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Approximate Inference for Observation-Driven Time Series Models
with Intractable Likelihoods

AJAY JASRA, National University of Singapore
NIKOLAS KANTAS and ELENA EHRLICH, Imperial College London

In this article, we consider approximate Bayesian parameter inference for observation-driven time series
models. Such statistical models appear in a wide variety of applications, including econometrics and applied
mathematics. This article considers the scenario where the likelihood function cannot be evaluated pointwise;
in such cases, one cannot perform exact statistical inference, including parameter estimation, which often
requires advanced computational algorithms, such as Markov Chain Monte Carlo (MCMC). We introduce a
new approximation based upon Approximate Bayesian Computation (ABC). Under some conditions, we show
that as n → ∞, with n the length of the time series, the ABC posterior has, almost surely, a Maximum A
Posteriori (MAP) estimator of the parameters that is often different from the true parameter. However, a noisy
ABC MAP, which perturbs the original data, asymptotically converges to the true parameter, almost surely.
In order to draw statistical inference, for the ABC approximation adopted, standard MCMC algorithms can
have acceptance probabilities that fall at an exponential rate in n and slightly more advanced algorithms
can mix poorly. We develop a new and improved MCMC kernel, which is based upon an exact approximation
of a marginal algorithm, whose cost per iteration is random, but the expected cost, for good performance, is
shown to be O(n2) per iteration. We implement our new MCMC kernel for parameter inference from models
in econometrics.
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1. INTRODUCTION

Observation-driven time-series models, introduced by Cox [1981], have a wide variety of
real applications, including econometrics (GARCH models) and applied mathematics
(inferring initial conditions and parameters of ordinary differential equations). The
model can be described as follows. We observe {Yk}k∈N0 , Yk ∈ Y, which are associated to
an unobserved process {Xk}k∈N0 , Xk ∈ X that is potentially unknown. Define the process
{Yk, Xk}k∈N0 (with y0 some arbitrary point on Y) on a probability space (�,F , Pθ ), where

This work is supported by the MOE Singapore.
Authors’ addresses: A. Jasra, Department of Statistics and Applied Probability, Faculty of Science, Block
S16, 6 Science Drive 2, National University of Singapore, Singapore, 117546, Republic of Singapore; email:
staja@nus.edu.sg; N. Kantas and E. Ehrlich, Department of Mathematics, Imperial College London, London,
SW7 2AZ, UK.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1049-3301/2014/04-ART13 $15.00

DOI: http://dx.doi.org/10.1145/2592254

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 3, Article 13, Publication date: April 2014.

http://dx.doi.org/10.1145/2592254
http://dx.doi.org/10.1145/2592254


13:2 A. Jasra et al.

for every θ ∈ � ⊆ Rdθ , Pθ is a probability measure. Denote by Fk = σ ({Yn, Xn}0≤n≤k).
The model is defined as, for k ∈ N0,

Pθ (Yk+1 ∈ A|Fk) =
∫

A
Hθ (xk, dy) A× X ∈ F

Xk+1 = �θ (Xk, Yk+1)

Pθ (X0 ∈ B) =
∫

B
�θ (x0)dx0 Y × B ∈ F ,

where H : � × X × σ (Y) → [0, 1], � : � × X × Y → X, �θ (x0) is a probability density
on X for every θ ∈ �, and dx0 is Lebesgue measure. Throughout, we assume that for
any (x, θ ) ∈ X × � Hθ (x, ·) admits a density with respect to some σ−finite measure
μ, which we denote as hθ (x, y). Next, we define a prior probability distribution ν(θ )dθ ,
dθ is Lebesgue measure on (�,B(�)), and write ξ (x0, θ ) = �θ (x0)ν(θ ) assumed to be a
proper joint probability density on X×�. Thus, given n observations y1:n := (y1, . . . , yn),
the object of inference is the posterior distribution on � × X:

�n(d(θ, x0)|y1:n) ∝
(

n∏
k=1

hθ
(
�θ

k−1(y0:k−1, x0), yk
))

ξ (x0, θ )dx0dθ, (1)

where we have used the notation for k > 1, �θ
k−1(y0:k−1, x0) = �θ ◦ · · · ◦ �θ (x0, y1),

�θ
1(y0, x0) := �θ (x0, y0)�θ

0(x0, y0) := x0. In most applications of practical interest, the
posterior cannot be computed pointwise, and one has to resort to numerical methods
such as Markov Chain Monte Carlo (MCMC) to draw inference on θ and/or x0.

In this article, we are not only interested in inferring the posterior distribution, but
the scenario for which hθ (x, y) cannot be evaluated pointwise, nor do we have access to a
positive unbiased estimate of it (it is assumed that we can simulate from the associated
distribution). In such a case, it is not possible to draw inference from the true posterior,
even using numerical techniques. The common response in Bayesian statistics is now
to adopt an approximation of the posterior using the notion of Approximate Bayesian
Computation (ABC); see Marin et al. [2012] for a recent overview. ABC approxima-
tions of posteriors are based upon defining a probability distribution on an extended
state-space, with the additional random variables lying on the data-space and usually
distributed according the true likelihood. The closeness of the ABC posterior distribu-
tion is controlled by a tolerance parameter ε > 0, and for some ABC approximations
(but not all) the approximation is exact as ε → 0; the approximation introduced in this
article will be exact when ε = 0.

In this work, we introduce a new ABC approximation of observation-driven time-
series models that is closely associated to that developed in Jasra et al. [2012] for
Hidden Markov Models (HMMs) and later for static parameter inference from HMMs
[Dean et al. 2011]. This latter ABC approximation is particularly well behaved and a
noisy variant (which perturbs the data; (e.g., see Dean et al. [2011] and Fearnhead and
Prangle [2012]) is shown under some assumptions to provide Maximum-Likelihood
Estimators (MLEs) that asympotically in n (with n the length of the time series) are
the true parameters. The new ABC approximation that we develop is studied from a
theoretical perspective. Relying on the recent work of Douc et al. [2012], we show that,
under some conditions, as n → ∞, the ABC posterior has, almost surely, a MAP esti-
mator of θ that converges to a point (or collection of points) that is typically different
from the true parameter θ∗ say. However, a noisy ABC MAP of θ asymptotically con-
verges to the true parameter, almost surely. These results establish that the particular
approximation adopted is reasonably sensible.

The other main contribution of this article is a development of a new MCMC algo-
rithm designed to sample from the ABC approximation of the posterior. Due to the
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nature of the ABC approximation, it is easily seen that standard MCMC algorithms
(e.g., Majoram et al. [2003]) will have an acceptance probability that will fall at an
exponential rate in n. In addition, more advanced ideas, such as those based upon the
pseudomarginal [Beaumont 2003], have recently been shown to perform rather poorly
in theory; see Lee and Latuszynski [2012]. These latter algorithms are based upon
exact approximations of marginal algorithms [Andrieu et al. 2010; Andrieu and Vihola
2012], which in our context is just sampling θ, x0. We develop an MCMC kernel, related
to recent work in Lee [2012], which is designed to have a random running time per
iteration, with the idea of improving the exploration ability of the Markov chain. We
show that the expected cost per iteration of the algorithm, under some assumptions
and for reasonable performance, is O(n2), which compares favourably with compet-
ing algorithms. We also show, empirically, that this new MCMC method out-performs
standard pseudomarginal algorithms.

This article is structured as follows. In Section 2, we introduce our ABC approxima-
tion and give our theoretical results on the MAP estimator. In Section 3, we give our
new MCMC algorithm, along with some theoretical discussion about its computational
cost and stability. In Section 4, our approximation and MCMC algorithm are illustrated
on toy and real examples. In Section 5, we conclude the article with some discussion of
future work. The proofs of our theoretical results are given in the Appendix.

2. APPROXIMATE POSTERIORS USING ABC APPROXIMATIONS

2.1. ABC Approximations and Noisy ABC

As it was emphasised in Section 1, we are interested in performing inference when
hθ (x, y) cannot be evaluated pointwise and we do not have access to a positive unbiased
estimate of it. We will instead assume that it is possible to sample from hθ . In such
scenarios, one cannot use standard simulation-based methods. For example, in an
MCMC approach, the Metropolis-Hastings (M-H) acceptance ratio cannot be evaluated
even though it may be well defined.

