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SOME RECENT DEVELOPMENTS IN MARKOV CHAIN MONTE
CARLO FOR COINTEGRATED TIME SERIES

Maciej Marowka1, Gareth W. Peters2, Nikolas Kantas1 3 and
Guillaume Bagnarosa4

Abstract. We consider multivariate time series that exhibit reduced rank cointegration,
which means a lower dimensional linear projection of the process becomes stationary. We
will review recent suitable Markov Chain Monte Carlo approaches for Bayesian inference
such as the Gibbs sampler of [41] and the Geodesic Hamiltonian Monte Carlo method
of [3]. Then we will propose extensions that can allow the ideas in both methods to be
applied for cointegrated time series with non-Gaussian noise. We illustrate the efficiency
and accuracy of these extensions using appropriate numerical experiments.

1. Introduction

The study of multivariate times series displaying the feature of reduced rank cointegration is an
important topic within a spectrum of fields related to econometrics and statistics; [27], [25], [36] and
[24]. The concept of cointegration was generally developed in the works of [27] and [10]. Since these
early developments, there has been a wide investigation of cointegration in econometrics and finance,
see [11] and more recently [16]. Fundamentally, cointegration is a property of multivariate time series
whereby a lower dimensional linear transformation of a non-stationary process becomes stationary.
The resulting projected time series are often referred to as “spread series” or the “cointegration
portfolio”.

However, in practice both the basis of projection that yields a stationary process and its dimen-
sion are unknown quantities that need to be estimated. Before presenting any models or estimation
techniques a basic notion of cointegration can be described by considering a collection of time series,
yi,t where i = 1, . . . , n. If for some i, yi,t are not stationary but there exists real valued coefficients,
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denoted by b, such that the linear combination

zt =

n∑
i=1

biyt,i (1)

is stationary, then the series are said to be cointegrated. The linear combination vector b =
(b1, b2, . . . , bn)T shown in (1) is called a cointegrating relationship; [12]. A cointegrating relationship
may be seen as a long-term equilibrium phenomenon which allows the cointegrating variables, yi,t,
to deviate from their relationships in the short term, but retains their long term associations. This
property is of particular relevance in financial applications as it allows to construct a mean reverting
portfolio by taking positions proportional to the cointegration relationships b; for a reference on
algorithmic trading applications see [70], [52] and [54].

The main challenge in data analysis for such types of processes lies in the detection and estimation
of the cointegration relationships. It is clear that the stationary property is invariant under linear
combinations of cointegration relations, i.e. if b and c are valid relations, then so is a1b + a2c
for any a1, a2 ∈ R. Therefore linearly independent relations form a basis for a subspace which is
referred to as a cointegration space.

The dimension of the cointegration space will be referred to as a cointegration rank, r, and is
actually the number of linearly independent vectors b ∈ Rn whose inner product with observable
series yt yields stationary process zt. In this paper, we are particularly interested in the estimation
of the cointegration space under various modelling assumptions of the underlying processes yt,i.
When casting the inference problem for this space, certain likelihood based identification problems
can arise ([39, Section 3]). We will elaborate on this issue later in Sections 2.2 and 2.3.

1.1. Contributions and Organization

This paper details the challenges in the estimation of parameters determining cointegration in
a time series model. We will present some recent developments on simulation based Bayesian
inference for such models and therefore the paper serves as a combination of both a survey on
particular aspects of Bayesian estimation and Markov chain Monte Carlo (MCMC) methods for
cointegration modelling as well as presenting several novel developments in this setting.

In terms of the Monte Carlo sampler we consider, we note that we have confined our presentation
mainly to two MCMC simulation approaches: the Gibbs sampler of [41] and the GMC method of
[3]. These methods originate from different research communities in econometrics and statistics,
but we believe it is useful for practitioners to combine these different ideas and demonstrate how
they can be incorporated for the estimation of Bayesian cointegration models. In addition to this
review material, we also propose extensions by combining ideas from both methods. To the best of
our knowledge this is the first application of GMC to cointegrated time series. We believe there is
great potential in extending GMC for cointegration, in terms of being able to address non-linear,
non-Gaussian models and using different specifications for the priors. In the numerical examples we
will make comparisons related to the efficiency and accuracy of the basic methodology and proposed
extensions.

The contributions developed in this manuscript can be summarised as follows:
• we bridge the gap in the MCMC literature between GMC and Bayesian cointegration mod-

els. We provide an explanation of how to define a MCMC sampler for cointegration pa-
rameters on a Stiefel manifold and in particular to define the class of Hamiltonian Monte
Carlo (HMC) and Geodesic Monte Carlo (GMC) samplers in this context.;
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• we develop a cointegration model extension that incorporates into the Vector Error Cor-
rection Model (VECM) the ability to work with more flexible multivariate student t errors
and to develop a Bayesian model in such a context. Sampling from the resulting generalised
VECM Bayesian model is then achieved in Gaussian error and the Student-t error cases
via efficient samplers. In the case of the Student-t errors they exploit the scale mixture
structure of a random vector with Student-t law.;
• we provide a novel algorithm which we demonstrate equally efficient as current state-of-the

art samplers and furthermore can be applied in more generic scenarios for the assumed
VECM driving noise random vectors distribution.;
• we consider Singular Value Decomposition (SVD) representations and priors on parame-

ters. These are useful from a financial applications perspective to determine jointly the
mean reversion and the projection basis parameters. In addition it enables us to apply
random scan Gibbs sampling, which can be used to save computation effort by skipping the
computation of certain geodesics for the Stiefel manifold.

Details of these contributions will be made explicit throughout the manuscript.
The organization of this paper is as follows: Section 2 introduces the error correction model

(ECM) representation that is widely used in cointegration analysis and formulates the Bayesian
inference problem. Then in Section 3 we present MCMC simulation techniques. In Section 4,
we discuss the issue of cointegration space point estimation and in Section 5 we present various
simulation studies. In Section 6 we conclude with a brief discussion.

1.2. Notation and Background Ancillary Material

This preliminary section serves the purpose of both introducing notations that we will adopt
throughout the manuscript and also providing for a general statistical and econometric audience
with a brief set of basic principles and background for key quantities upon which the results of this
paper are based. Though mildly technical, it is useful as we focus on a particular sub-set of results
that pertain directly to the relevant background in forming our model developments. We believe it
will be useful to present this basic background as in the statistics literature there is still a need to
link some of the concepts starting to be adopted to these general well known results that arise from
topology, algebraic topology and measure theory for practitioners. With this objective in mind, we
only really present a core set of key results required in this regard.

We denote a Gaussian random (n × T ) matrix by Y ∼ Nn,T (µ,Σ,Ψ) with row dependence in
(n×n) covariance matrix Σ and column dependence in (T×T ) matrix Ψ which shall be understood as
the covariance between the respective rows or columns of Y . N(µ,Σ) will be a multivariate normal
with mean vector µ ∈ Rn×1 and covariance matrix Σ ∈ Rn×n; Ir is an identity matrix of dimension
r × r.

We say that a time series yt is integrated of order 1 and denote it as I(1) if ∆yt is weakly
stationary process, i.e. integrated of order 0, I(0). Here we assume the weak notion of stationarity,
i.e E(∆yt) = g, Cov(∆yt,∆yt−h) = m(h), where ∆yt = yt − yt−1 and yt is an I(1) time series. For
a time series sequence y1, y2, ..., yT , we will also use the concise notation y1:T .
V ec(A) denotes the matrix vectorization operator which transforms a matrix A into a column

vector in which columns of A are successively stacked. Furthermore, we denote the Kronecker
product or tensor product between two matrices by ⊗ and Kronecker sum as ⊕. The space spanned
by the columns of any n× r matrix A is denoted as col(A); if A is of full column rank r < n, then
A⊥ denotes n× (n− r) matrix of full column rank satisfying AT⊥A = 0. For any square matrix, A,
||A||F is a Frobenius norm, ||A||2 = tr{ATA}, and ρ(A) its spectral radius (that is, the maximal
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absolute value of the eigenvalues of A). The cardinality of a set B is denoted by |B| and ∇[·]
denotes a matrix/vector of partial derivatives of an appropriately defined function.

The next two sections provide core background mathematical details assumed throughout the
paper, as such the following two more technical sections in the manuscript may be skipped by
practioners as they are not required for applications of our method.

We include these two sections in order to make sure all concepts are clearly and accurately
defined and presented from a mathematical perspective. It also serves as a more technical reference
to some concepts that are applied in later sections of the manuscript but are often not explained
or detailed carefully in other MCMC literature on this topic.

1.2.1. Set-up and Notation for Manifolds, Metrics and Geodesics.
In general, in this manuscript we will refer to M as a differentiable manifold of dimension n.

We may then define a Riemannian metric G which for every point on the manifold q ∈ M defines
the scalar product of tangent vectors in the tangent space, denoted by TqM, smoothly depending
on the point q. This means that in every co-ordinate system (x1, . . . , xn) a metric G = gikdx

idxj

is defined by a matrix valued smooth function gik(x) for i, k ∈ {1, . . . , n} such that for any two
vectors A,B the i-th component is given by,

[A]i = Ai(x)
∂

∂xi
, [B]i = Bi(x)

∂

∂xi
, i ∈ {1, . . . , n} , (2)

which are tangent to the manifold M at the point q with co-ordinates x = (x1, . . . , xn) i.e. for
A,B ∈ TqM the scalar product is equal to

〈A,B〉G|q = G(A,B)|q =
(
A1 . . . An

) g11(x) . . . g1n(x)
. . . . . . . . .

gn1(x) . . . gnn(x)




B1

·
·
Bn

 (3)

where the metric will satisfy that
(1) G(A,B) = G(B,A) a symmetricity condition;
(2) G(A,A) > 0 if A 6= 0 a positivity condition; and
(3) G(A,B)|q=x i.e. gik(x) are smooth functions.

