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Abstract

Recursive Maximum Likelihood (RML) and Expectation
Maximisation (EM) are a popular methodologies for esti-
mating unknown static parameters in state-space models.
We describe how a completely decentralized version of RML
and EM can be implemented in dynamic graphical models
through the propagation of suitable messages that are ex-
changed between neighbouring nodes of the graph. The re-
sulting algorithm can be interpreted as an extension of the
celebrated Belief Propagation algorithm to compute likeli-
hood gradients. This algorithm is applied to solve the sen-
sor localisation problem for sensor networks. An exact im-
plementation is given for dynamic linear Gaussian models
without loop. For non-linear scenarios, a distributed ex-
tended Kalman filter is used to implement RML.

1 Introduction
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Figure 1. Sensor Network used for target tracking

Figure 1 depicts a sensor network that is deployed to per-
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form target tracking. The sensor network is comprised of
sensor-trackers where each node in the network has the pro-
cessing ability to perform computations needed for target
tracking.1 The lines joining the nodes indicates communi-
cation links and defines the neighborhood structure of the
network. A sensor can only communicate indirectly with
non-neighboring nodes. A target that is traversing the field
of view of the network will be simultaneously observed by
more than one sensors, depending of course on their field-
of-view. In a centralised architecture all the sensors trans-
mit their measurements to a central fusion node which then
performs all the computation required [4]. Our aim is to
perform collaborative tracking but without the need for a
central fusion node. In such networks nodes collaborate
by exchanging appropriate messages between neighbouring
nodes to achieve the same net effect as they would by com-
municating with a central fusion node.

For generality, we assume that each node maintains a lo-
cal coordinate system (or frame of reference) and regards
itself as the origin (or centre) its coordinate system. Dis-
tributed collaborative tracking can be achieved if each node
is able to accurately determine the position of its neighbour-
ing nodes in its local frame of reference. (More details
in Section 2.) This is essentially an instance of the self-
localisation problem [2]. In the interest of generality and
scalability of the proposed solution, in this paper we simul-
taneously solve the localisation problem as well. We will do
so without the need of a Global Positioning System (GPS)
or direct measurements of the distance between neighbour-
ing nodes. The latter is usually estimated from the Received
Signal Strength (RSS) when each node is equipped with
a wireless transceiver. The method we propose is signifi-
cantly different. Essentially, the very task that the network
is deployed for, which is collaborative tracking, will be ex-
ploited to achieve self-localization in a completely decen-
tralized manner. Initially as nodes are not localized they
behave as independent trackers. As the tracking task is per-
formed on objects that traverse the field of view of the sen-
sors, information is shared between nodes in away that al-
lows them to self-localize. Even though the target’s true
trajectory is not known to the sensors, localization can be

1It should be noted that we are not dealing with simple sensors with
limited processing power.



achieved in this manner because the same target is being
simultaneously measured by the sensors.

The method we propose in this paper appears to have
been independently developed by [7, 16]. However, our
work differs from these in application, the inference scheme
and the computational tools employed. Both [7, 16] formu-
late the localisation as a posterior inference problem and
use Gaussian approximation schemes as the computational
tool. [7] studies a computer vision based tracking problem.
We propose to use likelihood inference techniques, namely
Recursive Maximum Likelihood (RML) and Expectation-
Maximization (EM). These techniques have not been devel-
oped for the self-localisation problem and our results in this
paper address this shortfall. The RML and EM based algo-
rithms we develop admit an online implementation which is
important for the application studied. Most tracking prob-
lems are essentially non-linear non-Gaussian filtering prob-
lems and Sequential Monte Carlo (SMC) methods, also
known as Particle Filters, provide very good approxima-
tions to the filtering densities under weak assumptions [6].
While it is possible to develop SMC versions of our algo-
rithms, because of execution speed, we opt instead for lin-
earisation (as in the Extended Kalman filter) when dealing
with a non-linear system.