Following the work in Dean et al. [2011] and Jasra et al. [2012] for HMMs, we
introduce an ABC approximation for the density of the posterior in (1) as follows:

πε
n(θ, x0|y1:n) ∝ ξ (x0, θ )

n∏
k=1

hθ,ε
(
�θ

k−1(y0:k−1, x0), yk
)
, (2)

with ε > 0 and

hθ,ε
(
�θ

k−1(y0:k−1, x0), yk
) =

∫
Bε (yk) hθ

(
�θ

k−1(y0:k−1, x0), y
)
μ(dy)

μ(Bε(yk))
, (3)

where we denote Bε(y) as the open ball centred at y with radius ε and write μ(Bε(y)) =∫
Bε (y) μ(dx). Note that whilst hθ,ε is not available in closed form, we will be able to design

algorithms that can sample from πε
n(θ, x0|y1:n) by sampling on an extended state-space;

this is discussed in Section 3. A similar approximation can be found in Jasra et al.
[2012] and Barthelmé and Chopin [2011] but for different models. As noted in the
aforementioned articles, approximations of the form (2) are particularly sensible in that
they not only retain the probabilistic structure of the original statistical model but, in
addition, facilitate simple implementation of statistical computational methods. The
former point is particularly useful in that one can study the properties (and accuracy)
of the ABC approximation using similar mathematical tools to the original model; this
is illustrated in Section 2.2.

In general, we will refer to ABC as the procedure of performing inference for the
posterior in (2). In addition, we will call noisy ABC the inference procedure that uses a

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 3, Article 13, Publication date: April 2014.



13:4 A. Jasra et al.

perturbed sequence of data instead of the observed one. This sequence is {Ŷk}k≥0, where,
conditional upon the observations and independently, Ŷk|Yk = yk ∼ UBε (yk) (uniformly
distributed on Bε(Yk)). We remark that noisy ABC had been developed elsewhere in
Dean et al. [2011] and Fearnhead and Prangle [2012]. In particular, the theoretical
results presented in Section 2.2 have been proved for ABC approximations of HMMs
in Dean et al. [2011]; indeed, the results of this article are less precise than in Dean
et al. [2011] with a similar deduction—that noisy ABC can remove bias in parameter
estimation as the number of data grow. Dean et al. [2011] is based upon a particular
identity for ABC approximations of HMMs and is preceded by a more general (and
related) identity in Wilkinson et al. [2013].

2.2. Consistency Results for the MAP Estimator

In this section, we will investigate some interesting properties of the ABC posterior
in (2). In particular, we will look at the asymptotic behaviour with n of the resulting
MAP estimators for θ . The properties of the MAP estimator reveal information about
the mode of the posterior distribution as we obtain increasingly more data. Throughout
the section, we will extend the process to have doubly infinite time indices (i.e., on Z)
and use notations such as y−∞:k, k > −∞ to denote sequences from the infinite past.
Throughout, ε > 0 is fixed. To simplify the analysis in this section, we will assume that

(A1) —x0 is fixed and known.
—ν(θ ) is bounded and positive everywhere in �.
— H and h do not depend upon θ . Thus, we have the following model recursions

for the true model, for some θ∗ ∈ �:

Pθ∗ (Yk+1 ∈ A|Fk) =
∫

A
H(xk, dy), A× X ∈ F ,

Xk+1 = �θ∗
(Xk, Yk+1), (4)

where we will denote associated expectations to Pθ∗ as Eθ∗ .

In addition, for this section we will introduce some extra notations: (X, d) is a compact,
complete and separable metric space and (�, d) is a compact metric space, with � ⊂ Rdθ .
Let Qε be the conditional probability law associated to the random sequence {Ŷk}k∈Z,
defined above.

We proceed with some additional technical assumptions:

(A2) {Xk, Yk}k∈Z is a stationary stochastic process, with {Yk}k∈Z strict sense stationary
and ergodic, following (4). See Fan and Yao [2005, Definition 2.2] for a definition
of strict sense stationary.

(A3) For every (x, y) ∈ X × Y, θ → �θ (x, y) is continuous. In addition, there exist
0 < C < ∞ such that for any (x, x′) ∈ X, supy∈Y |h(x, y) − h(x′, y)| ≤ Cd(x, x′).
Finally, 0 < h ≤ h(x, y) ≤ h < ∞, for every (x, y) ∈ X × Y.

(A4) There exist a measurable function � : Y → (0, �), 0 < � < 1, such that for every
(θ, y, x, x′) ∈ � × Y × X2

d(�θ (x, y),�θ (x′, y)) ≤ �(y)d(x, x′).

Under the assumptions thus far, for any x ∈ X, limm→∞ �θ
m+1(Y−m:0, x) exists (resp.

limm→∞ �θ
m+1(Ŷ−m:0, x)) and is independent of x, Pθ∗ a.s. (resp. Pθ∗ ⊗ Qε (product mea-

sure) a.s.); write the limit �θ
∞(Y−∞:0) (resp. �θ

∞(Ŷ−∞:0)). See the proof of Lemma 20 of
Douc et al. [2012] for details.
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(A5) The following statements hold:
(a) If H(x, ·) = H(x′, ·), then x = x′.
(b) If �θ

∞(Ŷ−∞:0) = �θ∗
∞(Ŷ−∞:0) holds Pθ∗ ⊗ Qε−a.s., then θ = θ∗.

Assumptions (A2–A5) and the compactness of � are standard assumptions for
maximum-likelihood estimation, and they can be used to show the uniqueness of the
MLE; see Douc et al. [2012] for more details (see also Appendix A, where the assump-
tions of Douc et al. [2012] are given, and Cappé et al. [2005, Chapter 12] in the context
of HMMs). Note that 0 < h ≤ h(x, y) ≤ h < ∞, for every (x, y) ∈ X × Y will typically
hold if X × Y is compact and, again, is a typical assumption used in the analysis of
HMMs for the observation density (although weaker assumptions have been adopted).
If the prior ν(θ ) is bounded and positive everywhere on �, it is a simple corollary that
the MAP estimator will correspond to the MLE. In the remaining part of this section,
we will adapt the analysis in Douc et al. [2012] for MLE to the ABC setup. We remark
that the assumptions are similar to Douc et al. [2012], as the asymptotic analysis of
such models is in its infancy; the objective of this article is not to make advances in the
theory but more to consider the approximation introduced in this article. We note also
that some of the assumptions are verified in Douc et al. [2012] for some examples, and
we direct the reader to that article for further discussion.

In particular, we are to estimate θ using the log-likelihood function:

lθ,x(y1:n) := 1
n

n∑
k=1

log
(
hε
(
�θ

k−1(y0:k−1, x), yk
))

.

We define the ABC MLE for n observations as

θn,x,ε = arg maxθ∈�lθ,x(y1:n).

We proceed with the following proposition, whose proof is in Appendix A:

PROPOSITION 2.1. Assume (A1–A4). Then for every x ∈ X and fixed ε > 0,

lim
n→∞ d(θn,x,ε, �

∗
ε ) = 0 Pθ∗ − a.s.,

where �∗
ε = arg maxθ∈�Eθ∗ [log(hε(�θ

∞(Y−∞:0), Y1))].

The result establishes that the estimate will converge to a point (or collection of
points), which is typically different to the true parameter. That is to say, it is not
always the case (without additional assumptions) that �ε = {θ∗}, which is shown next.
Hence, there is often an intrinsic asymptotic bias for the plain ABC procedure. To
correct this bias, we consider the noisy ABC procedure; this replaces the observations
by Ŷk. The noisy ABC MLE estimator is then

θ̂n,x,ε = arg maxθ∈�

1
n

n∑
k=1

log
(
hε
(
�θ

k−1(ŷ0:k−1, x), ŷk
))

.

We have the following result, whose proof is also in Appendix A:

PROPOSITION 2.2. Assume (A1–A5) and that X0 = �θ
∞(Ŷ−∞:0). Then for every x ∈ X and

fixed ε > 0,

lim
n→∞ d(θ̂n,x,ε , θ

∗) = 0 Pθ∗ ⊗ Qε − a.s..

