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Summary

Many problems in control and signal processing can be formulated as sequential decision problems

for general state space models. However, except for some simple models one cannot obtain analytical

solutions and has to resort to approximation. In this thesis, we have investigated problems where Se-

quential Monte Carlo (SMC) methods can be combined with a gradient based search to provide solutions

to online optimisation problems. We summarise the main contributions of the thesis as follows.

Chapter 4 focuses on solving the sensor scheduling problem when cast as a controlled Hidden Markov

Model. We consider the case in which the state, observation and action spaces are continuous. This

general case is important as it is the natural framework for many applications. In sensor scheduling,

our aim is to minimise the variance of the estimation error of the hidden state with respect to the action

sequence. We present a novel SMC method that uses a stochastic gradient algorithm to find optimal

actions. This is in contrast to existing works in the literature that only solve approximations to the

original problem.

In Chapter 5 we presented how an SMC can be used to solve a risk sensitive control problem. We

adopt the use of the Feynman-Kac representation of a controlled Markov chain flow and exploit the prop-

erties of the logarithmic Lyapunov exponent, which lead to a policy gradient solution for the parame-

terised problem. The resulting SMC algorithm follows a similar structure with the Recursive Maximum

Likelihood (RML) algorithm for online parameter estimation.

In Chapters 6, 7 and 8, dynamic Graphical models were combined with with state space models for

the purpose of online decentralised inference. We have concentrated more on the distributed parameter

estimation problem using two Maximum Likelihood techniques, namely Recursive Maximum Likelihood

(RML) and Expectation Maximization (EM). The resulting algorithms can be interpreted as an exten-

sion of the Belief Propagation (BP) algorithm to compute likelihood gradients. In order to design an

SMC algorithm, in Chapter 8 uses a nonparametric approximations for Belief propagation. The algo-

rithms were successfully applied to solve the sensor localisation problem for sensor networks of small and

medium size.
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1
Introduction

1.1 Motivation

Stochastic processes can be a very effective modeling tool for a number of real-world phenom-

ena. Uncertainty in real-world phenomena can be well captured using probability theory and

statistics. This is achieved using a rigorous mathematical framework, where particular model

variables and parameters can be used to describe the process with adequate generality. This

makes any problem formulation intuitive and a scientist can benefit from many algorithms that

deal with the computational side of the problem. The advent of accessible computing power in

the last two decades and the development of sophisticated simulation tools have revolutionised

the field of statistical modeling and opened up new directions for statistical inference of many

complex systems. In this thesis we aim to use such methods from computational statistics to

solve difficult problems that arise in the field of Engineering.

In the context of dynamical models, the modeled process generally produces a sequence of

observable outputs over time. The process can be thought to evolve in time either continuously

1
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or discretely, but in this thesis we shall consider only the discrete time case. Dynamic mod-

els attempt to statistically describe and analyse processes based on the observed time series.

Moreover, they can include decision variables or control inputs, where the decision variables

are chosen to optimise a particular criterion. Such decision or control problems can describe a

broad class of phenomena, where an external user can influence the evolution of the process

to meet certain specifications. When a statistical framework of analysis is used these problems

are generally referred to as stochastic control or decision making problems.

In many dynamical models a hidden state of interest evolves in a dynamic fashion, typically

having a simple Markovian structure, i.e. the current state of the process is influenced only

by the previous one. Such a setting arises often in statistics, engineering and other applied

sciences. Recently, there has been a surge of interest in Sequential Monte Carlo (SMC) methods,

also known as Particle Filtering methods, to perform sequential state estimation in non-linear

non-Gaussian models [48, 53, 85, 103]. SMC methods are a set of simulation-based techniques

that recursively generate and update a set of weighted samples that provide approximations

to the posterior probability distributions of interest.

In this thesis we shall attempt to employ SMC to solve decision problems for dynamical

models with general state and observation spaces. We should say that we have noted a sig-

nificant absence of algorithms for general state spaces in the literature of stochastic control.

SMC can provide a framework and many computational tools to deal with the difficulties of

stochastic control in general state spaces. We emphasise that SMC methods need only very

weak assumptions on the model used and these do not include any particular restrictions on

the state or observation space.

We shall also consider some online parameter estimation problems. By the term online we

mean that as more observations of the latent variable appear available, the parameter is esti-

mated sequentially in time using a recursion with a fixed amount of computation and memory

requirement. These problems are essentially sequential optimisation problems due to their re-

cursive and online character. Under the assumption that the model parameters are known,

numerous SMC algorithms have been proposed and successfully applied to many practical

problems, over the last decade. In real-world applications however, the model parameters are

usually unknown and need to be estimated from the observed data, before SMC methods can

be applied for state estimation. This is a severe limitation in the practicality of standard SMC
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algorithms, hence the development of parameter estimation methods is of significant impor-

tance. Online parameter estimation has been studied much by the statistical community but

without significant success. One popular approach was to include the unknown parameter

with the hidden state and cast the problem as a filtering one [56, 105, 154]. This proved to be

inefficient due to a degeneracy problem inherent in the standard SMC algorithm. Recently,

in [136], one can find a detailed study on developing advanced SMC algorithms for parame-

ter estimation problems, which avoid limitations and problems of previous approaches. We

shall build on the methodology and ideas used in [136] to extend them also for distributed

environments, as well generalising them to fit a particular stochastic control framework.

1.2 Applications and Real Engineering Problems

In this section we shall briefly describe some of the applications, which shall be dealt with in

this thesis. Most of them arise from the area of target tracking. While solving these problems

we have to say that a consistent effort has been made to provide generic solutions that fit a

general statistical framework and are not just useful to solve the particular application. This

is important as our algorithms can be reused in other problems from the areas of robotics,

computer vision, or finance, which fit the same general framework.

Consider the following typical scenario, which arises from target tracking. A manoeuver-

ing target is to be tracked based on noise corrupted measurements of the target’s state. These

can be received by one or more moving observers. The quality of the target state observations

can be improved by the appropriate positioning of the observers relative to the target during

tracking. The question of optimal observer trajectory planning naturally arises, i.e. how should

the observer manoeuvre relative to the target in order to optimise the tracking performance?

This problem of optimal sensor manoeuvering is both a filtering and control problem. Another

typical and closely related problem in target tracking is sensor scheduling. Here an array of

static sensors is used to track the target. However sensors provide noise corrupted measure-

ments and due to bandwidth limitations only one of them can be used at each time. Now the

problem consists of choosing at each time instant one active sensor from which we receive a

measurement with the aim of optimising the tracking performance.

Another problem which is solved in this thesis is the problem of distributed self localisa-

tion for sensor networks. Consider a network of sensors that are deployed for target tracking.
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Distributed collaborative tracking can be achieved if each node is able to accurately determine

the position of its neighboring nodes in its local frame of reference. Due to cost, size or power

consideration say this has to be achieved without the need of a Global Positioning System

(GPS) or direct measurements of the distance between neighboring nodes. Then the problem

of recovering the relative coordinate of a neighbouring sensor can be cast as a parameter esti-

mation problem in a distributed environment. Initially as nodes are not localized they behave

as independent trackers. As the tracking task is performed on objects that traverse the field of

view of the sensors, information can be shared between nodes in a way that allows them to

self-localize. Even though the target’s true trajectory is not known to the sensors, localization

can be achieved in this manner because the same target is being simultaneously measured by

the sensors.

1.3 Scope of this thesis

In this thesis we shall propose algorithms for solving stochastic optimisation problems appear-

ing in the presented applications. In a sense, optimal sensor manoeuvering, sensor scheduling,

and self-localisation, share a similar structure as in each case a certain performance criterion

needs to be optimised. Moreover, depending on the application, the solutions proposed by an

optimiser can be computed and implemented in real time. We shall refer to this approach as

online optimisation in contrast to the offline case, where the solutions are computed before or

sometimes after the actual process takes place. For example, in target tracking while collecting

measurements of the position of the target, one should aim to perform sensor manoeuvering

or sensor scheduling online as in any control problem. Offline computations done before ini-

tiating a real time experiment can assist this task, but as sensors receive measurements one

should update their control inputs or actions so that the target tracking is kept optimal. Sim-

ilarly, the self-localisation problem is a parameter estimation problem that can be solved both

online while the sensor network receives measurements of the target, as well as offline after a

set of measurements have been collected. In this thesis we will focus mostly on online, which

are more challenging and they appear to be more useful for applications.

The scope of this thesis is to derive novel algorithms for online stochastic optimisation prob-

lems. By using a general mathematical framework to describe each problem of interest, our

algorithms should be able to be used for any other problems that fit the specific framework.
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Therefore, we have made an effort to present generic solutions and to keep the class of prob-

lems we are addressing as general as possible. The main statistical modeling tool will be that of

general state space models, which is commonly used both for stochastic control as well as parame-

ter estimation. As was mentioned in the previous paragraph for specific examples arising from

the applications of interest, control and online parameter estimation problems follow a similar

structure. This holds in general, as in both cases a similar framework as well as computational

tools can be used to decide how a control or a parameter estimate should be updated sequen-

tially in time. Therefore, in the title of this thesis it was preferred to use the term sequential

decision making as a more general phrase that encompasses stochastic control or parameter

estimation.

The methodology will involve combining two powerful approaches, gradient based meth-

ods and computer simulation. Under mild regularity assumptions, gradient based methods are

guaranteed to converge to a local optimum of the performance criterion. This is sufficient for

the applications we shall consider. In addition, they can be combined with recent simulation

based methods, to produce a new type of stochastic gradient methods. This is done with-

out losing any theoretical guarantees, or needing any additional strong assumptions, since the

simulation based methods we shall be using rely on very mild conditions. This can allow us

to address nonlinear non-Gaussian sequential decision problems, which is a very challenging

task overlooked by most of the control literature. We shall be using predominantly Sequential

Monte Carlo (SMC) as the tool for simulation. SMC methods can naturally handle general state

space models and there are many theoretical results available on their asymptotic behaviour,

providing thus valuable insight for the design of particular algorithms.

1.4 Thesis Organisation

Besides this introductory chapter, this thesis is comprised of 7 chapters and a concluding chap-

ter. Thematically, the material can be partitioned into three parts:

Part I: Review of Monte Carlo methods for inference in general state spaces (Chapters 2, 3).

Part II: Control using policy gradient and SMC (Chapters 4, 5).

Part III: Online distributed parameter estimation for Graphical Models (Chapters 6, 7, 8)



1.4. Thesis Organisation 6

The individual chapters are structured as follows:

Chapter 2: Monte Carlo Methods

This chapter introduces Bayesian inference, Monte Carlo methods and some standard

sampling techniques, such as Importance Sampling (IS) and Markov Chain Monte Carlo

(MCMC). Sequential Monte Carlo (SMC) methods are investigated in detail and Feynman-

Kac models are introduced.

Chapter 3: General State Space Models

In this chapter we will present general state space models, which can be used for state

and parameter inference as well as for control. These models are also known as Hid-

den Markov Models (HMM) and encompass a broad class of dynamic models. Graphical

Models are also introduced so that an extension of general state space models for prob-

lems regarding distributed systems is proposed.

Chapter 4: Simulation-Based Optimal Sensor Scheduling with Application to Observer Tra-

jectory Planning

In this chapter, we address the sensor scheduling problem when cast as a controlled Hid-

den Markov Model. We consider the case in which the state, observation and action

spaces are continuous. This general case is important as it is the natural framework for

many applications. In sensor scheduling, our aim is to minimise the variance of the esti-

mation error of the hidden state with respect to the action sequence. We present a novel

simulation-based method that uses a stochastic gradient algorithm to find optimal ac-

tions. This is in contrast to existing works in the literature that only solve approximations

to the original problem.

Chapter 5: Risk Sensitive Control using Policy Gradient

In Chapter 5 we present how an SMC can be used to solve a risk sensitive control prob-

lem. We adopt the use of the Feynman-Kac representation of a Markov chain flow and

exploit the properties of the logarithmic Lyapunov exponent, which leads to a policy

gradient solution for the parameterised problem. The resulting SMC algorithm follows

a similar structure with the Recursive Maximum Likelihood (RML) algorithm used for

online parameter estimation.
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Chapter 6: Self Localisation of Sensor Networks for Target Tracking

Chapter 6 presents an overview of the self localisation problem for sensor networks de-

ployed for target tracking. Graphical models are integrated with general state space

models for the purpose of decentralised inference. We concentrate on the distributed pa-

rameter estimation problem and describe a decentralised version of Recursive Maximum

Likelihood (RML), which can be implemented in dynamic graphical models through the

propagation of suitable messages that are exchanged between neighboring nodes of the

graph. The resulting algorithm can be interpreted as an extension of the celebrated Belief

Propagation algorithm to compute the likelihood gradient. This algorithm is applied to

solve the sensor localisation problem for sensor networks.

Chapter 7: Distributed Localisation and Tracking For Linear Gaussian Sensor Networks

In Chapter 7 we continue the work of Chapter 6, and emphasise on the linear Gaus-

sian case. We also illustrate how the distributed framework established in Chapter 5 can

incorporate Expectation Maximization (EM), which is another popular algorithm for es-

timating unknown static parameters. The underlying methodology is generic and we

show how it can be applied to solve the sensor localisation problem for sensor networks

of different sizes.

Chapter 8: Distributed Localisation and Tracking For Nonlinear Non-Gaussian Sensor Net-

works

In Chapter 8, we consider the problem of estimating static parameters distributed in a

graph for the general nonlinear non-Gaussian case. For the nonlinear Gaussian case,

a distributed Extended Kalman filter (EKF) based on the material of Chapter 7 is pre-

sented. For the nonlinear non-Gaussian case, we extend previous work already devel-

oped for problems involving dynamic filtering for distributed environments. We consider

the decentralised static parameter inference problem using distributed RML. We propose

a Sequential Monte Carlo algorithm combined with Nonparametric Belief Propagation

(NBP), which is used to approximate the messages passed between adjacent nodes. The

resulting algorithm can be thought as as an extension of NBP to compute likelihood gra-

dients and was applied to solve the sensor localisation problem for sensor networks.
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Chapter 9: Conclusions and Future directions

This last chapter concludes the thesis with a review of the key components and contribu-

tions of the research described. Also, potential areas for further research are discussed.



Part I

Review of Monte Carlo Inference for

General State Spaces

9



2
Monte Carlo Methods

Summary. In this chapter a brief review of Monte Carlo methods is presented.

The chapter starts with an overview of Bayesian Inference followed by an intro-

duction on the basic principles of Monte Carlo and discrete time Markov Chains.

Other popular Monte Carlo methodologies are also presented, such as Importance

Sampling (IS) and Markov Chain Monte Carlo (MCMC). Finally, this chapter

describes Sequential Monte Carlo methods (SMC) and Feynman-Kac Models.

10
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2.1 Introduction

Statistical modelling has become increasingly important in the areas of engineering, finance,

and computer science. One can use probability distributions and statistical methods to deal

with the inherent uncertainty in real world problems. Bayesian statistics has been an extremely

popular framework in which to perform statistical inference. From a Bayesian perspective

there is no fundamental distinction between the observed and unobserved variables and the

parameters of a statistical model. All are treated as random variables. In addition, all expert

knowledge or prior information on the problem is formally incorporated in the analysis using

prior distributions. Note that this does not necessary imply that this prior information has to

be precise, but rather adds another degree of freedom to the investigation.

For many years, the applicability of Bayesian analysis was limited by the fact that the high-

dimensional integrations or maximisations involved rarely admit tractable forms. This pushed

researchers towards devising systematic means for designing suitable approximations, so that

resorting to simplified models or ad hoc methods could be avoided. More rigorous Bayesian

implementations were achieved when computer simulation was employed, following the dra-

matic increase of computational power of computers starting during the period of the late 80’s.

This increase in computational power made the use of Monte Carlo methods for integration and

maximisation over complex multidimensional functions a practical approach. This further en-

couraged the development of numerical Bayesian methods. Monte Carlo methods characterise

the probability distributions of interest by using a large number of samples from them. In most

cases, the distributions are complex and multivariate and are usually known only up to a nor-

malising constant. As a result direct sampling is not possible in general and more sophisticated

techniques need to be used, such as Importance Sampling [103, 140], Markov Chain Monte

Carlo (MCMC) [63, 73, 115, 140] and Sequential Monte Carlo (SMC) methods [34, 47, 48, 103].

The organisation of this chapter is structured as follows. In Section 2.2 we present briefly the

key ideas behind Bayesian inference. Then in Sections 2.3, 2.4, and 2.6 we introduce traditional

Monte Carlo methodologies such as Importance sampling and Markov Chain Monte Carlo

(MCMC). Section 2.5 also contains a brief review on Markov chains theory defined on general

state spaces. In Section 2.7, we review Sequential Monte Carlo methods, which is the basis of all

computation in this thesis. In Section 2.8 we introduce the Feyman-Kac model [34] and show

how interacting particle approximations can be derived for probability measures propagated
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according to this model.

2.2 Bayesian inference

In the Bayesian framework, all the unknown parameters of a problem are assumed to be ran-

dom variables and admit a prior distribution. Unknown parameters can include unobserved

model components, actual model parameters and/or missing data. Under a Bayesian frame-

work, the prior distribution of these unknown parameters is updated by means of Bayes’ the-

orem, which can be informally put as

posterior ∝ likelihood× prior,

where the likelihood is the probability distribution of the observed data, y, conditioned on

the unknown parameters, x, and the particular model M used. This results in a posterior

distribution of x conditioned on the observed data, y ∈ Y , and model M. Let x denote the

vector of the unknown parameters taking value on some measurable space (X , E), the posterior

distribution will be given by Bayes’ law as

p(x|y,M) =
p(y|x,M)p(x|M)

p(y|M)
, (2.1)

where p(y|x,M) is the likelihood of the observed data, p(x|M) is the prior distribution of the

unknown parameters and p(y|M) is the probability distribution of the data, which is also re-

ferred as the evidence or the normalisation constant.

Although this approach makes the problem formulation quite elegant, in general it suffers

from the fact that the normalisation constant, given as

p(y|M) =

∫

x∈X

p(y|x,M)p(x|M)dx,

cannot be calculated analytically in most cases of interest and also may involve high dimen-

sional integration. This makes it necessary to resort to approximations. Most applications of

Monte Carlo methods are found in the evaluation of high dimensional integrals for Bayesian

inference.

Another related problem to calculating the normalising constant is that of marginalisation.

A useful feature of the Bayesian framework is that parameters of no interest, commonly re-

ferred to as nuisance parameters, can be removed by marginalisation. If for example x = (x1, x2)
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and x2 is a nuisance parameter, the marginal posterior density of x1 can be obtained from the

joint posterior as

p(x1|y,M) =

∫
p(x1, x2|y,M) dx2.

Again, this integral may not be available analytically, so one has to resort to approximation.

2.2.1 Bayesian estimation

Bayesian methods allow the construction of appropriate posterior probability distributions of

the unknown parameter x after setting a prior. However, often particular statistics, such as

modes, moments and quantiles, need to be estimated so that one can use them in applications.

This means we might want to summarise the distribution p(x|y,M) through a point estimate for

the value of the unknown parameter vector x. This point estimate is itself a random variable

and can be estimated from p(x|y,M) in a number of ways. Two simple and commonly used

methods for estimating x are the Maximum Likelihood (ML) and Maximum A-Posteriori (MAP)

estimation methods.

Maximum likelihood requires the computation of the mode of the likelihood p(y|x,M). The

resulting maximum likelihood estimator (MLE) x̂ML can be written as

x̂ML = arg max
x

p(y|x,M).

Maximum A-Posteriori estimation requires the computation of the mode of the posterior

distribution p(x|y,M). The underlying maximisation results to the maximum a-posteriori estima-

tor, x̂MAP, which can be written as

x̂MAP = arg max
x

p(x|y,M).

If no prior information about x is available, and the prior is vague, e.g. a uniform distribution,

the MAP estimator reduces to an MLE.

Suppose that one would like to obtain an estimator of or some function h(x). A more

general approach would be to follow a decision theoretic approach and use loss or risk func-

tions, [140]. We specify a certain loss function L(δ, x), which represents the loss or risk incurred

by using δ as an estimator of h(x). From a Bayesian perspective we would like to minimise the

expected loss or Bayes risk
∫

X

∫

Y

L(δ, x)p(y|x,M)p(x|M)dydx.
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The resulting estimator x̂ would be

x̂ = arg min
δ

∫

X

L(δ, x)p(x|y,M)dx.

A popular choice of loss function is a quadratic

L(δ, x) = (h(x) − δ)T Σ(h(x)− δ),

where Σ is a positive definite matrix. Let x̂ be the resulting estimator. Then,

x̂ = arg min
δ

∫

X

(h(x) − δ)T Σ(h(x)− δ)p (x|y,M) dx,

This is equivalent to

x̂ =

∫

X

h(x)p(x|y,M) dx.

If h(x) = x, then the estimation is also known as Minimum Mean Square Error (MMSE) or

Minimum Variance estimation. The estimator is simply the the posterior mean.

2.2.2 Bayesian Model Selection

Bayesian inference assumes the use of a specific probability modelM. If the particular model is

not appropriate for the problem, the inference mechanism will not lead to valid results. Hence

an appropriate model selection procedure is crucial. Bayesian inference can be used to select

the most plausible model between a set of different candidate models, {Mk}Kk=1, where K is a

finite and positive integer. The best model in the Bayesian sense,M∗, is the one that maximises

the posterior density of the model given the observed data,

M∗ = arg max
Mk

p(Mk|y),

where by Bayes’ theorem

p(Mk|y) ∝ p(y|Mk)p(Mk).

As it can be seen, besides a subjective model prior p(Mk), model selection depends on the

normalisation constant p(y|Mk). This gives the intuition behind using the term model evidence

for the normalisation constant.

As presented in [6], a common way of comparing pairwise models, say i and j, is to use the

posterior odds ratio

Bij =
p(y|Mi)p(Mi)

p(y|Mj)p(Mj)
.

Clearly if Bij > 1 modelMi is favored, otherwise if Bij < 1 modelMj is favored.
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2.2.3 Motivation for Monte Carlo methods

Bayesian methods are very useful since they can incorporate any previous knowledge in the

prior distribution. On the other hand, the posterior may not be analytically tractable. Similarly,

when performing estimation it might be hard to handle loss functions other then a quadratic

or some other convinient convex function that allows explicit analytical computations. For

long time this has lead to favoured types of priors, which allowed analytical computations.

Such an example are conjugate priors, for which the corresponding posterior distributions are

themselves members of the original prior family. This would allow the Bayesian update to be

performed by appropriately updating the parameters of the distributions.