Hence, we can always consider a Riemannian metric onM as a family of (positive definite) inner
products generically denoted by

Gq : TqM× TqM−→ R, q ∈M (4)

such that, for all differentiable vector fields X,Y onM one has,

q 7→ Gq(X(q), Y (q)), (5)

which will define a smooth function betweenM and R. Then we can be sure that when endowed
with this metric G, we may consider the differentiable manifold (M, G) as a Riemannian manifold.

Furthermore, the ideas we present in this manuscript will in general be restricted to a sub-space
topology in Rn×d which will correspond to a choice of M given by the compact Stiefel manifold
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that we shall denote more specifically in this case by the notation

Vn,r := {V ∈ Rn×r : V TV = Ir} n ≥ r,

and when n = r one obtains the orthogonal group.
We will make more explicit reference to the form of G in the case of a Stiefel manifold (for

cointegration model settings) in latter sections. We note that it is well known that the Stiefel
manifold will become a Riemannian manifold by introducing an inner product in its tangent spaces.
In this regard, we have two natural choices that can be considered for the inner products for tangent
spaces of Stiefel manifolds: the Euclidean inner product and the canonical inner product. The choice
adopted can affect the computational efficiency of the resulting GMC sampler we design and so we
explicitly explain this detail in a latter section. Next we briefly provide a remark on defining curves.

Remark 1. For practitioners the aforementioned material, though important for formal setup of
our problem may appear a little abstracted. To aid in gaining some basic intuition for this in
order to later set up of the Haussdorf measure structure, we first note the following basic properties
for measuring distances on a curve embedded on a Riemannian manifold. To provide such basic
intuition for aspects of these quantities defined above it will suffice to introduce a simple illustrative
example to calculate relevant quantities explicitly. Consider a curve γ : xi = xi(t) for i ∈ {1, . . . , n}
with a ≤ t ≤ b on a Riemannian manifold (M, G). This may be a path one wish to follow when
proposing a state dynamic in a MCMC sampler for instance. Now, at every point of the curve the
velocity vetor (tangent vector) is given by v(t) =

(
dx1

dt , . . . ,
dxn

dt

)
. Then the length of the velocity

vector V ∈ TxM at location x on the manifoldM is given by

√
〈v, v〉G|x =

√
gik

dxi(t)

dt

dxk(t)

dt

∣∣∣∣
x

(6)

Then the length of a curve is defined by the integral of the length of velocity vector given by

Lγ =

∫ b

a

√
〈v, v〉G|x(t)

dt. (7)

Intuitively, these concepts can then be extended to define the unit of space measure change from
Lebesgue measure to Hausdorff measure presented later in (12) when working with particular Rie-
mannian manifolds, such as the case we will develop for Stiefel manifolds.

Now we can consider the formal definition of a geodesic curve on a Riemannian manifold. A
geodesic is a curve γ : [t1, t2] 7→ M which is intuitively considered as a trajectory of motion for a
point particle without external force, travelling with constant speed. Locally, the geodesic gives the
shortest path that will connect two points and it is therefore naturally related to the Riemannian
metric and generally can be described by the Euler-Lagrange equations as the solution to the
variational problem given by δ 1

2Lγ = 0 where Lγ is given by (7) such that a = t1 and b = t2 and
the solution geodesic curve γ satisfies appropriate initial conditions, see details in [51].

Finally, we complete this section with some fundamentals that allow us to define accurately
a distribution on general metric spaces that also applies in our Stiefel manifold setting. This is
important, as in later sections of the paper we develop concepts of Markov chain Monte Carlo for
target distributions with support on a manifold, with particular application to Stiefel topological
structures that arise from the class of cointegration models we study.
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1.2.2. Distributions on Manifolds: the Hausdorff Measure on a Metric Space and its Representative
Form for Riemannian Manifolds.

Consider any metric space denoted generically in this stand alone ancillary sub-section by (X, G).
Then for any subset of this space S ⊂ X one may define the diameter according to the metric G as
follows:

diam S := sup{G(x, y)|x, y ∈ S}, diam ∅ := 0. (8)
If we then consider any subset S ⊂ X and real constants δ > 0 and d ≥ 0, we may construct all

countable covers of S by sets satisfying Ui ⊂ X and diamUi < δ that can then be used to define the
metric outer measure as the infimum over all countable covers given by

Hd
δ (S) = inf

{ ∞∑
i=1

(diam Ui)
d :

∞⋃
i=1

Ui ⊇ S, diam Ui < δ
}
. (9)

One can then define the limiting metric outer measure according to

Hd(S) := sup
δ>0

Hd
δ (S) = lim

δ→0
Hd
δ (S). (10)

This particular definition of the Hausdorff measures is just a special case of a more general construc-
tion due to Caratheodory. In this context, if we consider measurable sets in a Caratheodory sense,
such that they satisfy Caratheodory’s criterion for the Lebesgue outer measure on Rn denoted by
λ, see further details in [13]. That is, we consider sets E ⊆ Rn satisfying that for Lebesgue outer
measure, the sets E will be Lebesgue measurable if and only if

λ(A) = λ(A ∩ E) + λ(A ∩ Ec), (11)

for every A ⊆ Rn, where A is not required to be a measurable set itself. Then it will make sense to
consider the restriction of this metric outer measure to the σ-field of Caratheodory-measurable sets
and the result will be a well defined measure which is generically referred to as the d-dimensional
Hausdorff measure of S. Consequently, as a result, the properties of the metric outer measure in
this context will indeed ensure that all Borel subsets of X are Hd measurable. It is important
to realise that in this set-up the definition of covering sets is somewhat arbitrary. With this in
mind one could of course describe different general forms of Haussdorf measures by considering
different restrictions on the class of admissible coverings, see details in [47] and [58]. For instance
one can use coverings by balls in such case the resulting outer measure is often referred to as the
spherical Hausdorff measure or by cylinders and one obtains the cylindrical Hausdorff measure. In
this manuscript we will consider the case preferred in [3] corresponding to open sets of X.

Although brief, this basic background suffices for our applications in this manuscript and we may
now consider the crux of the formulation relating to developing a probability measure on a manifold
with a well defined metric. In particular we may now refer to a family of probability measures that
can be defined on the Riemannian manifold via what is known as the Haussdorff outer measure
(henceforth measure) see [26]. For the remainder of the manuscript, unless otherwise specified all
densities are w.r.t the Lebesgue measure L(·) on the appropriate space and H (·) denotes Hausdorff
measure on an appropriate manifold, as detailed above. Now, if we consider a Riemannian manifold,
the Hausdorff measure is related to the Lebesque measure according to the expression:

H(dM) =
√
G(M)L(dM), (12)
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which is a Lebesque measure scaled by the volume element
√
G(M), where G is a Riemannian

metric on the manifold.

2. Bayesian Inference for Cointegrated Time Series

A range of different parametrizations and model constructions have previously been proposed in
the literature on cointegration time series modelling, these include: the Triangular form (see [56]);
the Common Trends representations (see [59]); and the class of Vector Error Correction Models
(VECM) models.

In this manuscript we will focus on the class of VECM model structures. Throughout all this
section, we assume that the cointegration rank r is fixed and known. In fact, it is a crucial pa-
rameter and needs to be estimated. A brief review on the rank estimation techniques is presented
subsequently in Section 4.3.

2.1. Vector Error Correction Models for Cointegration

In this section we present one of the most widely utilised characterization of multivariate time
series models for cointegration settings. This is based on cointegration time series models that are
based on Vector Autoregressive (VAR) structures. Such models have been widely studied in the
Econometrics literature, see [10] and [65]. A popular representation is the Error Correction Model
(ECM), see [20], [63] and the overview of [39]. Due to the substantial popularity of this particular
form of cointegration model specification, the remainder of manuscript will focus on this framework
in a Bayesian model estimation context. We will first present the structural form of the ECM form
of cointegration.

An ECM is written based on a VAR process of order p, as follows:

∆yt = Πyt−1 +

p−1∑
i=1

Γi∆yt−i + φDt + εt

where yt ∈ Rn denote observed returns, Π ∈ Rn×n is the long-run multiplier matrix, Γi ∈ Rn×n
the i-th lag matrix and Dt ∈ Rn is an exogenous covariate for the observation yt. The appeal of
the ECM formulation is that it combines flexibility in dynamic specification with desirable long-run
properties; see [7] for a discussion.

The cointegration properties of the ECM depend on the rank r of the long-run multiplier matrix
Π. If r = 0, then the ECM does not exhibit any cointegration relationship and it can be estimated
as a stationary process in first differences. If r = n, that is, if the matrix Π is of full rank, then
the V AR model itself is stationary and can therefore be estimated via standard stationary process
techniques in multivariate settings. If, however, the rank r is intermediate, 0 < r < n, then the
ECM process exhibits cointegration.

In the context of cointegration, we can write the matrix Π as the product Π = αβT where both
α,β ∈ Rn×r are full rank matrices. The r columns of the matrix β are the cointegrating vectors of
the process. In addition, βT yt reflects common trends while α contains their loading factors. For
simplicity, we will consider a simplified model, where yt is marginally integrated of order 1, I(1),
with r linear cointegration relationships and r is assumed to be known. The observation equation
is given by:

∆yt = αβT yt−1 + εt (13)
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where t = 1, ..., T and εt form an i.i.d. noise sequence. The most commonly used case for the noise
distribution is εt ∼ N(0, R), however in this paper we will also consider multivariate Student-t
distributed noise examples where εt ∼ tω(0, R). In what follows more types of noises can be treated
similarly, as long as the corresponding densities can be evaluated point-wise up to a proportionality
constant and the log densities are differentiable.

Remark 2. It is important to note that the decomposition of the long-run multiplier matrix Π into
αβT (and hence the cointegration relations) are not unique. In fact, for every non-singular matrix
Q ∈ Rr×r, we can define α? = αQT and β? = βQ−1 and get Π = α?β?T .