The result shows that the noisy ABC MLE estimator is asymptotically unbiased. There-
fore, given that in our setup the ABC MAP estimator corresponds to the ABC MLE,
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13:6 A. Jasra et al.

we can conclude that the mode of the posterior distribution as we obtain increasingly
more data is converging towards the true parameter.

3. COMPUTATIONAL METHODOLOGY

Recall that we formulated the ABC posterior in (2), which can also be written as

πε
n(θ, x0|y1:n) = pε

θ,x0
(y1:n)ξ (x0, θ )∫

pε
θ,x0

(y1:n)ξ (x0, θ )dx0dθ
,

with

pε
θ,x0

(y1:n) =
∫ n∏

k=1

IBε (yk)(uk)
μ(Bε(yk))

hθ
(
�θ

k−1(y0:k−1, x0), uk
)
du1:n.

Note that we have just used Fubini’s theorem to rewrite the likehood pε
θ,x0

(y1:n) as an
integral of a product instead of a product of integrals of

∏n
k=1 hθ,ε(�θ

k−1(y0:k−1, x0), yk).
In this article, we will focus only on MCMC algorithms and in particular on the M-H
approach; in Section 3.2.5, we discuss alternative methodologies and our contribution
in this context. In order to sample from the posterior πε

n one runs an ergodic Markov
chain with the invariant density being πε

n. Then, after a few iterations when the chain
has reached stationarity, one can treat the samples from the chain as approximate
samples from πε

n. This is shown in Algorithm 1, where for convenience we denote
γ = (θ, x0). The one-step transition kernel of the MCMC chain is usually described as
the M-H kernel and follows from Step 2 in Algorithm 1.

ALGORITHM 1: A marginal M-H algorithm for πε(γ |y1:n)
(1) (Initialisation) At t = 0, sample γ0 ∼ ξ .
(2) (M-H kernel) For t ≥ 1:

—Sample γ ′|γt−1 from a proposal Q(γt−1, ·) with density q(γt−1, ·).
—Accept the proposed state and set γt = γ ′ with probability

1 ∧ pε
γ ′ (y1:n)

pε
γt−1

(y1:n)
× ξ (γ ′)q(γ ′, γt−1)

ξ (γt−1)q(γt−1, γ ′)
,

otherwise set γt = γt−1. Set t = t + 1 and return to the start of 2.

Unfortunately, pε
θ,x0

(y1:n) is not available analytically and cannot be evaluated, so this
rules out the possibility of using traditional MCMC approaches such as Algorithm 1.
However, one can resort to the so-called pseudomarginal approach whereby positive
unbiased estimates of pε

θ,x0
(y1:n) are used instead within an MCMC algorithm; e.g., see

Andrieu et al. [2010] and Andrieu and Vihola [2012]. We will refer to this algorithm
as ABC-MCMC (despite the fact that this terminology has been used in other contexts
in the literature). The resulting algorithm can be posed as one targeting a posterior
defined on an extended state-space so that its marginal coincides with πε

n(θ, x0|y1:n).
We will use these ideas to present ABC-MCMC as an M-H algorithm that is an exact
approximation to an appropriate marginal algorithm.

To illustrate an example of these ideas, we proceed by writing a posterior on an
extended state-space � × X × Yn as follows:

πε
n(θ, x0, u1:n|y1:n) ∝ ξ (x0, θ )

n∏
k=1

IBε (yk)(uk)hθ
(
�θ

k−1(y0:k−1, x0), uk
)
. (5)
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It is clear that (2) is the marginal of (5), and hence the similarity in the notation. As we
will show later in this section, extending the target space in the posterior as in (5) is
not the only choice. We emphasise that the only essential requirement for each choice
is that the marginal of the extended target is πε

n(θ, x0|y1:n), but one should be cautious
because the particular choice will affect the mixing properties and the efficiency of the
MCMC scheme that will be used to sample from πε

n(θ, x0, u1:n|y1:n) in (5) or another
variant.

3.1. Standard Approaches for ABC-MCMC

We will now look at two basic different choices for extending the ABC posterior while
keeping the marginal fixed to πε(θ, x0|y1:n). In the remainder of the article, we will
denote γ = (θ, x0) as we did in Algorithm 1.

Initially consider the ABC approximation when extended to the space � × X × Yn:

πε
n(γ, u1:n|y1:n) = ξ (γ )pε

γ (y1:n)∫
ξ (γ )pε

γ (y1:n)dγ

∏n
k=1

IBε (yk)(uk)
μ(Bε (yk))

pε
γ (y1:n)

n∏
k=1

hθ
(
�θ

k−1(y0:k−1, x0), uk
)
.

Recall that one cannot evaluate hθ (�θ
k−1(y0:k−1, x0), uk) and is only able to simulate from

it. In Algorithm 2, we present a natural M-H proposal that could be used to sample
from πε

n(γ, u1:n|y1:n) instead of the one shown in Step 2 of Algorithm 1. Note that this
time, the state of the MCMC chain is composed of (γ, u1:n). Here, each uk assumes the
role of an auxiliary variable to be eventually integrated out at the end of the MCMC
procedure.

ALGORITHM 2: M-H proposal for basic ABC-MCMC
— Sample γ ′|γ from a proposal Q(γ, ·) withdensity q(γ, ·).
— Sample u

′
1:n from a distribution with joint density

∏n
k=1 hθ ′(

�θ ′
k−1(y0:k−1, x0), uk

)
.

— Accept the proposed state
(
γ ′, u′

1:n

)
with probability:

1 ∧
∏n

k=1 IBε (yk)(u
′
k)∏n

k=1 IBε (yk)(uk)
× ξ (γ ′)q(γ ′, γ )

ξ (γ )q(γ, γ ′)
.

As n increases, the M-H kernel in Algorithm 2 will have an acceptance probability
that falls quickly with n. In particular, for any fixed γ , the probability of obtaining a
sample in Bε(y1)×· · ·× Bε(yn) will fall at an exponential rate in n. This means that this
basic ABC-MCMC approach will be inefficient for moderate values of n.

This issue can be dealt with by using N multiple trials so that at each k, some
auxiliary variables (or pseudoobservations) are in the ball Bε(yk). This idea originates
from Beaumont [2003] and Majoram et al. [2003] and in fact augments the posterior
to a larger state-space, � × X × YnN, in order to target the following density:

π̃ ε
n

(
γ, u1:N

1:n |y1:n
) = ξ (γ )pε

γ (y1:n)∫
ξ (γ )pε

γ (y1:n)dγ

∏n
k=1

∑N
j=1 IBε (yk)(u

j
k)

Nμ(Bε (yk))

pε
γ (y1:n)

n∏
k=1

N∏
j=1

hθ
(
�θ

k−1(y0:k−1, x0), uj
k

)
.

Again, one can show that the marginal of interest πε(γ |y1:n) is preserved—that is,

πε
n(γ |y1:n) =

∫
YnN

π̃ ε
n

(
γ, u1:N

1:n |y1:n
)
du1:N

1:n =
∫

Yn
πε

n(γ, u1:n|y1:n)du1:n.
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13:8 A. Jasra et al.

In Algorithm 3, we present an M-H kernel with invariant density π̃ ε
n. The state of the

MCMC chain now is (γ, u1:N
1:n ). We remark that as N grows, one expects to recover the

properties of the ideal M-H algorithm in Algorithm 1. Nevertheless, it has been shown
in Lee and Latuszynski [2012] that even the M-H kernel in Algorithm 3 does not always
perform well. It can happen that the chain often gets stuck in regions of the state-space
� × X where

αk(y1:k, ε, γ ) :=
∫

Bε (yk)
hθ
(
�θ

k−1(y0:k−1, x0
)
, u)du

is small. Given this notation, we remark that

pε
γ (y1:n) =

n∏
k=1

αk(y1:k, ε, γ )
μ(Bε(yk))

,

which is useful to note from here on.

ALGORITHM 3: M-H proposal for ABC with N trials
— Sample γ ′|γ from a proposal Q(γ, ·) withdensity q(γ, ·).
— Sample u′ 1:N

1:n from a distribution with jointdensity∏n
k=1

∏N
j=1 hθ ′(

�θ ′
k−1(y0:k−1, x0), u′ j

k

)
.