When analytical computation is not an option one has to rely on approximations. Determin-

istic techniques suffer in terms of computational complexity as it increases substantially with

the dimension of the parameter space. For example, standard numerical integration methods

suffer from a computational complexity that grows exponentially with the dimension of the

integration region. Apart from some simple situations and low dimensions, these numerical

approximations are inadequate and inefficient. The only alternative is to use methods based

on simulation. During the last few decades, various simulation techniques based on the Monte

Carlo principle have been developed to efficiently address Bayesian inference problems (and

not only) whose analytical computations cannot be performed.

2.3 Monte Carlo Integration

Monte Carlo methods are powerful numerical techniques that deal with the integration and

optimisation of complex, multi-dimensional functions. Here we will consider Monte Carlo

integration, which approximates any complex integral, such as an expectation, with the aid of

simulation. We are interested in approximating the following integral with respect to a target

density π(x) defined on a measurable space (X , E),

π (ϕ) = Eπ[ϕ(X)] =

∫

X

ϕ(x)π(dx) , (2.2)

where ϕ is some measureable function, such that ϕ : X −→ Rnx .
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2.3.1 Perfect Monte Carlo

Assume a set of N independent identically distributed (iid) random samples {X(i)}Ni=1 can be

drawn from π(x). Then, an empirical estimate of π based on perfect Monte Carlo sampling can

be given by

π̂(dx) =
1

N

N∑

i=1

δX(i) (dx) ,

where δ denotes the Dirac delta function. The integral in (2.2) can be approximated by the

sample mean

π̂(ϕ) =

∫

X

ϕ(x)π̂(dx) =
1

N

N∑

i=1

ϕ(X(i)). (2.3)

This implies that a continuous distribution is approximated by a discrete one with random

support. The empirical density π̂(x) will form an increasingly better approximation of the

continuous density π(x) as N → ∞. For independent samples1 the following convergence

holds,

π̂(ϕ)
a.s.−→

N→∞
π (ϕ) ,

by the Law of Large Numbers, where
a.s.−→ denotes almost sure convergence. π̂(ϕ) is also an

unbiased estimator of π (ϕ).

Perfect Monte Carlo Variance The variance of π̂(ϕ) is given by

var(π̂(ϕ)) =
varπ [ϕ (x)]

N

=
1

N

∫

X

[ϕ(x)− π (ϕ)]2 π(dx) (2.4)

Thus accuracy improves as more samples are taken and if varπ [ϕ (x)] < ∞ the following cen-

tral limit theorem holds,

√
N (π̂(ϕ) − π (ϕ)) =⇒

N→∞
N (0, varπ [ϕ (x)]) ,

where =⇒ denotes convergence in distribution.

Intuitively, the advantage of Monte Carlo integration comes from the fact that the samples

{X(i)}Ni=1 are automatically chosen to be in the important regions of the state space. The rate of

1Even in cases where the samples are dependent, it is still possible to obtain convergence under some weak

assumptions. This applies, for example, when the dependent samples are drawn from a suitable Markov Chain.
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convergence of 1√
N

is independent of the dimensions of x as opposed to typical deterministic

numerical integration methods, [140]. Unfortunately, it might not be possible to directly sample

from π, which brings up the issue of devising means of obtaining samples of π using the aid of

another density, say q, we can sample from.

2.3.2 Monte Carlo Sampling

The requirement of perfect Monte Carlo is the ability to draw iid samples from the target dis-

tribution π(x). For most practical models this is not possible. In such cases to use Monte

Carlo for integration we should use more sophisticated sampling techniques, such as Rejec-

tion Sampling [103], Importance Sampling [103,140] and Markov Chain Monte Carlo (MCMC)

methods [63, 73, 115].

Rejection sampling

Rejection sampling is a simple idea that allows one to sample from a distribution π(x) known

up to a proportionality constant. Let π(x) = l(x)
Z hold, where Z is the normalisation constant.

First, we aim to find a different distribution q(x), which is easy to sample from and whose

support that includes that of π(x). Also, q(x) should be such that l(x) ≤ Mq (x) is satisfied

for all x and some constant M < ∞. We can then use q(x) as a proposal distribution to obtain

samples X(i) and then use an auxiliary variable sampled from a uniform distribution U (0, 1)

to determine whether X(i) is a sample of π(x). Rejection sampling can be summarised by the

following algorithm.

Algorithm 2.1 Rejection Sampling algorithm:

1. Sampling Step

• Sample X(i) ∼ q
• Sample U (i) ∼ U (0, 1)

2. Accept-Reject Step

• If U (i) ≤ l
(
X(i)

)/
Mq

(
X(i)

)
accept X(i) as a sample of π

• Else, reject X(i) and go back to step 1

Repeat
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It can verified by considering the distribution of the accepted samples that the set of ac-

cepted samples will be distributed according to π(x). Also, one can show through a simple

manipulation that the probability of the accepted samples equals to 1
M . As one would expect,

the size of M shows how efficiently our samples are used and resembles how close q imitates

π. Unfortunately, in practice a rejection sampling approach is usually viable only for low-

dimensional problems as it tends to waste sampling effort when rejection levels are high. In

the literature, one can find improved rejection sampling approaches, which use either cheap

to evaluate squeezing functions to tightly bound l(x) on both sides or an adaptive mechanism

to obtain bounds from the samples themselves, leading to adaptive rejection sampling. For more

details see [140].

2.4 Importance sampling (IS)

In contrast to rejection sampling, we would like to use every sample, rather than discarding

it. Importance sampling techniques achieve this by weighting each sample according to how

“well” it resembles the target distribution. Although this is a rather informal statement, it

should made clearer later in this section. As before we can introduce an instrumental distri-

bution q whose support includes that of π, i.e. π << q, and such that the Radon-Nikodym

derivative dπ
dq is well defined and bounded. In [140] the authors refer to the importance sam-

pling fundamental identity, as

π (ϕ) = q(
dπ

dq
ϕ).

Let ν be some σ-finite measure, such that π << ν and q << ν. Then dπ
dq = dπ

dν /
dq
dν .To ensure

π << q we have to select q so that dq
dν > 0 for dπ

dν > 0. This formalises the well known rule

of thumb found in [61], that ones has to make sure that the tails of the importance function q

are heavier than the tails of the target distribution π. Let also q (dx) = q (x) ν(dx) and π (dx) =

π (x) ν(dx), so that the reformulating the integral of interest in (2.2) is

π (ϕ) =

∫

X

ϕ(x)
π(x)

q (x)
q (x) ν(dx) =

∫

X

ϕ(x)w(x)q(x)ν(dx), (2.5)

where

w(x) =
π(x)

q(x)
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is known as the importance weight. Using a set of iid samples {X(i)}Ni=1 sampled from q (dx)

leads to the Monte Carlo estimate

π̂(ϕ) =

∫

X

w (x)ϕ(x)q̂(x) dx =
1

N

N∑

i=1

w
(
X(i)

)
ϕ
(
X(i)

)
, (2.6)

which is an unbiased estimator that converges to (2.5) for the same reason as the perfect Monte

Carlo estimator. In this case the empirical distribution estimate for q and π are now given by

the weighted set of samples

q̂(dx) =
1

N

N∑

i=1

δX(i) (dx) ,

π̂(dx) =
1

N

N∑

i=1

w
(
X(i)

)
δX(i) (dx) .

This importance sampling approach also works if π is only known up to a proportionality

constant. In this case we can use the approximation.

π̂(ϕ) =
1
N

∑N
i=1 w

(
X(i)

)
ϕ(X(i))

1
N

∑N
j=1w

(
X(j)

) =
N∑

i=1

w̃
(
X(i)

)
ϕ
(
X(i)

)
, (2.7)

where w̃
(
X(i)

)
= w

(
X(i)

)/∑N
j=1w

(
X(j)

)
is the normalised importance weight. The result in

(2.7) is based on the fact that 1
N

∑N
j=1w

(
X(j)

) a.s.−→
N→∞

1. This strategy makes use of the ratio of

two unbiased estimator, a bias is introduced for the finite number of samples case. However,

the estimator is asymptotically consistent and can provide lower variance estimates than the

standard Importance sampling estimator.

Controlling the variance of Importance sampling The variance of π̂(ϕ) in (2.6) is given by

varq (π̂(ϕ)) =
1

N
varq [w (x)ϕ(x)]

=
1

N



∫

X

w (x)ϕ2(x)π (x) dx− E2
π (ϕ (x))


 . (2.8)

Clearly, the variance of the estimate in (2.6) will depend on the specific choice of q(x).

Proposition 2.4.1 Assuming supp (q) ⊃ supp (ϕπ) holds, an optimal importance density that min-

imises the variance of the estimator in (2.6) and is given by

q(x) =
|ϕ (x)| π (x)∫

X
|ϕ (x)|π (x) dx

.
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Proof. From [140] : The variance of w(x)ϕ(x) with respect to q (x) is given as

V arq [w (x)ϕ(x)] = Eq

[
w2(x)ϕ2(x)

]
− E2

q [w(x)ϕ(x)] ,

where from Jensen’s inequality the first term gives

Eq

(
π2(x)ϕ2(x)

q2(x)

)
≥ E2

q

(
π(x) |ϕ (x)|

q(x)

)
= E2

π (|ϕ (x)|)

and the for the second term,

E2
q [w(x)ϕ(x)] = E2

π [ϕ(x)] .

The lower bound is attained at

q(x) =
|ϕ (x)| π (x)∫

X
|ϕ (x)|π (x) dx

,

where the variance becomes zero.

Note that importance sampling can in principle achieve a lower variance than the variance

of the perfect Monte Carlo sampling estimator in (2.4). In [91] the variance of the IS estimator,

varq [π̂(ϕ)], was approximated by

varq [π̂(ϕ)] ≈ varπ [ϕ (x)] {1 + varq [w (x)]}
N

.

The above approximation has been suggested in to provide an easy way of monitoring the

efficiency of the importance sampling method. To see this, we shall compare the variance with

that of using perfect Monte Carlo, when N ′ samples from the target density π(x) are available.

Using (2.4) and taking the ratio of the variances with and without importance sampling gives

varq [π̂(ϕ)]

var [π̂(ϕ)]
≈ N ′

N
(1 + varq [w (x)]) .

In [102], the value of N ′ at which the two variances become equal is defined as effective sample

size, and is given by

Neff =
N

1 + varq [w (x)]
. (2.9)

2.5 Markov Chains

Markov chains theory is very important for all the topics included in this thesis, so we shall con-

tinue with a brief introduction on discrete time Markov chains defined on general state spaces.
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The concepts and ideas in this introduction will also prove useful later in this thesis, for exam-

ple when we consider Hidden Markov models for general state spaces. As indicated by the title

of this thesis, we are primarily interested in stochastic processes taking values on an arbitrary

set equipped with a σ-field. Thus, the framework is kept as general as possible by using defini-

tions on arbitrary measurable spaces in contrast to using discrete state spaces, which has been

very popular especially in the literature of Hidden Markov Models (for example see [138]). In

this section we shall list some of the main definitions and properties of discrete time Markov

processes defined on general state spaces. This section is not intended to be a detailed review

and for a more concise treatment we refer the interested reader to [114, 145, 162].

A Markov chain is a sequence of random variables (Xn)n∈N, which takes its values on a se-

quence of measurable spaces (Xn, En)n∈N and has an initial distribution η0. Each Xn is referred

as the state at time n and obeys elementary transitions given by a sequence of Markov kernels

(Mn)n∈N with each Mn : Xn−1 → P(Xn), where P(Xn) denotes the set of probability measures

on space Xn. For each transition kernel Mn we require that

• Mn(·, A) is a nonnegative measurable function on Xn−1, for each set A ∈ En,

• Mn(x, ·) is a probability measure on En, for each x ∈ Xn−1.

If that holds, then for any n ∈ N, any initial distribution η0 and any sequence of transition

kernels, (Mn)n∈N, there exists a stochastic process (Xn)n≥0 on Ωn = X0 × ... × Xn = X0:n,

measurable with respect to the product σ-field Fn = ⊗n
p=0Ep, and following a probability law

Pη0 on Fn such that

Pη0(X0 ∈ A0,X1 ∈ A1, ...,Xn ∈ An) =

∫

A0

∫

A1

· · ·
∫

An−1

η0(dy0)M1(y0, dy1) · · ·Mn(yn−1, An),

where Ai ⊆ Xi for any i = 0, ..., n.

The defining property of a Markov chain is that the current state of the chain at time n

depends only on the previous state at time n− 1. Then given a set A ⊆ Xn, we have for any n

Pη0(Xn ∈ A|X0 = x0,X1 = x1, ...,Xn−1 = xn−1) = Pη0(Xn ∈ A|Xn−1 = xn−1), (2.10)

which using kernel Mn is given as

Pη0(Xn ∈ A|Xn−1 = xn−1) =

∫

A
Mn(xn−1, dxn).
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For the remaining of this section we shall focus only on time homogeneous Markov chains, for

which Xi = X , En = E , and Mi = M at all times i. The kernel for n transitions, Mn(x,A),can be

written recursively as

Mn(x,A) =

∫

X
M(x, dy)Mn−1(y,A),

where we use M1(x,A) = M(x,A). Alternatively, the nth step transition kernel can be given

by the Chapman-Kolmogorov equations, which state that for every m with 0 ≤ m ≤ n

Mn(x,A) =

∫

X
Mm(x, dy)Mn−m(y,A). (2.11)

Markov Properties

Equation (2.10) can be generalised to the so called weak Markov property, which is given by

the following proposition.

Proposition 2.5.1 Weak Markov Property. For every initial distribution η0, every n + 1 sample

(X0, ...,Xn), and every bounded measurable test function ϕ : X → R, we have

Eη0 [ϕ(Xn+1,Xn+2, ...)|X0 = x0,X1 = x1, ...,Xn = xn] = Exn [ϕ(X1,X2, ...)].

When ϕ is simply the indicator function IA, Definition 2.5.1 coincides with equation (2.10).

We shall now introduce certain random times in the evolution of (Xn), which are used to

analyse the behaviour of the chain.

Definition 2.5.1 For any set A ∈ E , we define

• the occupation time or number of passages of Xn in A, νA, as the number of visits by (Xn)n≥1 to

A after time 0, given by

νA =

∞∑

n=1

IA(Xn)

• the stopping time or first return times on A as

τA = inf{n ≥ 1 : Xn ∈ A}

We shall be particulary interested in quantities such as the average number of passages in A,

Eη0[νA], and the probability of return to A in a finite number of steps, Pη0(τA < ∞). If we include

the notion of stopping time in Proposition 2.5.1 we obtain the Strong Markov property.



2.5. Markov Chains 23

Proposition 2.5.2 Strong Markov Property. For every initial distribution η0, every bounded mea-

surable test function ϕ : X → R, and every almost surely finite stopping time ζ , we have

Eη0(ϕ(Xζ+1,Xζ+2, ...)|X0 = x0,X1 = x1, ...,Xζ = xζ) = Exζ
(ϕ(X1,X2, ...)).

Irreducibility

Irreducibility is a property of certain Markov chains, which generalises the concept of all states

being able to communicate found in discrete space Markov chains. Using an auxiliary measure

φ we are interested in checking if the chain is able to visit the entire state space with a positive

probability, regardless of the starting point of the chain.

Property 2.5.1 Given a measure φ, a Markov chain is φ-irreducible, if for every A ∈ F with φ(A) > 0,

there exists a time n such that Mn(x,A) > 0 for all x ∈ X or equivalently Px(τA <∞) > 0. The chain

is also strongly φ-irreducible if n = 1 for all measurable A.

Aperiodicity

Aperiodicity is a property, which loosely speaking restricts the chain from moving in the state

space in a periodic manner, i.e. getting trapped in cycles. In discrete state spaces a cycle is de-

fined as the greatest common denominator of the lengths of all paths with positive probability

between two given states. If there exists no cycle greater than one for any pair of states then

the chain is aperiodic. In order to extend this concept to general state spaces, we introduce the

notion of small sets, for which the minorisation condition holds. The minorisation condition is

that there exists a set C ∈ E , ǫ > 0 and a probability measure ν such that M(x,A) ≥ ǫν(A), for

every x ∈ C,A ∈ E . Then, ν appears a constant component of the transition kernel on C and

we can proceed to the following definition:

Definition 2.5.2 A set C is small if there exist m ∈ N∗ and a nonzero measure νm such that

Mm(x,A) ≥ νm(A), ∀x ∈ C,∀A ∈ E .

If there exist a small set C , an associated integer m′ and a probability measure νm′ , the cycle of

a φ-irreducible chain is defined as the greatest common denominator of

{m ≥ 1;∃δm > 0 : C is small for νm ≥ δmνm′}

If the longest cycle is of length one, then the chain is aperiodic.
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Recurrence

In order to examine how often every set A will be visited by the Markov chain, we introduce

the notion of recurrence. Any setA is defined as recurrent if Eη0 [νA] = +∞. Otherwise the set is

called uniformly transient. We can extend the notion of recurrence, as a property of φ-irreducible

chains.

Definition 2.5.3 A φ-irreducible Markov chain (Xn)n≥0 is recurrent, if for every A ∈ E such that

φ(A) > 0 then Ex[νA] = +∞ for every x ∈ A.

If this does not hold for a φ-irreducible Markov chain, then the chain is transient. A popular

criterion for establishing recurrence is to show that there exists a small set C with φ(C) > 0

such that Px(τA <∞) = 1 for every x ∈ C .

We can further strengthen recurrence by requiring an infinite number of visits for every

path of the Markov chain. This introduces the property of Harris recurrence.

Definition 2.5.4 A set A is Harris recurrent if Px(νA = ∞) = 1 for all x ∈ A. A φ-irreducible

Markov chain is Harris recurrent if every set with φ(A) > 0 is Harris recurrent.

One can show Harris recurrence for a φ-irreducible chain, if there exists a small set C with

φ(C) > 0 such that Px(τA <∞) = 1 for every x ∈ X . This form of recurrence was shown to be

sufficient to guarantee the existence of a unique invariant distribution for the chain [114].

Invariant Measures

A stronger form of stability for the chain (Xn)n≥0 is attained if the marginal distribution of Xn

is independent of n. More formally, this requires the existence of a probability measure π such

that if Xn ∼ π then Xn+1 ∼ π. MCMC methods are based on this requirement which defines a

particular kind of recurrence called positive recurrence.

Definition 2.5.5 A σ-finite measure π is invariant for the transition kernel M(·, ·) and the associated

Markov chain if

π(A) =

∫

X
π(dy)M(y,A), ∀A ∈ E .

If the invariant measure π is a probability measure then the invariant distribution is referred as

stationary. A φ-irreducible chain is called positive, if it admits an invariant probability measure.

If the chain does not allow for a σ-finite invariant measure it is called null. If a chain is positive
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then it should be also recurrent. In addition, if a chain is Harris recurrent and positive, it is

called Harris positive.

Reversibility

The property of reversibility is inherent to stationary Markov chains. A Markov chain (Xn)n≥0

is reversible if the distribution ofXn+1|Xn+2 = x is the same as the distribution ofXn+1|Xn = x.

Moreover, we define the detailed balance condition as the existence of function f satisfying

f(x)M(x, y) = f(y)M(y, x).

Proposition 2.5.3 If the detailed balance condition is satisfied for kernel M with the associated function

being a probability density function π∗(dx), then the chain is reversible and π∗ is the stationary invariant

density of the chain.

This sufficient condition proves extremely useful for designing MCMC algorithms, where we

are interested in simulating an invariant stationary Markov chain. The detailed balance con-

dition provides a useful design rule for the proposal kernel of the MCMC chain, which is also

easy to check.

Ergodicity

For an invariant chain, we would like to be able to show that the chain will gradually “forget”

the initial state and eventually converge to a unique stationary distribution π that is indepen-

dent of both,X0 and n. Ergodic theorems provide results, which give conditions under which a

strong law of large numbers holds and the probability density of the nth iterate of the Markov

chain converges to its unique, invariant density.

Theorem 2.5.1 Suppose (Xn)n≥0 is a Harris recurrent Markov chain with transition kernel M(·, ·)
and invariant distribution π, then for all π-integrable functions ϕ,

1

n

n∑

i=1

ϕ(Xi)
a.s.−→

n→∞
π(ϕ).

Theorem 2.5.2 Suppose (Xn)n≥0 is a aperiodic, Harris recurrent Markov chain with transition kernel

M(·, ·) and invariant distribution π. Then for π-almost every x ∈ X , and all sets A ∈ E

‖Mn(x,A) − π(A) ‖TV
a.s.−→

n→∞
0
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where ‖ · ‖TV denotes the total variation norm2.

A further strengthening of the conditions is required to obtain a central limit theorem for

sample-path averages. In this case it is required that (Xn)n≥0 is an ergodic chain.

Definition 2.5.6 An ergodic Markov chain is defined as a φ-irreducible chain, which is also aperiodic

and positive Harris recurrent.

In addition, one needs the notion of geometric ergodicity. An ergodic Markov chain with in-

variant distribution π is geometrically ergodic if there exists a non-negative function ζ : X → R+

and a positive constant r > 1 such that

‖Mn(x,A)− π(A) ‖TV≤ ζ(x)r−n ∀x ∈ X ,∀n ≥ 0,∀A ∈ E

If the Markov chain is geometrically ergodic with invariant distribution π, then for all measur-

able functions ϕ, and any initial distribution η0, the distribution we obtain obeys the following

Central Limit Theorem (CLT):

√
n(

1

n

n∑

i=1

ϕ(Xi)− π(ϕ)) =⇒
N→∞

N (0,Σϕ) ,

where Σϕ = var[ϕ(X0)] + 2
∑∞

i=1 cov [{ϕ(X0), ϕ(Xi)}] .
One can further strengthen the notion of geometric ergodicity, so that the rate of geometric

convergence must be uniform over the whole space X , i.e. ζ is a constant function. This prop-

erty is referred as uniform ergodicity and the CLT above holds for all L2 measurable functions .

It can be shown that for a uniformly ergodic chain, aperiodicity holds and X is a small set.

2.6 Markov Chain Monte Carlo methods

In many situations it is difficult to obtain large number of iid samples from the distribution of

interest π. Markov Chain Monte Carlo (MCMC) methods [63, 73, 115, 140] are based on gener-

ating samples from a suitable ergodic Markov chain, which has π as its stationary distribution.