If cointegration exists, the ECM representation will generate better forecasts than the corre-
sponding representation in first-differenced form, particularly over medium and long-run horizons.
Indeed, under the cointegration property, zt in (1) will maintain a finite forecast error variance,
whereas other linear combinations of the forecasts of the individual series in yt could have increasing
variance, see [11] for examples.

In the remainder of the paper, we focus on the ECM characterization in the simple form of (13).
This model will be sufficient to demonstrate estimation properties related to the cointegration rank
and basis. For simplicity we do not include autoregressive lags, however we note that analogously
to [71], they can be incorporated in the simulation methodology.

2.1.1. Matrix and Vectorized Representations
Different matrix or vector representations for the time series model in (13) will be used through-

out. These expressions will prove particularly useful (later in Section 3) for performing likelihood
evaluations, and manipulating posterior densities and their gradients. One possibility is to write
(13) compactly as:

Y = αβTZ + E, (14)
with Y = [∆y1,∆y2, ...,∆yT ], Z = [y0, y1, ..., yT−1], E = [ε1, ..., εT ]. In addition, one can also use
vectorization operations and treat Y and V ec(Y ) as equivalent random variables and choose the
form that is most convenient for implementation. (14) can be expressed as:

V ec(Y ) = (ZTβ ⊗ I)V ec(α) + Ẽ

= (ZT ⊗ α)V ec(βT ) + Ẽ.

For the Gaussian case, Y ∼ Nn,T (µ,Σ,Ψ) implies V ec(Y ) ∼ N(V ec(µ),Σ ⊗ Ψ) ([21, Theorem
2.2.1]), so then Ẽ ∼ N(0, IT ⊗R). Note that this does not hold for the Student-t case as diagonal
covariance structure (i.e. no correlation) does not imply cross-sectional independence. Henceforth,
we need to resort to the computation of likelihood as a product of independent terms. We will
return to this point in Section 2.4.2.

2.1.2. Cointegration Spread Series
We may now define the so called “Spread Series” as zt = βT yt. The dynamics of this process can

be trivially derived from the standard ECM representation:

zt = (I + βTα)zt−1 + βT εt. (15)

Therefore, the spread process under the ECM representation (13) is a r−dimensional V AR(1)
process. Note that the necessary spectral radius condition for the stability of the ECM can be
written as |ρ(I + βTα)| < 1.
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2.2. Identification Considerations

In the Bayesian modelling context of cointegration models there have been a number of papers
developing frameworks to deal with the lack of identification in the likelihood and studying its
influence in the posterior with different classes of priors on α and β. We refer the reader to [39] for
a thorough review.

For a fixed record of observations, it is clear that we can find a pair of parameters (α, β) 6= (α′, β′),
such that p(y1, . . . , yt|α, β) = p(y1, . . . , yt|α′, β′). This is often referred to as non-identifiability in
the literature of point estimation (see [44, pages 24, 57]). This is a general issue that appears often
in point estimation or Maximum Likelihood methods and is not unique to cointegration models.
Since cointegrating vectors are not unique (see Remark 2), identifying restrictions must be imposed
to allow their estimation. This can be achieved either by imposing normalizations on particular
coefficients or by using an eigenvalue-eigenvector method of identification first developed by [1] for
the reduced rank regression model and then used by [33, 34] for cointegrating ECM.

One standard approach to globally overcome the identification issue illustrated in Remark 2 is
to impose constraints in the form of linear normalizations as mentioned earlier: for instance via a
non-unique identification constraint of r2 restrictions as follows β = [Ir, β

∗]T where β∗ ∈ Rr×(n−r).
This method has been successfully applied in works such as [66], or more recently [52] and [54].

The implementation of linear restrictions is based on the prior knowledge of which r rows of β will
be linearly independent. More generally, one can partition β = (βT1 , β

T
2 )T , where β1 ∈ Rr×r and

impose the normalization by choosing a matrix Q such that Qβ is invertible; then use β(Qβ)−1

instead of β.
A challenge with this approach is that inappropriately specified Q may lead to Qβ being sin-

gular ([39, Section 3]). Furthermore, it might also restrict the number of important models to
be considered in the cointegration analysis. A second issue that may occur with such approaches
is that at the regime where α is close to 0, β does not enter the model ([38]). This results in a
local non-identification and consequently an improper posterior under a diffuse prior for β in the
Bayesian setting.

Choosing priors for cointegration is widely studied topic; see [39, Section 4] for a review. In this
paper we we will follow a popular approach to dealing with identification issues by imposing priors
directly on the cointegration space, which assumes a distribution on a Grassman manifold. This is
discussed in [57] and [62], both of which are related to earlier work of [45].

2.3. Background on Bayesian Approaches on Manifolds in Cointegration Con-
texts

In [60], a Bayesian inference procedure is presented which allows for unconditional inference
on the structural features of VAR process. The novelty of this paper was the development of
a probability measure on a Grassman manifold to elicit uniform priors on subspaces defined by
particular structural features of VARs. [63] developed similar uninformative and informative priors
for the cointegrating space, which allows one to develop sampling schemes such as MCMC or
approximations schemes such as Laplace approximations to perform numerical integration with
respect to such cointegration Bayesian models when undertaking estimation.

Furthermore, these authors provide careful elicitation of the prior distribution on the model
coefficients from a prior on the cointegrating space. They also provide an outline of the identification
restrictions which will then naturally arise or be implied by their specification of model structure.
In [71], a Bayesian reference prior is presented with the property of distributing its probability
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mass uniformly over all cointegration spaces for a given rank and which is invariant to the choice
of normalizing variables for the cointegration vectors. Several methods for computing the posterior
distribution of the model parameters conditional on the cointegration rank, r, are proposed, whereby
all inferences are determined from approximate samples of the posterior.

Following these works, there has been a shift of paradigm from direct prior specifications on
the parameter space to the priors on the space spanned by the cointegrating vectors ([42, 43, 71])
or [61] for some recent extensions. This approach has benefited from efficient posterior simulation
methods, such as the Gibbs sampler [41], which will be presented in more detail in Section 3.1.

Given the recent interest in this re-specification of the class of Bayesian cointegration models,
we will focus the remainder of the paper on these new classes of model specification. That is,
we will follow this approach of modelling priors on the cointegrating space under the ECM. The
cointegration space (or equivalently the span of β, col(β)) is a r-dimensional hyperplane in a n-
dimensional space. The identification restriction βTβ = Ir can be used, where r is the cointegration
rank. This restricts β to belong to the following Stiefel manifold:

Vn,r := {V ∈ Rn×r : V TV = Ir},

which is compact, so the uniform distribution is a proper prior.

Remark 3. In the linear normalization case with β = [Ir, β
∗], if β∗ follows matrix variate t−distribution,

then col(β) has uniform distribution on the Grassman manifold. A drawback of this prior choice
is that the second and higher moments of the posterior distribution do not exist for r > 1; see [39,
Section 5.1] for details.

2.4. Prior Model Consideration

In this manuscript we are particular interested in the cointegration parameters (α, β), but we
note that of-course the ECM contains additional parameters, θ, such as the parameters related to εt.
We will use a Gibbs sampling approach alternating simulation of p(α, β|y1:T , θ) and p(θ|y1:T , α, β).

When direct simulation is possible this will lead to a standard Gibbs sampler, but when this is not
possible one could use instead a small number of iterations from MCMC sampler kernels invariant
to p(α, β|y1:T , θ) and p(θ|y1:T , α, β) respectively. We will present below independent priors between
(α, β) and θ that will be used later for comparisons between different MCMC algorithms.

2.4.1. Priors for α, β
We will choose the prior distribution for β ∈ Vn,r to be the matrix angular central Gaussian

distribution defined over the Stiefel manifold with respect to the Hausdorff measure:

dp(β) ∝ |Pτ |−r/2|βT (Pτ )−1β|−n/2dH(β) (16)

where Pτ = HHT + τH⊥H
T
⊥, τ ∈ [0, 1], with H ∈ Vn,r acts as a hyper parameter on the cointegration

space. In this class of priors, Pτ determines the central location of the distribution on col(β), which
in this case is col(H) and τ the amount of the dispersion around the central location. If τ = 1,
then Pτ = In and (16) defines uniform prior on the manifold. In turn, the value of hyperparameter
τ = 0, expresses prior assigning the cointegration space to be col(H). Note that one can introduce
a further hierarchical structure using hyperparameters τ and hyper-priors with support restricted
to [0, 1].
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For α we will use the shrinkage prior used in [71]:

α|β ∼ Nn×r(0, (νβTP1/τβ)−1, G), (17)

so that V ec(α)|β ∼ N(0,Σα) where Σα = (νβTP1/τβ)−1 ⊗ G, where G is a symmetric positive
definite matrix that is often chosen to be the noise covariance matrix R. The shrinkage parameter
ν can be fixed or random by defining hierarchical priors.

Following, the Bayes rule, the joint posterior density of α, β is given by

dp(α, β|y1:T , θ) = π(α, β)L(dα)H(dβ). (18)

with the density being
π(α, β) ∝ p(y1:T |α, β, θ)p(β)p(α|β).

Sampling from p(α, β|y1:T , θ) is not possible directly, so in Section 3 we present MCMC methods
appropriate for this task.

2.4.2. Priors and Conditional Posterior Distributions for the Parameters of εt
As presented in the ECM framework, the time series is driven by a i.i.d. white-noise sequence

of random vectors. In this paper we consider a two classes of driving error stochastic noises:
multivariate Gaussian and multivariate Student-t.