— Accept the proposed state
(
γ ′, u′ 1:N

1:n

)
with probability:

1 ∧
∏n

k=1( 1
N

∑N
j=1 IBε (yk)(u′ j

k))∏n
k=1( 1

N

∑N
j=1 IBε (yk)(u

j
k))

× ξ (γ ′)q(γ ′, γ )
ξ (γ )q(γ, γ ′)

.

3.2. An M-H Kernel for ABC with a Random Number of Trials

We will address this shortfall detailed previously by proposing an alternative
augmented target and corresponding M-H kernel. Intrinsically, on inspection of
Algorithm 3, one would like to ensure that many of the N > 1 samples, u

′ j
k , will

lie in Bε(yk), whilst not necessarily being more clever about the proposal mechanism.
The basic idea is that one will use the same simulation mechanism but ensure that
we will have all N samples, u

′ j
k , in Bε(yk). The by-product of the strategy we adopt, so

that we sample from πε
n(γ |y1:n), will be that the simulation time per iteration of the

MCMC kernel will be a random variable; in words, this idea is as follows. At a given
iteration of the MCMC, we will sample the timesteps of the model sequentially after
first proposing a new γ , call this γ ′. At each timestep k (associated to the model), we
keep on sampling the u

′ j
k until there are exactly N in Bε(yk). The number of samples

to achieve this is a random variable, and conditional on γ ′ its distribution is known.
This is a negative binomial random variable with success probability αk(y1:k, ε, γ

′). The
contribution here will be to formulate a particular extended target distribution on γ
and the number of simulated samples at each timestep so that one can use the proposal
mechanism hinted at previously and still sample from πε

n(γ |y1:n).
Consider an alternative extended target, for N ≥ 2, mk ∈ {N, N + 1, . . . , }, 1 ≤ k ≤ n:

π̂ ε
n(γ, m1:n|y1:n) = ξ (γ )pε

γ (y1:n)∫
ξ (γ )pε

γ (y1:n)dγ

∏n
k=1

N−1
μ(Bε (yk))(mk−1)

pε
γ (y1:n)

×
n∏

k=1

(
mk − 1
N − 1

)
αk(y1:k, γ, ε)N(1 − αk(y1:k, γ, ε))mk−N.
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Standard results for negative binomial distributions (see Neuts and Zacks [1967] and
Zacks [1980] for more details, as well as Appendix B.1) imply that

∞∑
mk=N

1
mk − 1

(
mk − 1
N − 1

)
αk(y1:k, ε, γ )N(1 − αk(y1:k, ε, γ ))mk−N = αk(y1:k, ε, γ )

N − 1
. (6)

It then follows that from (6), that pε
γ (y1:n) is equal to∑

m1:n∈{N,N+1,... }n

n∏
k=1

[
N − 1

μ(Bε(yk))(mk − 1)

(
mk − 1
N − 1

)
αk(y1:k, γ, ε)N(1 − αk(y1:k, γ, ε))mk−N

]
and thus that the marginal with respect to γ is the one of interest:

πε
n(γ |y1:n) =

∑
m1:n∈{N,N+1,... }n

π̂ ε
n(γ, m1:n|y1:n).

In Algorithm 4, we present an M-H kernel with invariant density π̂ ε
n. The state of the

MCMC chain this time is (γ, m1:n,) and the proposal mechanism is as described at the
start of this section.

ALGORITHM 4: M-H proposal with a random number of trials
— Sample γ ′|γ from a proposal Q(γ, ·) withdensity q(γ, ·).
— For k = 1, . . . , n repeat the following: sample u1

k, u2
k, . . . with probability density

hθ ′ (�θ ′
k−1(y0:k−1, x′

0), uk) until there are N samples lying in Bε(yk); thenumber of samples to
achieve this (including the successful trial) is m′

k.
— Accept

(
γ ′, m′

1:n

)
with probability:

1 ∧
∏n

k=1
1

m′
k−1∏n

k=1
1

mk−1

× π (γ ′)q(γ ′, γ )
π (γ )q(γ, γ ′)

.

The potential benefit of the kernel associated to Algorithm 4 is that one expects the
probability of accepting a proposal is higher than the previous M-H kernel associated
with Algorithm 3 (for a given N). This comes at a computational cost that is both in-
creased and random; this may not be a negative, in the sense that the associated mixing
time of the MCMC kernel may fall relative to the proposal considered in Algorithm 3
whose computational cost per iteration is deterministic. The proposed kernel is based
on the N−hit kernel of Lee [2012], which has been adapted here to account for the data
being a sequence of observations resulting from a time series.

3.2.1. On the choice of N. To implement Algorithm 4, one needs to select N. We now
present a theoretical result that can provide some intuition on choosing a sensible
value of N. Let Eγ,N[·] denote expectation with respect to

∏n
k=1

(mk−1
N−1

)
αk(y1:k, ε, γ )N(1 −

αk(y1:k, ε, γ ))mk−N given γ, N; we use the capital symbols M1:n in the expectation opera-
tor. One sensible way to select N as function of n, in Algorithm 4, is so that the relative
variance associated with (c.f. the acceptance probability in Algorithm 4)

n∏
k=1

1
mk − 1

(conditional on γ , m1:n are generated from
∏n

k=1

(mk−1
N−1

)
αk(y1:k, ε, γ )N(1−αk(y1:k, ε, γ ))mk−N)

will not grow with n; in general, one might expect the algorithm to get worse as n grows.
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In other words, if N can be chosen to control the relative variance described previously,
with respect to n, then one might hope that a major contributor to the instability of the
M-H algorithm, that is growing n, is controlled and the resulting M-H algorithm can
converge quickly. We will assume that the observations are fixed and known and will
adopt the additional assumption:

(A6) For any fixed ε > 0, γ ∈ � × X, we have αk(y1:k, ε, γ ) > 0.

The following result holds, whose proof can be found in Appendix B.2:

PROPOSITION 3.1. Assume (A6) and let β ∈ (0, 1), n ≥ 1, and N ≥ 2n
1−β

∨ 3. Then for
fixed (γ, ε) ∈ � × X × R+, we have

Eγ,N

⎡⎣(∏n
k=1

1
μ(Bε (yk))(Mk−1)

pε
γ (y1:n)

− 1

)2
⎤⎦ ≤ Cn

N
,

where C = 1/β.

The result shows that one should set N = O(n) for the relative variance not to
grow with n, which is unsurprising, given the conditional independence structure of
the m1:n. To get a better handle on the variance, suppose that n = 1, then for γ fixed
and taking expectations with respect to

∏N
j=1 hθ (x0, uj

1) (i.e., considering the proposal
in Algorithm 3)

Varγ,N

⎡⎣ 1
N

N∑
j=1

IBε (y1)
(
uj

1

)⎤⎦ = α1(y1, ε, γ )(1 − α1(y1, ε, γ ))
N

. (7)

In the context of Algorithm 4, one can show that when taking expectations with respect
to
(m1−1

N−1

)
α1(y1, ε, γ )N(1 − αk(y1, ε, γ ))m1−N (see the Remarks in Appendix B.1),

Varγ,N

[
N − 1
M1 − 1

]
≤ α1(y1, ε, γ )2

(N − 2)
. (8)

The variance in (8) is less than or equal to that in (7) if

N
N − 2

≤ 1 − α1(y1, ε, γ )
α1(y1, ε, γ )

,

which is likely to occur if α1(y1, ε, γ ) is not too large (recall that we want ε to be small
so that we have a good approximation of the true posterior) and N is moderate—this
is precisely the scenario in practice. Note that the issue of computational cost, which
is not taken into account, is very important. This reduces the possible impact of the
previous discussion, but now we have some information on when (and if ever) the new
proposal in Algorithm 4 could perform better than that in Algorithm 3. This at least
suggests that one might want to try Algorithm 4 in practice.