The decentralized solution to the self-localization and
collaborative tracking problem necessitates the use of be-
lief propagation, which a message passing algorithm widely
used in the computer science literature to perform posterior
inference on graphs [13]. However belief propagation im-
plements posterior inference only while we also require a
fully decentralized algorithm for calculating the gradient of
the log-likelihood function. We propose a message passing
scheme similar to belief propagation for doing so which is,
to the best of our knowledge, novel.

There is a vast literature on the self-localisation prob-
lem. Furthermore, the topic has been independently pur-
sued by researchers working in different application areas,
most notably wireless communications [12, 14, 8] and sen-
sor networks for environmental monitoring [10]. Although
all these works tend to be targeted for the application at
hand and differ in implementation specifics, which we do
not wish to list here, they may however be broadly char-
acterise as follows. There are many works the rely on di-
rect measurements between neighbouring nodes [12, 14, 8].
It is then possible to solve for the geometry of the sensor
network but with ambiguities in translation and rotation of
the entire network remaining. These ambiguities can be re-
moved if the absolute position of certain nodes, referred
to as anchor nodes, are known. There are non-statistical
based approaches of this idea, like least squares [14], and
statistical ones based on probabilistic inference [8], likeli-
hood [12]. There are also methods that utilise beacon nodes
which have either been manually placed at precise locations
or are equipped with a GPS. The un-localised nodes will use
the signal broadcast by these beacon nodes to self-localize
[12].

There is the related problem of sensor registration which

aims to compensate for systematic biases in the sensors has
been studied by the target tracking community [11, 17]. The
algorithms devised therein are for are all centralised. There
is also the related problem of average consensus [18]. The
value of a global static parameter is measured at each node
via a linear Gaussian observation model and the aim to ob-
tain a maximum likelihood estimate in distributed fashion.
This is a distributed averaging problem and not a distributed
localization and tracking task. A second paper that is based
on the principle shared by our approach and [7, 16] is that
of [3]. The authours exploit the correlation of the measure-
ments made by the various sensors of a hidden spatial pro-
cess to perform self-localization. However for reasons con-
cerned with the applications being addressed, which is not
distributed target tracking, their method is not on-line and
centralised in nature.

2 Problem Formulation

We consider the sensor network (V, E) where V denotes
the set of nodes of the network and E is the set of edges. In
this paper we assume that the sensor network has no loops.
Nodes i, j ∈ V are connected provided the edge (i, j) ∈ E
exists. All nodes are time synchronised distributed track-
ers and observe the same physical target at discrete time
intervals n = 1, 2, . . .. The non-linear non-Gaussian setting
can be expressed with the following Hidden Markov Model
(HMM)2,

Xr
n|xr

n−1 ∼ fn(.|xr
n−1), Y

r
n |xr

n ∼ gr
n(.|xr

n). (1)

where Xr
n ∈ Rdx is the hidden state and Y r

n ∈ Rdr
y is the

measurement made by node r at time n. A common state-
space Rdx and transition model fn(.|xr

n−1) is adopted for
all nodes r ∈ V since they track the same physical target.
The vector Xr

n at node r is defined relative to the local co-
ordinate system at node r which regards itself as the origin.
The hidden state in standard target tracking examples is de-
fined to comprise of the position and velocity of the target,

Xr
n = [Xr

n(1), Xr
n(2), Xr

n(3), Xr
n(4)]T ∈ R4,

where Xr
n(1) and Xr

n(3) is the target’s x and y position
while Xr

n(2) and Xr
n(4) is the velocity in the x and y direc-

tion. The target’s transition model fn(.|.) is assumed time
varying for generality. In specific examples in Section 5
adopt the same definition for the hidden state.

The measurement Y r
n made by node r is also defined

relative to the local coordinate system at node r. The ob-
servation model is time varying and is different for each
node. Also, the length of the observation vector Y r

n need
not be the same for different nodes since each node may be
equipped with a different sensor type. For example, node
r may obtain measurements of the target’s position while
node v measures bearing.

2Subscripts on a variable always indicate time while a superscript will
indicate the node the quantity belongs to or the edge in the case of θi,j .