2.6.1 Metropolis-Hastings and the Gibbs sampler

MCMC methods run an ergodic Markov chain long enough, so that it converges to the station-

ary distribution π, which is chosen to be precisely the target distribution of interest. The most

2The total variation norm between measure µ1 and µ2 is defined as ‖ µ1 − µ2 ‖TV = sup
A

| µ1(A) − µ2(A) |
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widely used algorithm up to date is the Metropolis-Hastings algorithm as presented below.

Algorithm 2.2 Metropolis-Hastings (MH) algorithm:

1. Sampling Step

• Sample X̃n ∼ K(Xn−1, ·)
•Calculate the acceptance probability α = min(1, π(X̃n)K(X̃n,Xn−1)

π(Xn−1)K(Xn−1,X̃n)
)

•Sample U (i) ∼ U (0, 1)

2. Accept-Reject Step

• If U ≤ α accept X̃n as a sample of π, and set Xn+1 = X̃n

• Else, reject X̃n, and set Xn+1 = Xn and go back to step 1

Historically, the first MCMC method was proposed by Metropolis et al. in 1953, [115] and was

later generalised by Hastings, [73]. In Algorithm 2.2 the transition kernel M of the underlying

Markov chain (Xn) can be written as

M(x, dy) = α(x, y)K(x, dy) + (1− α(x, y))δx(dy)

A simple substitution can show that M satisfies the detailed balance equation for π, and there-

fore π is the stationary distribution of the chain.

A popular special case of the general Metropolis-Hastings algorithm is the Gibbs sampler.

Let the variable of interest X be distributed according to π and have a cardinality of size d. For

simplicity, we denote x−i the vector x1:i−1,i+1:d in case i 6= 1, d, and x−1 = x2:d, x−d = x1:d−1

otherwise. If the full conditionals πi(xi|X−i = x−i) are available to sample from, one can

obtain a sample from π by iteratively sampling from the full conditionals as shown below.

Algorithm 2.3 Gibbs sampler algorithm: Given xn = (x1n , x2n , ..., xdn), generate for i = 1, ..., d

Xin ∼ πi(xi|X−in = x−in)

Repeat

Although this algorithm is computationally very attractive, easy to implement and has thus
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been used widely, the requirement of the conditionals of the target distributions is quite restric-

tive.

MCMC is itself an interesting and complicated topic. We shall not attempt to present de-

tails or a further discussion, as it is beyond the scope of this chapter. Further details can be

found in [63] and [140]. Despite their versatility and wide success, it might be impractical to

apply classical MCMC algorithms to sequential inference problems, which require simulating

time varying distributions. The next section discusses a different type of Monte Carlo tech-

niques, known as Sequential Monte Carlo methods that can provide with approximation tools

for target probability distributions, which vary sequentially in time.

2.7 Sequential Monte Carlo Methods

Motivated by many real-world applications, it is often essential that inference is performed

sequentially. There are many examples where this is particularly useful. For example, when

handling high dimensional spaces it might be hard to design good proposal distributions for

standard Importance Sampling. A strategy to circumvent this would be to build up the instru-

mental density sequentially as a product of conditional densities of each dimension given the

ones previously examined. Also, in problems involving time series, the observations of a latent

variable arrive sequentially and one would like to compute the Bayesian posterior recursively

as the observations become available. This relates to the problem of optimal Bayesian filtering,

which will be discussed in more detail in the next section of this chapter. Sequential Monte

Carlo (SMC) methods are a set of simulation based methods, which provide a convenient ap-

proach to compute posterior distributions. They are very flexible, easy to implement, paral-

lelisable and applicable in very general settings. Hence, they have been applied successfully to

a wide range of sequential inference applications, such as target tracking [71], navigation [19],

econometrics [132] and telecommunications [7].

With reference to the notation of Section 2.4, suppose the variable of interest X ∼ π is

partitioned as a d + 1-dimensional vector3. Each element in that vector can be another sub-

vector of arbitrary size. We index each element of the partition by index n with n = {0, ..., d}.
3We alert the reader that the first element of the d+ 1-dimensional vector is indexed by 0. This was done so that

the indexing in the notation remains consistent with the rest of the chapter.
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Let then Xn take values at some measurable space (Xn, En)4. At any n, we denote the joint

variable of all the partitions until n as X0:n, which takes values on the space of the complete

path until time n, X0:n = X0× ...×Xn, and dx0:n is the infinitesimal neighbourhood of the path

point X0:n. Then one could decompose the instrumental density as

q(x0:d) = q0(x0)q1(x1|x0)q2(x2|x0:1) · · · qd(xd|x0:d−1).

Then one can write a similar decomposition for the target density as

π(x0:d) = π(x0)π(x1|x0)π(x2|x0:1) · · · π(xd|x0:d−1).

and then obtain a recursive expression for the IS weight as

w(x0:n) = w(x0:n−1)
π(xn|x0:n−1)

qn(xn|x0:n−1)
.

In practice, for the most general setting it might be hard to obtain analytical expressions for

each π(xn|x0:n−1) as this would require being able to compute the marginalisation

π(x0:n) =

∫
π(x0:d)dxn+1:d.

For the purpose of maintaining the presentation general we shall assume that there is available

a sequence of distributions {πn}n≥0, where each πn can reasonably approximate π(xn|x0:n−1)

and πd = π. Note that each πn need to be known only up to a normalisation constant and they

only serve as intermediate auxiliary guides to obtain a final sample of X. In this section we

shall consider how to sample from such a sequence of distributions {πn}n≥0, such that each

πn is defined on some measurable space (Ωn,Fn), where Ωn = X0:n and is equipped with the

product σ-field Fn = ⊗n
p=0Ep. We are interested in approximating the following integral with

respect to a target density πn(x0:n),

πn (ϕn) = Eπn [ϕn(x0:n)] =

∫

X0:n

ϕn(x0:n)πn(dx0:n) , (2.12)

where ϕn is some measureable function, such that ϕn : X0:n −→ Rnϕ .

2.7.1 Sequential Importance Sampling (SIS)

As already described, Importance Sampling simulates samples from an easy-to-sample impor-

tance distribution and corrects for the bias by introducing an importance weight. One can

4Since the dimension of Xn can be arbitrary we shall be using a varying measurable space (Xn, En).
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therefore employ this approach on (2.12) using a sequence of importance densities {qn}n≥0 de-

fined on (Ωn,Fn). As stated earlier when introducing Importance sampling, each qn should be

chosen such that if πn > 0 then qn > 0, so that the importance ratio

wn(x0:n) =
πn(x0:n)

qn(x0:n)
,

is defined. This leads to the expression

πn(ϕn) =

∫

X0:n

ϕn(x0:n)wn(x0:n)qn(dx0:n)

= Eqn [ϕn(x0:n)wn(x0:n)]

=
Eqn [ϕn(x0:n)wn(x0:n)]

Eqn [wn(x0:n)]
, (2.13)

Note that we have adopted an importance sampling approach similar to the one in (2.7) for the

more general case when the normalisation constants are not available.

As in the simple Importance Sampling case, the efficiency of the scheme here will depend

on the choice of the importance density. A good candidate for qn would be one that is close in

shape to |ϕn(x0:n)| πn(x0:n). In such a case, the variance of the weights will be roughly constant

and importance sampling will generate fairly precise estimates. However, if the importance

weights vary substantially, such a method should not be used. This would be for example

the case if |ϕn(x0:n)| πn(x0:n) has thicker tails than qn(x0:n) [61]. A naive implementation of qn

would be to design it for the complete path from time 0 to n, but one can see this would be

extremely inefficient due to the increasing dimensional spaces. Instead, we can keep the the

realisation of the path up to time n − 1, X0:n−1, and produce samples at time n conditional

on the existing path. This sequential setting can be obtained if the importance distribution is

chosen to have the form

qn (x0:n) = q0 (x0)

n∏

k=1

qk (xk|x0:k−1) . (2.14)

Then, we can use

πn(x0:n)

qn(x0:n)
=
πn−1(x0:n−1)

qn−1(x0:n−1)

πn(x0:n)

πn−1(x0:n−1)qn (xn|x0:n−1)

to obtain a sequential importance weight update as

wn(x0:n) = wn−1(x0:n−1)
πn(x0:n)

πn−1(x0:n−1)qn (xn|x0:n−1)
. (2.15)
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The SMC approximation is based on a weighted empirical distribution of a set of N ≫ 1

samples, termed as particles. These provide a flexible way to approximate posterior distribu-

tions using point masses. Assume that at time n− 1, an empirical approximation to πn−1, π̂n−1,

is available, consisting of a set of particles X
(1:N)
0:n−1 ,

[
X

(1)
0:n−1, . . . ,X

(N)
0:n−1

]
with corresponding

weights w̃
(1:N)
n−1 ,

[
w̃

(1)
n−1, . . . , w̃

(N)
n−1

]
. We can write π̂n−1 as

π̂n−1(dx0:n−1) =

N∑

i=1

w̃
(i)
n−1δX(i)

0:n−1
dx0:n−1

If a set of N independent samples from qn are available, we can augment the path of the state

as X
(1:N)
0:n = [X

(1:N)
0:n−1,X

(1:N)
n ]. A Monte Carlo estimate of (2.13), π̂n, will be given by

π̂n(ϕn) =
1
N

∑N
i=1 ϕn(X

(i)
0:n) wn(X

(i)
0:n)

1
N

∑N
j=1wn(X

(j)
0:n)

=
N∑

i=1

ϕn(X
(i)
0:n) w̃(i)

n , (2.16)

where the normalised importance weights are given by

w̃(i)
n =

wn(X
(i)
0:n)

∑N
j=1wn

(
X

(j)
0:n

)

In the limit,

π̂n(ϕn)
a.s.−→

N→∞
πn (ϕn)

will hold. Furthermore, it is possible to obtain a central limit theorem for π̂n(ϕn) [46, 62]. We

can summarize SIS as the following algorithm.

Algorithm 2.4 Sequential Importance Sampling algorithm: At each n ≥ 0 we have available par-

ticle approximation {X(i)
0:n−1, w̃

(i)
n−1}Ni=1. The recursion is proceeded in a two step procedure as follows:

1. Sampling Step

•For i = 1, . . . , N , sample particles as X
(i)
n ∼ qn

(
·|X(i)

0:n−1

)
,

• Augment the path of the state as X
(1:N)
0:n = [X

(1:N)
0:n−1,X

(1:N)
n ].

2. Weight Calculation

• Compute w
(i)
n = w

(i)
n−1

πn(X
(i)
0:n)

πn−1(X
(i)
0:n−1)qn

(
X

(i)
n |X(i)

0:n−1

) ,

• Normalise weights w̃
(i)
n = w

(i)
n∑N

j=1 w
(j)
n

.
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2.7.2 Sequential Importance Sampling Resampling (SISR)

SIS is an attractive method, but one has to bear in mind that it is still a constrained version of IS.

If n grows very large then it might fail to adequately represent the high dimensional posteriors.

As n increases, the variance of the importance weights will increase with time, see [48]. Then

the distribution of the importance weights becomes more and more skewed. As a result, after

a few iterations all but one of the normalised importance weights will be very close to zero.

To make this clearer we shall use a simple argument borrowed from [140]. For any particle

(i) the weight is given by an expression of the form w
(i)
n ∝ w

(i)
n−1̺

(i)
n . Consider the case of

using standard IS with q as the proposal and π as the target distribution, in order to obtain n

successive independent samples π. We would like to use successive independent IS draws to

sample from the joint distribution of X0:n. Then for the weight we have

w(i)
n ∝ exp(

n∑

k=1

log(
π(X

(i)
k )

q(X
(i)
k )

)),

and using the Law of Large Numbers as n→∞ for the sum within the exponential we get

w(i)
n ∝ exp(−nEq[log

q(X)

π(X)
]),

where it is easy to show that Eq[log
q(X)
π(X) ] is positive. It is clear that the weights have tendency

to degenerate towards zero. Of course, when using SIS the normalisation step will eventually

ensure that one particle will be set to one. Also, in SIS the independence structure does not

hold but it is still clear that weights tend to decay, when targeting a distribution of increasing

dimension. This problem is commonly referred in the literature as the degeneracy of the SIS

algorithm.

To counter the degeneracy problem, a resampling step is introduced. This effectively se-

lects (multiplies/discards) the previous particle paths X
(i)
0:n−1 according to their (large/small)

weights w̃
(i)
n . This is achieved by generating a number of copies for each path by sampling the

N available paths according to Pr
(
X̃

(i)
0:n = X

(k)
0:n

)
= w̃

(k)
n . This gives the new set of paths

X̃
(1:N)
0:n−1 = [X

(1)
0:n−1, . . . ,X

(1)
0:n−1︸ ︷︷ ︸

I
(1)
n−1 times

, . . . ,X
(N)
0:n−1, . . . ,X

(N)
0:n−1︸ ︷︷ ︸

I
(N)
n−1 times

],

where the number of copies of the ith path is denoted by I
(i)
n−1 and is such that

∑N
i=1 I

(i)
n−1 = N.A

number of resampling methods have been proposed in the literature that satisfy E
(
I
(i)
n−1

)
= N
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w̃
(i)
n , but have different var

(
I
(i)
n−1

)
. Standard resampling schemes include multinomial resam-

pling [71], residual resampling [103] and stratified resampling [85]. We refer the reader to [44]

for a comparison. The latter scheme has the least variance and it is the one adopted in this

thesis. In general, the resampling procedure introduces undesirable Monte Carlo variance into

the algorithm.

Unfortunately, resampling also leads to impoverishment of the particles, since at every time

step some of the distinct particles are dropped in favour of more copies of highly-weighted

particles. One remedy for this is to decrease the resampling frequency and use resampling

only when it is necessary. A simple measure of degeneracy is the effective sample size, seen in

equation (2.9), which can be written for SIS as

Neff =
N

1 + varqn [w(x0:n)]
(2.17)

and estimated in practice using

N̂eff =
1

∑N
i=1

[
w̃

(i)
n

]2 .

When N̂eff is below some threshold value, say N
2 , a resampling procedure is applied to the

particles [48]. We can summarize SISR as the following algorithm.

Algorithm 2.5 Sequential Importance Sampling Resampling algorithm: At each n ≥ 0 we have

available particle approximation {X̃(i)
0:n−1, w̃

(i)
n−1}Ni=1. The recursion is proceeded in a two step procedure

as follows:

1. Sampling Step

• For i = 1, . . . , N , sample particles as X
(i)
n ∼ qn

(
·|X̃(i)

0:n−1

)
,

• Augment the path of the state as X
(1:N)
0:n = [X

(1:N)
0:n−1,X

(1:N)
n ].

2. Weight Calculation

• Compute w
(i)
n = w

(i)
n−1

πn(X
(i)
0:n)

πn−1(X
(i)
0:n−1)q

(
X

(i)
n |X(i)

0:n−1

) ,

• Normalise weights w̃
(i)
n = w

(i)
n∑N

j=1 w
(j)
n

.

3. Resampling

• If N̂eff <
N
2 , resample X̃0:n according to Pr

(
X̃

(i)
0:n = X

(k)
0:n

)
= w̃

(k)
n , and assign new resampled

particle indexed with i, the new importance weight w̃
(i)
n = 1

N .
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As in the non-sequential importance sampling case, the choice of the importance densities

{qn}n≥0 is critical for controlling the variance. Equation (2.17) would still hold if not for the re-

sampling stage, which introduces correlations between the particles leading to a more complex

expression. However, it still remains sensible to try to minimise the the variance of the unnor-

malised weights appearing in SISR algorithm. In [46], we can find the following proposition.

Proposition 2.7.1 The optimal proposal distribution that minimises the variance of the incremental

importance weight is given by

qopt
n (xn|x0:n−1) = πn(xn|x0:n−1).

Using this optimal importance distribution, the incremental importance weight is given by

wopt
n (x0:n) =

πn(x0:n−1)

πn−1(x0:n−1)
.

Proof. See [46].

In practice it might be hard to directly sample from πn(xn|x0:n−1), or compute

πn(x0:n−1) =

∫

Xn

πn(x0:n−1)dxn.

Therefore, approximations should be considered, such as local linearisation techniques. Other

possibilities include rejection sampling approaches [46, 103] and MCMC methods [24, 103],

however these usually involve a significant computational overhead.

2.7.3 Auxiliary SMC filter

A well known drawback of SISR is the fact that if πn varies significantly compared to πn−1,

the variance of the weights can be quite high and the algorithm ineffective, as a large number

of particles might be required. One way to deal with these problems is to focus on carefully

designing good proposal distributions which bridge the difference between πn and πn−1. In

Proposition 2.7.1 we see that the optimal weights with respect the variance are equal to the ratio

of πn(x0:n−1)
πn−1(x0:n−1) . Assume we can construct π̃n(x0:n−1), which is some reasonable approximation

of πn(x0:n−1). We could then use the ratio π̃n(x0:n−1)
πn−1(x0:n−1) at time n− 1 to modify the weights prior

to the resampling and sampling a new particle steps, so that the empirical mass is strengthened

at more promising regions of the state space regarding the next time step. In a IS context, we
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could use π̂n−1 to construct an importance distribution qn(x0:n) for the complete path, which is

proportional to

qn(xn|x0:n−1)
π̃n(x0:n−1)

πn(x0:n−1)
π̂n−1(x0:n−1) =

N∑

i=1

qn(xn|X(i)
0:n−1)

π̃n(X
(i)
0:n−1)

πn(X
(i)
0:n−1)

w(i)
n δ

X
(i)
0:n−1

(x0:n−1)

Instead of using this expression directly, we will use an auxiliary variable i to track the index

of the i-th particle X
(i)
0:n−1 and consider using a procedure similar to SIS based on equation

(2.14). The difference will be that this time at each proposal step, we will propose i and xn

jointly from

qn(i, xn|x0:n−1) = qn(xn|i, x0:n−1)qn(i|x0:n−1)

where

qn(i|X(i)
0:n−1) = w

(i)
n−1

π̃n(X
(i)
0:n−1)

πn(X
(i)
0:n−1)

.

Sampling the particle-index pair from the joint distribution can be split into a two steps. We

can sample first the auxiliary variable using any standard resampling scheme. Let κ(i) be the

index obtained from the resampling mechanism. Then, we proceed by extending the path of

X0:n−1, by sampling X
(i)
n from qn(·|X(κ(i))

0:n−1). The elegance of the approach is also improved

from the fact that the resampling step is embedded in the sampling procedure. Finally, as in

SIS we weight the new samples using a direct substitution to πn(xn|x0:n−1)
qn(i,xn|x0:n−1)

. We can summarize

this approach as the following algorithm.

Algorithm 2.6 Auxiliary SMC filter: At each n ≥ 0 we have available particle approximation {X(i)
0:n−1, w

(i)
n−1}Ni=1.

The recursion is proceeded in a three step procedure as follows:

1. Calculate auxiliary weight:For i = 1, . . . , N

• Compute ŵ
(i)
n = w

(i)
n−1

π̃n(X
(i)
0:n−1)

πn−1(X
(i)
0:n−1)

.

2. Sample new index/particles: For i = 1, . . . , N ,

• If N̂eff (ŵ
(1:N)
n ) < N

2 , sample index i, according to Pr (i = κ(i)) = ŵ
(κ(i))
n .

• Sample X
(i)
n ∼ qn

(
·|X(κ(i))

0:n−1

)
and augment the path of the state as X

(i)
0:n = [X

(κ(i))
0:n−1,X

(i)
n ].

3. Weight Calculation

•For i = 1, . . . , N , compute w̃
(i)
n =

πn(X
(i)
0:n)

πn−1(X
(i)
0:n−1)qn

(
X

(i)
n |X(κ(i))

0:n−1

)
ŵ

(κ(i))
n

,

• Normalise weights w
(i)
n = w̃

(i)
n∑N

j=1 w̃
(j)
n

.
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This approach was first introduced with the name Auxiliary particle filter in [132] for the

context of optimal Bayesian filtering and remains a very popular and efficient SMC method.

In [132] the authors also show that the auxiliary SMC approach improved the performance

of SISR, in cases where πn contains an outlier, which causes the weights to be very unevenly

distributed in the SISR case. Also, they present how approximating the tails of a distribution

can be improved compared to SISR, which tends to concentrate the the mass of the empirical

approximation in regions of higher density.

2.8 Feynman-Kac Models

In this section we attempt a small scale literature review for the Feynman-Kac representations

for a discrete time Markov chain {Xn}n≥0 defined on some sequence of of some measurable

spaces. We aim to give some introductory background on these representations and their prop-

erties. The main reference is [34], where a more detailed and rigorous discussion with plenty

of examples on the topic can be found, and some of the material is taken from [35–37].

We conclude this part of this section with some definitions and notation. For any measure

µ on E, let µ(f) or 〈µ, f〉 denote
∫
E µ(dy)f(y). For measurable sets A ⊆ E, let µK(A) =

∫
E µ(dy)K(y,A), where K is an appropriate transition kernel.

2.8.1 Description of the Models

Let {Xn}n≥0 be an inhomogeneous Markov process taking values in some sequence of measur-

able spaces (En, En)n≥0 with initial distribution ν and a family of transition kernels {Mn}n≥0

such that

P(Xn ∈ dxn|X0:n−1 = x0:n−1) = Mn(xn−1, dxn).

At any time nwe denote the complete path of the chain until time n as X0:n ∈ E0× ...×En and

dx0:n as the infinitesimal neighbourhood of the path point x0:n. We can write the distribution

of the canonical path on Ωn =
n∏

p=0
Ep equipped with the product σ-field Fn = ⊗n

p=0Ep as

Pν(X0:n ∈ dx0:n) = Mn(xn−1, dxn)Pν(X0:n−1 ∈ dx0:n−1)

= ν(dx0)M1(x0, dx1) · · ·Mn(xn−1, dxn).
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The subscript on the probability measure Pν is there to emphasise the dependance on the dis-

tribution ν of the initial state X0.

Moreover, let {Gn}n≥0 be a family of non negative, bounded measurable functions, which

will be referred as potential functions, such that

Eν [
n∏

p=0

Gp(Xp)] > 0,∀n ≥ 0. (2.18)

where Eν denotes the expectation operator with respect to the probability measure Pν of the

path X0:n. We shall proceed with a few definitions to introduce the Feynman-Kac model.

Definition 2.8.1 [34, Def. 2.3.1] The Feynman-Kac prediction and updated path models, associated

with the pair (Gn,Mn) and an initial distribution ν, are the sequence of measures on the path space

defined respectively, for any n ≥ 0, by

Qν(X0:n ∈ dx0:n) =
1

Zn−1
[
n−1∏

p=0

Gp(Xp)]Pν(X0:n ∈ dx0:n),

Q′
ν(X0:n ∈ dx0:n) =

1

Zn
[

n∏

p=0

Gp(Xp)]Pν(X0:n ∈ dx0:n)

where (Zn)n≥0 are the normalising constants (also known as partition functions) given by

Zn = Eν [

n∏

p=0

Gp(Xp)]

To describe the dynamic evolution of the models we introduce the definition of the flows of

its time marginals.