Remark 3.1. In the context of Algorithm 3, it can be shown, when taking expectations
with respect to

∏n
k=1

∏N
j=1 hθ (�θ

k−1(y0:k−1 , x0), uj
k) and fixing γ, N (writing this again as

Eγ,N), that

Eγ,N

⎡⎢⎣
⎛⎝ n∏

k=1

⎡⎣⎛⎝ 1
Nμ(Bε(yk))

N∑
j=1

IBε (yk)
(
uj

k

)⎞⎠⎤⎦/pε
γ (y1:n) − 1

⎞⎠2
⎤⎥⎦=

n∏
k=1

[
1

αk(y1:k, ε, γ )N
+ N − 1

N

]
−1

(9)
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compare to the acceptance probability in Algorithm 3 to see the relevance of this.
Note that the preceding quantity is not uniformly upper bounded in γ unless
infk,γ αk(y1:k, ε, γ ) ≥ C > 0, which may not occur. Conversely, Proposition 3.1 shows that
the relative variance associated with the proposal in Algorithm 4 is uniformly upper
bounded in γ under minimal conditions. We suspect that this means in practice that
the kernel with random number of trials may mix faster than an MCMC kernel using
the proposal in Algorithm 3.

3.2.2. Computational Considerations. As the cost per iteration of Algorithm 4 is random,
we will investigate this further. We denote the proposal of γ, m1:n as Q̃ (i.e., as in
Algorithm 4). Let ζ be the initial distribution of the MCMC chain and ζ Kt the distri-
bution of the state at time t. In addition, denote by mt

k the proposed state for mk at
iteration t. We will write the expectation with respect to ζ Kt ⊗ Q̃ as Eζ Kt⊗Q̃. We will
assume that the observations are fixed and known. Then, we have the following result:

PROPOSITION 3.2. Let ε > 0, and suppose that there exists a constant C > 0 such that
for any n ≥ 1, we have infk,γ αk(y1:k, γ, ε) ≥ C, μ−a.e.. Then, it holds for any N ≥ 2,
t ≥ 1, that

Eζ Kt⊗Q̃

[
n∑

k=1

Mt
k

]
≤ nN

C
.

The expected value of
∑n

k=1 mt
k grows at most linearly with n when taking expecta-

tions with respect to ζ Kt ⊗ Q̃. By Proposition 3.1, we should scale N linearly with n
to control the relative variance of the proposed

∏n
k−1 1/(mt

k − 1) (uniformly in γ and
irrespective of t), and on average, we expect that we will need to wait O(n) timesteps
to generate all of the {mt

k}n
k=1 so that approximately the computational cost is O(n2)

per iteration. This approximate cost of O(n2) per iteration is comparable to many exact
approximations of MCMC algorithms (e.g., Andrieu et al. [2010]), albeit in a much
simpler situation.

Note also that the kernel in Algorithm 3 is expected to require a cost of O(n2) per
iteration for reasonable performance (i.e., controlling a relative variance, as described
in Remark 3.1), although this cost here is deterministic. This can be shown by assuming
that infk,γ αk(y1:k, ε, γ ) ≥ C > 0 and yielding the upper bound of (1 + 1/(CN))n (on the
term on the L.H.S. of (9)), and then one should set N = O(n) for the upper bound to
go to a limit as n grows; this is done n times. As mentioned previously, one expects
the approach with random number of trials to work better with regards to the mixing
time, especially when the values of αk(y1:k, ε, γ ) are not large. We attribute this to
Algorithm 4, providing a more targetted way to use the simulated auxiliary variables.
This will be illustrated numerically in Section 4.

3.2.3. Relating the Variance of the Estimator or pε
γ(y1:n) with the Efficiency of ABC-MCMC. A com-

parison of our results with the interesting work in Doucet et al. [2012] seems relevant.
There the authors deal with a more general context that includes the proposals in both
Algorithms 3 and 4 as special cases. Doucet et al. [2012] show that we should choose N
as a particular asymptotic (in N) variance; the main point is that the (asymptotic) vari-
ance of the estimate of pε

γ (y1:n) should be the same for each γ . We conjecture that in the
context of Algorithm 4, a finite sample version of the work of Doucet et al. [2012] would
be to choose N such that the actual variance (variance in the sense of Proposition 3.1)
of the estimate of pε

γ (y1:n) is constant with respect to γ . In this scenario, on inspection
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of the proof of Proposition 3.1, for a given γ , one should set N to be the solution of(
n∏

k=1

αk(y1:k, ε, γ )2

)(
1

(N − 1)n(N − 2)n − 1
(N − 1)2n

)
= C

for some desired (upper bound on the) variance C (whose optimal value would need to
be obtained). This would lead to N changing at each iteration, in addition, but does
not change the simulation mechanism. Unfortunately, one cannot do this in practice,
as the αk(y1:k, ε, γ ) are unknown.

3.2.4. On the Ergodicity of the Sampler. We now give a comment regarding the ergodicity
of the MCMC kernel associated with Algorithm 4. If there exists a constant C < ∞
independent of γ such that

1∏n
k=1 αk(y1:k, ε, γ )

≤ C (10)

and the marginal MCMC kernel in Algorithm 1 is geometrically ergodic, then by
Andrieu and Vihola [2012, Propositions 7 and 9], the MCMC kernel of Algorithm 4
is also geometrically ergodic. This result follows because the weight wx in Andrieu and
Vihola [2012] is ∏n

k=1
N−1

μ(Bε (yk))(mk−1)

pε
γ (y1:n)

,

which is upper bounded uniformly in γ under (10), which allows one to apply Proposi-
tions 7 and 9 of Andrieu and Vihola [2012] [Andrieu and Vihola 2012, Propositions 7,
9] (along with the geometric ergodicity of the marginal MCMC kernel).

3.2.5. Some Comments on Alternative Simulation Schemes. We have introduced a new
MCMC kernel for our ABC approximation. However, there are many contributions to
the literature on simulation-based methods for ABC approximations, particularly those
based on sequential Monte Carlo methods; see, for instance, Beaumont et al. [2009]
and Del Moral et al. [2012], which might arguably be considered the gold-standard
approaches. In terms of the approach of Del Moral et al. [2012], this generally performs
well when the underlying MCMC kernels have a fast rate of convergence, and as such,
this is the idea of the method introduced here; the MCMC kernel associated to the pro-
posal in Algorithm 4 could be used within the SMC approach of Del Moral et al. [2012]
(although one would need to modify the procedure, as it cannot be used as presented
in Del Moral et al. [2012]), potentially enhancing it. The approach in Beaumont et al.
[2009] is possibly unsuitable for this particular model structure (at least as described
in Beaumont et al. [2009, Section 3]), as the acceptance probability per sample is likely
to fall at an exponential rate in n.

4. EXAMPLES

Two examples are now presented. It is remarked that the assumptions in Section 2.2
do not hold in these examples. However, it is found that some of the results derived
there seem to hold; it is conjectured that our results in Section 2.2 can be proved under
weaker hypotheses than we have adopted.

4.1. Scalar Normal Means Model

4.1.1. Model. For this example, let each of Yk, Xk, θ be a scalar real random variable
and consider the model

Yk+1 = θ Xk + κk, Xk+1 = Xk
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with X0 = 1 and κk
i.i.d.∼ N (0, σ 2), where we denote N (0, σ 2) the zero mean normal

distribution with variance σ 2. The prior on θ is N (0, φ). This model is usually referred
to as the standard normal means model in one dimension, and the posterior is given
by

θ |y1:n ∼ N
(

σ 2
n

σ 2

n∑
k=1

yk, σ
2
n

)
,

where σ 2
n = ( 1

φ
+ n

σ 2 )−1. Note that if Yk
i.i.d.∼ N (θ∗, σ 2), then the posterior on θ is consistent

and concentrates around θ∗ as n → ∞.
The ABC approximation after marginalizing out the auxiliary variables has a likeli-

hood given by

pε
θ (y1:n) = 1

εn

n∏
k=1

[
F
(

yk + ε − θ

σ

)
− F

(
yk − ε − θ

σ

)]
,

where F is the standard normal cumulative density function. Thus, this is a scenario
where we can perform the marginal MCMC.

4.1.2. Simulation Results. Three datasets are generated from the model with n ∈
{10, 100, 1, 000} and σ 2 = 1. In addition, for ε = 1, we perturb the datasets in or-
der to use them for noisy ABC. For the sake of comparison, we also generate a noisy
ABC dataset for ε = 10. We will also use a prior with φ = 1.