In the Gaussian case, θ = R and standard conjugacy results motivate using an Inverse Wishart
distribution for the prior of the covariance matrix R, see details in [52] and [54]. For simplicity in
this paper we will use R ∼ W−1(n+ 2, I) for the prior. As a result for the full conditional we have

p(R|y1:T , α, β) =W−1((n+ 2) + T,
(
Y − αβTZ

) (
Y − αβTZ

)T
+ In).

In the Student-t case θ = {R,ω}, since we will express the driving error random vector according
to a well known scale mixture form (see examples in [73] and [2]), which lends itself naturally
to a sampling scheme based on a standard data augmentation approach. Let εt = λtεt with
εt ∼ N(0, R) and λt ∼ IG(ω2 ,

ω
2 ) being i.i.d. In this case, one can show that integrating out λ will

give εt ∼ tω(0, R).
We can consider then instead the parameterization θ = {R,ω, λ1:T } and set priors for R,ω and

then derive a full conditionals for each R,ω, λ1:T that should be used in sequence when sampling.
Inference for ω whilst possible is challenging and needs careful choice for priors, see [14, 15, 18] for
details. Typically, improper priors are used for ω, but for simplicity we will consider here the case
where it is fixed and known.

The methodology presented below can be extended using the priors in [14, 15, 18], but due to
the full conditional being intractable it needs to be replaced with an appropriate MCMC procedure.
For R we will use the same prior as in the Gaussian case, so for the full conditionals we get

p(R|y1:T , α, β, λ1:T , ω) =W−1((n+ 2) + T,
(
Y − αβTZ

)
(diag (λ1:T )⊗ In)

−1 (
Y − αβTZ

)T
+ In),

and

p(λt|y1:T , α, β,R, ω) = IG(
ω + n

2
,
ω +

(
yt −

(
I + αβT

)
yt−1

)
R−1

(
yt −

(
I + αβT

)
yt−1

)
2

).
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3. MCMC Approaches to Bayesian Cointegration

In this section we restrict our attention to parameters α, β and present different MCMC ap-
proaches for simulating from p(α, β|y1:T , θ) or other equivalent conditional posterior distributions
under different parameterizations. Also we will often drop for simplicity the conditioning on θ in
the notation.

Below we present the Gibbs sampler proposed in [41], which can be considered the “state of the
art” method for this problem in the Gaussian case. Then we extend the Geodesic Monte Carlo
(GMC) sampler of [3] to the ECM Bayesian cointegration model framework. This allows us to
significantly generalise the class of models for which we may develop efficient MCMC samplers for
that extend well beyond the sampler restrictions to the Gaussian case of [41], whilst maintaining
the sampler performance of this state of the art method.

We emphasize that these are not the only options available. The problem of sampling from ma-
trices with rank restrictions, has long attracted interest due to its relevance in principal components
analysis and other settings, see discussion in [67]. Recent developments that are relevant to sam-
pling from matrices belonging to a Stiefel manifold are [6, 29], where appropriate transformations
are combined with column-wise updates in a Gibbs framework. These methods can perform well
(see also [3, Section 5]), but in the interest of brevity we will not present them here nor include
them in our numerical examples.

Other reasons behind this omission are that the efficiency of the Gibbs sampler in [41] makes the
use of columnwise updates in β less desirable in practice and GMC is more generic so has potential
to be applied in wider variety of settings.

3.1. Gibbs Sampling for Bayesian ECM Posterior Distributions

From a Gibbs sampling perspective the conjugacy of Gaussian distributions is attractive, but
it is hard to derive conditionals for β and α (the semi-orthogonality restriction implies that the
conditional posterior of β is non-standard).

In [41] the authors exploit instead the polar decomposition ([5, p. 19]), α = Aκ 1
2 , with κ = αTα

and A = ακ−
1
2 being the rotational component (A ∈ Vn,r). Similarly β can be viewed as the

rotational part of a matrix B = βκ
1
2 , so that κ = αTα = BTB and β = B(BTB)−1/2. As a result

we end up with various possible parameterizations for Π

Π = αβT = ABT = ακ−
1
2BT , (19)

where it is useful to notice that B is unrestricted. The following proposition establishes equivalent
priors for (A,B).

Lemma 1. Given the hierarchical prior on (α, β) as in (16)-(17). Then the prior for A and B is
given by:

dp(A) ∝ |G|−r/2|ATG−1A|−n/2dH(A), (20)
V ec(B)|A ∼ N(0,ΣB) (21)

where ΣB = (ATG−1A)−1 ⊗ νPτ .

The proof can be found in technical appendix of [41].
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In Algorithm 1 we present the Gibbs sampler developed in [41] for the Gaussian case when
εt ∼ N(0, R). To simulate a MCMC transition leaving p(α, κ,B|y1:T , R) invariant, they alternate
sampling between distributions pα and pB defined below in (22)-(23) and update the value for κ
deterministically.

In [41] the authors justify the method as a partially collapsed Gibbs sampler, which could explain
the resulting efficiency. Given the Lemma 1 and the choice of model Gaussian conjugate priors (16)-
(17),(20)-(21), the conditional posteriors of V ec(α) and V ec(BT ) are distributed as vector variate
normals, pα, pβ respectively:

pα(·|β, y1:T ) ∼ N(µαpost,Σ
α
post), (22)

pB(·|Ã,D) ∼ N(µBpost,Σ
B
post). (23)

The respective means and variances of multivariate normals are:

Σαpost = (MT
α Ṽ
−1Mα + (Σα)−1)−1, µαpost=Σαpost(M

T
α Ṽ
−1ỹ) (24)

and

ΣBpost = (MT
B Ṽ
−1MB + (ΣB)−1)−1, µBpost = ΣBpost(M

T
B Ṽ
−1ỹ) (25)

where Ṽ = ⊕Tt=1R, ỹ = V ec(Y ), Mα = (ZTβ ⊗ I), MB = (ZT ⊗ α). All the technical derivations
and based on the simple multivariate Gaussian conjugate properties and can be found in [41]. The
algorithm describing this sampler is provided below.

Algorithm 1 One iteration of the Gibbs sampler of [41] for cointegration ECM in (13).
Starting from (α, β):

(1) Sample V ec(α̃) from pα(·|β, y1:T ) and transform to Ã = α̃(α̃T α̃)−1/2.

(2) Sample V ec(B̃T ) from pB(·|Ã, y1:T ) and transform β∗ = B̃(B̃T B̃)−1/2 and then α∗ =

Ã(B̃T B̃)1/2.
(3) Return (α∗, β∗).

Remark 4. Whilst the Gibbs sampler is intended for εt ∼ N(0, R), obtaining a Gibbs sampler
for the Student-t case is trivial. One can use Algorithm 1 and then alternate between the full
conditionals in Section 2.4.2.

3.2. Geodesic and Hamiltonian Monte Carlo

In this section we will begin by explaining how to utilise the formulation of Hamiltonian equations
of motion to develop a proposal kernel for a Markov chain sampler that will produce a sampler
known in the literature as Hamiltonian Monte Carlo (HMC). We will first explain the development
of this sampler in the familiar case of Euclidean space, then we will consider the generalization of
this framework to a manifold in a Riemannian metric space, for which we may define and evaluate
geodesics to define movements on the manifold and quantify the distance over such geodesics via a
well defined Riemannian metric that will allows us to work with distributions on such spaces via
the specification of the Hausdorff measure.
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3.2.1. Basics of Hamiltonian Monte Carlo (HMC) on Euclidean Space
Hamiltonian dynamics were originally introduced in molecular simulation and later used within

a MCMC framework in [8] leading to the so-called Hybrid or Hamiltonian Monte Carlo, which was
popularized in Statistics in [48] and [49]. Here we present a very short summary of the method.
Following the standard HMC convention, let q be the variable we wish to infer (in our case it is
(α, β)). HMC is a a MCMC method to sample from a posterior distribution with density π(q)
by introducing an auxiliary variable, p called momentum variable, and then targeting the joint
distribution:

π(q, p) ∝ π(q) exp

(
−1

2
pTP(q)−1p

)
∝ exp (−H(q, p)) ,

(26)

where P(q) is a positive definite matrix. The log of this joint posterior is interpreted as a the
Hamiltonian function, that is a sum of a potential and kinetic energy function given by − log π(q)

and
1

2
pTP(q)−1p respectively. The advantage of this interpretation is that one can design proposals

within a MCMC algorithm using artificial Hamiltonian dynamics with respect to a fictitious time
τ :

q̇ = ∇pH, ṗ = −∇qH. (27)

When this system of motion equations can be solved exactly (27) the resulting solution will leave H
invariant. Furthermore, the solution will possess interesting properties such as volume preservation
and time reversibility. These two particular properties make this dynamic framework particularly
relevant for MCMC sampling methods as these properties will guarantee the resulting constructed
Markov chain will satisfy detailed balance when used within MCMC, see [49] for details.

The problem is that typically one cannot solve the system of equations for the Hamiltonian
dynamics in (27) exactly. Consequently, one typically resorts to the use a numerical integration
method to find a solution. Consquently, H will no longer be invariant. However, in the context of
MCMC sampler proposal design, this can be overcome through the use of a Metropolis accept-reject
correction step.

Let (q′, p′) be the numerical solution of equation (27) after some chosen time and starting from
(q, p), then this numerical solution will be accepted as the new proposed movement for the Markov
chain state via a Metropolis-Hastings Accept-Reject probability with acceptance probability

min(1, exp(−H(q′, p′) +H(q, p)), (28)

otherwise the proposed numerical solution movement according to the Hamiltonian motion is re-
jected and the Markov chain remains at state (q, p).

It is important to note that in order for this MCMC scheme to preserve detailed balance the
numerical integration method needs to be time reversible and volume preserving (or symplectic).
Different choices of integration method may be considered to achieve this objective such as: the
Newmark-beta method [50], Stormers method [22], Verlet’s method [69], the Velocity Verlet method
or the closely related leapfrog integration framework, see discussions in surveys such as [64].