Definition 2.8.2 [34, Def. 2.3.2] For any bounded measurable function f ∈ Bb(En), where Bb(En)

is the set of bounded continuous functions from En → R, we define the sequence of distributions {ηn}
and {µn} on E as the normalised prediction and updated Feynman-Kac model or flow associated with

the pair (Gn,Mn) respectively. They are given by

ηn(f) =
γn(f)

γn(1)
,

µn(f) =
λn(f)

λn(1)
,

with

γn(f) = Eν [f(Xn)
n−1∏

p=0

Gp(Xp)], (2.19)

λn(f) = Eν [f(Xn)

n∏

p=0

Gp(Xp)], (2.20)
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where {γn} and {λn} are called respectively the unnormalised prediction and updated Feynman-Kac

model or flow associated with the pair (Gn,Mn).

We easily check that

γn(fGn) = λn(f). (2.21)

The unnormalised model can be related to the prediction distribution flow marginal as {ηn}n≥0

as follows,

γn(f) = ηn(f)

n−1∏

p=0

ηp(Gp), (2.22)

λn(f) = µn(f)
n∏

p=0

ηp(Gp). (2.23)

If ηn(Gn) > 0 and γn(Gn) > 0, then we observe the following property of the updated flow

distribution,

µn(f) =
γn(fGn)

γn(Gn)
=
ηn(fGn)

ηn(Gn)
(2.24)

Motivated by (2.24) we proceed to define the following transformation.

Definition 2.8.3 (Boltzmann-Gibbs transformation [34, Def. 2.3.3]) Define the subset of probability

measures Pn(En) = {η ∈ P(En) : η(Gn) > 0}, where P(En) is the set of all probability measures

on En. The Boltzmann-Gibbs transformation Ψn(·) : Pn(En)→ Pn(En), associated with the potential

function Gn on E is defined by

Ψn(η)(dxn) =
Gn(xn)η(dxn)

η(Gn)
.

Using this definition, we can observe recursive nature of the Feynman-Kac model given by

a prediction and update operation described by:

ηn = µn−1Mn, (2.25)

µn = Ψn(ηn), (2.26)

since we can check that γn(f) = λn−1(Mn(f)). This of course requires that the Boltzmann-Gibbs

transformation is well defined and that ηn(Gn) > 0 always.
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2.8.2 Properties of the Models

The Feynman-Kac models (ηn, µn)n≥0 can be viewed recursive measure valued processes obey-

ing operators

ηn = Φn(ηn−1), (2.27)

µn = Υn(µn−1), (2.28)

with the operators defined as

Φn(η) = Ψn−1(η)Mn,

Υn(µ) = Ψn(µMn).

The importance of the regularity condition (2.18) onGn becomes more clear since the operators

of (2.27)-(2.28) require that the denominator of the Boltzmann-Gibbs transformation is well

defined. It might occur for example that η0(G0) = 0 or µ0(G0) = 0 or that if Gn is unbounded

then Ψn can be defined only for the set of measures η ∈ P(E) such that η0(Gn) ∈ (0,∞). This

brings up the need to impose some restrictions on the pair (Gn,Mn) and further account for

what happens in case these are violated. Let us impose the following condition.

Assumption 2.8.1 (A1), [37, p.19]. For any xn ∈ En, the pairs (Gn,Mn) satisfy

Mn+1(Gn+1) > 0,

sup
xn∈En

|Mn+1(Gn+1)(xn)| <∞.

If this assumption is fulfilled, the following operators can be defined

G′
n = Mn(Gn), (2.29)

M ′
n(xn−1, dxn) =

Mn(xn−1, dxn)Gn(xn)

Mn(Gn)
. (2.30)

Then we can write the transition operator for the flow µn as

Φn(µ) = Ψ′
n−1(µ)M ′,

where Ψ′
n−1(µ) is the Boltzmann-Gibbs transformation for the associated Feynman Kac pair

(G′
n,M

′
n). It is more apparent now that the flow starting from η0 can be studied using both

pairs (Gn,Mn) and (G′
n,M

′
n) using an initial measure η′0. The updated models associated with



2.8. Feynman-Kac Models 40

(Gn,Mn) and initial measure η0 coincide with the prediction models associated with (G′
n,M

′
n)

and initial measure η′0 = Ψ0(η0).

We will use this observation in order to relax assumption (A1) and examine the case where

Gn can take some null values. We can consider a subset of En in which the null values of Gn

have been excluded, so define the set Sn as Sn = G−1
n ((0,∞)). In general Sn ⊆ En , but it is

convenient to restrict the study of the flows distributions {ηn, µn} on Sn. This can bypass the

case where Mn(xn−1, Sn) = 0, for some xn−1 ∈ En−1, which will result Mn(Gn)(xn−1) = 0 and

(A1) not to be met. Let us pose the following accesibility assumption on Sn.

Assumption 2.8.2 (A2), [34, p.67]. We have η0(S0) > 0 and for each n ≥ 1 and xn ∈ Sn, we have

that Mn+1(xn, Sn+1) > 0.

Given this assumption we ensure that Sn is Mn accessible from any point in Sn−1. Assuming

(A2) is met then the conditions of (A1) are only met for any xn ∈ Sn, and the operators M ′
n,

which are already defined for any xn−1 ∈ Sn−1, are well defined Markov kernels from Sn−1 to

Sn. In addition, for any η0(S0) > 0 the updated measure η′0 = Ψ0(η0) is such that η′0(Sn) = 1. As

soon as (A2) is met then we can use the following interpretation for the updated Feynman-Kac

measures µn and λn,

µn = η′n, (2.31)

λn(f) = η0(G0)γ
′
n(f). (2.32)

Using (2.32) we can show that for any n ≥ 0 we always have ηn(Gn) > 0. Finally in the case

where at some point in time τ , the accesibility condition (A2) fails for Mτ+1 the flow ηn is well

defined up to time τ , but ητ cannot be updated anymore and terminates, and λτ (1) = 0.

2.8.3 Interacting Particle Algorithm

In this section we shall present an interacting particle method to approximate the flows. This is

based on an interacting process physical interpretation of the Feynman-Kac models as a non-

linear measure valued process. From now on we shall assume Gn satisfies 0 < Gn ≤ 1. This is

not restrictive since for boundedGn, if we use Gn(xn)
sup
xn

|Gn(xn)| as the potential instead, the definition

of the normalised measures µn, ηn remains unaltered. Moreover we have already shown how

the flow can be analysed via a transformation when zero values of Gn occur. Therefore this

simplification does not cause any loss in generality.
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We recall equation (2.27),

ηn = Φn(ηn−1),

where the prediction flow ηn is viewed as recursive measure valued processes. Consider a

family of kernels {Kn+1,ηn}n≥0 such that,

ηn+1 = ηnKn+1,ηn .

Definition 2.8.4 [34, Def. 2.5.4] Any realisation of η ∈ P(En) that satisfies

Φn+1(η) = ηKn+1,η (2.33)

is called a McKean interpretation of the flow ηn.

Although this choice is not unique, we shall use it as in [34, Def 2.5.4] with Kn+1,ηn being a

Markov kernel given by

Kn+1,ηn(x, dz) = Sn,ηnMn+1(x, dz). (2.34)

The kernel Sn,ηn(x, dy) is an interacting selection transition given by

Sn,ηn(x, dy) = Gn(x)δx(dy) + (1−Gn(x))Ψn(ηn)(dy). (2.35)

The Markov evolution of the flow then can be defined as a two step transition:

Xn
interacting jump−→ X̂n ∼ Sn,ηn(Xn, ·)

prediction−→ Xn+1 ∼ Mn+1(X̂n, ·).

In order to force Xn in areas of high potential directed by Gn, Xn either remains at its loca-

tion with probability Gn or otherwise jumps into a new location randomly chosen from the

Boltzmann Gibbs distribution [34, p. 75],

Ψn(ηn)(dxn) =
Gn(xn)ηn(dxn)

ηn(Gn)
.

This is followed by a prediction step according to the Markov transition density.

2.8.4 Particle Approximation

We shall proceed by presenting an interacting particle system that approximates the flows ηn

and µn. The particle system is initialised by sampling N independent samples or particles,

from common initial density ν,

ξi
0 ∼ ν(·),
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where i is the sample’s index and 1 ≤ i ≤ N . At each time n we have a set of N independent,

uniformly weighted, particles ξi
n. Define the discrete collection of particles as ξn = (ξ1n, ..., ξ

N
n ),

where ξn ∈ EN
n .

The prediction flow ηn is approximated by η̂n, which is given as follows,

η̂n(dxn) =
1

N

N∑

i=1

δξi
n
(dxn).

The particle system aims to propagate the particles ξn in the same spirit as (2.33), using the

following Markov transition

Pν(ξn+1 ∈ dx1:N
n |ξn) = Kn+1,η̂n

(ξn, dx
1:N
n+1).

We have introduced a transition kernel Kn+1,η̂n
for the Markov chain {ξn}n≥0 defined on the

product space EN
n . In the same spirit as (2.34) we decomposeKn+1,η̂n

to an update and predic-

tion step resembled by Sn,η̂n
andMn+1 respectively

Kn+1,η̂n
(ξn, dx

1:N
n+1) =

∫
Sn,η̂n

(ξn, dx
1:N
n )Mn+1(x

1:N
n , dx1:N

n+1),

where Sn,η̂n
andMn+1 act also on the product space EN

n and are given by

Sn,η̂n
(ξn, dx

1:N
n ) =

N∏

i=1

Sn,η̂n
(ξi

n, dx
i
n),

Mn+1(x
1:N
n , dx1:N

n+1) =
N∏

i=1

Mn+1(x
i
n, dx

i
n+1).

Compared to (2.35), we slightly modify Sn,ηn(x, dy) to include a non negative parameter εn as

in [34, p.98],

Sn,ηn(x, dy) = εnGn(xn)δx(dy) + (1− εnGn(xn))Ψn(ηn)(dy), (2.36)

where εnGn ≤ 1. Note that apart from that there is no restriction on εn and it may depend on

ηn as well. Once we substitude in this expression η̂n for ηn, one can obtain the particle version,

Sn,η̂n
:

Sn,η̂n
(ξi

n, dx
i
n) = εnG(ξi

n)δξi
n
(dxi

n) + (1− εnG(ξi
n))

N∑

j=1

G(ξj
n)

N∑
k=1

G(ξk
n)

δ
ξj
n
(dxj

n). (2.37)

Moreover Mn+1(x
i
n, dx

i
n+1) is basically the standard Markov transition step of the chain that

the particle is used to approximate.
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To sum up, using less formalism we can say that the nonlinear flow is approximated by a

set of a few particles each of which undertakes a selection and mutation step as follows:

ξi
n

selection−→ ξ̂i
n ∼ Sn,η̂n

(ξi
n, ·)

mutation−→ ξi
n+1 ∼ Mn+1(ξ̂

i
n, ·),

[34, p.104]. During the selection step each particle ξ̂i
n remains at its previous location given

by ξi
n with probability εnG(ξi

n), otherwise a new particle ξ̃n is sampled instead from the dis-

crete Boltzmann-Gibbs distribution Ψn(η̂n)(dx1:N
n ) =

N∑
j=1

G(ξj
n)

N∑
k=1

G(ξk
n)

δ
ξj
n
(dxj

n) and we set ξ̂i
n = ξ̃n.

During the mutation step each sample is propagated independently following Mn+1.

We can then use the particle sets ξ̂n and ξn+1 to approximate µn and ηn+1 respectively:

µ̂n(dxn) =
1

N

N∑

i=1

δ
ξ̂i
n
(dxn),

η̂n+1(dxn+1) =
1

N

N∑

i=1

δξi
n+1

(dxn+1).

In [34], asymptotic convergence results can be found. We do not expand this discussion further

as it is not within our scope to analyse particle methods in more detail.



3
General State Space Models

Summary. In this chapter we will present general state space models. These

models are also known as Hidden Markov Models (HMM) and encompass a broad

class of dynamic models, which do not require restrictive assumptions, such as

discreteness of the state space, linearity of the dynamics or Gaussian noise. We

shall touch on the topic of parameter estimation for these models and also see how

these models can be extended to describe decision or control problems. We will

then provide a brief review of Graphical Models and show how these can be used in

the context of general state space models, so that their formulation can be extended

for problems regarding distributed systems.

44
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3.1 Introduction

The main purpose of this chapter is to introduce general state space models, which are also

known as Hidden Markov Models (HMM), as a powerful modelling framework for a variety

of problems. We will present formulations that are appropriate for problems in the areas of op-

timal filtering [2], control [20] and parameter estimation [107]. The formulation of the models is

taken from [5,8,50–52,157] and has also appeared in the same or similar context in [30,111,114].

In order to address problems regarding distributed systems, we will attempt to extend these

models so that they can be used together with Graphical Models (GM) and Belief Propagation

(BP) [82, 95, 130, 171]. This has already been initiated in [29, Ch.5] for optimal filtering in dy-

namic Graphical Models and in this thesis we aim to extend that work so that it can be used for

parameter estimation.

The main computational tool used in this thesis is Sequential Monte Carlo (SMC) methods,

also known in the context of optimal Bayesian filtering as Particle Filters (PF). These have been

presented in its general form in Section 2.7. SMC consists of a set of powerful simulation-

based techniques that combine Importance Sampling and resampling methods and allow one

to sample sequentially in time from a sequence of complex distributions. Particle filters have

become increasingly popular during the last decade for performing optimal Bayesian filtering

for a general state space models [47, 48, 103]. In this thesis we shall also formulate problems in

the areas of control or parameter estimation using this type of models, and show how different

SMC approximations can be used for solving these problems.

The organisation of this chapter is as follows: in Section 3.2 we define general state space

models and in Section 3.3 we present a formulation suited to parameter estimation problems. In

Section 3.4 we introduce optimal Bayesian filtering and particle filters. Moreover, in Section 3.5

one can find an overview of popular Maximum Likelihood Estimation (MLE) methods for static

parameters in general state space models. We also show how to obtain SMC approximations for

MLE. In Section 3.6 we formulate general state space models for control and discuss various

SMC approximations for control problems. Finally in Section 3.7, we present a brief review

of Graphical models and Belief Propagation and present a distributed formulation of Hidden

Markov Models, which can be used as a framework for distributed filtering and parameter

estimation. A Recursive Maximum Likelihood implementation is also derived.



3.2. Description of the Models 46

3.2 Description of the Models

Consider a homogeneous Markov chain {Xn}n≥0 defined on (X , EX ) with initial density µ and

Markov transition density M(xn, dxn+1). Then suppose that one can obtain indirect observa-

tions of the sequence {Xn}n≥0 via some sequence of observations {Yn}n≥0 defined on (Y, EY ),

which is independent conditional on {Xn}n≥0 and at time n the conditional distribution of

Yn depends only on Xn. The bivariate process {(Xn, Yn)}n≥0 is called a Hidden Markov Model

(HMM). We proceed with a more formal definition taken from [157].

Definition 3.2.1 Let {Xn}n≥0 be a Markov chain with initial density µ defined on (X , EX ,P) and

{Yn}n≥0 on (Y, EY ,P) and M and G denote, respectively, a Markov transition kernel from (X , EX )

to (X , EX ) and a transition kernel from (X , EX ) to (Y, EY ). The bivariate process {(Xn, Yn)}n≥0 is

called a Hidden Markov Model (HMM) with state Xn and observation Yn, if for any sets BX ∈ EX and

BY ∈ EY , we have for any n

P(Xn ∈ BX |X0:n−1 = x0:n−1, Y0:n−1 = y0:n−1) = P(Xn ∈ BX |Xn−1 = xn−1) =

∫

BX

M(xn−1, dxn),

P(Yn ∈ BY |X0:n−1 = x0:n−1, Y0:n−1 = y0:n−1) = P(Yn ∈ BY |Xn = xn) =

∫

BY

G(xn, dyn).

The HMM is itself a Markov chain and using (2.10), for the joint process we can derive the joint

transition kernel on the product space (X × Y, EX ⊗ EY) as

P((Xn, Yn) ∈ BX ×BY |X0:n−1 = xn−1, Y0:n−1 = y0:n−1) =

∫∫

BX×BY

M(xn−1, dxn)G(xn, dyn).

We will relax this formal definition by considering in the remainder of this section the only the

case of fully dominated HMMs as defined in [30].

Definition 3.2.2 From [30]. Let there exist a dominating probability measure ρ on (Y, EY) such that

for all x ∈ X , G(x, ·) is absolutely continuous with respect to ρ, G(x, ·) ≪ ρ(·), with the transi-

tion density function being g(·|x) = dG(x,·)
dρ . Also, let there exist a dominating probability measure

λ on (X , EX ) such that for all x ∈ X , µ(·) and M(x, ·) are absolutely continuous with respect to λ,

µ(·) ≪ λ(·) and M(x, ·) ≪ λ(·), with the transition density function being f(·|x) = dM(x,·)
dλ . The

Hidden Markov Model {(Xn, Yn)}n≥0 is then called fully dominated and the joint Markov transition

kernel M(x′, x)G(x, y) is dominated by the product measure λ ⊗ ρ and admits the transition density

f(x|x′)g(y|x).
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Yn−1 Yn

XnXn−1 b b bb b b

Figure 3.1: A Hidden Markov Model.

A Hidden Markov Model is illustrated in Figure 3.1 by means of a Graphical model. Loosely

speaking, a HMM covers a wide range of problems that require the estimation of an unob-

served, time-varying states of a Markov chain using a sequence of noisy observations. This

class of models includes many nonlinear and non-Gaussian time series models such as

Xn+1 = ψ (Xn, Vn+1) , (3.1)

Yn = φ (Xn,Wn) , (3.2)

where {Vn}n≥1 and {Wn}n≥0 are mutually independent sequences of independent random

variables and ψ, φ are nonlinear measurable functions that determine the evolution of the state

and observation processes. This description of HMMs has appeared vastly in many areas of

research also under the name of nonlinear or general state space models [114].

Unfortunately, in the time series literature the term HMM has beed widely associated with

the case of X being finite [138]. We want to stress at this point that by using the term HMM

we do not limit ourselves to models with finite state spaces, but also include models with con-

tinuous state spaces. Such models are often referred to as state-space models in the literature.

Again, in some of the control literature the use of the term ”state space models” refers to the

case of linear Gaussian systems [2]. We emphasise that in this thesis we will avoid making

any restrictive assumptions on the dynamics such as linearity of ψ, φ or any assumptions on

the distributions of Vn,Wn. We shall keep the framework as general as possible and consider

the general case of measurable spaces. Also, we clarify that in contrast to previous restrictive

use of terminology, we will use both terms HMM and general state space models to describe

exactly the same thing as defined by Definitions 3.2.1 and 3.2.2.

In this chapter we aim to show how SMC methods can be used in the context of general

state space models to perform optimal Bayesian filtering. Optimal filtering for nonlinear non-

Gaussian state space models has numerous applications in signal processing and related areas
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such as finance [132], robotics [19], telecommunications [7] etc. However, except for simple

models such as linear Gaussian state space models, optimal filters do not typically admit a

closed-form expression. Standard approximation schemes can be unreliable [71], e.g. Extended

Kalman filter, or difficult to implement, such as deterministic integration methods. Sequential

Monte Carlo (SMC) methods, also known as particle methods, are simulation-based approx-

imations of the posterior distributions of interest that are both easy to implement and have

been demonstrated in numerous settings to yield more accurate estimates than the previous

two methods mentioned [48, 53, 85, 103]. Based on optimal Bayesian filtering, we should in-

troduce how SMC can be used for parameter estimation and control problems in the context

of general state space models. The content of the remainder of this chapter is based on the

material found in the review [8], the papers in [47] and in the recent thesis [136].

3.3 General State Space Models for Parameter Estimation

Let {Xn}n≥0 and {Yn}n≥0 be X and Y -valued stochastic processes defined on a measurable

space (Ω,F) and suppose that θ ∈ Θ is the parameter vector where Θ is an open subset of

Rnθ . A general discrete-time state space model represents the unobserved state {Xn}n≥0 as a

Markov process of initial density X0 ∼ µ and Markov transition density fθ(x
′|x). The process

{Xn}n≥0 is not itself observed, but instead indirect measurements of the hidden states are avail-

able through an observation sequence {Yn}n≥0. The observations {Yn}n≥0 are assumed condi-

tionally independent given {Xn}n≥0 and are characterised by a conditional marginal density

gθ(y|x). The model is summarised as follows

Xn|Xn−1 = xn−1 ∼ fθ( . |xn−1),

Yn|Xn = xn ∼ gθ( . |xn).
(3.3)

All densities are taken with respect to appropriate dominating measures, e.g. the Lebesgue

measure. Here θ denotes a static parameter, e.g. the dynamic noise variance. This parameter is

either known or unknown dependent on the application under study. For the time being, we

shall assume that θ is known or has already been estimated.

With refence to Section 2.7, in the general state space model the sequence of distributions

{πn}n≥0 of interest are the sequence of posterior densities {p(x0:n|y0:n)}n≥0. So for the remain-
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der of this chapter we can say for distributions of interest that

πn(x0:n) = p(x0:n|Y0:n).

This posterior density constitutes a complete solution to the state inference problem as it sum-

marises all that is known about the hidden states given the observations. In this section we

shall focus on presenting how the general SMC algorithms of the previous section can be used

for approximating expectations of the form πn (ϕn), where ϕn is some measurable function,

such that ϕn : X n −→ Rnϕ .

Using the properties of the state space model and Bayes’ theorem, the following recursion

holds

p(x0:n|Y0:n) =
gθ(Yn|xn)fθ(xn|xn−1)

p(Yn|Y0:n−1)
p(x0:n−1|Y0:n−1), (3.4)

where the normalising constant is given by

p(Yn|Y0:n−1) =

∫
gθ(Yn|xn)p(xn|Y0:n−1)dxn. (3.5)

Note that the probability distributions p(x0:n|Y0:n), p(Yn|Y0:n−1), etc. are inherently depending

on the static parameter θ. In terms of notation, we could have illustrated this inherent depen-

dance by means of some subscript on p. However as all distributions are θ dependent we omit

this for simplicity.