Assuming all nodes act independently the filtering den-
sity, which summarises all relevant information of hidden
state given by all the observations that have been received
thus far, is propagated at each node locally using the Bayes
recursion,

prediction:pr(xr
n|Y r

1:n−1) =∫
fn(xr

n|xr
n−1)p

r(xr
n−1|Y r

1:n−1)dxr
n−1 (2)

update:pr(xr
n|Y r

1:n) ∝ gr
n(Y r

n |xr
n)pr(xr

n|Y r
1:n−1) (3)

A linear Gaussian system is a special case where the tran-
sition and observation densities are Gaussian. The target
being tracked follows the linear Gaussian model

Xr
n = AnXr

n−1 + bn + V r
n , n ≥ 1, (4)

where V r
n is zero mean Gaussian additive noise with vari-

ance Qn, bn are deterministic inputs. As before a com-
mon state-space and a common time varying target model
{(An, bn, Qn)}n≥1 applies to all nodes r ∈ V . At each
node r, the following linear Gaussian observation model ap-
plies,

Y r
n = Cr

nXr
n + dr

n + W r
n , n ≥ 1, (5)

where W r
n is zero mean Gaussian additive noise with

variance Rr
n and dr

n is deterministic. Note that the time
varying observation model {(Cr

n, dr
n, Rr

n)}n≥1 is different
for each node. A time varying state and observation model
is retained for an Extended Kalman Filter (EKF) implemen-
tation for the non-linear setting. It is in this setting as well
that the need for sequences {bn}n≥1 and {dr

n}n≥1 arises.
In the development below, to simplify the presentation, we
ignore the sequences {bn}n≥1 and {dr

n}n≥1 for all r ∈ V .

Figure 2. Three nodes jointly observing a target

Figure 2 illustrates a three node setting where a jointly
observed target is being tracked by three sensor nodes de-
fined on the same state space Rdx with dx = 4. (Only the
position of the target is shown.) At node 1, X1

n is defined

relative to the local coordinate system of node 1 which re-
gards itself as the origin. Similarly for nodes 2 and 3. We
define θi,j

∗ to be the position of node i in the local coor-
dinate system of node j. This means that the vector Xi

n

relates to the local coordinate system of node j as follows
(see Figure 2),

Xj
n = Xi

n + θi,j
∗ .

The localisation parameters {θi,j
∗ }(i,j)∈E are static if the

nodes are not mobile. We note the following obvious
but important relationship: if nodes i and j are connected
through intermediate nodes j1, j2, . . . , jm then

θi,j
∗ = θi,j1∗ +θj1,j2∗ +θj2,j3∗ + . . .+θ

jm−1,jm∗ +θjm,j
∗ . (6)

This relationship is key to deriving the distributed filtering
and localization algorithms in the next section. We define
θi,j
∗ so that the dimensions are the same as the target state

vector. When the state vector is comprised of the posi-
tion and velocity of the target as, only the first and third
component of θi,j

∗ is relevant while θi,j
∗ (1) = θi,j

∗ (2) and
θi,j
∗ (3) = θi,j

∗ (4). Let

θ∗ ≡ {θi,j
∗ }(i,j)∈E , θi,i

∗ ≡ 0, (7)

where θi,i
∗ for all i ∈ V is defined to be the zero vector by

default.
Returning to Figure 2 ,the filtering update step at node

1 can be refined with the observations made by nodes 2
and 3 provided the localisation parameters θ1,2

∗ and θ1,3
∗ are

known locally to node 1 since p1
θ∗(Yn|x1

n) is

g1
n(Y 1

n |x1
n)g2

n(Y 2
n |x1

n + θ1,2
∗ )g3

n(Y 3
n |x1

n + θ1,3
∗ ),

where Yn ≡ {Y v
n }v∈V .