We run the proposal in Algorithm 4 (we will frequently use the expression Algorithm
to mean an MCMC kernel with the given proposal mechanism of the Algorithm),
Algorithm 3, and a marginal MCMC algorithm that just samples on the parameter
space R (i.e., the invariant density is proportional to pε

θ (y1:n)ν(θ )). Each algorithm is
run with a normal random walk proposal on the parameter space with the same scaling.
The scaling chosen yields an acceptance rate of around 0.25 for each run of the marginal
MCMC algorithm. Algorithm 4 is run with N = nand Algorithm 3 with a slightly higher
value of N so that the computational times are about the same (thus, the running time
of Algorithm 4 is not a problem in this example). The algorithms are run for 10,000
iterations, and the results can be found in Figures 1, 2, and 3.

In Figure 1, the density plots for the posterior samples on θ , from the marginal
MCMC, can be seen for ε ∈ {1, 10} and each value of n. When ε = 1, we can observe that
both ABC and noisy ABC get closer to the true posterior as n grows. For noisy ABC, this
is the behavior that is predicted in Section 2.2. In particular, Proposition 2.1 suggests
that the ABC can have some asymptotic bias, whereas this should not be the case for
noisy ABC in Proposition 2.2; this is seen for finite n, especially in Figure 1(a). For the
ABC approximation, following the proof of Theorem 1 in Jasra et al. [2012] (if one can
adopt the same assumptions for hθ for g [of that paper], the proof [and hence result]
in Jasra et al. [2012] can be used, as it does not make any assumption on the hidden
Markov chain), one can see that the bias falls with ε; hence, in this scenario, there is
not a substantial bias for the standard ABC approximation. When we make ε larger, a
more pronounced difference between ABC and noisy ABC can be seen, and it appears
as n grows that the noisy ABC approximation is slightly more accurate (relative to
ABC).

We now consider the similarity of Algorithms 3 and 4 to the marginal algorithm (i.e.,
the kernel that both procedures attempt to approximate); the results are in Figures 2
and 3, and ε = 1 throughout. With regards to both the density plots (Figure 2) and
autocorrelations (Figure 3—only for noisy ABC; we found similar results when consid-
ering plain ABC), we can see that both MCMC kernels appear to be quite similar to
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Fig. 1. Marginal MCMC density plots for normal means example. In each plot, the true posterior (full),
noisy ABC (dot), ABC (dash) densities of θ are plotted for different values of n (10, first row; 100, second row;
1,000, third row) and ε (1, first column; 100, second column). The vertical line is the value of θ that generated
the data.
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Fig. 2. MCMC density plots for normal means example. In each plot, the true posterior (black), ABC (first
column) or noisy ABC (second column) densities of θ are plotted for different values of n (10, first row; 100,
second row; 1,000, third row). In addition, the plots are for Algorithm 3 (dot) and Algorithm 4 (dash). The
vertical line is the value of θ that generated the data. Throughout, ε = 1.
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Fig. 3. Autocorrelation plots for normal means example. In each plot, the autocorrelation for every fifth
iteration is plotted, all for noisy ABC, for marginal MCMC (full), Algorithm 3 (dot), and Algorithm 4 (dash).
Three different values of n are presented, and ε = 1 throughout. The dotted horizontal lines are a default
confidence interval generated by the R package.
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the marginal MCMC. It is also noted that the acceptance rates of these latter kernels
are also not far from that of the marginal algorithm (results not shown). These results
are unsurprising given the simplicity of the density that we target, but still reassur-
ing; a more comprehensive comparison is given in the next example. Encouragingly,
Algorithms 3 and 4 do not seem to noticeably worsen as n grows; this shows that, at
least for this example, the recommendation of N = O(n) is quite useful. We remark
that whilst these results are for a single batch of data, the results with regards to the
performance of the MCMC are consistent with other datasets.

4.2. Real Data Example

4.2.1. Model. Set, for (Yk, Xk) ∈ R × R+

Yk+1 = κk k ∈ N0

Xk+1 = β0 + β1 Xk + β2Y 2
k+1 k ∈ N0,

where κk|xk
ind∼ S(0, xk, ϕ1, ϕ2) (i.e., a stable distribution, with location 0, scale Xk and

asymmetry and skewness parameters ϕ1, ϕ2; see Chambers et al. [1976] for more infor-
mation). We set

X0 ∼ Ga(a, b), β0, β1, β2 ∼ Ga(c, d),

where Ga(a, b) is a Gamma distribution with mean a/b and θ = (β0:2) ∈ (R+)3. This is
a GARCH(1,1) model with an intractable likelihood—that is, one cannot perform exact
parameter inference and has to resort to approximations.

4.2.2. Simulation Results. We consider daily log-returns data from the S&P 500 index
from 03/1/11 to 14/02/13, which constitutes 533 data points. In the priors, we set a =
c = 2 and b = d = 1/8, which are not overly informative. In addition, ϕ1 = 1.5 and
ϕ2 = 0. The values of ϕ1 = 1.5 means that the observation density has very heavy tails
(characteristic of financial data) and ϕ2 = 0 that the distribution of the log-returns is
symmetric about zero; in general, this may not occur for all log-returns data but is a
reasonable assumption in an initial data analysis. We consider ε ∈ {0.01, 0.5} and only
a noisy ABC approximation of the model. The values of ε are chosen so as to illustrate
two scenarios: one where the proposal in Algorithm 3 seems to mix very well, with
little efforts—that is, constructing q—and one where it does not seem to mix well, even
with considerable effort. Algorithms 3 and 4 are to be compared. The MCMC proposals
on the parameters are normal random walks on the log-scale, and for both algorithms,
we set N = 250. It should be noted that our results are fairly robust to changes in
N ∈ [100, 500], which are the values with which we tested the algorithm.

In Figure 4, we present the autocorrelation plot of 50,000 iterations of both MCMC
kernels when ε = 0.5. Algorithm 3 took about 0.30 seconds per iteration, and
Algorithm 4 took about 1.12 seconds per iteration During preliminary runs for the
case ε = 0.5, we modified the proposal variances to yield an acceptance rate of around
0.3. The plot shows that both algorithms appear to mix across the state-space in a very
reasonable way. The MCMC procedure associated with Algorithm 4 takes much longer
and in this situation does not appear to be required. This run is one of many that we
performed, and we observed this behaviour in many of our runs.

In Figure 5, we can observe the autocorrelation plots from a particular (typical) run
when ε = 0.01. In this case, both algorithms are run for 200,000 iterations. Algorithm 3
took about 0.28 seconds per iteration, and Algorithm 4 took about 2.06 seconds per it-
eration; this issue is discussed next. During preliminary runs for the case ε = 0.01,
we attempted to modify the proposal variances to yield an acceptance rate of around
0.3; this was not achieved for either algorithm as we now report. In this scenario, con-
siderable effort was expended for Algorithm 3 to yield an acceptance rate around 0.3,
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Fig. 4. Autocorrelation plots for the sampled parameters of the example in Section 4.2. We run Algorithm 3
(dot) and 4 (full) for 50,000 iterations (both with N = 250) on the S & P 500 data, associated to noisy ABC
and ε = 0.5. The dotted horizontal lines are a default confidence interval generated by the R package.

but despite this, we were unable to make the algorithm traverse the state-space. In
contrast, with less effort, Algorithm 4 appears to perform quite well and move around
the parameter space (the acceptance rate was around 0.15 vs. 0.01 for Algorithm 3).
Whilst the computational time for Algorithm 4 is considerably more than Algorithm 3,
in the same amount of computation time, it still moves more around the state-space
as suggested by Figure 5; algorithm runs of the same length are provided for presen-
tational purposes. To support this point, we computed the ratio of the effective sample
size from Algorithm 4 to that of Algorithm 3 when standardizing for computational
time; this value is 2.04, indicating (very roughly) that Algorithm 4 is twice as efficient
as Algorithm 3 for this example. We remark that whilst we do not claim that it is
impossible to make Algorithm 3 mix well in this example, we were unable to do so, and
alternatively for Algorithm 4, we expended considerably less effort for very reasonable
performance. This example is typical of many runs of the algorithm and examples that
we have investigated and is consistent with the discussion in Section 3.2.2, where we
stated that Algorithm 4 is likely to outperform Algorithm 3 when the αk(y1:k, ε, γ ) are
not large, which is exactly the scenario in this example.
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Fig. 5. Autocorrelation plots for the sampled parameters of the example in Section 4.2. We run Algorithm 3
(dot) and 4 (full) for 200,000 iterations (both with N = 250) on the S&P 500 data, associated to noisy ABC
and ε = 0.01. The dotted horizontal lines are a default confidence interval generated by the R package.