The interest in the posterior of p(x0:n|Y0:n) might be for direct inference on the hidden state

{Xn}n≥0 or for making predictions on {Yn}n≥0 . In general, the marginal posterior density

p(xk|Y0:n) is called a smoothing, filtering or prediction density if k < n, k = n and k > n, respec-

tively. Here we will only consider the filtering case. The filtering density is usually obtained

recursively in two stages, prediction and update. These are given as

Prediction p(xn|Y0:n−1) =

∫
fθ(xn|xn−1)p(xn−1|Y0:n−1)dxn−1, (3.6)

Update p(xn|Y0:n) =
gθ(Yn|xn)p(xn|Y0:n−1)

p(Yn|Y0:n−1)
, (3.7)

In some special cases, the above integrals can be computed exactly. For instance, if the

model in (3.3) is a linear Gaussian state space model, the filtering problem formulated by (3.6)

and (3.7) has an optimal solution in the Minimum Mean Square Error (MMSE) sense, given by

the Kalman filter [2]. An exact solution is also available for the case of a finite state Hidden

Markov Model (HMM) [138]. In general however, none of the above integrals admit a closed-

form expression and one typically resorts to numerical approximations. Past approaches to
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the problem used approximations such as the Extended Kalman filter, the Gaussian sum filter

and approximate grid-based methods [2]. The Extended Kalman filter (EKF) is a common

approach that approximates the nonlinear equations by local linearisation, using the first term

of their Taylor series expansion. After the linearisation is performed, standard Kalman filtering

can be employed, under the assumption that the model is Gaussian. As one would expect,

this method fails if the model has substantial nonlinearities or if the model noises are far from

Gaussian (e.g. multi-modal or heavily skewed). This last drawback was addressed in [83],

where the authors proposed the so called Unscented Kalman Filter, which yielded considerable

improvement compares to the standard EKF. Finally, another approximation that has been used

assumes that the continuous state space can be represented by a finite number of values. This

allows an approximate grid-based method to be employed. The approximation improves as

the discretisation gets more dense, however the computational cost increases dramatically as

the dimensions increase.

3.4 Optimal Bayesian filtering

SMC methods can provide an efficient solution to the optimal filtering problem. As already

mentioned, when one applies Monte Carlo methods to non trivial problems, it is generally

impossible to sample from the target distribution. A way to circumvent this problem in a

recursive setting is to employ a Sequential Importance Sampling Resampling (SISR) approach

[46, 85, 103].

One can rewrite (3.4) as

p (x0:n|Y0:n) =
αn (xn−1:n, Yn) q (xn|Yn, x0:n−1) p (x0:n−1|Y0:n−1)

p (Yn|Y0:n−1)
(3.8)

where q (xn|Yn, x0:n−1) is the importance distribution and the corresponding weight is given

by

αn (xn−1:n, Yn) =
gθ (Yn| xn) fθ (xn|xn−1)

q (xn|Yn, x0:n−1)
. (3.9)

One could actually sample from a proposal conditioned to all the sequence of observations up

to time n, q ( ·|Y0:n, x0:n−1), but this generalization is not useful for the class of models consid-

ered. Similar to Section 2.7 and particulary (2.14) one can write,

q(x0:n|Y0:n−1) = q (x0|Y0)

n∏

k=1

q (xk|Yk,x0:k−1) . (3.10)
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The importance ratio for the complete path becomes

p(x0:n|Y0:n)

q (x0:n|Y0:n)
∝

n∏

k=1

αk(xk−1:k,Yk
).

With reference to general SIS, the sequential importance weight update of equation (2.15) will

be

wn(x0:n, Y0:n) ∝ wn−1(x0:n−1, Y0:n−1)αn(xn−1:n, Yn),

where Y0:n was added to the argument of wn to account for the dependence on the observation

sequence.

Using Proposition 2.7.1, the optimal choice of the importance density in the sense that it

minimises the variance of the weights conditional on Yn and xn−1 [46], can be readily shown to

be

q (xn|Yn, x0:n−1) = p (xn|Yn, xn−1)

=
gθ (Yn|xn) fθ (xn|xn−1)

p(Yn|xn−1)
, (3.11)

where

p(Yn|xn−1) =

∫
gθ (Yn|xn) fθ (xn|xn−1) dxn. (3.12)

This optimal approach requires the ability to sample from (3.11) and compute (3.12) analyti-

cally. This is possible only in some rare cases, therefore in the general case various approxima-

tions should be used.

3.4.1 Particle Filters

Particle filters are a set of SMC methods that are widely used to numerically approximate the

filtering recursion in (3.4). We sketch here briefly a SISR method to approximate the optimal

filter based on the sampling resampling approach. More elaborate algorithms are reviewed in

[47] . Assume at time n−1, one has a collection of N particles
{
X̃

(i)
0:n−1

}N

i=1
distributed approx-

imately according to p (x0:n−1|Y0:n−1). At time n, one wants to obtain N particles distributed

approximately according to p (x0:n|Y0:n). To achieve this, one samples X̂
(i)
n ∼ q

(
·|Yn, X̃

(i)
n−1

)
.

It follows that the empirical distribution of the particles
{
X̂

(i)
0:n

}
approximates the joint density

p (x0:n−1|Y0:n−1) q (xn|Yn, xn−1). By plugging this empirical distribution in (3.8), one obtains
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the following approximation of p (x0:n|Y0:n)

p̂ (x0:n|Y0:n) =
N∑

i=1

w(i)
n δ

X̂
(i)
0:n

(x0:n) , (3.13)

i.e. each particle X̂
(i)
0:n has now a weight w

(i)
n where

w(i)
n ∝ αn

(
X̂

(i)
n−1:n, Yn

)
,

N∑

i=1

w(i)
n = 1.

Then a resampling step is applied to the particles to get a new set of particles
{
X̃

(i)
0:n

}N

i=1
.

The computational complexity of this algorithm is in O (N). The memory requirements

are in O (N (n+ 1)) if one stores the whole paths, but if one is only interested in estimating

the marginal density p (xn|Y0:n) then the only memory requirements to update the algorithm

are in O (2N) to store
{
w

(i)
n , X̃

(i)
n

}
. Various other extensions to particle filter algorithms have

been proposed in the literature. These include continuous approximations of the posterior

density [120], MCMC moves for the particles [24, 69] and different schemes for obtaining the

importance densities [164].

3.5 Maximum likelihood Estimation

So far we have considered optimal Bayesian filtering for the case where θ is known or has been

somehow estimated. Of course, this is not always the case and in many applications θ has to

be estimated. In this section we shall introduce briefly Maximum Likelihood (ML) estimation,

which will be a an important topic for the problems to be seen later in this thesis.

For the remainder of this thesis we will always assume that {Yn}n≥0 is generated from the

true value θ∗, so that Yn|Xn = xn ∼ gθ∗( . |xn). The likelihood of Y0:n with respect to the

unknown parameter, θ ∈ Θ, is given by

pθ (Y0:n) =

∫
· · ·
∫
µ (x0)

n∏

k=1

fθ (xk| xk−1)
n∏

k=0

gθ (Yk|xk) dx0:n. (3.14)

It also admits the following recursive form

pθ (Y0:n) =

n∏

k=0

pθ (Yk|Y0:k−1) (3.15)

with p (Y0|Y−1) ,
∫
gθ (Y0| x0)µ (x0) dx0. Note that now we have used θ in the subscript of the

distributions, as it is more important to emphasize that we are searching for optimal θ and that

different estimates of θ, will result in different distributions.
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The traditional approach of ML would be to find the maximiser of pθ (Y0:n) with respect to

θ. In practice, one uses the log-likelihood, which is numerically better behaved and satisfies

lθ (Y0:n) = log pθ (Y0:n) =

n∑

k=0

log pθ (Yk|Y0:k−1) . (3.16)

Maximum likelihood estimation can be then defined as finding an estimate of θ∗ by computing

θML = arg max
θ
lθ (Y0:n) .

Except in a few simple cases, it is impossible to compute the optimal filter and the log-likelihood/

likelihood in closed-form and one requires numerical approximation schemes.

3.5.1 Particle Approximations for the Likelihood

Based on the particle approximations of the filtering distributions in Section 3.4.1, it is possible

to come up with an approximation of the likelihood function. Using (3.5) and (3.9), one clearly

has

p(Yn|Y0:n−1) =

∫ ∫
αn(xn−1:n, Yn)qθ (xn|Yn, x0:n−1) p(xn−1|Y0:n−1)dxn−1:n (3.17)

which can clearly lead to the following particle approximation p̂θ (Yn|Y0:n−1)

p̂θ (Yn|Y0:n−1) =
1

N

N∑

i=1

αn

(
X̂

(i)
n:n−1, Yn

)
, (3.18)

where the notation follows from Section 3.4.1. Note that if the importance density is chosen

equal to the prior fθ, then (3.18) becomes

p̂θ (Yn|Y0:n−1) =
1

N

N∑

i=1

gθ

(
Yn| X̃(i)

n

)
.

If the importance density is optimal in terms of minimization of varqθ
[wθ (xn−1:n, Yn)|xn−1],

that is

q (xn|Yn, xn−1) =
gθ (Yn|xn) fθ (xn|xn−1)∫
gθ (Yn|xn) fθ (xn|xn−1) dxn

,

then (3.18) becomes

p̂θ (Yn|Y0:n−1) =
1

N

N∑

i=1

∫
gθ (Yn|xn) fθ

(
xn| X̃(i)

n−1

)
dxn.
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If the resampling scheme is unbiased, i.e. the expected number of times a particle is copied

in the resampling scheme is equal to its normalized weight, one can show that (3.18) is an

unbiased estimate of pθ (Yn|Y0:n−1).

However if we substitute any of these approximations for p(Yn|Y0:n−1) to get an estimate of

the log-likelihood

l̂θ (Y0:n) =

n∑

k=0

log p̂θ (Yk|Y0:k−1) , (3.19)

it will be obviously biased. According to [8], this bias can be reduced by using the follow-

ing standard correction technique based on an first order Taylor expansion. As N → ∞, one

typically has

E [p̂θ (Y0:n)] = pθ (Y0:n)

as well as

var [p̂θ (Y0:n)] =
σ2

N
,

where σ2 can be easily estimated (call the estimate σ̂2) using the particles. One then gets for a

second order Taylor expansion

E
[
l̂θ (Y0:n)

]
= E [log (p̂θ (Y0:n))]

≃ log pθ (Y0:n)− 1

2

σ2

N(pθ (Y0:n))2

so we can get the following bias corrected estimate of the log likelihood as

̂log (pθ (Y0:n)) ≃ l̂θ (Y0:n) +
1

2

σ̂2

N exp 2l̂θ (Y0:n)
. (3.20)

If Θ is a discrete space or some discretized version of a continuous space, given these ap-

proximations the search for the maximiser of the log likelihood in the domain of θ would be a

rather simple task. Unfortunately, this is not the case and even in discrete or discretized spaces

such an approach would not be able to handle a θ of large dimension. Therefore we feel one

should also consider using a stochastic gradient type search.

3.5.2 Log Likelihood gradient

To obtain the log likelihood gradient, we can using (3.16) to obtain the so-called score function,

see [131],

∇θlθ (Y0:n) =

n∑

k=0

∇θpθ (Yk|Y0:k−1)

pθ (Yk|Y0:k−1)
(3.21)
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where using (3.17) we get

∇θpθ (Yk|Y0:k−1) =

∫ ∫
∇θαk (xk−1:k, Yk) .qθ (xk|Yk, xk−1) pθ (xk−1|Y0:k−1) dxk−1:k (3.22)

+

∫ ∫
αk (xk−1:k, Yk) .∇θ (qθ (xk|Yk, xk−1) pθ (xk−1|Y0:k−1)) dxk−1:k.

From now on and for the remainder of this thesis, we shall assume that all functions are regular

enough so that we are permitted to exchange the integral and differentiation operator. Except

in simple cases, it is impossible to compute the gradients of the optimal filter and of the log-

likelihood function in closed-form and one requires numerical approximation schemes. As this

topic will be studied in more depth later during this thesis, we shall not give any further details

on how to use particle methods to compute such integrals at the moment, but instead refer the

interested reader to [136].

3.5.3 Recursive Maximum Likelihood

Recursive Maximum Likelihood is is a gradient algorithm that maximises the average log likeli-

hood l(θ),

l(θ) = lim
n→∞

1

n
lθ(Y1:n) =

∫

Y×P(X )
log

(∫
gθ(y|x)µ(x)dx

)
λθ,θ∗(dy, dµ)

Under regularity assumptions including the stationarity of the state space model, then where

P(X ) is the space of probability distributions on X , and λθ,θ∗(dy, dµ) is the joint invariant dis-

tribution of the measurement and the prediction density, (Yn, pθ(xn|Y1:n−1)) [157].

RML solves for θ∗ = arg max l(θ) recursively using the sequence of observations {Yn}n≥1

and learns the static parameter θ∗ by using a stochastic gradient algorithm where at time n the

parameter estimate θn is given by

θn+1 = θn + γn∇θ log(pθ(Yn|Y1:n−1))|θ=θn

= θn + γn∇θn log(

∫
gθn(Yn|xn)pθ1:n(xn|Y1:n−1)dxn), (3.23)

where {γn}n≥1 is a sequence of positive real step-sizes, such that
∑

n γn =∞ and
∑

n γn
2 <∞

(e.g. γn = n−2/3)1. Upon receiving Yn, θn is updated in the direction of ascent of the conditional

likelihood log pθ(Yn|Y1 : n− 1).

1Note that for the RML, in the prediction density the subscript is now θ1:n to explicitly acount for θ being updated

sequentially and in parallel to the filter. Also it is apparent from the expression of l(θ) that RML is a Stochastic

Approximation (SA) algorithm [38, 39].
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The algorithm in the present form is not suitable for online implementation due to the

need to evaluate the gradient of log pθ(Yn|Y1:n−1) at θ = θn. Doing so would require brows-

ing through the entire history of observations. This limitation is removed by defining certain

intermediate quantities that facilitate the online evaluation of this gradient [98]. In particular,

let

ġθn(Yn|xn) ≡ ∇θgθ(Yn|xn)|θ=θn
, (3.24)

ḟθn(xn+1|xn) ≡ ∇θfθ(xn+1|xn)|θ=θn
, (3.25)

ṗθn−1(xn|Y1:n−1) ≡ ∇θpθ(xn|Y1:n−1)|θ=θn−1
, (3.26)

ṗθn(Yn|Y1:n−1) ≡ ∇θpθ(Yn|Y1:n−1)|θ=θn
. (3.27)

Furthermore, assume pθ1:n−1(xn|Y1:n−1) and ṗθn−1(xn|Y1:n−1) has been computed from the pre-

vious iteration of RML (i.e. iteration n− 1, n ≥ 2. RML is initialized with an arbitrary value in

Θ for θ1.) Then, given the new observation Yn the online version of RML computes:

pθn(Yn|Y1:n−1) =

∫
gθ(Yn|xn)pθ1:n−1(xn|Y1:n−1)dxn, (3.28)

ṗθn(Yn|Y1:n−1) =

∫
ġθn(Yn|xn)pθ1:n−1(xn|Y1:n−1)dxn +

∫
gθ(Yn|xn)ṗθn−1(xn|Y1:n−1)dxn,

(3.29)

pθ1:n(xn+1|Y1:n) = pθn(Yn|Y1:n−1)
−1

∫
fθn(xn+1|xn)gθn(Yn|xn)pθ1:n−1(xn|Y1:n−1)dxn, (3.30)

ṗθn(xn+1|Y1:n) = −pθn(Yn|Y1:n−1)
−1ṗθn(Yn|Y1:n−1)pθ1:n(xn+1|Y1:n)

+ pθn(Yn|Y1:n−1)
−1

∫
fθn(xn+1|xn)ġθn(Yn|xn)pθ1:n−1(xn|Y1:n−1)dxn

+ pθn(Yn|Y1:n−1)
−1

∫
fθn(xn+1|xn)gθn(Yn|xn)ṗθn−1(xn|Y1:n−1)dxn.

+ pθn(Yn|Y1:n−1)
−1

∫
ḟθn(xn+1|xn)gθn(Yn|xn)pθ1:n−1(xn|Y1:n−1)dxn (3.31)

The parameter is now updated as follows:

θn+1 = θn + γn+1
ṗθn(Yn|Y1:n−1)

pθn(Yn|Y1:n−1)
.

Almost sure convergence of RML to θ∗ together with a central limit theorem is established

in [?] when the hidden process is discrete valued under certain regularity assumptions on the

HMM. The intermediate quantities (3.28)-(3.31) can only be computed exactly for HMMs with

a discrete valued hidden process or for linear Gaussian state-space models. For a general space

models these quantities may be approximated using SMC [134].
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3.5.4 Expectation Maximisation

For a given sequence of T observations, the Expectation Maximisation (EM) algorithm for

learning θ∗ is a two step procedure, [40]. The first step, the expectation or E-step, computes

Q(θk, θ) =

∫
log pθ(x1:T , Y1:T )pθk

(x1:T |Y1:T )dx1:T .

The second step is the maximization or M-step that updates the parameter θk,

θk+1 = arg max
θ
Q(θk, θ)

Upon the completion of an E and M step, the likelihood surface is ascended, i.e. pθk+1
(Y1:T ) ≥

pθk
(Y1:T ) [40]. For linear Gaussian state-space models this procedure can be implemented ex-

actly. In the nonlinear non-Gaussian setting SMC methods may be applied [9, 30].

3.6 General State Space Models for Control

So far there has not been any mention of control. This would involve dynamical models for

which a specified user or controller or decision maker influences the evolution of the hidden

process and the nature of its observation by means of an action or control inputAn at each time

n. It is of the interest to the decision maker to choose the sequence {An}n≥0, so that it optimises

some user specified criterion J(A0:n). In this section, we shall consider how such stochastic

processes can be described by general state space models and see how SMC can be a powerful

computational tool for solving sequential decision or control problems.

We consider here nonlinear non-Gaussian state space models on which it is possible to

apply an A−valued control term An at time n. More precisely conditional upon {An}n≥0,

the process {Xn}n≥0 is a Markov process such that X0 ∼ µ and Markov transition density

f (x′|x, a); i.e.

Xn+1| (Xn = x,An+1 = a) ∼ f ( ·|x, a) (3.32)

where the observations {Yn}n≥0 are conditionally independent of marginal density g (y| x, a);
i.e.

Yn| (Xn = x,An = a) ∼ g ( ·| x, a) . (3.33)

In the most general case, the control An+1 at time n + 1 is a function of all the available in-

formation at time n which can be summarized by the optimal filter p (xn|Y0:n, A0:n). We are
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Yn−1 Yn

XnXn−1 b b bb b b

An−1 An

Figure 3.2: A Partially Observed Markov Decision Process.

here interested in finite horizon and infinite horizon control problems whose detailed descrip-

tions will be given in the forthcoming subsections. These models are also referred as controlled

Hidden Markov models or Partially Observed Markov Decision Processes (POMDP) and are

illustrated in Figure 3.2 by means of a simple graphical model.

This class of models includes many nonlinear and non-Gaussian time series models such as

Xn+1 = ψ (Xn, An, Vn+1) ,

Yn = φ (Xn, An,Wn) ,

where {Vn}n≥1 and {Wn}n≥0 are mutually independent sequences of independent random

variables and ψ, φ are nonlinear functions that determine the evolution of the state and ob-

servation processes.

Solving optimal control problems for general state space models with nonlinear non- Gaus-

sian dynamics is a formidable task. Their solutions are given by solving Dynamic Program-

ming or Bellman equations. See [20] for more details. Except in very specific cases, e.g. linear

Gaussian state space models and a quadratic cost function, there is no analytical solution to

this equation. In the nonlinear non-Gaussian state space models, such a solution admits as ar-

gument a probability distribution and it seems extremely difficult to come up with any sensible

approximation to it. This is why, despite its numerous applications, the literature on applica-

tions of particle methods for control of non linear non Gaussian models is extremely limited.
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3.6.1 Finite Horizon Control Problems

Let us introduce a measurable cost function h : X × A → R+. In [111] and [142], the authors

propose to address the following additive cost decision problem. At time k − 1, the sequence

A0:k−1 has been selected and one wants to minimize the function defined as

J (Ak:k+H−1) = Eµ




k+H−1∑

j=k

h (Xj , Aj)


 (3.34)

where the expectations are with respect to the joint distribution of both the states and the ob-

servations, i.e.

Eµ [h (Xk, Ak)]

=

∫
h (xj, Aj)

j∏

l=k

g (yl|xl, Al) f (xl|xl−1, Al) p (xk−1|Y1:k−1, A0:k−1) dxk−1:ldyk:l

If the control input takes its values in a finite setA of cardinality K, It is possible to approx-

imate numerically this cost using particle methods for the KH possible values of Ak:k+H−1 and

then select the optimal value

A∗
k:k+H−1 = arg max J (Ak:k+H−1) .

To get a particle approximation one can obtain samples from p (xj |Y1:k, A0:j) for j ≥ k, which

can be achieved by using the particle approximation (3.13) and then sampling particles X̃
(i)
j ∼

f
(
·| X̃(i)

j−1, Aj

)
for j > k. Then one has the following approximation of (3.34)

Ĵ (Ak:k+H) =

k+H−1∑

j=k

N∑

i=1

w(i)
n h

(
X̃

(i)
j , Aj

)
.

This approximation can be computed for all values of Ak:k+H to get A∗
k:k+H . Of course, in

practice this approach cannot handle a large value of H and K.

If Ak:k+H takes values in a continuous space AH+1 and J (Ak:k+H) is differentiable with

respect toAk:k+H , one can still resort to a gradient search inAH+1 . An estimate of the gradient

of J (Ak:k+H) can be estimated and a stochastic gradient algorithm can be used. This procedure

requires a method to be developed for the gradient of the optimal filter. Such problems will be

considered in more detail in Chapter 4.
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3.6.2 Infinite Horizon Control Problems

In the infinite horizon case, we are interested in selecting a control sequence {An}n≥0 minimis-

ing an infinite horizon discounted cost

J
(
µ, {An}n≥0

)
= Eµ

[ ∞∑

k=0

γkh (Xk)

]
(3.35)

where 0 < γ < 1 is the discount factor and the expectation is with respect to the joint distribu-

tion of both the states and the observations.We shall also remark that all expectations are also

taken with respect to µ, where X0 ∼ µ, and therefore are a function of µ as well. In [160], a

method using particle methods based on Q-learning is proposed to solve (3.38) when A is a

finite set. This method is complex as the Q-factors are functions admitting as arguments prob-

ability distributions over X . It is thus necessary to perform further approximations. In [160] a

nearest-neighbour type method is proposed to perform quantization in this space.