Figure 2 shows the support of the three observation den-
sities as ellipses where the support of g1

n(Y 1
n |·) is defined to

be all x1 such that g1
n(Y 1

n |·) > 0; similarly for the rest. Ad-
ditionally, it appears that node 1 would also require knowl-
edge of the functions g3

n(Y 3
n |.) and g3

n(Y 3
n |.). In general, in

the collaborative filtering problem, each node r propagates

pr
θ∗(x

r
n|Y r

1:n) ∝ pr
θ∗(Yn|xr

n)pr
θ∗(x

r
n|Y r

1:n−1)

where pr
θ∗(x

r
n|Y r

1:n−1) is given in (2), while the likelihood
term is

pr
θ∗(Yn|xr

n) =
∏

v∈V
gv

n(Y v
n |xr

n + θr,v
∗ ). (8)

where θv,v
∗ for all v ∈ V is defined to be the zero vector

by default. The prediction step is unchanged (can be imple-
mented locally at each node without exchange of informa-
tion) but the update step now incorporates all the measure-
ments of the network. The term collaborative filtering is
used since each sensor benefits from the observation made
by all the other sensors. As is shown in Section 3, it is
possible to implement collaborative filtering in a truly dis-
tributed manner, i.e., each node executes a message pass-
ing algorithm (with communication limited only to neigh-
bouring nodes) that is scalable with the size of the net-
work. However collaborative filtering hinges on knowledge



of the localisation parameters {θi,j
∗ }(i,j)∈E which are un-

known apriori. We propose a estimation algorithms based
on RML and EM that simultaneously learn the localisation
parameters. RML is an online algorithm and refines the pa-
rameter estimates as new data arrives while EM is a batch
algorithm that runs once a batch of observations have been
acquired. These proposed algorithms are to the best of our
knowledge novel.

3 Distributed Collaborative Filtering and
Smoothing

For a linear Gaussian system, the collaborative filter πv
n

at node v is a Gaussian distribution with mean vector µv
n

and covariance matrix Σv
n. Consider a fixed localisation

parameter θ = {θi,j}(i,j)∈E . Each node v of the network
will execute the following Kalman filter whose derivation is
standard,

µv
n|n−1 = Anµv

n−1,Σ
v
n|n−1 = AnΣv

n−1A
T
n + Qn, (9)

Mv
n = (Σv

n|n−1)
−1 +

∑

i∈V
(Ci

n)T(Ri
n)−1Ci

n, (10)

zv
n = (Σv

n|n−1)
−1µv

n|n−1

+
∑

i∈V
(Ci

n)T(Ri
n)−1(Y i

n − Ci
nθv,i), (11)

Σv
n = (Mv

n)−1, µv
n = Σv

nzv
n. (12)

The non-local steps are the recursions for Mv
n and

zv
n. The recursion for zv

n requires
∑
i∈V

(Ci
n)T(Ri

n)−1Y i
n and

∑
i∈V

(Ci
n)T(Ri

n)−1Ci
nθv,i to be available locally. Similarly

for Mv
n . Owing to property (6), the following message

passing scheme achieves the desired distributed implemen-
tation.

mi,j
n = (Ci

n)T(Ri
n)−1Ci

n +
∑

p∈ne(i)\{j}
mp,i

n , (13)

ṁi,j
n = (Ci

n)T(Ri
n)−1Y i

n +
∑

p∈ne(i)\{j}
ṁp,i

n , (14)

m̈i,j
n = mi,j

n θj,i +
∑

p∈ne(i)\{j}
m̈p,i

n , (15)

where ne(i) denote the neighbours of node i. A message
from node i to j can be sent once node i has received mes-
sage from all its neighbours except node i. Thus the leaf
nodes (nodes with only one neighbour) of the network will
originate the messages. Note that these messages are matrix
and vector valued quantities and they require a fixed amount
memory for storage regardless of the number of nodes in the
network. Also, the same rule for generating and combining
messages are implemented at each node. Once a node has
received a message from all its neighbours it can perform
the recursions for Mv

n and zv
n since

Mv
n = (Σv

n|n−1)
−1 + (Cv

n)T(Rv
n)−1Cv

n +
∑

i∈ne(v)

mi,v
n

(16)

zv
n = (Σv

n|n−1)
−1µv

n|n−1 + (Cv
n)T(Rv

n)−1Y v
n

+
∑

i∈ne(v)

ṁi,v
n − m̈i,v

n (17)