The most popular of these in MCMC applications involves the class of leapfrog integration
methods. A leapfrog integration method is a numerical approach to integrating differential equations
of the form ẍ = d2x

dt2 = f(x) such as the system of Hamiltonian dynamics described in (27).
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The approach of leapfrog integration takes its name from the fact that the method interleaves
or alternates between two solution steps: an updating of positions x(t) and then an updating of
velocities ẋ(t) at interleaved time points. These points of update are set-up in such a manner that
the solution systematically “leapfrogs” over each previous solution in pursuit of the next solution
point.

Note, in particular, when P is a constant matrix (i.e. not a function of q) it is common in MCMC
literature to utilise the leapfrog method and then optimize performance by tuning the choice of P,
the number of steps and step size of the leapfrog integration. If however, we consider the more
general context in which P is no-longer a constant and in particular we consider P(q) to vary with
q we may construct a more general framework for MCMC sampler design in this class of methods,
which becomes in some sense locally adaptive. That is, taking into account local behaviour of π
brings more flexibility in terms of tuning and is advantageous from a performance point of view;
see [19] for a review.

In this case numerical integration requires using splitting techniques ([23]) that treat the potential

and kinetic parts of H as separate Hamiltonians. Let H1 = − log π(q) and H2 =
1

2
pTP(q)−1p. The

Hamiltonian equations for H1 are
q̇ = 0, ṗ = −∇qH1 (29)

and can be solved exactly:

qτ = q0, pt = p0 + τ ∇q log π(q)|q=q(0) .

Then if there is a symplectic integrator or numerical solver for

q̇ = ∇pH2, ṗ = −∇qH2 (30)

then one could use the two integrators together in a time-symmetric manner to generate MCMC
proposals. Starting from (qτ , pτ ) a single iteration of the composed integrator could be performed
as follows:

• Compute qτ+ ε
2

= qτ , pτ+ ε
2

= pτ + ε
2 ∇q log π(q)|q=qτ ,

• Solve (30) for a time interval equal to ε starting with initial condition being (qτ+ ε
2
, pτ+ ε

2
)

to get
(
qτ+ 3

2 ε
, pτ+ 3

2 ε

)
,

• Compute qτ+2ε = qτ+ 3
2 ε
, pτ+2ε = pτ+ 3

2 ε
+ ε

2 ∇q log π(q)|q=q
τ+3

2
ε
.

This could be iterated L times and then one would need to apply a Metropolis accept-reject step
to (qτ+2Lε, pτ+2Lε) compared to (qτ , pτ ) as before with a similar acceptance ratio

min(1, exp(−H(qτ+2Lε, pτ+2Lε, qτ+2Lε, pτ+2Lε) +H(qτ , pτ )).

Remark 5. The presentation so far does not make any reference to q being a point on a manifold
except when defining π w.r.t the Hausdorff measure. [19] provide a detailed review for this case
when P(q)−1 is a Riemannian metric tensor and discuss on how the Hamiltonian equations in (30)
should be solved in detail. In this case, H2 defines a metric and one can use co-geodesic flows
(qτ , pτ ) with q̇ = P(q)−1p that follow a trajectory that leaves H2 constant.

Remark 6. If q = (α,B) the variable of interest is not defined on a manifold, a few iterations of
the above HMC procedure can be applied within Algorithm 1, each time for π being pα(·|β, y1:T )
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and pB(·|A, y1:T ). This can be useful when direct Gibbs Sampling is not possible, e.g. when εt is
not Gaussian.

3.2.2. Geodesic Monte Carlo: Extending HMC to Connected Riemannian Manifolds
In this section we work with the fact that a connected Riemannian manifold carries the structure

of a metric space whose distance function is the arc length of a minimizing geodesic. For brevity we
note that the arc length is defined for a simple illustration in the preliminaries section in Remark 7
and the geodesic path generally in Section 1.2.1. In particular, we will now concentrate on a class
of Monte Carlo sampler, aptly named for the fact that it exploits the aforementioned property of
traversing geodesics, and is known as GMC (see [3]). This is nothing more than a Monte Carlo
sampler in which the path follows a geodesic flow, such as those defined in earlier optimization
contexts in [51] and the references contained therein.

In the context of Monte Carlo methods the GMC framework extends earlier works by authors
such as [51] and [19] and HMC for simulation from a distribution defined on a manifold. The
idea of GMC is to develop a sampler for distributions defined on a manifold, that will traverse the
mass of the distribution via paths through the support of the distribution on the manifold defined
via shortest distance paths known as geodesics. In this way, the Markov chain should traverse
efficiently by following geodesic paths on the surface of the manifold around the target mass of the
distribution on the manifold. The intended purpose of such a construction is to efficiently explore
the support of the target distribution defined on the manifold via a Markov chain constructed to
move along geodesics on the manifold.

More concretely, let M be a manifold q ∈ M and suppose π is the density of interest w.r.t
the to the Hausdorff measure. One can define the Hamiltonian as before H(q, p) = − log π(q) +
1
2p
TP(q)−1p, and then one needs to choose P and design Hamiltonian flows across M through its

tangent space, as defined in the preliminary notations in Section 1.2. To achieve this [3] propose
working with special cases that can be formed by embeddings ofM in a Euclidean space.

In this case, they assume that one can obtain a bijective map ξ :M→ Rn that maps every open
set of M to an open set in Rn and let x = ξ(q). Note these covering sets need not be open sets,
but it suffices to restrict to this case.

The embedding proves very useful in characterizing the tangent space at a point q, namely Tq
and choosing a convenient P, see the example and construct of such a tangent as explained with an
illustration in Section 1.2.

Now, let Mq′ = ∇qξ|q=q′ , i.e. M [ij] =
∂[ξ]i
∂qj

, then Tq′ can be viewed as the column span of Mq′ .

In addition, Pq = Mq(M
T
q Mq)

−1MT
q defines a projection on Tq.

[3] set P(q) = MT
q Mq and then define a re-parameterisation of (q, p) to (x, v) where x = ξ (q)

and v = ẋ = Mq q̇ = Mq(M
T
q Mq)

−1p given q̇ = P(q)−1p. The Hamiltonian (31) can be restated
according to

H(x, v) = H1(x) +H2(v) = − log π(x) +
1

2
vT v, (31)

and one can write Hamiltonian dynamics equations for H1 and H2 as before. Noting that ∇x =
MT
q ∇q, the solution flow in the embedded phase space corresponding to H1 is given by

vτ = v0 + τPq ∇q log π(q)| q=q0 . (32)

As a result the evolution of the velocity term vt can be described only using qt ∈ M. This is an
important observation as we have effectively re-parameterised again the problem and work with
(q, v = Pqp).
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The solution of the Hamiltonian equations corresponding to H2 is given by the geodesic flow on
the manifold leaving H2 constant when starting at q0 with the initial velocity of v0. In some cases,
this can be written explicitly and more details on this be found in [3].

When this geodesic flow is available, GMC uses a proposal (within MCMC) that is constructed
starting from a given q0 by simulating a new value for v0 ∼ N(0,Pq) (due to p ∼ N(0,P(q))) and
then iterating the following steps:

• Compute q ε
2

= q0, vε/2 = v0 + ε
2Pq0 ∇q log π(q)| q=q0 .

• Solve (qτ , vτ ) according to an appropriate geodesic flow for H2 for an interval ε starting
with initial condition being (q ε

2
, v ε

2
) leading to (q 3ε

2
, v 3ε

2
).

• Compute q2ε = q 3
2 ε
, v2ε = v 3

2 ε
+ ε

2Pq 3
2
ε
∇q log π(q)| q=q 3

2
ε

A Metropolis accept-reject step should then follow as usual.

3.2.3. GMC for Stiefel Manifolds
In order to implement GMC we need to be able to compute the following key quantities:
(1) the projection P;
(2) the log densities log π together with its gradients; and
(3) the geodesic flows related to H2.

Recall in our previous specification we assumed the existance of a bijective map ξ :M→ Rn that
maps every open set ofM to an open set in Rn and let x = ξ(q).

Remark 7. A key observation in this section is that as far as P is concerned often one is able
to compute it without requiring knowledge of ξ. Whilst embedding theorems guarantee existence
of ξ for smooth or Riemannian manifolds, it is in general unknown and non-trivial to find such
mappings. Fortunately in many cases, such as Stiefel manifolds, P can be described explicitly as
I −UUT where U is an orthonormal basis of the normal to the tangent space, so knowledge of ξ is
not required.

To understand this remark more concretely, we must first recall our previous remark that the
Stiefel manifold becomes a Riemannian manifold by introducing an inner product in its tangent
spaces. In the context in which we work in this section, it is convenient to work with the choice of
metric constructed from the “cannonical inner product”, rather than the Euclidean inner product
when considering the Riemannian structure of the Stiefel Manifold. Then one may obtain the
results discussed in [3].

Precisely, the result can be developed by explicitly utilising the selection of the canonical inner
product on the tangent space to define the Riemannian embedding of the Stiefel manifold. In this
case, the canonical inner product will “weigh” the coordinates equally, where as explained in [32], the
concept of the canonical inner product is to attempt to find a matrix A of some tangent vector say
Z and weigh it by 1/2 in the inner product, something akin to what is achieved when the Euclidean
inner product is adopted. This is performed in general for a Stiefel manifold by considering first
representing the tangent vector by

Z = XA+X⊥B (33)
where the matrix A = XTZ and one may write XA = XXTZ. Consequently this produces
(I − 1

2XX
T )Z = Z − 1

2XX
TZ = XA+X⊥B − 1

2XA = 1
2XA+X⊥B and one obtains after some

substitutions of the above identities the form given by

tr
(
ZT (I − 1

2
XXT )Z

)
=

1

2
tr
(
ATA

)
+
(
BTB

)
, (34)
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which allows one to then formally define the cannonical inner product according to the expression

〈Z1, Z2〉c = tr
(
ZT1 (I − 1

2
XXT )Z2

)
, (35)

and the resulting canonical metric 〈Z,Z〉c which is sometimes referred to as the Killing metric in the
case of the orthogonal group (when n = r for the Stiefel manifold). Clearly, this metric product will
satisfy the conditions required in the preliminary material in Section 1.2 for properties of metrics
required for the set-up.