We now turn to the cost of simulating Algorithm 4. For the case ε = 0.5, we simulated
the data an average of 148,000 times (per iteration), and for ε = 0.01, this figure was
330,000. In this example, significant effort is expended in simulating the m1:n. This
shows, at least in this example, that one can run the algorithm without it failing to
sample the m1:n. The results here suggest that one should prefer Algorithm 4 only in
challenging scenarios, as it can be very expensive in practice.

Finally, we remark that the MLE for a Gaussian GARCH model is β0:2 = (4.1 ×
10−6, 0.16, 0.82). This differs from the posterior means, so we consider the fit of the
models. On inspection of the residuals, the ratio of Yk+1/Xk+1 under the estimated
model, which are not presented, we did not find that either model fit the data well.
This is in the sense that the residuals did not fit the hypothesized distribution of either
model; it seems that perhaps this model is not appropriate for these data under either
noise distribution.

5. CONCLUSIONS

In this article, we have considered approximate Bayesian inference from observation-
driven time series models. We looked at some consistency properties of the
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corresponding MAP estimators and also proposed an efficient ABC-MCMC algorithm
to sample from these approximate posteriors. The performance of the latter was illus-
trated using numerical examples.

There are several interesting extensions to this work. Firstly, the asymptotic analysis
of the ABC posterior in Section 2.2 can be further extended. For example, one may
consider Bayesian consistency or Bernstein Von-Mises theorems, which could provide
further justification of the approximation that was introduced here. Alternatively, one
could look at the the asymptotic bias of the ABC posterior with respect to ε or the
asymptotic loss in efficiency of the noisy ABC posterior with respect to ε similar to
the work in Dean et al. [2011] for HMMs. Secondly, the geometric ergodicity of the
presented MCMC sampler can be further investigated in the spirit of Andrieu and
Vihola [2012] and Lee and Latuszynski [2012]. Thirdly, an investigation to extend the
ideas here for sequential Monte Carlo methods should be beneficial. This has been
initiated in Jasra et al. [2013] in the context of particle filtering for Feynman-Kac
models with indictors potentials (which includes the ABC approximation of HMMs);
several results, in the context of Section 3.2, are derived.

A. PROOFS FOR SECTION 2

Before giving our proofs, we will remind the reader of the assumptions (B1–B3) used
in Douc et al. [2012]. These are written in the context of a general observation-driven
time series model. Define the process {Yk, Xk}k∈N0 (with y0 some arbitrary point on Y) on
a probability space (�,F , P̄θ ), where for every θ ∈ � ⊆ Rdθ , P̄θ is a probability measure.
Denote by Fk = σ ({Yn, Xn}0≤n≤k). For k ∈ N0, X0 = x,

P̄(Yk+1 ∈ A|Fk) =
∫

A
H̄(xk, dy) A× X ∈ F

Xk+1 = �̄θ (Xk, Yk+1),

where H̄ : X × σ (Y) → [0, 1], �̄ : � × X × Y → X and for every θ ∈ �. Throughout,
we assume that for any x ∈ X H̄(x, ·) admits a density with respect to some σ−finite
measure μ, which we denote as h̄(x, y). As in Section 2, we extend the definitions of the
time index of the process to Z. We denote max(v, 0) = (v)+ for some v ∈ R.

(B1) {Yk}k∈Z a strict-sense stationary and ergodic stochastic process. Write the associ-
ated probability measure P̄�.

(B2) For all (x, y) ∈ X × Y, the functions θ → �̄θ (x, y) and v → h̄(x, y) are continuous.
(B3) There exists a family of P̄�-a.s. finite random variables{

�̄θ
∞(Y−∞:k), (θ, k) ∈ � × Z

}
such that for each x ∈ X
(i) limm→∞ supθ∈� d(�̄θ

∞(Y−m:0, x), �̄θ
∞(Y−∞:0)) = 0, P̄�-a.s.

(ii) P̄�-a.s.

lim
k→∞

sup
θ∈�

| log(h̄
(
�̄θ

k−1(Y1:k−1, x), Yk)
)− log

(
h̄
(
�̄θ

∞(Y−∞:k−1), Yk
))| = 0.

(iii)

Ē�

[
sup
θ∈�

(
log

(
h̄
(
�̄θ

∞(Y−∞:k−1), Yk
)))

+

]
< +∞,

with Ē� denoting expectations with respect to P̄�.

The ideas of our proofs are essentially just to verify these assumptions for our per-
turbed ABC model, which uses the system (4), except that the observations (either the
actual ones or perturbed ones for noisy ABC) are fitted with the density defined in (3).
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PROOF. [Proof of Proposition 2.1] The proof of limn→∞ d(θn,x,ε , �
∗
ε ) = 0 Pθ∗ − a.s.

follows from Douc et al. [2012, Theorem 19] if we can establish conditions (B1–B3) for
our perturbed ABC model. Clearly, (B1) and part of (B2) hold. For part of (B2), we need
to show that for any y ∈ Y that x → hε(x, y) is continuous. Consider

|hε(x, y) − hε(x′, y)| = 1
μ(Bε(y))

∣∣∣∣∫
Bε (y)

(
h(x, y) − h(x′, y)

)
μ(dy)

∣∣∣∣ .
Let ε > 0, then, by (A3), there exists a δ > 0 such that for d(x, x′) < δ

sup
y∈Y

|h(x, y) − h(x′, y)| < ε

and hence for (x, x′), as shown previously,

|hε(x, y) − hε(x′, y)| < ε,

which establishes (B2) of Douc et al. [2012].
(B3-i) holds via [Douc et al. 2012, Lemma 20] through (A4): by the proof of Douc

et al. [2012, Lemma 20], limm→∞ �θ
m+1(Y−m:k, x) exists (for any fixed k ≥ 0, x ∈ X) and

is independent of x (call the limit �θ
∞(Y−∞:k)). Now, for (B3-ii) of Douc et al. [2012], fix

m > 1, k > 1, x, x′ ∈ X we note that as h ≤ hε(x, y) ≤ h < ∞ (see (A3)), h → log(h) is
Lipschitz and ∣∣ log

(
hε
(
�θ

k−1(Y1:k−1, x), Yk
))− log

(
hε
(
�θ

m+k(Y−m:k−1, x′), Yk
))∣∣

≤ C
∣∣hε

(
�θ

k−1(Y1:k−1), x
)
, Yk) − hε

(
�θ

m+k(Y−m:k−1, x′), Yk
)∣∣

for some C < ∞ that does not depend upon Y−m:k−1, Yk, x, x′, ε. Now∣∣hε
(
�θ

k−1(Y1:k−1), x), Yk
)− hε

(
�θ

m+k(Y−m:k−1, x′), Yk)
∣∣

= (μ(Bε(Yk)))−1
∣∣∣∣ ∫

Bε (Yk)

[
h
(
�θ

k−1(Y1:k−1, x), y
)− h

(
�θ

m+k(Y−m:k−1, x′), y
)]

μ(dy)
∣∣∣∣

≤ (μ(Bε(Yk)))−1 × μ(Bε(Yk)) sup
y∈Y

∣∣h(�θ
k−1(Y1:k−1, x), y

)− h
(
�θ

m+k(Y−m:k−1, x′), y
)]∣∣.

Thus, by (A3) and the preceding calculations, we have that∣∣ log
(
hε
(
�θ

k−1(Y1:k−1, x), Yk
))− log

(
hε
(
�θ

m+k(Y−m:k−1, x′), Yk
))∣∣

≤ Cd
(
�θ

k−1(Y1:k−1, x),�θ
m+k(Y−m:k−1, x′)

)
for some C < ∞ that does not depend upon Y−m:k−1, Yk, x, ε, θ . Then, by (A4),∣∣ log

(
hε
(
�θ

k−1(Y1:k−1, x), Yk
))− log

(
hε
(
�θ

m+k(Y−m:k−1, x′), Yk
))∣∣

≤ Cd
(
x,�θ

m+1(Y−m:0, x′)
) k−1∏

j=1

�(Yk)

≤ Cd
(
x,�θ

m+1(Y−m:0, x′)
)
�k−1.