For collaborative smoothing, once a batch of T observa-
tions have been obtained, each node r aims to implement

πr
n|T (xr

n) ∝
∫

pr
T (xr

1:T , Y1:T )dxr
1:T\{n}

where dxr
1:T\{n} means integration w.r.to all variables ex-

cept xr
n. Naturally πr

T |T is just the filtering density at time
T . The standard Kalman smoother is implemented with a
forward pass (9)-(12) , which computes the usual filtering
densities, and the followed by a backward pass which is
summarised by the following equations [15]:

Jr
n−1 = Σr

n−1A
T
n(Σr

n|n−1)
−1 (18)

µr
n−1|T = µr

n−1 + Jr
n−1(µ

r
n|T −Anµr

n−1) (19)

Σr
n−1|T = Σr

n−1 + Jr
n−1(Σ

r
n|T − Σr

n|n−1)J
rT

n−1 (20)

The backward pass is performed commencing with n =
T until n = 2 and the smoothed density is πr

n|T =
N (µr

n|T , Σr
n|T ). It is an entirely local procedure with no

exchange of information between neighbouring nodes nec-
essary.

4 Distributed Collaborative Lozalisation

Our sensor localisation problem is a static parameter es-
timation problem as discussed in Section 2. To solve the
localization problem, we propose to use likelihood infer-
ence techniques, namely Recursive Maximum Likelihood
and Expectation-Maximization. RML is a stochastic gradi-
ent algorithm that maximises the average log likelihood and
is given by the following recursion [9]:

θn+1 = θn + γn+1 [∇ log pθ(Yn|Y1:n−1)]|θ=θn
, (21)

where the gradient (denoted by∇) is taken w.r.to the param-
eter θ, {γn} is a sequence of small positive real numbers
(e.g. γn = n−1), called the step-size sequence, that satis-
fies

∑
n γn = ∞ and

∑
n γn

2 < ∞. θn is the estimate of
the true parameter θ∗ given the available data Y1:n−1. Upon
receiving Yn, an increment is added to θn in the direction
of ascent of the conditional likelihood log pθ(Yn|Y1:n−1).
In practise, a small but fixed step-size is used is used as it
ensures continual adaptation.

For a given sequence of T observations, the EM algo-
rithm for learning θ∗ is a two step procedure. The first step,
the expectation or E-step, computes

Q(θn, θ) =
∫

log pθ(x1:T , Y1:T )pθn(x1:T |Y1:T )dx1:T .



The second step is the maximisation or M-step that updates
the parameter θn,

θn+1 = arg max
θ∈Θ

Q(θn, θ)

Upon the completion of an E and M step, the likelihood
surface is ascended or pθn+1(Y1:T ) ≥ pθn

(Y1:T ) [5]. For
linear Gaussian state-space models this procedure can be
implemented exactly while for the general non-linear non-
Gaussian case SMC approximations are used. The RML
and EM algorithm described thus far is centralized and we
now detail its distributed implementation.

4.1 Distributed RML

Figure 2 shows a particular node r in a network which
has control over the edge (r, j). Because every edge is as-
signed to one node, all edge-controlling nodes will imple-
ment a RML algorithm to learn the θ-parameter for its edge.
Let θn = {θi,j

n }(i,j)∈E be the estimate of the true parame-
ter θ∗ given the available data Y1:n−1. Recall that Ym is
defined to be {Y v

m}v∈V so Y1:n−1 is the data collected by
all the nodes from time 1 to n − 1. At a given node r that
controls edge (r, j) the following RML algorithm is imple-
mented,

θr,j
n+1 = θr,j

n

+ γn+1

[
∇θr,j log

∫
pr

θ(Yn|xr
n)pr

θ(x
r
n|Y1:n−1)dxr

n

]

θ=θn

where the gradient is computed w.r.to θr,j ,

pr
θ(x

r
n|Y1:n−1) =

∫
fn(xr

n|xr
n−1)p

r
θ(x

r
n−1|Y1:n−1)dxr

n−1

is the local collaborative predicted density at node r, which
is a function of θ = {θi,j}(i,j)∈E , and likelihood term is
(see (8)),

pr
θ(Yn|xr

n) =
∏

v∈V
gv

n(Y v
n |xr

n + θr,v). (22)