Recall our goal is to be able to define flows on the Stiefel manifold. To achieve this we also need
to consider the representation for differentials on this space. For instance, consider X∈ Vn,r for a
Stiefel manifold and consider a function F from Rn×r to R and matrices X,Z ∈ Rn×r. Now, denote
the differential of F by DFX which is the derivative of F in the Z direction at X and is given by

DFX(Z) =
∑
i,j

∂F

∂Xi,j
Zi,j = tr

(
DTZ

)
, (36)

where we denote by matrix D =
[
∂F
∂Xi,j

]
∈ Rn×r. Hence, given a point X on the Stiefel manifold

X∈ Vn,r the resulting differential DFX is a linear functional on the tangent space TX∈ Vn,r. In
this case, when working with the cannonical inner product, one can consider a vector AX and the
resulting action of DFX on the tangent space TX∈ Vn,r is represented by choice A = (DXT−XDT ),
see a proof of this result in [32]. In general one can then refer to the vector AX = (DXT −XDT )X
by the more classical vector calculus type notation given by ∇cF , where this choice of notation
simply provides an analogy to suggest that it is the gradient of F under the canonical metric. Note,
in this construction the matrix A is a skew symmetric n× n matrix.

From this result, we may now return back to the application in our context to construct the GMC
framework for the sampler of our Bayesian cointegration model. Hence, we can now be precise when
we refer to the Stiefel manifold case. If we letX∈ Vn,r be a matrix satisfying the required conditions,
i.e XTX = I. Then the above results tell as the following regarding the projection, for an arbitrary
matrix W ∈ Rn×r, the projection onto Vn,r at X which can be represented by

PX(W ) = W − 1

2
X(XTW −WTX), (37)

see additional discussion in [3].
In addition, given this structure we can then also obtain in this case an explicit formulae for the

geodesic flows on Vn,r which are given by the following expression

[X(τ), vX(τ)] = [X(0), vX(0)] exp

(
τ

[
D −S(0)
I D

])[[
exp(−τD) 0

0 exp(−τD)

]]
, (38)

where D = X(τ)T vX(τ) is constant over the geodesic and S(0) = vX(0)T vX(0); see [9] and [51] for
explicit details. So for a given (differentiable w.r.t X) density π(X) one can implement GMC as
described in Algorithm 2.
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Algorithm 2 One iteration of the GMC of [3] for sampling from a π(X) with X∈ Vn,r.

(1) Sample vX ∼ N(0, In·r) and apply projection at X, vX ←PX(vX)
(2) Compute h← log π(X)− 1

2v
T
XvX .

(3) for τ = 1, ..., T do:
(a) Compute vX ← vX + ε

2∇X log π and apply projection vX ←PX(vX).
(b) Compute (X∗, vX∗) by implementing (38) X∗(0) = X and for a time interval ε.
(c) Compute vX∗ ← vX∗ + εX

2 ∇X∗ log π and apply projection vX∗ ←PX∗(vX∗)

(4) Compute h∗ = log π(X∗) − 1
2v
T
X∗vX∗ and sample u ∼ U(0, 1). If u < exp(h∗ − h), then

return X∗, otherwise return X.

3.3. GMC for Cointegration Parameters

To avoid identifiability issues we have restricted β to lie on a Stiefel manifold and follow βTβ = Ir.
We have already presented how to implement GMC for β but have not looked at the densities and
their gradients. The other variable of interest, α ∈ Rn×r, is unrestricted, which can be interpreted
as an element of Euclidean space or flat manifold. In this case, there is no need to perform any
projections ξ = I and the geodesic flows are just straight lines:

[a(τ), vα(τ)] = [α(0), vα(0)]

[
1 0
τ 1

]
, (39)

see Section 4.4 of [3] for more details on extending GMC for target distributions products of mani-
folds. Given expressions for the densities π(α, β) are available it is possible to proceed with GMC
implementations targeting the cointegration parameters. We will look at two particular cases below.

3.3.1. GMC Targetting Jointly α, β
When one is interested in sampling directly from p(α, β|y1:T , R) in (18), then the variable of

interest (α, β) lies on the Cartesian product of a Euclidean space and a Stiefel manifold, so (α, β) ∈
Rn×r×Vn,r, which is itself an embedded manifold. Geodesics (and tangent vectors) on Rn×r×Vn,r
are simply the Cartesian product of the geodesics (and tangent vectors resp.) on Rn×r and Vn,r
and similarly for the orthogonal projections P. A detailed description of the GMC algorithm for
p(α, β|y1:T , R) is presented in supplementary material found in an earlier version of this paper, [46],
together with derivations for the gradients for Gaussian εt.

3.3.2. Using GMC within a Gibbs Sampler Approach
To pursue greater efficiency than targetting jointly (α, β), we propose using GMC or HMC

samplers within a Gibbs approach and perform an HMC sampler for p(α|β, y1:T ) and GMC for
p(β|α, y1:T ). This is a fairly straightforward extension to what has been presented so far, which in
Section 5 shows very good performance.

One could aim to extend using samplers within a Gibbs approach for different parameterizations
of Π. The motivation comes from trying to extend the efficiency found in [41] for the cases where
conjugate sampling from full conditionals is not possible. The latter can be potentially replaced with
HMC or GMC samplers invariant to them. The key in [41] was the particular parameterization used
and a partial collapsing step for κ. One can explore various parameterizations, but we emphasize
that when a Metropolis sampler replaces a full conditional in a partially collapsed Gibbs sampler,
care must be taken, otherwise the algorithm might not be valid anymore; see [68] for details.
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For example, when plain HMC updates are used in Algorithm 1 instead of direct sampling from
p(α|β, y1:T ) and p(B|A, y1:T ) then the algorithm is not valid and in numerical results not shown
here we confirmed that such an approach does not converge to the right stationary distribution.

We will consider using a singular value decomposition (SVD) for Π ([5, p. 20]). Let Π = USVT ,
then β enters the model indirectly through V. A nice feature of SVD is that the singular values
can be viewed as mean reversion parameters and can be used to influence the rank when choosing
priors. Such priors have been proposed in [37, 38], so when combined with priors on the spaces
of matrices U ,V, then GMC samplers can be particularly useful. In addition, to ensure that this
singular value parameterization is unique ([5, p. 20]), we will restrict U to have all its first row
elements positive (and denote the corresponding space as Ṽn,n). The parameterization from the
SVD should follow: U ∈ Ṽn,n, S = diag(s1, . . . , sr, 0, . . . , 0) with s1 > s2 > . . . > sr > 0, and
V := [β, β⊥] ∈ Vn,n.

A MCMC within Gibbs method for this parameterisation will alternate samplers targetting
p(β|S,V, y1:T ), p(U|S, β, y1:T ) and p(S|U , β,V, y1:T ). The first two conditionals can be sampled
using GMC and for the latter any choice of MCMC sampler on p(s1, . . . , sr|U ,S, β, y1:T ) can
be used. A single iteration of the algorithm is presented in Algorithm 3, which outputs Π̃ =
Ũdiag(s̃1, . . . , s̃r)β̃

T . In step 2 (a) we present a sign-flipping method that ensures that the same
unique SVD parameterization is preserved and U has only positive elements in the first row. For
the particular implementation in Algorithm 3 this step is optional as the conditional U|S, β, y1:T

does not require a unique parameterization: U is unique once S, β are fixed. We include this step as
it can be useful in various extensions, such as a random scan Gibbs sampler. Similarly, the unique
SVD decomposition requires s1 > s2 > . . . > sr > 0, which in Algorithm 3 is again optional, but if
required can be imposed by either the MCMC proposals or by reordering of columns of U ,S,V.

Algorithm 3 One iteration of the GMC within Gibbs sampler for cointegration ECM.

(1) Iterate Algorithm 2 for π(β) ∝ p(β|U ,V, y1:T ) to get β̃
(2) Iterate Algorithm 2 for π(U) ∝ p(U|Ṽ,S, β̃, y1:T ) to get Ũ .

(a) to project from Vn,n to Ṽn,n sign flipping can be used:
For l = 1, . . . , n: if Ũ [1, l] < 0, set Ũ [i, l] ← −Ũ [i, l] and Ṽ[i, l] ← −Ṽ[i, l] for all
i = 1, . . . , r.

(3) Perform a few iterations of a MCMC sampler for p(s1, . . . , sr|Ũ , β̃, Ṽ, y1:T ) to get S̃.

Remark 8. SVD can be employed also only for α instead of Π. Using then α = USVTβT requires
using an extra (redundant) parameter, but this can be useful for comparing with other methods
or parameterizations, when the priors are specified for α, β and one can derive appropriate prior
distributions for U ,S,V. We will perform such comparisons later in Section 5.

Remark 9. Another approach could consider the polar decomposition for α, whereby Π = Aκ1/2βT .
Here κ takes values in the space of positive semidefinite matrices, and A, β ∈ Vn,r. A GMC within
Gibbs approach could alternate a small number of iterations between GMC samplers targetting
p(β|A, κ, y1:T ), p(κ|β,A, y1:T ) and p(A|β, κ, y1:T ). The GMC sampler for p(κ|β,A, y1:T ) can be
designed using a projection P based on eigen-decompositions or optimization (see [28, Section
4.2.3]) and geodesics found in [31] together with a similar GMC approach. In the interest of brevity
we will not pursue this further.
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4. Practical Estimation of Cointegration Space

In this section, we describe some additional details on estimation methods for the basis of cointe-
gration space, such as how to assess similarity of estimated cointegration spaces and rank estimation.
Whilst our main motivation comes from using MCMC in a Bayesian framework, the tools presented
here can be used when comparing point estimates from different methods.