In the infinite horizon average cost we are interested in minimising

J
(
µ, {An}n≥0

)
, lim

n→∞
1

n

n∑

k=1

Eµ [h (Xk)] (3.36)

where the expectation is with respect to the joint distribution of both the states and the obser-

vations.

We review here two algorithms proposed recently by [52] to solve problem (3.36). LetP (X )

is the set of probability distributions on a set X . We consider a randomized stationary policy

νθ : P (X )→ P (A) to be such that

Ak ∼ νθ (p (xk−1|Y0:k−1, A0:k−1)) (3.37)

or a deterministic stationary policy Πθ : P (X )→ A such that

Ak = Πθ (p (xk−1|Y0:k−1, A0:k−1)) (3.38)

where θ ∈ Θ ⊂ Rnθ is a parameter to determine. The methods considered in [52] are called

policy gradient methods. This means that gradient methods are used to compute the parameters

of the optimal policy.

Taking this into acount one can rewrite J
(
µ, {An}n≥0

)
= J (µ, θ). Under some regu-

larity assumptions [52, 157], the joint process {An,Xn, Yn, p (xn|Y0:n, A0:n)}n≥1 is an ergodic
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Markov chain θ ∈ Θ with invariant distribution λθ(da, dx, dy, dp). Using this ergodic assump-

tion J (µ, θ) = J (θ) ; i.e. the cost is independent of the initial distribution µ and

J (θ) = lim
n→∞

Jn (θ) where Jn (θ) , Eλθ
[h (Xn)] .

See [52, 157] for more details. Under additional regularity assumptions [156, 157], one also has

lim
n→∞

∇θJn (θ) = ∇θJ (θ) .

We propose to compute

θ∗ = arg min
θ∈Θ

J(θ)

using a stochastic gradient algorithm

θn+1 = θn − γn∇̂Jn (θ) ,

where ∇̂Jn (θ) is an unbiased estimate of the gradient and γn is a step size as in RML.

For a randomized policy (3.37), one can easily check that an unbiased estimate of the gradi-

ent is given by

∇̂Jn (θ) =

(∫
h (xn) p (xn|Y0:n, A0:n) dxn

)( n∑

k=1

∇νθ (Ak| p (xk−1|Y0:k−1, A0:k−1))

νθ (Ak| p (xk−1|Y0:k−1, A0:k−1))

)
. (3.39)

In the nonlinear non-Gaussian state space models, we compute the first term using the particle

approximation (3.13). Note that as in [16], we need to add a discount factor if we update

recursively the second term on the right hand side of (3.39) to prevent the variance of our

gradient estimate going to infinity at the cost of adding a bias. A stochastic gradient algorithm

to minimize J (θ) follows directly. We refer the interested reader to [52] for details.

For a deterministic policy (3.38), the notation is somehow imprecise as one should make

explicit the dependency of the filter on θ. In this case, it can be seen that an unbiased estimate

of the gradient is given by

∇̂Jn (θ) =

∫
h (xn)∇θpθ (xn|Y0:n, A0:n) dxn +

(∫
h (xn) pθ (xn|Y0:n, A0:n) dxn

)
∇θlθ (Y0:n) .

In the non linear non Gaussian state space models, one can easily approximate all these terms,

but as it occurred for the finite horizon case this requires a method to be developed for the gra-

dient of the optimal filter. We shall investigate how this can be done in the chapters to follow.

Moreover, as in the randomised policy case, a discount factor might have to be added when
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we update the score term of (3.21) recursively, so as to prevent the variance of our gradient

estimate going to infinity at the cost of adding a small bias [16]. Finally, convergence analysis

of SMC algorithms for infinite horizon control requires non-standard stochastic approximation

results developed in [156] and geometric ergodicity results developed in [157].

3.6.3 Motivation for Gradient Methods

We will now consider how discretising the state space affects the dynamics of the state space

model, the computational efficiency of solving it, and some sub-optimality issues. This will

then justify the use of policy gradient and stochastic approximation. Because of the absence of

a closed-form expression for complex high dimensional integrals of Dynamic Programming or

Bellman’s equation, initial approaches to solving control problems with a general state space

involved standard state-space discretisation for numerical implementation. In [78] there is a

study of discretisation methods for POMDPs. In discretisation, the target, observation and

control state-space is discretised to obtain a finite state POMDP. This was the approach adopted

in [163].

Consider a state comprised of a continuous and discrete component, (x, ϑ) ∈ Rd ×Θ. If we

discretise each component of x to L values then, the discretised state-space has Ld|Θ| elements!

Note that for example when considering the dynamics of manoeuvering targets, it appears

that one must not lump the states in Θ together to yield a smaller discretised state-space as

each mode ϑ ∈ Θ corresponds to a manoeuver and hence possibly vastly different dynamics.

Note also that the observation and control spaces need to be discretised as well. The problem

is compounded even further by the action path constraints, such as when excessive maneu-

vering in when controlling a the motion of an object. In this case, the previous action must be

augmented to the state descriptor to yield states (xn, ϑn, An−1), see [54].

Although the solution for a discrete state spaces can be obtained exactly, it is often too com-

putationally intensive. It is well known that the controller (or policy) of a finite horizon finite

controlled Hidden Markov Model is characterised by a finite set of vectors [151]. However,

the number of vectors needed to characterise the optimal policy grows exponentially with the

horizon and computing these vectors may be computationally infeasible even for very small

prediction horizons, e.g. H = 5 or greater. In practise, various pruning methods are employed,

such as in [110], which effectively amounts to another level of discretisation.
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The optimisation problem cannot be solved exactly because a closed-form expression for

the criterion is not available. Only an approximate solution is possible via discretisation (as

described above) and Dynamic Programming. An iterative gradient method appears to be the

only way to solve it exactly. Apart from this the satisfaction of any constraints can be ensured

by the use of a projection of the computed gradient. In this thesis, we shall focus on using SMC

to develop gradient algorithms to compute the optimal policy. Therefore, we shall address

finite horizon control problems or infinite horizon ones, where policy gradient can be used.

3.7 Distributed General State Space Models

In many applications such as machine learning [82], statistical physics [171] or sensor net-

works [1], it seems an advantage to be able to distribute the computation required. One ob-

vious reason for this can be the decentralised architecture of the problem, e.g. sensor fusion for

sensor networks [123,128]. Also, sometimes if a problem dealing with large dimensions admits

a centralised formulation, it might be very inefficient to use standard computational methods

without exploiting the structure of interactions or dependencies between variables [81,86]. For

example, in computer vision many images of a particular scene are obtained simuntaneously

from a large number of cameras positioned at different locations and recording from different

agles [59]. Clustering the images together and filtering using traditional centralised techniques

might result in exhaustive amounts of computation [59]. Finally, in large scale systems, a de-

centralised approach might be convinient for performing model reduction by eliminating weak

dependancies between different random variables [59, 95, 128].

Consider the case of using different HMMs in parallel for modelling a distributed process.

Assuming we use i to index each separate HMM, where i belongs to some finite set V . Let at

time n, the state of the i-th HMM be denoted as Xi
n and obey a Markov transition as follows:

Xi
n+1

∣∣Xi
n = xi ∼ f i

(
·| xi

)
.

Similarly denote the i-th HMM’s observation of the hidden state as Y v
n and assume it is gener-

ated as follows:

Y v
n |Xv

n = xv ∼ gv ( ·|xv) .

In a completely decoupled setting, each separate HMM will maintain its own local filtering

distribution p(xi
n|Y i

0:n), where it will only process its own observations Y i
1 , . . . , Y

i
n. In case we
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have some information on how the different models’ states interact, is possible to utilise all the

observations from all the models to enhance the performance of filtering. This interaction be-

tween the states might be some form of statistical dependancy or some deterministic coupling.

Assuming all the states are fully coupled together, a collaborative filtering approach might be

possible and they can process all the received observations. Therefore the filtering distribution

for each state xi will become p(xi
n|Y0:n), where Yn denotes the vector of stacked observations

[Y v
n ]v∈V . It is clear that a fully coupled implementation is advantageous since hidden states

with poor local observations can benefit from other nodes with better quality observations.

Graphical Models (GM) provide a natural framework for coupling together different simple

models that interact together to form a more complex one. In the remainder of this section we

shall introduce Graphical Models as a modelling framework and then see how they can be

combined with HMMs to represent distributed general state space models.

3.7.1 Background on Graphical Models

The aim of this section is to introduce the basic concepts of Graphical models and Belief Prop-

agation so that it is easier for the reader to understand the purpose of our work in the third

part of this thesis. We do not intend to give a complete review of the topic and we shall borrow

some of the presented material in this section from two main references [95, 130], as well the

following review papers [82, 171]. We believe that a variety of examples are probably the best

way to understand the ideas of this section and therefore we shall refer the interested reader to

the previous references for further details and more examples.

Graphical models are a successful marriage of probability and graph theory. They can be

viewed as a natural framework to deal with uncertainty and complexity in order to solve in-

ference, decision or learning problems. Graphical models essentially utilise a systematic rep-

resentation of the interactions between random variables, so as to build complex systems or

representations from simpler parts, such as links of variables. The aim of this is to exploit the

specific system structure in order to promote more efficient algorithms for inference, decision

or learning.

We shall start by introducing some basic notation and concepts related to graphs. A graph

G = (V, E) consists of a set of nodes, or vertices, V = {vi}, and a set of edges, E = {(vi, vj)},
where i 6= j.We shall not consider the case where there are self edges or multiple edges between
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a pair of vertices, and shall restrict our presentation to simple graphs, in which (vi, vi) /∈ E and

each edge in the set E is distinct2.

The main types of graphs one can consider are undirected graphs and directed graphs. For

an undirected graph, if (vi, vj) ∈ E then (vj , vi) ∈ E . Nodes i and j in this case, are said to be

neighbours. The set of neighbours of a vertex vi is denoted ne(i). For a directed graph, node i

is said to be the parent of node j if (vi, vj) ∈ E . The set of parents of node j is denoted as pa(vj).

Conversely node j is the child of node i and the set of children of node i denoted as ch(vi). A

walk is a sequence v1, ..., vn of vertices within a graph such that (vi−1, vi) ∈ E , where i = 2, ..., n.

A path is a non-intersecting walk (i.e. the vertices within the sequence v1, ..., vn are distinct). If

one can reach every node in the graph from every other node through a path, the graph is said

to be complete (i.e. all vertices are joined by an arrow or a line). A cycle is denoted to be a path

with the same start and end nodes. If there are no cycles within the graph, then the graph is

said to be acyclic.

A clique of a graph is a subset of a graph that is fully connected. Each node within this subset

has an edge connecting it to all other nodes within the subset. We let C be denoted the set of

all cliques of a graph. An important structure of graphs is that of a tree. A tree is a complete

undirected graph that does not contain cycles. Moreover a rooted tree is the directed acyclic

graph obtained from a tree by choosing a vertex as the root and directing all edges away from

this root.

3.7.2 Graphical Models

Graphical models are a modelling tool to represent random variables according to an existing

structure that can be posed by a graph. We assign a random variable Xi ∈ Xi to each vertex i

of a graph and represent all the statistical dependencies by the edges of a specific graph. Let

also XV be the joint collection of all the variables Xi, for every i ∈ V . Using the specific graph

structure, the statistical properties of XV ∈ XV have been encoded in an intuitive way. We can

now utilise the factorisation of the joint probability distribution p(xV) to solve any inference

problem and develop efficient algorithms. So we can define a Graphical model as a collection

of probability distributions that factorise according to the structure of an underlying graph.

2Note that in this chapter symbol E does not denote some σ-field but a set of edges instead. This notation will

be used also in chapters 5 and 6
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Directed Graphical Models

A directed Graphical model consists of a collection of probability distributions that factorise in

the following way

p(xV) =
∏

i∈V
p(xi|xpa(i)).

This use of notation is consistent, given that the conditional distribution p(xi|xpa(i)) is well

defined. If this is true then the joint or global distribution is also properly defined p(xV).

Informally, each directed edge is an arc or an arrow and can be attributed to an indication

that Xi causes Xj , if node i is a parent of j. This causality can be more formally viewed as a

conditional dependance betweenXj andXi. Each random variable of a node is independent of

its ancestors given its parents. Directed Graphical models are also referred as Bayesian networks.

As we shall mainly be adopting the use of undirected Graphical models, we refer the interested

reader to [130] for more details and examples.

Figure 3.3: Example of undirected graph, taken from [29].

Undirected Graphical Models

First of all, we recall the definition of cliques as a subset of a graph that is fully connected. We

proceed by defining for each clique C a compatibility function ψC : XC → R+, that depends

only on the joint variable xC , which is composed of all the variables of the nodes in clique

C . Using this we define an undirected Graphical model as the collection of distributions that

factorise in the following way,

p(xV) =
1

Z

∏

C∈C
ψC(xC), (3.40)
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where the product is taken over all the cliques in the graph, C is the set of all cliques and Z is the

normalisation constant. In contrast to the directed case the functions ψC(xC) need not have any

obvious or direct relations to local marginal distribution. In general, we refer the term local to

be used when we talk about local variables, marginal or conditional distributions at each node,

and use the term global for the variables and distributions over the whole graph. Moreover,

undirected Graphical models are also referred in the literature as Markov random fields [95].

Consider the undirected graph of Figure 3.3, which we have borrowed from [29, Ch.5]. The

graph has been decomposed to three cliques,A,B, andC . CliqueB separates,A from C , which

can be stated as every path or walk in the graph from any element of A in order to reach any

element of C has to pass through B. This is the graph theoretic concept of reachability and

separation. This can be extended for each node in the graph, by simply stating that nodes i and

j are separated by node k or clique C (given i, j are not members of C) if every path connecting

i and j passes through node k or clique C respectively.

We shall aim to link this reachability concept with the algebraic concept of factorisation, so

that this can be used effectively to examine conditional independence on Graphical models.

More specifically, returning to the graph of Figure 3.3, we can stipulate that xA is independent

from xC given xB . This is the global Markov property and it can be shown that the set of

distributions satisfying this assertion is exactly the set of distributions defined by (3.40). This

global Markov property implies also the pairwise or local Markov property, which states that

non adjacent variables xi, xj , where (i, j) /∈ E and i 6= j, are independent given all the vertices

in the graph excluding i, j. A similar result holds also for the case of directed graphs, only with

a different notion of reachability. For more details see [95].

3.7.3 Exact Inference in Graphical Models

In this section we shall aim to show how can Graphical models be used to solve inference

problems. Let p(·) a distribution defined by a Graphical model. In [166] we find some examples

of inference problems, where Graphical models are used to compute the following cases:

• (a) the likelihood of data

• (b) the marginal distribution p(xA)

• (c) the conditional distribution p(xA|xC), where A,C are disjoint subsets of V ,
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• (d) the mode of a density, such as arg maxxA∈XA
p(xA).

Cases (a) and (b) are essentially equivalent within the Bayesian framework, since it involves

summing or integrating with respect to a subset of random variables. Case (c) is also connected

(a) and (b), since it also involves a marginalisation step to get p(xA, xC) and a further one

for p(xC). Finally, case (d) is fundamentally different from the rest due to the maximisation

involved, but it is possible to extend the methodology developed for cases (a)-(c) to deal with

problems involving modes.

Figure 3.4: Example of undirected graph with tree structure.

When the graph admits a tree topology, one can compute the problems in cases (a)-(c) ex-

actly. We will define a recursive message passing algorithm that scales linearly in the number

of nodes to be used. For problems involving computing marginals it is usually referred to

as the sum-product algorithm, whereas its extension for problems involving modes is called

max-product algorithm. This method is also known as Belief Propagation (BP) [130].

Before presenting the message passing algorithm for Belief Propagation, we shall introduce

an elimination principle for marginalisation based on a sequential ordering of the variables.

This will lead to deriving the sum product algorithm. We shall present the elimination only

for the undirected Graphical models case. Note that this is not restrictive, as in general any di-

rected graph can be transformed to an equivalent undirected one via a transformation known

as moralisation, which is described with more detail in [95, 171]. From now we shall be consid-
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ering only undirected graphs, because these suit better the problems we shall be investigating

later on.

Consider the case for the graph of Figure 3.4. The factorisation of the joint distribution will

admit a pairwise Markov structure, and we can write

p(xa, xb, xc, xd, xe, xf ) ∝ ψad(xa, xd)ψbd(xb, xd)ψce(xc, xe)ψde(xd, xe)ψdf (xd, xf ).

Let us say we are interested in computing the marginal p(xb). We write p(xb) as follows

p(xb) =

∫

XF

∫

XE

∫

XD

∫

XC

∫

XA

p(xa, xb, xc, xd, xe, xf )dxadxcdxddxedxf ,

∝
∫

XF

∫

XE

∫

XD

∫

XC

∫

XA

ψad(xa, xd)ψbd(xb, xd)ψce(xc, xe)ψde(xd, xe)ψdf (xd, xf )dxadxcdxddxedxf ,

where XA is the state space of xa and similarly for the rest. We shall assume we can apply

Fubini’s theorem and are able to interchange the order of the integrals. To do this we assume
∫
XE

∫
XD

|ψde(xd, xe)| dxddxe < ∞ and similarly for the rest of the potentials. We reorder the se-

quence of elimination in order to distribute the computation along the graph and use local

computations at each node to get the final marginal. So we write

p(xb) ∝
∫

XF

∫

XE

∫

XD

∫

XC

∫

XA

ψad(xa, xd)ψbd(xb, xd)ψce(xc, xe)ψde(xd, xe)ψdf (xd, xf )dxadxcdxddxedxf

=

∫

XD

∫

XF

∫

XA




∫

XE



∫

XC

ψce(xc, xe)dxc




︸ ︷︷ ︸
ρce(xe)

ψde(xd, xe)dxe




︸ ︷︷ ︸
ρed(xd)

ψad(xa, xd)ψbd(xb, xd)ψdf (xd, xf )

× dxadxfdxd (3.41)

It is already apparent that we start from the most remote node and eliminate the variables in

order. The order of elimination can be seen from the order of the integrals moving from inwards

to outwards. This sequence has been derived according to the path from each node to node b.

In equation (3.41) we identify ρce(xe) and ρed(xd). The notation is chosen in such a way so that

the subscript and the argument of function ρ reveal the sequence of the elimination, i.e. at node

ewe eliminate variable xc along the edge (c, e). The remaining function is local to node e and is

depending only on xe. We choose this notation deliberately so that later on it is more apparent
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how these functions can play the role of messages between neighbouring nodes. Moving on

with the elimination, we have that

p(xb) ∝
∫

XD




∫

XF



∫

XA

ρed(xd)ψad(xa, xd)dxa




︸ ︷︷ ︸
ρad(xd)

ψdf (xd, xf )dxf




︸ ︷︷ ︸
ρfd(xd)

ψbd(xb, xd)dxd

=

∫

XD

ρfd(xd)ψbd(xb, xd)dxd

= ρdb(xb)

Note that eliminating xa and then xf is equivalent with performing the elimination with the

opposite order. This can be attributed to the symmetry of the graph along the walk from c to

b. In general determining the order of integration for an arbitrary graph, in order to optimally

exploit the redundancy in the structure and minimise computations is an NP-hard problem.

Fortunately for tree graphs using the same principles as in elimination, we can compute in

parallel each marginal density at each node, using the Belief Propagation (BP) algorithm [130].

3.7.4 Belief Propagation

Consider an undirected Graphical model defined by G = (V, E) and admitting a tree structure.

We restrict ourselves to pairwise Markov potentials ψij(xi, xj), where (i, j) ∈ E and we shall

assume integrability given by

∫

Xi

|ψij(xi, xj)| dxi <∞,
∫

Xj

|ψij(xi, xj)| dxj <∞,

where xi ∈ Xi for each i ∈ V . These pairwise potentials can be combined with a local potential

φi(xi) at each node i ∈ V . Then equation (3.40) can be equivalently written as

p(xV) ∝
∏

i∈V
φi(xi)

∏

(i,j)∈E
ψij(xi, xj).

Note that this formulation is general for undirected graphs and is not just intended for graphs

with tree topology. From now on we shall use this equation to describe every undirected

Graphical model.
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Pearl in [130] was one of the first to use a message passing approach so that each node i

can compute locally its marginal p(xi) using messages from its neighbours and local variables.

This effectively parallelises the the elimination procedure described above and distributes the

computation along the nodes of the graph. The messages along the graph can be defined by

defining each message mij from node i to node j, (i, j) ∈ E , as

mij(xj) =

∫

Xi

ψij(xi, xj)φi(xi)
∏

p∈ne(i)\{j}
mpi(xi)dxi, (3.42)

where ne(i) \ {j} denotes the set of neighbours of i except j. Similarly to mij(xj), m
pi(xi)

is the message from node p to node i. For a tree it can be informally said that the messages

are initiated at the outer leafs and are propagated towards the root of the tree, thus moving

“upwards”, and once they reach the root of the tree then are propagated “downwards” or

backward so that they terminate again at the leaves.

Once all messages are received at each node i, it can compute its marginal by

p(xi) ∝ φi(xi)
∏

k∈ne(i)

mki(xi) (3.43)

This procedure leads to exact computations of marginal distributions on tree Graphical Models.

In the case when the graph contains loops, the same algorithm can be applied, only this time it

will be an approximation. This is commonly known as Loopy Belief Propagation (LBP).

3.7.4.1 Loopy Belief Propagation

Although it is uncertain in general whether Loopy Belief Propagation (LBP) will lead to good

approximations, it has been studied in many examples. A good survey with empirical results

can be found in [119]. In some cases, such as Gaussian Markov fields, it can lead to very good

approximations [167, 168]. LBP is essentially a recursive implementation of BP in graphs with

loops. After initiallising all the messages, we iterate the marginal distribution as

pn(xi) ∝ φi(xi)
∏

k∈ne(i)

mki
n (xi),
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where the superscript n denotes the iteration number n. The messages from node i to node j,

(i, j) ∈ E , are iterated as follows:

mij
n (xj) ∝

∫

Xi

ψij(xi, xj)φi(xi)
∏

p∈ne(i)\{j}
mpi

n−1(xi)dxi

=

∫

Xi

ψij(xi, xj)
pn−1(xi)

mji
n−1(xi)

dxi.

Unfortunately, as it was mentioned earlier this method is not always guaranteed to converge to

fixed point solutions. For more details see [158]. Finally in the variational inference literature,

where Graphical models are used extensively, alternatives of LBP can be found, when dealing

with loops. These minimise the Bethe free energy, a concept arising from statistical physics.

For more details see [171].

