 2.1.2, the
control inputs in the first H−1 blocks depend on θ, which is computed using Algorithm 2. The
second mode of the policy is block H, which is independent of θ. Nevertheless, it affects the
performance of the policy significantly in terms of the closeness to optimality, the statistical
efficiency of Algorithms 1 and 2, as well as the sensitivity to constraints and size of target
sets. Also the second mode is crucial for the resulting estimates of θ∗ and the underlying state
trajectories, which in turn inherit some characteristic features due to the specific nature of the
second mode.

In Figure 3(a) we illustrate the resulting average aircraft trajectories after Algorithm 2
has been executed. One can see that there is a mild form of symmetry in the direction each
aircraft turns to. We stress that turning in the same direction is not imposed by the policy or
the algorithm, but is a result of the simulation based selection procedure in the algorithm. In
Figures 3(b) and 3(c) we plot the approximate cost and the ESS with respect to iteration n.
Finally in Figure 3(d) we plot the minimum, maximum and mean separation of each pair of
aircraft, which are computed by using the estimated optimal policy in Algorithm 1 to obtain
independent Monte Carlo samples of the aircraft trajectories.

It is clear that when fixed heading is used for the second mode of the policy, separation
constraints are easier to handle, at the cost of requiring larger exit zones B

i to achieve
reasonable performance and maintain reasonable sampling efficiency. This is because after
the first mode of the policy completes, the aircraft turns towards the exit point, but then
drifts away from it due to the unexpected wind.

5.2. Tracking for mode 2

On the other hand when tracking is used, although the exit zones can be made arbitrarily
small, the resulting trajectories will be closer to each other and the policy seems to be
more sensitive to constraints. This was confirmed by our initial simulations. So that a fair
comparison can be made when Algorithm 2 is used, we used a gradual smooth constraint-
tightening approach. We used a varying minimum separation for each iteration n, which was
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(a) Trajectories of resulting manoeuvres.
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(b) Approximate expected cost in minutes
with iteration n.
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(c) Effective sample size with iteration n.
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(d) Separation for every pair of aircraft with
time.

Figure 3. Performance of Algorithm 2 when fixed heading is used in mode 2: a common colour indexing

is used to distinguish between each aircraft i. Simulations lasted 109 minutes when implemented in

Matlab. (a) We plot the mean trajectories of the aircraft with dot connected lines of different colour.

Each rectangle depicts Bi
and is filled with the colour of i. (b) We plot the approximate expected

cost, Ĵx0 =
�L

l=1 W
(l)
n τ (l)

n , for each aircraft i with respect to iteration n. (c) We plot the ESS for

each aircraft i with respect to n. (d) To assess the computed estimate of θ∗ we use it to obtain 5000

independent samples of the trajectories using Algorithm 1. The plot shows only the time interval

when separation is critical and close to the minimum safe value of 9.260 km, which is shown as a

dotted horizontal line. We plot the maximum, minimum and mean separation observed for every pair

of aircraft with respect to time. The line connecting dots and stars shows the maximum and minimum

separations respectively and the solid line is the mean observed separation.

given by dn = d/(0.8 + n
−0.5). In fact, dnmax < d, but the values are quite close. This allows

comparisons to be made on a fair level, as the target zones for each aircraft used in our
simulations were better suited for the fixed heading case.

In Figure 4 we show the same plots as in Figure 3 for the same problem, when tracking
is used in the second mode of the policy together with gradual tightening of the constraints.
We observe that the approximate expected costs this time are marginally lower but similar
compared to the fixed heading case. As regards to the sampling efficiency monitored by the
ESS, both policies seem to perform similarly.
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(b) Approximate expected cost in minutes
with iteration n.
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(c) Effective sample size with iteration n.
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(d) Separation for every pair of aircraft with
time.

Figure 4. Performance of Algorithm 2 when tracking is used in mode 2: for more details we refer to

the caption of Figure 3. Simulations lasted 89 minutes when implemented in Matlab.

6. Conclusions

In this paper we considered the ATM problem of conflict resolution for level flight, when
constant speed is used and only changing the heading of the aircraft is allowed at each time. We
proposed a conveniently parameterised dual mode policy to automatically design manoeuvres
using simulation, so that each aircraft reaches a target in the expected minimum time of
arrival in the presence of stochastic wind disturbances modelled by a realistic model derived
from actual forecast data. We showed how effective our approach is by appropriate simulations.
As regards the resolution properties, an implicit feature of the presented policy is that each
aircraft is forced earlier rather than later to act preemptively by executing manoeuvres in case a
conflict arises. If one takes into account that the actual execution times of our implementations
can be drastically reduced by at least one order of magnitude using parallel implementation
GPUs [16], this makes our proposed approach suitable for mid/short term conflict resolution
with a horizon of the order of tens of minutes.
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