4.1. Measure of Cointegration Similarity

Suppose we have two estimates for the cointegration matrix, β1 and β2. As we will require a
distance for comparison diagnostics, we will use the approach of [43]. Suppose we can decompose
β2 as follows:

β2 = β1γ1 + β1⊥γ2,

where β1⊥ is the orthogonal complement of β1, γ1 ∈ Rr×r and γ2 ∈ R(n−r)×r. These matrices can
be explicitly written as γ1 = βT1 β2 and γ2 = βT1⊥β2. A distance measure between β1 and β2 is

ds(β1, β2) = tr(β2β1⊥β
T
1⊥β2)1/2. (40)

Note that a distance between β1 and β2 is equivalent to measuring a dissimilarity of col(β1) and
col(β2). Also we have, ds(β1, β2) ≤ min (r, (n− r)) , which is useful for interpretation.

4.2. Bayesian Point Estimation

Obtaining point estimates of the cointegration space needs attention when the posterior dis-
tribution is defined on a Stiefel manifold. Following [72], we use the Frobenius norm as the loss
function,

l(β, β∗) = ||ββT − β∗(β∗)T ||F ;

where β and β∗ are semi-orthogonal. To provide a Bayesian point estimate of the posterior distri-
bution for col(β), we use the Posterior Mean Cointegration Space Estimator (PMCS) proposed in
in [72]. The PMCS estimator is defined as

β̂
def
= arg min

β̃∈Vn,r
E[ l(β, β̃)

∣∣∣ y1:T ].

In [72], it was showed that the PMCS estimator can be computed as

β̂ = (v1, ..., vr), (41)

where vi is the eigenvector of E[ββT
∣∣ y1:T ] corresponding to the i-th largest eigenvalue. Given the

Stiefel manifold is a compact space, all finite moments of the elements of β exist in the orthonor-
mal normalization, which implies existence of E[ββT

∣∣ y1:T ]. A closed form analytic expression for
E[ββT

∣∣ y1:T ] is not available, so we resort to MCMC to estimate it. After N iterations of a MCMC
procedure one can use 1

N

∑N
i=1 βiβ

T
i , where βi denotes the i-th sample of MCMC.



22 ESAIM: PROCEEDINGS AND SURVEYS

4.2.1. Measure of Posterior Variation
As a tool to assess the variation of posterior cointegration space distribution from the output

of MCMC sampler, we will use the projective Frobenius span variation introduced in [72]. The

projective Frobenius Span Variation (FSV ) is defined as τ2
sp =

E[d(β,β̂)|y1:T ]

r(p−r)/p , where β̂ is the PMCS

estimate of β. We can estimate this diagnostics withτ̂2
sp =

r−
∑r
i=1 λi

r(p−r)/p , where λi is the i-th largest

eigenvalue of 1
N

∑N
i=1 βiβ

T
i .

4.3. Rank Estimation

While we have been considering r known so far, the cointegration rank has be to estimated.
This can be done using a variety of approaches: Bayesian, frequentist or using a spectral methods.
In a Bayesian setup, estimation of r is performed using Bayes factors, which in the context of
ECMs are computed by means of Sevage-Dickey density ratio; see [39], [17] for an overview and
[53] and [40] for financial applications. In frequentist settings, choosing r is routinely performed by
means of hypothesis testing. Two most commonly used test statistics give rise to the “Trace Test”
and “Maximum Eigenvalue Tests”; see [35] for details. In the work [55] the authors also study the
effect of cointegration miss-specification of the rank and the role and influence of the identification
constraints. They show that being conservative and overestimating an uncertain cointegration
rank is often practically more robust in the model estimation and has less influence on Bayesian
model parameter estimation compared to under-estimating the rank. Finally, one could use non-
parametric or spectral approaches to estimate r (as well as the cointegration space), see [74] for a
recent approach.

5. Numerical results

In the simulation results presented below, we use simulated data with n = 4, r = 3, (so ds(β, β̂) <
1.) In each case (Gaussian or Student-t), T = 240 the parameter values generating y1:T are the
following:

αtrue = 0.2


−1 −1 −1
1 −1 −1
1 1 −1
1 1 1

 ; βtrue =


1 0 0
0 1 0
0 0 1
−1 −1 −1

 ; R = In

For the Student-t case we shall use ω = 20. For the priors we use ν = 1, Pτ = In, and G = Ir. In
order to quantify the and accuracy of MCMC samplers, we will compute the diagnostics based on
their resulting chain output, e.g. {(αi, βi)} Ji=1, with J = 104 taken after a suitable burn-in period
of 1000 iterations. We will use the Integrated Autocorrelation time (IACT) for each element of Π,
IACT = 1 + 2

∑∞
i=1 a(i), where a(i) denotes autocorrelation with lag i, to assess mixing efficiency

of different MCMC samplers, the Average Distance AD = 1
J

∑J
i=2 ds(βi, β

true) to compare the
accuracy of the cointegration space estimation and similarly ||Π̂− Πtrue||F to compare estimation
of Π, where Π̂ is constructed using the PMCS. We note that AD provides also insight on how much
the sampler explores the support of the distribution of interest. In addition we will use FSV defined

earlier as τ2
sp =

E[d(β,β̂)|y1:T ]

r(p−r)/p to assess the variation of the simulated posteria.
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(a) Gibbs Sampler

1.17 1.30 1.24 1.22
1.22 1.26 1.13 1.22
1.29 1.22 1.25 1.29
1.25 1.26 1.19 1.19

(b) GMC for β and Gibbs for α

1.11 1.05 1.11 1.18
1.18 1.18 1.23 1.09
1.13 1.10 1.18 1.17
1.11 1.18 1.12 1.12

(c) GMC for β and HMC for α

7.78 8.88 9.80 13.43
8.62 8.67 10.31 13.47
9.59 9.53 9.76 13.82
8.65 9.68 9.62 13.57

(d) GMC targetting jointly (α, β)

75.70 93.60 94.06 141.02
93.20 72.47 71.54 107.08
49.98 59.12 105.03 143.28
34.70 79.78 87.27 147.57

Table 1. IACT for each entry of Π for Gaussian case

Gibbs GMC + Gibbs GMC + HMC GMC on (α, β)

AD 0.05 0.02 0.07 0.05
||Π̂−Πtrue||F 0.09 0.47 0.10 0.12

τ2
sp 0.003 0.0001 0.004 0.38

Table 2. Comparison of different MCMC samplers for Gaussian case: Gibbs Sam-
pler, GMC for β with Gibbs for α, GMC for β with HMC for α, and GMC targetting
jointly (α, β).

5.1. The Gaussian case

For the Gaussian case, in Tables 1, 2 we present the results comparing the Gibbs Sampler of [41],
a Gibbs approach with GMC for β and the full conditional update for α, a Gibbs approach with
GMC for β and HMC for α as well as GMC targetting jointly (α, β). The perfect Gibbs sampler and
the Gibbs method with GMC for β and a perfect Gibbs update for α, show very good performance.
In some cases the slight improvement when using GMC for β can be attributed to the additional
computational effort. In addition, using GMC for α and HMC for β shows good performance that
is in par with the Gibbs sampler in terms of the comparison in Table 2 but with a slower mixing as
indicated by the IACT in Table 1. Finally, using GMC to target jointly (α, β) has very slow mixing
and posterior exploration, but at least it manages to result to accurate point estimates.

5.2. The Student-t case

For the Student-t case we will consider two different cases. The first one would be to use
the data augmentation (DA) approach outlined in 2.4.2. As the full conditionals of the auxiliary
variables λt are tractable, a Gibbs sampler can be implemented (by alternating Algorithm 1 with
p(R|y1:T , α, β, λ1:T , ω) and p(λt|y1:T , α, β,R, ω) for each t). Also, when GMC is used in this case
either as part of a Gibbs update or on its own, a Gaussian likelihood p(y1:T |α, β,R, ω, λ1:T ) will be
used in the implementation of 2. In the second case, we will apply the GMC samplers implemented
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(a) Gibbs Sampler with data aug-
mentation

1.23 1.46 1.19 1.43
1.19 1.19 1.11 1.09
1.20 1.24 1.09 1.00
1.16 1.43 1.27 1.06

(b) GMC for β and Gibbs for α

1.38 1.63 1.30 1.28
1.12 1.44 1.47 1.16
1.23 1.45 1.54 1.09
1.48 1.83 1.80 1.29

(c) GMC for β and HMC for α

10.05 14.63 14.91 22.25
16.12 14.58 16.63 26.21
12.42 12.06 13.12 24.18
13.93 15.44 15.10 22.96

(d) GMC for β and GMC with
SVD for α

183.28 155.22 140.93 117.11
185.13 191.43 176.33 100.76
84.78 227.81 154.99 138.87
93.62 114.11 121.16 130.47

(e) GMC targetting jointly (α, β)

476.85054 703.5214 844.40542 873.98745
661.30924 684.36671 534.87151 696.74944
709.07688 427.01486 522.67915 667.17075
95.70291 409.73287 422.26648 704.8838

Table 3. IACT for each entry of Π for Student-t case with data augmentation

(a) GMC for β and HMC for α

9.019 11.40 14.39 22.54
12.09 11.41 13.99 22.51
11.75 9.14 14.61 22.59
8.52 12.71 12.63 20.98

(b) GMC for β and GMC with
SVD for α

186.61 145.06 131.14 117.70
201.23 210.11 169.41 103.02
87.04 229.32 139.97 132.64
102.54 109.85 106.38 130.55

(c) GMC targetting jointly (α, β)

421.71 796.78 583.57 839.46
765.81 608.70 718.14 818.34
439.31 392.44 591.99 546.19
515.19 715.83 829.71 863.59

Table 4. IACT for each entry of Π for Student-t case with partial collapsing in GMC

with a Student-t distributed likelihoods p(y1:T |α, β,R, ω) instead. The rest of the updates for the
remaining parameters will be as before, so one can view this approach as a partial collapsing scheme.