Note that node r updates θr,j
n in a direction of increase of

the log-likelihood of Yn = {Y v
n }v∈V given all the measure-

ments received in the network from time 1 to n−1. Thus the
RML procedure is truly collaborative. Also, the gradient is
evaluated at θn = {θi,j

n }(i,j)∈E while only θr,j
n is available

locally at node r. The remaining values θn are stored across
the network. All nodes of the network that control an edge
parameter will implement such a local gradient algorithm.

For the linear Gaussian case, we have

log pr
θ(Yn|Y0:n−1)

= −1
2

∑

i∈V
(Y i

n − Ci
nθr,i)T Ri

n
−1(Y i

n − Ci
nθr,i)

− 1
2
µr

n|n−1
T(Σr

n|n−1)
−1µr

n|n−1

+
1
2
(zr

n)T(Mr
n)−1zr

n + const

where all θ-independent terms have been lumped together in
the term ’const’. Differentiating this expression w.r.to θr,j

yields

∇θr,j log pr
θ(Yn|Y0:n−1)

= −(∇θr,j µr
n|n−1)

T(Σr
n|n−1)

−1µr
n|n−1

+ (∇θr,j zr
n)T(Mr

n)−1zr
n

+
∑

i∈V
(∇θr,j θr,i)T(Ci

n)T(Ri
n)−1(Y i

n − Ci
nθr,i).

Using the recursion of (9)-(12) we can to propagate terms
∇θr,j µr

n|n−1, ∇θr,j zr
n and ∇θr,j µv

n locally each node r as
follows:

∇θr,j µr
n|n−1 = An∇θr,j µr

n−1, (23)

∇θr,j zr
n = (Σr

n|n−1)
−1∇θr,j µr

n|n−1

−
∑

i∈V
(Ci

n)T(Ri
n)−1Ci

n∇θr,j θr,i, (24)

∇θr,j µr
n = (Mr

n)−1∇θr,j zr
n. (25)

Using property (6) we note that for the set of vertices i for
which the path from r to i includes edge (r, j), ∇θr,j θr,i =
I (the identity matrix) whereas for the rest ∇θr,j θr,i = 0.
For all the nodes i for which ∇θr,j θr,i = I , let them
form a sub tree (V ′rj , E ′rj) branching out from node j away
from node r. Then, for the last sum in the expression for
∇θr,j log pr

θ(Yn|Y0:n−1) evaluates to,
∑

i∈V′rj

(Ci
n)T(Ri

n)−1(Y i
n − Ci

nθr,i) = ṁj,r
n − m̈,j,r

n .

Similarly, we can write the sum in the expression for
∇θr,j zr

n as
∑

i∈V
(Ci

n)T(Ri
n)−1Ci

n∇θr,j θr,i =
∑

i∈V′rj

(Ci
n)T(Ri

n)−1Ci
n = mj,r

n .

This derivation is now summarised in the following algo-
rithm.

Distributed Filtering and Parameter Estimation
With RML

At time n, upon receiving Yn = {Y v
n }v∈V do:

Prediction for all nodes: At each node v ∈ V compute
locally the filtering prediction step of equation (2). For
the linear Gaussian problem the prediction is as in (9).
At the same time propagate the gradient ∇θr,j µr

n|n−1

as in (23).

Propagate messages: After all observations in Yn are re-
ceived from all nodes propagate all messages mi,j

n ,
ṁi,j

n , m̈i,j
n . These are given by (13)-(15). Note that

now m̈i,j
n is a function of θn.

Filtering Update: At each node v perform the filtering up-
date step of (3) by computing (12), where Mv

n and zv
n

are given in (16)-(17). In parallel propagate the gradi-
ents as in equations (24)-(25).



Gradient update of each θr,j
n+1: At each node r control-

ling edge (r, j) set

θr,j
n+1 = θr,j

n + γn+1(−∇θr,j µr
n|n−1

T(Σr
n|n−1)

−1µr
n|n−1

+∇θr,j zr
n

T(Mr
n)−1zr

n + ṁj,r
n − m̈,j,r

n ).