3.7.5 Distributed State Space Models using Graphical Models

Consider an simple undirected tree (V, E), where for every i ∈ V we have the following HMM

Xi
n|Xi

n−1 = xi
n−1 ∼ f i

θi( . |xi
n−1),

Y i
n|Xi

n = xi
n ∼ gi

θi( . |xi
n).

This representation is not yet very useful for realistic problems in a distributed setting. For

example, in problems involving sensor networks, one might have to account for uncertain

communication between nodes, cross sensor interference between readings, and power loss

due to intense communications. These issues indicate that our modelling should account for a

interaction between xi and xj . The distributed state space model has to be cast as a dynamic

undirected Graphical model. To address this we introduce time varying pairwise integrable

Markov potentials ψe
ϑe(xi, xj), where e ∈ E . For example, the potential can represent the prob-

ability of node imanaging to pass a message successfully to node j, or the probability that node

i detects node j as its neighbour. We alert the reader that in this section the notation is slightly

different than in the previous one. Node and edge indeces are now moved from subscripts to

superscripts and in the subscripts we denote time or parameter dependance. Note for exam-

ple, that for each edge e, the potential’s dependence on a static parameter ϑe is incorporated by

adding the parameter in the subscript. Let also ϑ, θ and xVn denote the joint vectors of stacked
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parameters [ϑe]e∈E , [θi]e∈V and [xi
n]i∈V respectively. Then3,

p(xVn |Yn) ∝
∏

i∈V
φi

n(xi
n)
∏

e∈E
ψe

ϑe(xi
n, x

j
n),

where we define the local potential φi
n as the product of the likelihood and the prediction den-

sity

φi
n(xi

n) = gi
θi(Y

i
n|xi

n)p(xi
n|Y1:n−1).

The underlying joint process {XV
n }n≥0 admits a transition density given by

f(xVn |xVn−1) =
∏

i∈V
f i

θi(x
i
n|xi

n−1),

The transition step is independent for each node. Thus, assuming p(xi
n−1|Y1:n−1) is available

to node i at time n, the propagation of the prediction density at each node p(xi
n|Y1:n−1) can be

computed locally at node i and independently of other nodes as given by (3.6). Furthermore,

each node can obtain its filtering density p(xi
n|Y1:n) by marginalisation as

p(xi
n|Y1:n) =

∫
p(xVn |Y1:n)dxV\i

n ,

where x
V\i
n denotes the joint vector containing every xi

n, for all i ∈ V except i . Hence, the filter-

ing update can be implemented in a distributed fashion using Belief Propagation and message

passing as in equations (3.42)-(3.43). In this case, we have

mij
n (xj

n) =

∫
ψij

ϑij (x
i
n, x

j
n)φi

n(xi
n)

∏

p∈ne(i)\{j}
mpi

n (xi
n)dxi

n, (3.44)

p(xi
n|Y1:n) ∝ φi

n(xi
n)
∏

k∈ne(i)

mki
n (xi

n). (3.45)

This sequential filtering approach of using a Graphical model and Belief Propagation has al-

ready appeared in [29, Ch.5]. Similarly to standard Graphical models, performing sequential

Bayesian inference for the state will be exact for tree graphs only. In [29, Ch.5] the author pro-

posed to use LBP to deal with graphs including loops. An alternative approach would be to

incorporate the ideas from [59,95,128] and generalise this formulation for junction trees. Using

such an approach each node i in our formulation would represent a clique instead of a simple

3Note that this factorisation allows the graph structure to be time evolving and be denoted as Gn = (Vn, En).

Similarly the potential can be also time varying and denoted as ψe
n,ϑe(xi, xj), although we shall not consider this

any further.
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node, V would be replaced by C, and E would refer to the edges of the junction tree. Otherwise

the present formulation remains unchanged and each clique can now naturally include loops.

It is clear that this formulation allows both the use of LBP and junction tree filtering. What

has not been investigated though is the possibility of performing parameter estimation on such

models.

3.7.6 Distributed Parameter Estimation using RML

So far it should be clear how Graphical models and Belief Propagation can be used to perform

collaborative filtering in general state space models. What we have not addressed yet, is the

problem of inferring the static parameters (θ, ϑ). As far as the local parameters in θ are con-

cerned, each θi can be estimated locally using filtering (e.g. for the RML) or smoothing (e.g.

for EM) given the local observations Y i
1:n. Any ML method presented so far in this chapter is

suited. To avoid confusion and simplify the exposition in the remainder of this chapter the sub-

scripts of θi will be dropped. As regard to ϑ, we will now briefly show how RML can be used

for a distributed implementation, as this will be the main focus in the third part of this the-

sis. The motivation for emphasising on RML is that it allows performing parameter estimation

both on line and in parallel to collaborative filtering.

We shall use Graphical models and extend Belief Propagation so that a distributed RML

recursion can be derived. Let e = (r, q) be the edge of interest and r be the node at which

ϑe∗ = arg max
ϑe

lr(ϑe)

is estimated, where lr(ϑe) = limn→∞
1
n

∑n
k=0 log pϑe (Yk|Y0:k−1). The superscript r in the aver-

age log-likelihood and the subscript ϑe in the recursive likelihood are there to emphasise that

we are interested on estimating ϑe at node r.

When using RML we are interested in expanding∇θe log p(Yn|Y1:n−1) as follows:

∇ϑe log p(Yn|Y1:n−1) = ∇ϑe log



∫
φr

n(xr
n)

∏

k∈ne(r)

mkr
n (xr

n)dxr
n


 . (3.46)

Note only φr
n(xr

n), mqr
n and ψe

ϑe are a function of ϑe. The dependance of φr
n(xr

n) on ϑe comes
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from using message passing at time n− 1 to obtain the filtering density. This would lead to

∇ϑe log(p(Yn|Y1:n−1))

=



∫
φr

n(xr
n)

∏

k∈ne(r)

mkr
n (xr

n)dxr
n




−1



∫
∇ϑemqr

n (xr
n)φr

n(xr
n)

∏
k∈ne(r)\q

mkr
n (xr

n)dxr
n

+
∫
∇ϑeφr

n(xr
n)

∏
k∈ne(r)

mkr
n (xr

n)dxr
n


 (3.47)

Propagating recursively ∇ϑeφr
n(xr

n) in the spirit of (3.28)-(3.31) is a straightforward task.

Assuming that at time n we have ∇ϑep(xr
n|Y1:n−1) available from the previous iteration at time

n− 1, consider the following recursion for the gradients:

∇ϑep(xr
n|Y1:n−1) =

∫
f r(xr

n|xr
n−1)∇ϑep(xr

n−1|Y1:n−1)dx
r
n−1, (3.48)

∇ϑeφr
n(xr

n) = gr(Y r
n |xr

n)∇ϑep(xr
n|Y1:n−1), (3.49)

∇ϑep(xr
n|Y1:n) = p(xr

n|Y1:n)




∇ϑeφr
n(xr

n)
φr

n(xr
n) + ∇ϑemqr

n (xr
n)

mqr
n (xr

n)

−
∫ (∇ϑeφr

n(xr
n)

φr
n(xr

n) + ∇ϑemqr
n (xr

n)
mqr

n (xr
n)

)
p(xr

n|Y1:n)dxr
n


 . (3.50)

Such a recursion can be implemented in parallel to the filtering recursion for each node given

by (3.6) and (3.45).

An essential requirement that is overlooked so far is that ∇ϑemqr
n (xr

n) has to be available at

node r in addition to mqr
n (xr

n), in order to compute (3.47) and (3.50). This can be made possible

by defining an additional message passing algorithm than the one in (3.44), which aims to

propagate and compute the gradients of the messages at each node in the graph. For every

(i, j) ∈ E this can be given by

∇ϑijmij
n (xj

n) =

∫
∇ϑijψij(xi

n, x
j
n)φi

n(xi
n)

∏

p∈ne(i)\{j}
mpi

n (xi
n)dxi

n. (3.51)

In the resulting message passing algorithm for RML we have added an additional message in

parallel to the standard BP messages of (3.44). The messages in (3.44) and (3.51) are scalable

with the size of the network and also ensure that the particular choice of r and q is arbitrary

given (r, q) is an edge. Therefore, every node of the graph can estimate the components of ϑ

related with its edges. For any choice of e = (r, q) ∈ E , the following RML parameter update

can be used at node r :

ϑe
n+1 = ϑe

n + γr
n+1∇ϑe log p(Yn|Y1:n−1)|ϑe=ϑe

n
,
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where γr
n+1 is a RML step size. This update be done either in parallel for every node or in a

cyclic manner. This concept of gradient based parameter estimation on Graphical models and

generelising the BP algorithm to include a message used to compute gradients is to the best of

our knowledge novel and is one of the contributions of Chapters 6, 7 and 8.

It is clear that in general all the integrals in this section may not have closed form expres-

sions, which means we have to rely on approximations. Developing methods using appropriate

approximations will be a topic discussed in more detail in the next chapters of this thesis. For

RML the SMC approximations appeared in [133] can be extended for distributed state space

models defined by Graphical models. This will be presented in Chapters 7 and 8.
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4
Simulation-Based Optimal Sensor Scheduling

with Application to Observer Trajectory Planning

Summary. Sensor scheduling has been a topic of interest to the target track-

ing community for some years now. Recently, research into it has enjoyed fresh

impetus with the current importance and popularity of applications in Sensor Net-

works and Robotics. The sensor scheduling problem can be formulated as a con-

trolled Hidden Markov Model. In this chapter, we address precisely this problem

and consider the case in which the state, observation and action spaces are con-

tinuous. This general case is important as it is the natural framework for many

applications. In sensor scheduling, our aim is to minimise the variance of the es-

timation error of the hidden state with respect to the action sequence. We present

a novel simulation-based method that uses a stochastic gradient algorithm to find

optimal actions. This is in contrast to existing works in the literature that only

solve approximations to the original problem.

78
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4.1 Introduction

Consider the following continuous state Hidden Markov Model (HMM),

Xn+1 = f(Xn, An+1,Wn), Yn = g(Xn, An, Vn), (4.1)

where Xn ∈ Rdx is the hidden system state, Yn ∈ Rdy the observation of the state, and Wn

and Vn are i.i.d. noise terms.1 Unlike the classical HMM model, the evolution of the state and

observation processes depends on an input parameter An ∈ Rda , which is the control or action.

In HMM models, one is primarily concerned with the problem of estimating the hidden state,

which is achieved by propagating the posterior distribution (or filtering density) πn(x)dx =

P(Xn ∈ dx|A1:n, Y1:n). By a judicious choice of action sequence {An}, the evolution of the

state and observation processes can be ‘steered’ in order to yield filtering densities that give

more accurate estimates of the state process. This problem is also known in the literature as the

sensor scheduling problem.2

Sensor scheduling has been a topic of interest to the target tracking community for the

some years now [55,76,77,84,109,112,148,163]. The classical setting is the problem of tracking

a maneuvering target over N epochs. HereXn denotes the state of the target at epoch n, Yn the

observation provided by the sensor, andAn some parameter of the sensor that may be adjusted

to improve the “quality” of the observation. For example, consider a non-moving platform with

a finite number of sensors, where each has different characteristics. In this case An denotes

the choice of sensor to be used at epoch n [55, 96, 149]. Alternatively, there may be only one

sensor andAn could denote some tunable parameter of the sensor, as in the waveform selection

problem [84], or in the case of directing an electronically scanned aperture (ESA) radar [25]. In

contrast, consider the scenario in which a moving platform (or observer) is to be adaptively

maneuvered to optimise the tracking performance of a maneuvering target. In this setting, An

denotes the position of the observer at epoch n and the problem is termed the optimal observer

trajectory planning (OTP) problem [76, 77, 109, 163]. In all these sensor scheduling problems, a

measure of tracking performance is the mean squared tracking error over the N epochs,

E

{
N∑

n=1

(ψ(Xn)− 〈πn, ψ〉)2
}
, (4.2)

1A more general model is described in the problem formulation in Section 4.2.
2Henceforth, we refer to any controlled HMM where the aim is to optimise estimation accuracy generically as a

sensor scheduling problem.
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where ψ : Rdx → R is a suitable test function that emphasises the component (or components)

of interest of the state vector we wish to track. The aim is to minimise (4.2) with respect to the

choice of actions {A1, . . . , AN}.
The current importance and popularity of applications in Sensor Networks and Robotics

has given fresh impetus to sensor scheduling. Distributed tracking in ad hoc sensor networks

employs sensor scheduling to determine which sensors should collaborate in the tracking ex-

ercise [106, 172]. Additionally, the problem of terrain-aided navigation and path planning for

localization and mapping can be formulated as sensor scheduling problems [127].

When the dynamics of the state and the observation processes are both linear and Gaussian

then, the optimal solution to the sensor scheduling problem (4.2) (when ψ gives a quadratic

cost) can be computed off-line [112]; this is not surprising given that the Kalman filter covari-

ance is also independent of the actual realisation of observations. In the general setting studied

in this chapter, the dynamics can be both non-linear and non-Gaussian, which means that the

filtering density πn, and integration with respect to it, cannot be evaluated in closed-form.

Hence, the tracking error performance criterion itself does not admit a closed-form expression.

To further complicate matters, the actions sought are continuous valued, i.e., vectors in Rda .

To address the complications to do with the non-linear and non-Gaussian dynamics, one

could linearise the state and observation model (as in [109]), i.e. using the Extended Kalman Fil-

ter to propagate the filtering density πn. However, dealing with the tracking error performance

criterion directly is the exception rather than the rule. The majority of works [76, 77, 127, 163]

(and references therein), while aiming to minimise mean squared tracking error, do so indi-

rectly by defining a lower bound to the tracking error criterion and minimising the lower

bound instead. The bound in question is the Posterior Cramer-Rao Lower Bound (PCRLB),

which is the inverse of the Fisher Information Matrix (FIM). This approach hinges on the abil-

ity to propagate recursively the FIM in closed form by a Ricatti-type equation for the non-linear

and non-Gaussian filtering problem. Unfortunately, the recursion for the FIM involves evalu-

ating the expectation of certain derivatives of the transition probability density of the state

dynamics, as well as the expectation of certain derivatives of the observation likelihood (see

(4.3) and (4.4) below). As these quantities cannot be evaluated in general except for the linear

and Gaussian case, this assumption is either invoked or the authors resort to simulation-based

approximations. In addition, the PCRLB bound is not always tight [19].
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As for the complications due to continuous valued actions, the approach in the literature is

to discretise Rda to a grid. There have also been studies where the continuous state HMM (4.1)

is approximated by a discrete state HMM, and the latter solved using Dynamic Programming

[163].

The aim of this chapter is to solve the sensor scheduling problem with continuous action

space directly, and not a surrogate problem defined through the PCRLB or otherwise. We make

no assumptions of linearity or Gaussianity for analytic convenience, nor do we discretise the

state, observation, or action space. We avoid these restrictive modelling assumptions on the

continuous state HMM by recourse to methods based on computer simulation (simulation for

short). As the action policy derived will be a function of the filtering density, we will employ

simulation to approximate the posterior density by a finite sum of weighted point-mass dis-

tributions [47]. The main advantage of simulation over other numerical integration methods

is that it is typically very easy to implement. Furthermore, it follows the Strong Law of Large

Numbers [34] and there is much literature on its efficient implementation for approximating

posterior densities [47].

In order to solve for the optimal sequence of continuous valued actions, we will use an it-

erative stochastic gradient algorithm. We derive the gradient of the performance criterion with

respect to the action trajectory and demonstrate how low variance estimates of it may be ob-

tained using control variate [68] techniques. One major advantage of a stochastic gradient based

method is that theoretical guarantees are easily obtained. Under suitable regularity assump-

tions, one can guarantee convergence to a local optimum of the performance criterion, while

it is difficult to make similar assertions about the quality of the solutions obtained by other

approximate methods proposed in the literature for sensor scheduling.

As an instance of the sensor scheduling problem, we study the observer trajectory planning

problem for a bearings-only application. We state theoretical results concerning the conver-

gence of the observer trajectory identified by our simulation-based algorithm. Handling mul-

tiple observers simultaneously is easy in our proposed framework, and numerical results are

presented for cooperating observers tracking a maneuvering target.

The organisation of this chapter is as follows. In Section 4.2, we formulate the optimal sen-

sor scheduling problem. We also summarise some key points concerning several methods in

the literature that may be used to solve this problem. In Section 4.3, we derive the gradient of
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the performance criterion being optimised, and detail the use of simulation and variance reduc-

tion techniques for its estimation. In Section 4.4.2, we present the main algorithm of the chap-

ter, which is a two time-scale stochastic gradient algorithm for solving the sensor scheduling

problem. General convergence results for this algorithm are presented in [148]. In Section 4.5,

we formulate the observer trajectory planning problem as an instance of the sensor schedul-

ing problem and apply the convergence results to this application. Numerical examples are

presented in Section 4.6, and concluding remarks are presented in Section 4.7.

Notation: The notation that is used in the chapter is now outlined. The norm of a scalar,

vector or matrix is denoted by |·|. For a vector b, |b| denotes the vector 2-norm
√∑

i |b(i)|2. For

a matrix A, |A| denotes the matrix 2-norm, maxb:|b|6=0
|Ab|
|b| . For convenience, we also denote a

vector b ∈ Rn by b = [b(i)]i=1,...,n, or the i-th component of a vector by [b]i. For scalars aj,i, j =

1, . . . ,m, i = 1, . . . , n, let
[
[aj,i]j=1,...,m

]
i=1,...,n

denote the stacked vector [a1,1, . . . , am,1, . . . , a1,n,

. . . , am,n]T . For a vector b, let diag(b) denote the diagonal matrix formed from b.

For a function f : Rn → R with arguments z ∈ Rn, we denote (∂f/∂z(i)) (z) by ∇z(i)f(z)

and ∇f(z) = [∇z(1)f(z), · · · ,∇z(n)f(z)]T . For the vector valued function F = [F1, · · · , Fn]T :

Rn → Rn, let∇F denote the matrix [∇F1, · · · ,∇Fn]. For real-valued integrable functions f and

g, let 〈f, g〉 denote
∫
f(x)g(x)dx.

4.2 Problem Formulation

At time n, let Xn and Yn be random vectors that model the dx-dimensional state and its dy-

dimensional observation respectively. Suppose that an action An ∈ Rda is applied at time n.

The state {Xn}n≥0 is an unobserved Markov process with initial distribution and transition

law given by

X0 ∼ π0, Xn+1 ∼ p (·|Xn, An+1) . (4.3)

The observation process {Yn}n≥1 is generated according to the state and action dependent

probability density

Yn ∼ q (·|Xn, An) . (4.4)

Given the sequence of actions a1:n := {a1, ..., an} and measurements y1:n := {y1, ..., yn}, the

filtering density at time n is denoted by πn, (or π
(y1:n,a1:n)
n to emphasise the dependence on y1:n
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and a1:n,) and satisfies the Bayes recursion

πn(x) =
q (yn|x, an)

∫
p(x|x′, an)πn−1(x

′)dx′∫ ∫
q (yn|x, an) p(x|x′, an)πn−1(x′)dx′dx

. (4.5)

Consider a suitable test function ψ : Rdx → R where, for example, ψ could pick out a

component of interest of the state vector we wish to estimate. The optimal sensor scheduling

problem is to solve

min
A1:N∈ΘA

J(A1:N ) = E(π0,A1:N )

{
N∑

n=1

λN−n (ψ(Xn)− 〈πn, ψ〉)2
}
, (4.6)

where E(π0,A1:N ) denotes expectation with respect to the random variables (X0:N , Y1:N ) which

are distributed according to the law specified by (π0, A1:N ), i.e., for any 1 ≤ n ≤ N and inte-

grable function h :
(
Rdx

)n×
(
Rda

)n×
(
Rdy
)n → R,

E(π0,A1:n) {h(X1:n, A1:n, Y1:n)} :=
∫
h(x1:n, A1:n, y1:n) Πn

i=1q (yi|xi, Ai) p (xi|xi−1, Ai) π0(x0)dx0:ndy1:n︸ ︷︷ ︸
P(π0,A1:N )

. (4.7)

The set of actions ΘA ⊂
(
Rda

)N
is open and λ ∈ [0, 1] is a discount factor to favour better

tracking performance in the later epochs if so desired.

Feedback control: The sensor scheduling problem stated in (4.6) is an open-loop stochastic

control problem. In order to utilise feedback in a closed-loop implementation, we will use the

open-loop feedback control (OLFC) approach, which is described as follows (see [20] for a detailed

account on open-loop feedback and other closed loop policies). Let A∗
1:N be the solution to

(4.6). The action applied at epoch 1 is then A∗
1, for which an observation Y1 is received and

the filtering density is updated to π1. At epoch n, 1 < n ≤ N , let πn−1 be the filtering density

corresponding to all actions taken and observations received up to (and including) epoch n−1,
{
A∗

1, Y1, . . . , A
∗
n−1, Yn−1

}
. Now solve problem (4.6) for the initial target distribution πn−1 and

horizon N − n, and let the solution (with an abuse of notation) be denoted by A∗
n:N . The action

for epoch n is just A∗
n. This procedure is repeated until epoch N .

Path constraints: For trajectory planning application, the sequence of actions A∗
1:N deter-

mined by solving (4.6) above may not be realisable due to motion constraints on the observer.

For example, the sequence of possible accelerations in a linear motion model (see Section 4.5)

may not be able to realise the desired sequence of positions A∗
1:N . Alternatively, we may seek
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a sequence of positions that belong to some parametric class, e.g., an observer doing a con-

stant velocity turn where the turn rate is to be determined. In some cases, we may summarise

observer motion constraints through a bounded mapping

F :
(
Rdu

)N
→
(
Rda

)N
, (4.8)

where the actions A1:N = F (U1, . . . , UN ). For example, U1:N could describe the sequence of

accelerations of an observer; see Section 4.5 for more details. We would then solve problem

(4.6) subject to the equality constraint

A1:N = F (U1:N ), U1:N ∈
(

Rdu

)N
, (4.9)

i.e. ΘA now corresponds to the range of the function F .

Simulation and gradient based methods: We do not have a closed-form expression for J because

the filtering density πn and integration with respect to it cannot be evaluated in closed-form in

our general setting. To evaluate J(A1:N ), we could revert to state-space discretisation (see [78]

for issues on discretising general state space HMMs). One could discretise Rdx , Rdy and derive

the corresponding state evolution and observation laws, i.e. (4.3) and (4.4), for the approximat-

ing discrete problem. We may then calculate the approximation to J(A1:N ) for any choice of

actions. This approach has its drawbacks though. Firstly, assuming that Rdx and Rdy are discre-

tised to finite sets of cardinality Lx and Ly respectively then, the multiple integral in (4.6) (cf.