In Tables 3,4, 5 we present the analogous results as in the Gaussian case. When data augmenta-
tion is used we compare the same samplers as in the Gaussian case together with an implementation
of GMC for the SVD decomposition of α. The latter is included for comparison purposes as for
this choice of prior for α one can derive analytically the prior for the matrices and singular values
in the SVD decomposition ([5, Theorem 1.5.4]). As mentioned in Remark 8, using SVD directly for
Π is more parsimonious and hence one should expect better results (see below). Not surprisingly,
the different methods compared behave similarly for the Student-t case with data augmentation to
what has been seen in the Gaussian case. In Figure 1 we also present trace plots for the consecutive
MCMC realizations of β and the components of polar decompositions of estimates of α, that is
Â, κ̂.
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(a) Data augmentation and Gaussian likelihood

Gibbs GMC + Gibbs GMC + HMC GMC with SVD for α GMC on (α, β)

AD 0.01 0.01 0.01 0.01 0.01
||Π̂−Πtrue||F 0.12 0.12 0.122 0.16 0.186

τ2
sp 0.0001 0.0001 0.0003 0.0002 0.001

(b) Student-t likelihood with partial collapsing

GMC + HMC GMC with SVD for α GMC on (α, β)

AD 0.009 0.01 0.40
||Π̂−Πtrue||F 0.12 0.15 0.835

τ2
sp 0.0002 0.002 0.04

Table 5. Comparison of different MCMC samplers for Student-t case:

For the case where the Student-t likelihood and partial collapsing is used, we only compare the
GMC based methods. The results are similar to the data augmentation case, but they can be used
as numerical evidence of validity of the GMC/HMC schemes in the non-Gaussian case. From all
the results it is apparent that GMC for β with HMC for α performs best among the more generic
samplers (that do not use the full conditionals). InTable 5, it shows similar performance as the
Gibbs sampler and it is only inferior in terms of the IACTs, which admit higher values than the
Gibbs sampler but are still reasonably good values. In addition, we note that the use of SVD for α
results in an improvement in efficiency from targetting jointly (α, β) with GMC, but both samplers
are much slower in the exploration of the posterior than the other methods.

5.2.1. Using SVD for Π

In this section, we examine the model reparameterisation based on SVD decomposition imposed
directly on the long-run multiplier matrix Π. This case is treated separately as the priors used here
are not equivalent with those used before. To our best knowledge, this has not been considered
before in the context of Bayesian cointegration, however GMC enables us to pursue this direction.
For convenience, we use p(Π) ∝ Nn,n(0, In, In)1rank(Π)=r. From [5, Theorem 1.5.4] we obtain
the equivalent expression for the priors defined on the matrices and singular values in the SVD
decomposition: U ,V are uniform distributions on Ṽn,n, Vn,r resp. and

p(s1, . . . , sr) ∝ exp

(
−1

2

r∑
l=1

s2
l

)
r∏
l=1

sn−rl

r∏
l<j,l=1

(
s2
l − s2

j

)
For the MCMC sampler targetting p(S|U , β,V, y1:T ) we use a Metropolis-Hastings approach, with
the proposal being a random walk on the log space of each sl with a step size of 0.1 and the noises
being independent standard normals sorted in descending order. For p(β|S,V, y1:T ), p(U|S, β, y1:T )
GMC samplers are used. For samplers targetting U we use simpler to compute geodesic flows as
presented in [3, 9]. The results are presented in Tables 6, 7 for a GMC within Gibbs approach in
Algorithm 3 and a random scan implementation that updates β with probability 0.1 and U ,S with
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(a) Data augmentation and
Gaussian likelihood

42.79 65.59 45.50 38.51
84.48 85.44 50.98 48.45
50.17 38.771 90.38 58.15
68.85 95.60 98.25 57.76

(b) Student-t likelihood

77.13 61.71 92.96 80.65
100.46 105.14 104.02 51.99
110.36 118.72 105.39 62.49
66.02 47.73 70.46 61.40

(c) Student-t likelihood

65.65 75.13 89.68 49.95
57.12 99.29 77.99 41.70
66.46 98.35 132.39 40.17
64.78 112.83 97.63 61.12

(d) Student-t likelihood with
Gaussian Data Augmentation

142.30 105.35 123.65 119.89
139.24 110.10 71.07 67.00
148.19 105.91 169.58 48.39
123.04 101.45 103.39 118.64

Table 6. IACT of using SVD for Π Top: Standard GMC within Gibbs; bottom:
random scan Gibbs.

(a) Standard GMC within Gibbs

Student-t with DA (Gaussian) Student-t
AD 0.04 0.01

||Π̂−Πtrue||F 0.16 0.15
τ2
sp 0.001 0.002

(b) Random Scan Gibbs

Student-t with DA (Gaussian) Student-t
0.01 0.01
0.14 0.16
0.001 0.0001

Table 7. Performance of GMC using SVD for Π for different likelihoods

0.45 each. From the IACTs we can observe an improvement in the mixing over the sampler that
used SVD for α earlier.

The motivation behind using a random scan sampler is to reduce the computational cost. The
results in Tables 6, 7 are similar with the the systematic scan. As the update for β is the most
expensive step and hence is used less often. [4] show how geodesics for U can be computed more
efficiently as opposed to the geodesics on Vn,r. On the downside, one ends up with sampler mixing
properties, but this can be improved by increasing the probability of update of β.

6. Discussion

Bayesian methods are favorable to use in situations when estimation of the parameters un-
certainty is required, but requires advanced simulation techniques like MCMC. In this paper we
presented the Gibbs Sampler of [41] together with the GMC algorithm of [3] that can be used to
sample from a wide class of distributions defined on manifolds. We combined these two approaches
and presented different approaches for Bayesian estimation of the cointegration space. The Gibbs
sampling method is the current state of the art for this problem, but can be implemented only when
full conditionals are available. On the other hand, GMC is generic and can be used in wider range
of model setups, that also seem more realistic in finance, such as heavy tailed noises, time varying
model parameters as well as different choices of prior distributions. In terms of performance in
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our numerical results we saw GMC performed very well and efficiently when used within a Gibbs
update scheme (i.e. GMC for β and HMC for α), but when applied naively to target (α, β) jointly
it turned out to be rather inefficient.

A question that may arise is whether Bayesian methods and sampling techniques will be accurate
in practical contexts. We believe this is a topic demanding a detailed discussion, but we performed
a few numerical experiments to motivate the work presented so far. These are contained in the
supplementary material in [46], where we compared the Gibbs sampler of [41] with the spectral
method of [74] under various model parameterization setups with Gaussian noise. Both methods
seemed accurate overall with the Gibbs sampler performing better, but on the other hand the
spectral method of [74] uses only a fraction of the computational cost. In both cases, accuracy
seemed to be robust to the level of additive noise, e.g. the trace of R, but more sensitive to a mean
reversion parameter of the implied spread process. Using only the spectral method of [74] we found
that this sensitivity of the estimated cointegrated space on the mean reversion seemed to hold also
when a non-Gaussian noise was used with a variety of features in terms of skewness, kurtosis, or
heavy-ness of the tails.

In terms of Bayesian estimation of cointegration, when non-Gaussian (differentiable) densities
with heavier tails are used the advanced GMC methods can be very valuable to assess the un-
certainty around point estimates. In addition, GMC can be implemented also directly on SVD
decompositions of Π. This lead to accurate estimates, but further work is required to improve the
mixing of Algorithm 3. Here a simplification choice was made to apply Step 2 (a) of Algorithm 3
after a GMC iteration defined on Vn,r, whereas Step 2 (a) should have been emdedded in the GMC
procedure (and the implementation of Algorithm 2). More importantly from a modelling perspec-
tive SVD is appealing as the singular values act in a similar manner to mean reversion parameters
mentioned earlier, so we believe that their accurate estimation will be critical for cointegration space
estimation. In addition, given that computational tools like GMC are available and can perform
well within a Gibbs scheme, this opens up the possibility of adopting a wider class of priors (and
parameterizations such as SVD) than what described in Section 2.4.1. Priors could be defined on
parameters resulting from SVD or polar decompositions directly and past works on defining priors
in different contexts (e.g. [37, 38]) can be very relevant.

We conclude with some more possible aspects for further investigations from a computational
perspective. In GMC and HMC we used a simple numerical integration scheme for the Hamiltonian
dynamics numerical integrator, so there is plenty of room for improvements such as the recent work
of [30]. Finally, interesting questions arise when n is very large. Is it possible to perform estimation
efficiently and are the conclusions we reached here still valid? In numerical results not shown we
have applied the above methods up to n = 10, and our conclusions seemed to hold. In order to use
much higher values of n a significant amount of developments is needed.
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(a) Gibbs sampler with data augmentation
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(b) GMC for β and HMC for α with data augmentation (Gaussian likelihood in Algorithm 2)

0 2000 4000 6000 8000 10000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

d s
(A

m
−1

, A
m
)

0 2000 4000 6000 8000 10000

0
10

20
30

40

de
t(κ

)

0 2000 4000 6000 8000 10000

0.
00

0.
01

0.
02

0.
03

0.
04

d s
(β

m
−1

, β
m
)

(c) GMC for β and HMC for α for using Student-t likelihood in Algorithm 2

Figure 1. Trace plots from MCMC output for Student-t case: from left to right
ds(Âm, Âm−1),|κ̂m|, ds(β̂m, β̂m−1) against MCMC iteration m.