4.1.1 Non-linear Model

The (Extended Kalman Filter) EKF implementation for dis-
tributed RML is a based on local linearisation. Let the dis-
tributed tracking system be given by the following model:

Xr
n = φn(Xr

n−1) + V r
n , Y r

n = ψr
n(Xr

n) + W r
n . (26)

Let iteration n, prior to receiving {Y v
n }v∈V , let θn =

{θi,j
n }(i,j)∈E be the estimate of the true localisation parame-

ter θ∗ given the available data Y1:n−1. Each node upon com-
pletion of the local prediction steps linearises its state and
observation model about the predicted mean, i.e., a given
node r will implement ,

Xr
n = φn(µr

n−1)
+∇φn(µr

n−1)(X
r
n−1 − µr

n−1) + V r
n , (27)

Y r
n = ψr

n(µr
n|n−1)

+∇ψr
n(µr

n|n−1)(X
r
n − µr

n|n−1) + W r
n . (28)

where for a mapping f : Rd → Rd, ∇f ≡
[∇f1, . . . ,∇fd]T. Note that after linearisation extra addi-
tive terms appear as seen in the general setting described
by equations (4)-(5). As far as the filtering prediction step
is concerned the only alteration in the algorithm of Sec-
tion 4.1 will appear in equation (9), where in the rhs of the
equation for µr

n|n−1, φn(µr
n−1)−∇φn(µr

n−1)µ
r
n−1 should

be added. For the rest of the steps concerning the filter-
ing update and the gradient update of each parameter the
setting of equation (5) is preserved if Y r

n is substituted by
Y r

n − ψr
n(µr

n|n−1) +∇ψr
n(µr

n|n−1)µ
r
n|n−1. Otherwise the

algorithm remains the same.

4.2 Distributed EM

For the EM approach, once a batch of T observations
have been obtained, each node r of the network that controls
an edge will execute the following E and M step iteration n,

Qr(θn, θ) =
∫

log pr
θ(x

r
1:T , Y1:T )pr

θn
(xr

1:T |Y1:T )dxr
1:T ,

θr,j
n+1 = arg max

θr,j∈Θ
Qr(θn, (θr,j , {θe

n, e ∈ E\(r, j)})),

where it is assumed that node r controls edge (r, j). The
quantity pr

θn
(xr

1:T |Y1:T ) is the joint distribution of the hid-
den states at node r given all the observations of the net-
work from time 1 to T and is given up to a proportionality

constant,

pr
θ(x

r
1:T )pr

θ(Y1:T |xr
1:T ) =

T∏
n=1

fn(xr
n|xr

n−1)p
r
θ(Yn|xr

n),

where pr
θ(Yn|xr

n) was defined in (8). Note that
pr

θn
(xr

1:T , Y1:T ) (and hence pr
θn

(xr
1:T |Y1:T )) is a function

of θn = {θi,i′
n }(i,i′)∈E and not just θr,j

n . Also, the θ-
dependance of pr

θ(x
r
1:T , Y1:T ) arises through the likelihood

term only as pr
θ(x

r
1:T ) is θ-independent. Note that

∑

v∈V
log gv

n(Y v
n |xr

n + θr,v)

=
∑

v∈V
cv
n −

1
2

∑

v∈V
(Y v

n − Cv
nθr,v)T(Rv

n)−1(Y v
n − Cv

nθr,v)

+ (xr
n)T

∑

v∈V
(Cv

n)T(Rv
n)−1(Y v

n − Cv
nθr,v)

− 1
2
(xr

n)T

[∑

v∈V
(Cv

n)T(Rv
n)−1Cv

n

]
xr

n

where cv
n is a constant independent of θ. Using the fact that

xTAx = trace(AxxT) and E(xTAx) = trace(AE(xxT)),
taking the expectation w.r.to pr

θn
(xr

n|Y1:T ) gives

∫
log pr

θ(Yn|xr
n)pr

θn
(xr

n|Y1:T )