Taking suprema over θ and as X is compact, we have

sup
θ∈�

∣∣ log
(
hε(�θ

k−1(Y1:k−1, x), Yk)
)− log

(
hε
(
�θ

m+k(Y−m:k−1, x′), Yk
))| ≤ C ′�k−1,

where C ′ < ∞ and does not depend Y−m:k−1, Yk, x, ε, θ, m. Taking limits as m → ∞ in
the preceding inequality, we have Pθ∗−a.s.

sup
θ∈�

∣∣ log
(
hε
(
�θ

k−1(Y1:k−1, x), Yk
))− log

(
hε
(
�θ

∞(Y−∞:k−1), Yk
))∣∣ ≤ C ′�k−1.
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Now we can conclude that Pθ∗−a.s.

lim
k→∞

sup
θ∈�

∣∣ log
(
hε(�θ

k−1(Y1:k−1, x), Yk
))− log

(
hε
(
�θ

∞(Y−∞:k−1), Yk
))∣∣ = 0,

which proves (B3-ii) of Douc et al. [2012]. Note, finally that (B3-iii) trivially follows by
hε(x, y) ≤ h < ∞. Hence, we have proved that

lim
n→∞ d(θn,x,ε , �

∗
ε ) = 0 Pθ∗ − a.s..

PROOF. [Proof of Proposition 2.2] This result follows from Douc et al. [2012,
Proposition 21]. One can establish assumptions (B1–B3) of Douc et al. [2012] using
the proof of Proposition 2.1. Thus, we need only prove that

if Hε(x, ·) = Hε(x′, ·), then x = x′.

Now, for any A× X ∈ F ,

Hε(x, A) =
∫

A

[
1

μ(Bε(y))

∫
Bε (y)

H(x, du)
]

μ(dy).

By (A5),
∫

Bε (y) H(x, du) = ∫
Bε (y) H(x′, du) means that x = x′, so

Hε(x, A) = Hε(x′, A)

implies that x = x′, which completes the proof.

B. REMARKS AND PROOFS FOR SECTION 3

B.1. Remarks

In order to deduce the result (6) (as well as a second inverse moment type identity in
the proof of Proposition 3.1) from the work of Neuts and Zacks [1967] and Zacks [1980],
some additional calculations are required. The notations in this section of the Appendix
should be taken as independent of the rest of the article and are used to match those
in Zacks [1980]. Using the results in Neuts and Zacks [1967], Zacks [1980] quotes the
following. Zacks [1980, Eq. 1] gives a particular form for a negative binomial random
variable X with probability mass function

P(X = x) = �(ν + x)
�(x + 1)�(ν)

(1 − ψ)νψ x x ∈ {0, 1, . . . },

with ψ ∈ (0, 1) and ν ∈ (0,∞). Then, letting E denote expectations with respect to this
given probability mass function, Zacks [1980, Eqs. 2 and 3] read:

E

[
1

ν + X − 1

]
= 1 − ψ

ν − 1
ν ≥ 2 (11)

E

[
1

(ν + X − 1)(ν + X − 2)

]
= (1 − ψ)2

(ν − 1)(ν − 2)
ν ≥ 3. (12)

To use these results in the context of the work in this article, we suppose that ν ∈ N
and make the change of variable M = X + ν, which yields the probability mass function

P(M = m) =
(

m− 1
ν − 1

)
(1 − ψ)νψm−ν m ∈ {ν, ν + 1, . . . },

which is a conventional negative binomial probability mass function associated to ν
successes, with success probability 1−ψ . Then, it follows from (11) and (12) that (using
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E to denote expectations with respect to P(M = m))

E

[
1

M − 1

]
= 1 − ψ

ν − 1
ν ≥ 2

E

[
1

(M − 1)(M − 2)

]
= (1 − ψ)2

(ν − 1)(ν − 2)
ν ≥ 3.

B.2. Proofs

PROOF. [Proof of Proposition 3.1] We have

Eγ,N

⎡⎣( ∏n
k=1

1
Mk−1∏n

k=1
αk(y1:k,ε,γ )

N−1

− 1

)2
⎤⎦ = 1

(
∏n

k=1
αk(y1:k,ε,γ )

N−1 )2

×
⎛⎝ n∏

k=1

Eγ,N

[
1

(Mk − 1)2

]
−
(

n∏
k=1

αk(y1:k, ε, γ )
N − 1

)2
⎞⎠ .

Now, by Neuts and Zacks [1967] and Zacks [1980], (N ≥ 3) for any k ≥ 1 (see also
Appendix B.1)

Eγ,N

[
1

(Mk − 1)(Mk − 2)

]
= αk(y1:k, ε, γ )2

(N − 1)(N − 2)

and thus clearly

Eγ,N

[
1

(Mk − 1)2

]
≤ αk(y1:k, ε, γ )2

(N − 1)(N − 2)
.

Hence,

Eγ,N

⎡⎣( ∏n
k=1

1
Mk−1∏n

k=1
αk(y1:k,ε,γ )

N−1

− 1

)2
⎤⎦ ≤ (N − 1)2n

(
1

(N − 1)n(N − 2)n − 1
(N − 1)2n

)
. (13)

Now, the R.H.S. of (13) is equal to

nNn−1 +∑n
i=2

(n
i

)
Nn−i[(−1)i − (−2)i]

Nn − 2nNn−1 +∑n
i=2

(n
i

)
Nn−i(−2)i

. (14)

Now we will show
n∑

i=2

(
n
i

)
Nn−i[(−1)i − (−2)i] ≤ 0. (15)

The proof is given when n is odd. The case n even follows by the following proof as n− 1
is odd and the additional term is nonpositive. Now we have for k ∈ {1, 2, 3, . . . , (n−1)/2}
that the sum of consecutive even and odd terms is equal to

Nn−2kn!
(n − 2k − 1)!(2k)!

[
N(1 − 22k)(2k + 1) − (22k+1 − 1)(n − 2k)

(n − 2k)(2k + 1)N

]
,

which is nonpositive as

N ≥ (22k+1 − 1)(n − 2k)
(1 − 22k)(2k + 1)

.
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Thus, we have established (15). We will now show that
n∑

i=2

(
n
i

)
Nn−i(−2)i ≥ 0. (16)

Following the same approach as shown previously (i.e., n is odd), the sum of consecutive
even and odd terms is equal to

Nn−2k22kn!
(n − 2k − 1)!(2k)!

[
N(2k + 1) − 2(n − 2k)

(n − 2k)(2k + 1)N

]
.

This is nonnegative if

N ≥ n − 2k
2k + 1

,

as N ≥ 2n/(1 − β) and 6 ≥ (1 − β), it follows that N ≥ n/3 ≥ (n− 2k)/(2k+ 1); thus, one
can establish (16).

Now, returning to (13) and noting (14), (15),and (16), we have

Eγ,N

⎡⎣( ∏n
k=1

1
Mk−1∏n

k=1
αk(y1:k,ε,γ )

N−1

− 1

)2
⎤⎦ ≤ nNn−1

Nn − 2nNn−1 = n
N − 2n

,

as N ≥ 2n/(1 − β), it follows that n/(N − 2n) ≤ Cn/N, and we conclude.

PROOF. [Proof of Proposition 3.2] We have (dropping the superscript t on Mk)

Eζ Kt⊗Q̃

[
n∑

k=1

Mk

]
=

∫
(�×X)2

∑
{N,N+1,... }n

(
n∑

k=1

mk

){
n∏

k=1

(
mk − 1
N − 1

)
αk(y1:k, γ

′, ε)N

× (1 − αk(y1:k, γ
′, ε))mk−N

}
q(γ, γ ′)ζ Kt(dγ )dγ ′

=
∫

(�×X)2

(
n∑

k=1

N
αk(y1:k, γ, ε)

)
q(γ, γ ′)ζ Kt(dγ )dγ ′ ≤ nN

C
,

where we have used the expectation of a negative binomial random variable and applied
infk,γ αk(y1:k, γ, ε) ≥ C in the inequality.
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