= −1
2

∑

v∈V

[
(Y v

n − Cv
nθr,v)T(Rv

n)−1(Y v
n − Cv

nθr,v)
]

− (µr
n|T )T

∑

v∈V
(Cv

n)T(Rv
n)−1Cv

nθr,v + const

where all terms independent of θr,j have been lumped
together as ’const’ and µr

n|T is the mean of xr
n under

pr
θn

(xr
n|Y1:T ). Taking the gradient w.r.to θr,j we get and

following the steps in the derivation of the distributed RML
we obtain

∇θr,j

∫
log pr

θ(Yn|xr
n)pr

θn
(xr

n|Y1:T )

= ṁj,r
n − m̈j,r

n − (mj,r
n )Tµr

n|T

where (mj,r
n , ṁj,r

n , m̈j,r
n ) is defined in (13)-(15). Only m̈j,r

n

is a function of θr,j . Now to perform the M-step, we solve

(
T∑

n=1

mj,r
n

)
θr,j

=
T∑

n=1


ṁj,r

n − (mj,r
n )Tµr

n|T −
∑

p∈ne(j)\{r}
m̈p,j

n




and θr,j can recovered by standard linear algebra. Note that
θr,j is solved by quantities available locally to node r and j
only.
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Figure 3. Error at each RML iteration between the true
parameter and current update of the localisation parameter
for all edges of the sensor net. (a) and (b) show the errors
in the x- and y- coordinates respectively.

5 Numerical Examples

We would like to illustrate the performance of the dis-
tributed RML algorithm for the Linear Gaussian case in a
numerical example. The sensor network in Figure 1 has a
tree structure and we apply distributed RML as in the pre-
vious section to the self localisation problem. We choose
nodes {3, 4, 6, 9} as root nodes and update at each itera-
tion their adjacent edges. For practical implementation rea-
sons we choose to use a constant step size γk = 10−3. For
stochastic approximation in general, decreasing step-sizes
are essential conditions of convergence. If fixed step-sizes
are used, then we may still have convergence, but now the
iterates “oscillate” about their limiting values with variance
proportional to the step-size. We also initialise θr,j = 0 for
all (r, j) ∈ E . In Figure 3 we plot the errors θr,j

∗ − θr,j
n for

each edge’s relative coordinate estimate against iteration n.
We see that all errors converge to zero.

As done for the RML, we present an EM solution for the
linear Gaussian problem, when the sensor network in Figure
1 is used for tracking. Again root nodes are {3, 4, 6, 9} and
we plot the errors θr,j

∗ − θr,j
n for each edge in Figure 4.

5.1 EKF Implementation

We would like to solve the self localization problem
using an EKF implementation, when each node performs
bearings only tracking for a deployment of sensors as in
Figure 1 . At each node r, the target being tracked yields
observation Yr,n and obeys the following dynamics

Y r
n = tan−1(Xr

n(1)/Xr
n(3)) + W r

n .

with W r
n

i.i.d.∼ N (0, 0.1). When linearisation is used and
the root nodes are {3, 4, 6, 9} , we plot the errors θr,j

∗ − θr,j
n

for each edge in Figure 5.
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Figure 4. Error at each EM iteration between the true
parameter and current update of the localisation parameter
for all edges of the sensor net. (a) and (b) show the errors
in the x- and y- coordinates respectively.
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Figure 5. Error at each EKF iteration between the true
parameter and current update of the localisation parameter
for all edges of the sensor net. (a) and (b) show the errors
in the x- and y- coordinates respectively.

6. Conclusions

In this paper, we have presented a general framework to
perform recursive static parameter estimation in dynamic
graphical models. We derive fully decentralized algorithms
using RML and EM to solve the sensor localisation prob-
lem. For linear Gaussian graphs, our algorithm can be im-
plemented exactly using a distributed version of the Kalman
filter and its derivative. In the non linear case, an EKF so-
lution has been proposed. A Sequential Monte Carlo al-
gorithm to solve the general nonlinear and non Gaussian
problem is under preparation.
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