(4.7)) is converted to a sum over (Ly)
N × (Lx)N+1 terms, which is computationally prohibitive.

Thus, we would be limited to a coarse discretisation and a small horizon N at best. Secondly, it

is not obvious how to choose the grid in Rdx and Rdy since, for accuracy of the approximation,

the grid should be finer in the regions where density in (4.7) has more mass. In [163], the HMM

is discretised and a closed-loop formulation of problem (4.6) is solved. A closed-loop formu-

lation of (4.6) is known as a Partially Observed Markov Decision Process (POMDP). However,

solving a POMDP exactly is computationally very demanding, specifically PSPACE-hard, and

various approximation schemes that trade-off accuracy and speed have been devised [74].

We propose to use simulation with Stochastic Approximation (SA) [17, 38, 39] to minimise

J(A1:N ) when ΘA is an open (i.e. continuous) set without resorting to discretising Rdx , Rdy

or ΘA. SA is a recursive Robbins-Monro algorithm that can be used to find local minima or

maxima of functions, which could not be computed otherwise [93]. We will use SA to perform

a stochastic gradient descent algorithm that only requires noisy estimates of the cost function
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gradient, i.e.,

A1:N,k+1 = A1:N,k − αk

(
∇J(A1:N )|A1:N=A1:N,k

+ noise
)
, (4.10)

where k ≥ 0 and ∇J(A1:N ) denotes the gradient of J w.r.t. A1:N . The step-size αk is a non-

increasing positive sequence tending to zero. In Section 4.3, we derive the gradient ∇J . Once

again, we do not have a closed-form expression for ∇J for the same reasons as in J ; the fil-

tering density πn and integration with respect to it cannot be evaluated in closed-form in our

general setting. We will show instead how one may obtain an estimate of∇J , namely ∇̂J . The

noise in (4.10) arises precisely because we use ∇̂J instead of ∇J . The smaller the variance of

the noise is, the more quickly (4.10) converges to a minimising action sequence. This motivates

us to consider techniques such as control variates [68] to reduce the noise variance. We propose

an adaptive control variate method to reduce the variance of ∇̂J by coupling with (4.10) a sec-

ond SA iteration that estimates the optimal control variates for ∇̂J . We then demonstrate in

numerical examples that the variance of ∇̂J is reduced by several orders of magnitude and

that the convergence of (4.10) to the minimising solution is accelerated. In [148], we address

the convergence of the proposed method.

One major advantage of a gradient based method is that theoretical guarantees are easily

obtained. Under suitable assumptions on the noise in (4.10), one can guarantee that A1:N,k

eventually converges to a local minimiser of J , while it is difficult to make similar assertions

about the quality of the solution obtained by other approximate methods proposed in the liter-

ature.

Real-time applications: The method we propose is not yet suitable for real-time applications

where decisions need to be made in tens of seconds. Our main intention in this study is to pro-

pose a simulation based method for non-linear and non-Gaussian systems that is both easy to

implement and provably convergent. We wish to avoid restrictive modelling assumptions so

that the proposed method is generally applicable. The conventional approach in the literature

is to linearize the non-linear and non-Gaussian dynamics which is not always straightforward

to implement from a numerical stability point. Also, one cannot decrease the error in the ap-

proximation of the original problem - note that linearizing is an approximation. The same is

true for methods based on the PCRLB. In the method we propose however, one merely in-

creases the number of particles or samples L, which could not be simpler. However, there is a

computational cost to pay. There is currently work being done on the fast implementation of
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particle filters but we have not investigated this aspect of the problem.

Our final comment in this section concerns the length of the scheduling horizon N . If the

model for the evolution of the target p (·|Xn, An+1) is not accurate then a long planning horizon

N would not be meaningful since there can be significant differences between the predicted

evolution and true evolution of the target. The horizon N in this case should be just long

enough to avoid the sub-optimality of short-term planning. We do not address this issue in

this chapter.

4.3 The Cost Gradient and its Simulation-Based Approximation

In this section, we derive the gradient of the cost function (4.6) with respect to A1:N . We then

propose a suitable simulation-based approximation for optimising with SA. Because problem

(4.6) is solved for a fixed initial state distribution π0, henceforth, we omit reference to π0 in

the notation for E(π0,A1:N ) and denote the probability with respect to which this expectation is

taken by PA1:N
.

Keeping in mind that (ψ(Xn)− 〈πn, ψ〉)2 is a function of the form h(X1:n, A1:n, Y1:n), (4.7)

implies

EA1:N
{(ψ(Xn)− 〈πn, ψ〉)2} = EA1:n{(ψ(Xn)− 〈πn, ψ〉)2}.

For l > n, ∇Al
EA1:N

{
(ψ(Xn)− 〈πn, ψ〉)2

}
= 0. For l ≤ n, using (4.7),

∇Al

∫ (
ψ(xn)−

〈
π(y1:n,A1:n)

n , ψ
〉)2

Πn
i=1q (yi|xi, Ai) p (xi|xi−1, Ai)π0(x0)dx0:ndy1:n

=

∫ (
ψ(xn)−

〈
π(y1:n,A1:n)

n , ψ
〉)2
∇Al

[Πn
i=1q (yi|xi, Ai) p (xi|xi−1, Ai)]π0(x0)dx0:ndy1:n

+

∫
∇Al

[(
ψ(xn)−

〈
π(y1:n,A1:n)

n , ψ
〉)2

]
Πn

i=1q (yi|xi, Ai) p (xi|xi−1, Ai)π0(x0)dx0:ndy1:n.

The first term of the gradient may be written as

EA1:N
{(ψ(Xn)− 〈πn, ψ〉)2[

∇Al
q(Yl|Xl, Al)

q(Yl|Xl, Al)
+
∇Al

p(Xl|Xl−1, Al)

p(Xl|Xl−1, Al)
]}

and the second term is

EA1:N
{∇Al

[(ψ(Xn)− 〈π(Y1:n,A1:n)
n , ψ〉)2]}

= −2EA1:N
{(ψ(Xn)− 〈π(Y1:n,A1:n)

n , ψ〉)∇Al
〈π(Y1:n,A1:n)

n , ψ〉}

= 0,
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where the final equality follows upon conditioning on Y1:n. It follows from the above derivation

that to obtain an unbiased estimator of ∇Al
J(A1:N ) for a given A1:N , one samples a realisation

of states and observations (Y1:N ,X0:N ) ∼ PA1:N
and forms the following estimate,

∇̂Al
J(A1:N ) =

N∑

n=l

λN−n
EA1:N

{(ψ(Xn)− 〈πn, ψ〉)2[
∇Al

q(Yl|Xl, Al)

q(Yl|Xl, Al)
+
∇Al

p(Xl|Xl−1, Al)

p(Xl|Xl−1, Al)
]|Y1:n}

(4.11)

where we have added the conditioning on Y1:n as it leads to a lower variance gradient estimate.3

In sensor scheduling applications concerning target tracking, the state processXn is the state of

the target to be tracked and often evolves independently of the action. Henceforth, we assume

this independence for simplicity in presentation, i.e. p (Xn|Xn−1), and remark that the work

may also be extended to the more general case of state evolution and action dependence.4

Define the vector valued function called the score [131],

S (y, x, a) :=
∇aq (y|x, a)
q (y|x, a) ∈ Rda. (4.12)

We may also write ∇̂Al
J(A1:N ) in (4.11) as

N∑

n=l

λN−n{〈π0:n, ψ
2(·)S(Yl, ·, Al)〉+〈πn, ψ〉2〈π0:n, S(Yl, ·, Al)〉−2〈πn, ψ〉〈π0:n, ψ(·)S(Yl, ·, Al)〉}.

(4.13)

To implement (4.11), we see that we require both the marginal πn and the full posterior π0:n for

all N epochs, i.e., for 1 ≤ n ≤ N . We propose to approximate these densities using a mixture

Dirac delta-masses,

π̂0:n(x0:n) :=

L∑

j=1

w(j)
n δ

X
(j)
0:n

(x0:n), (4.14)

where δ
X

(j)
0:n

denotes the Dirac delta-mass located at X
(j)
0:n and the importance weights {w(j)

n }Lj=1

are non-negative scalars that sum to one. The approximation to πn, namely π̂n, follows by

marginalising π̂0:n, which is nothing more than dropping X
(j)
0:n−1 in (4.14). There are a number

of ways to define such a point-mass approximation. For example, the simplest scheme would

3The variance is reduced since, for two jointly distributed random variablesX and Y , var(E(X|Y )) = var(X)−

E(var(X|Y )), and E(var(X|Y )) > 0.
4In methods that use the PCRLB [76,77,127,163], even after assuming the state process evolves independently of

the actions, one still needs to evaluate the expectation of derivatives of ln p (Xn|Xn−1) w.r.t. Xn and Xn−1, while

this is clearly not needed in (4.11).
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be to sampleL independent state trajectory realisations
{
X

(j)
0:n

}L

j=1
from (Πn

i=1p (xi|xi−1)) π0(x0).

The importance weights would then be

w(j)
n :=

Πn
i=1q

(
Yi|X(j)

i , Ai

)

L∑
j=1

Πn
i=1q

(
Yi|X(j)

i , Ai

) . (4.15)

For any integrable function h,
∫
h(x0:n)π̂0:n(x0:n)dx0:n converges to

∫
h(x0:n)π0:n(x0:n)dx0:n as

L→∞ (see [47, Ch. 2] for a precise statement of the mode of convergence). Practically though,

we would prefer a small sample size L and this simple scheme of sampling from the state

transition model can result in the majority of the importance weights w
(j)
n being very small.

There are number of remedies proposed for this in the Sequential Monte Carlo, also known

as Particle Filtering (PF), literature [47, Ch. 1.3.2]. For example, the importance sampling

step can be designed to minimise the conditional variance of the importance weights by sam-

pling
{
X

(j)
0:n

}L

j=1
from a Markov transition density that takes the observations into account,

i.e., X
(j)
n |X(j)

n−1 ∼ k(xn|X(j)
n−1, Yn). We emphasise that standard techniques from the Sequential

Monte Carlo literature can be adopted in constructing an approximation of the form (4.14) to

the full posterior but we do not study this issue in detail here. A standard Particle Filter algo-

rithm is presented earlier in this thesis in Section 3.4.1. We summarise the discussion thus far

with the following algorithm.

Algorithm 4.1 Simulation-Based Sensor Scheduling Procedure:

0. Initialisation: Choose A1:N,0 ∈ ΘA, step-size {αk}k≥1, αk ↓ 0,
∑

k αk =∞, PF sample size L

For k ≥ 0, iterate

1. Sample (X0:N , Y1:N ) ∼ PA1:N,k

2. Generate the Particle filter π̂0:N according to (4.15) or a more sophisticated scheme

3. Substitute (X0:N , Y1:N ), A1:N,k and π̂0:N into (4.13) to obtain ∇̂J(A1:N,k):

∇̂Al
J(A1:N,k) =

N∑

n=l

λN−n{〈π̂0:n, ψ
2
n(·)S(Yl, ·, Al,k)〉+ 〈π̂n, ψn〉2〈π̂0:n, S(Yl, ·, Al,k)〉

−2〈π̂n, ψ〉〈π̂0:n, ψn(·)S(Yl, ·, Al,k)〉}. (4.16)

4. Update trajectory: A1:N,k+1 = A1:N,k − αk∇̂J(A1:N,k)

5. Set k = k + 1 and repeat
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One may use a constant step-size αk = α as was done in the numerical implementation; see

Section 4.6. In implementation we found that the variance of the gradient estimate (4.16) was

large. The reason is, for a large horizon N , we are approximating high dimensional integrals

using simulation and moreover, with a moderate sample size L. We propose a remedy in

Section 4.4.1.

Computation complexity: The particle filter π̂0:N can be implemented at a cost of O(LN) with

or without resampling (as in (4.15)). This cost dominates the cost of sampling (X0:N , Y1:N ) from

PA1:N,k
. Thus the total cost per iteration k of the simulation-based sensor scheduling procedure

is still order O(LN).

4.4 A Verifiably Convergent Particle Implementation

Implementing the algorithm detailed in Section 4.3 with the gradient estimate (4.16) is straight-

forward. However to prove its convergence we would not be able to use standard SA results.

Even though (4.16) is a noisy estimate of∇Al
J(A1:N ), the noise is not zero-mean due to the bias

of the simulation-based approximations to πn and π0:n. To assert convergence of (4.10) to a min-

ima of J , we would have to gradually increase the number of samples L to remove the bias.

(Similar conditions are required for convergence of SA driven by sample averages [14, 131].)

While this is fine theoretically, it is infeasible in practice as the computational complexity of

the SA recursion increases with each iteration. In this section we propose an alternate imple-

mentation whose convergence can be established for a finite number of particles L. Moreover

in Section 4.5 we show that the proposed implementation applied to the standard observer

trajectory planning problem with bearings-only observations converges.

To simplify the presentation, we will only focus on the simple scheme of sampling from the

state transition model as in (4.15) and not the more sophisticated Particle Filter. To emphasise

the dependence of π̂0:n on the realisation of observations Y1:n and the sequence of actions A1:n,

we should use the notation π̂
(Y1:n,A1:n)
0:n . However, we often do not do so in order to unclutter

the expressions. The reader is reminded that π̂0:n should always be regarded as a function of

(Y1:n, A1:n). Henceforth, we fix the set of L state trajectory samples
{
X

(j)
0:N

}L

j=1
, i.e., they are

sampled once at the start and reused throughout to form π̂0:n.

By a conditioning argument, J(A1:N ) can be written as
∑N

n=1 λ
N−n

EA1:N

{〈
πn, ψ

2
〉
− 〈πn, ψ〉2

}
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and we form the following approximation to J ,

Ĵ(A1:N ) =

N∑

n=1

λN−n
EA1:N

{〈
π̂n, ψ

2
〉
− 〈π̂n, ψ〉2

}
. (4.17)

Since the error in the approximation π̂0:n diminishes as the sample size L increases, we would

expect Ĵ to be a good approximation to J for sufficiently large L. We will then derive an

unbiased estimate of the gradient of Ĵ in a similar manner to J above and minimise Ĵ via SA.

This approach can be analysed and we show that, under suitable assumptions, SA converges

to a local minima of Ĵ almost surely.

In the same way as the gradient of J was derived in (4.11) we have

∇Al
Ĵ(A1:N ) =

N∑

n=1

λN−n∇Al
EA1:N

{〈π̂n, ψ
2〉 − 〈π̂n, ψ〉2}

= EA1:N
{

N∑

n=l

λN−n(〈π̂n, ψ
2〉 − 〈π̂n, ψ〉2)S(Yl,Xl, Al)} (4.18)

+ EA1:N
{

N∑

n=l

λN−n(∇Al
〈π̂n, ψ

2〉 − 2〈π̂n, ψ〉∇Al
〈π̂n, ψ〉)} (4.19)

where5

∇Al
〈π̂n, ψ〉 = 〈π̂0:n, ψ(·)S(Yl, ·, Al)〉 − 〈π̂n, ψ〉〈π̂0:n, S(Yl, ·, Al)〉. (4.20)

It is now straightforward to obtain a simulation-based approximation of∇Ĵ(A1:N ). For a given

A1:N , one samples a realisation of states and observations (Y1:N ,X0:N ) ∼ PA1:N
and forms the

following unbiased estimate of∇Al
Ĵ(A1:N ), for l = 1, . . . , N ,

S (Yl,Xl, Al)

N∑

n=l

λN−n
(〈
π̂n, ψ

2
〉
− 〈π̂n, ψ〉2

)

+

N∑

n=l

λN−n
(
∇Al

〈
π̂n, ψ

2
〉
− 2 〈π̂n, ψ〉∇Al

〈π̂n, ψ〉
)
. (4.21)

4.4.1 Variance Reduction by Control Variates

In implementation, we found that the variance of the gradient estimate (4.21) (or (4.16)) was

quite large. This is because we are approximating high dimensional integrals using simulation

and moreover, with a moderate sample size L. Naturally, it would be possible to reduce the

5It is possible to compute ∇Al
〈π̂n, ψ〉 when resampling is employed to construct π̂n as done in the standard

Particle Filter Details of the gradient can be found in [135].
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variance by simply increasing the number of samples. As we do not wish to do so, our aim is

to extract the most accurate estimates of the quantities of interest for a given set of samples.

Control Variates are widely used to reduce the variance in simulation-based approxima-

tions [65, 68, 101]. The method involves collecting additional statistics from the samples and is

very simple to implement. Recently, it has been shown that other popular variance reduction

techniques such as conditional Monte Carlo, antithetics, rotation sampling, stratification can be

viewed as various implementations of this method [68]. We now describe how control variates

may be implemented for our problem.

For a random variable W , consider the problem of estimating E(W ) when we have access

to a zero-mean random variable Z correlated with W . Rather than using a realisation of W as

an unbiased estimate, we use W − bZ where b is a constant. The estimator W − bZ is also

unbiased. Furthermore, the function of b

var(W − bZ) = var(W )− 2bcov(W,Z) + b2var(Z) (4.22)

is convex and is minimised at b∗ = cov(W,Z)/var(Z), which implies the variance of the esti-

mate W − b∗Z of E(W ) is less than the variance of the estimate W . The random variable Z is

referred to as the control variate (CV) and we call b the CV constant [68].

In the context of the gradient estimate in (4.21), we found in implementation that reduc-

ing the variance of the estimate of (4.18) was sufficient. The score in (4.18) is zero-mean, i.e.

EA1:N
{S (Yl,Xl, Al)} = 0, and we use it as the CV. Doing so yields the following unbiased

estimator of ∇Al
Ĵ instead of (4.21),

diag(S(Yl,Xl, Al))(−bl +
N∑

n=l

λN−n(〈π̂n, ψ
2〉 − 〈π̂n, ψ〉2)1)

+

N∑

n=l

λN−n(∇Al
〈π̂n, ψ

2〉 − 2〈π̂n, ψ〉∇Al
〈π̂n, ψ〉), (4.23)

where 1 ∈ Rda and the CV constant (vector) bl ∈ Rda is to be determined in order to min-

imise the variance of the estimate. Noting that the optimal CV constant is a solution of the

minimisation problem (4.22), we may employ the following SA algorithm to converge to it,

bl ←− bl − βdiag(S(Yl,Xl, Al))(diag(S(Yl,Xl, Al))bl −
N∑

n=l

λN−n(〈π̂n, ψ
2〉 − 〈π̂n, ψ〉2)1),

(4.24)
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where β is the step-size. Under suitable assumptions we will have bl converging to

EA1:N
{diag(S(Yl,Xl, Al))

2}−1
EA1:N

{diag(S(Yl,Xl, Al))
2

N∑

n=l

λN−n(〈π̂n, ψ
2〉 − 〈π̂n, ψ〉2)1}.

(4.25)

The same approach applies when minimising the variance of the gradient estimate (4.16) with

control variates.

4.4.2 The Main Algorithm

We now state the main algorithm of the chapter whose convergence we subsequently prove.

It is a two time-scale SA algorithm to minimise Ĵ using the reduced variance estimate of ∇Ĵ
given by (4.23) and (4.24). We do so for the case with action path constraints as specified in

(4.9). We can also derive a similar two time-scale version of the algorithm presented in Section

4.3; see [150] for details.

Solving problem (4.6) with (4.9) is equivalent to minimising Ĵ ◦ F (which is the composite

function Ĵ(F (·))) over
(
Rdu

)N
. The appropriate modification to (4.10) for this case is

U1:N,k+1 = U1:N,k − αk(∇Ĵ ◦ F (U1:N )|U1:N=U1:N,k
+ noise)

where∇Ĵ ◦ F (U1:N ) = ∇F (U1:N )∇Ĵ(F (U1:N )).

We introduce the following functions to make the presentation of the main algorithm con-

cise. For each A1:N , define the functions hi,A1:N
:
(
Rdx

)N+1 ×
(
Rdy

)N →
(
Rda

)N
, i = 1, 2, as

follows:

h1,A1:N
(X0:N , Y1:N ) = [S(Yl,Xl, Al)

N∑

n=l

λN−n(〈π̂n, ψ
2〉 − 〈π̂n, ψ〉2)]

l=1,...,N

, (4.26)

h2,A1:N
(X0:N , Y1:N ) = [

N∑

n=l

λN−n(∇Al
〈π̂n, ψ

2〉 − 2〈π̂n, ψ〉∇Al
〈π̂n, ψ〉)]

l=1,...,N

. (4.27)

Note that

∇Ĵ(A1:N ) = EA1:N
{h1,A1:N

(X0:N , Y1:N ) + h2,A1:N
(X0:N , Y1:N )},∈ (Rda)N .

For technical reasons concerning the convergence of the two time-scale SA algorithm below

[148], we introduce the positive scalar valued function Γ :
(
Rda

)N → (0,∞),

Γ(b) :=
C

1 + |b| , (4.28)
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whereC is a positive constant. The function Γ is needed to ensure that the CV constants remain

bounded almost surely. However, we set Γ(b) = 1 in implementation.

Algorithm 4.2 The two time-scale SA algorithm for solving the sensor scheduling problem:

For conciseness, let

θ = U1:N ,

θ̃ = A1:N (= F (θ)) ,

ω = (X0:N , Y1:N ).

θk+1 = θk − αk+1Γ(bk)∇F (θk)(h1,θ̃k
(ωk+1) + h2,θ̃k

(ωk+1)− Sθ̃k
(ωk+1)bk), (4.29)

bk+1 = bk − βk+1S
2
θ̃k

(ωk+1)bk + βk+1Sθ̃k
(ωk+1)h1,θ̃k

(ωk+1), (4.30)

ωk+1 ∼ Pθ̃k
, (4.31)

θ̃k = F (θk), k ≥ 0, (4.32)

where

SA1:N,k
(X0:N,k+1,Y1:N,k+1) = diag([S(Yl,k+1,Xl,k+1, Al,k)]l=1,...,N ). (4.33)

(Note that θk = U1:N,k, θ̃k = A1:N,k, ωk+1 = (X0:N,k+1, Y1:N,k+1).)

As for the algorithm presented in Section 4.3, the cost of sampling ωk+1 and computing π̂0:N

is O(NL). The only difference is that we sample the state trajectories that form the approxi-

mate posterior density π̂0:N (which also gives us {π̂n}Nn=0) at the start and do not change them

thereafter. Also, no resampling is employed. The storage requirement does however increase.

Computing h2,θ̃k
is the most expensive step, specifically O(N2L), and subsumes all other costs,

matrix multiplications included. Thus the total cost of the algorithm is O(N2L). Note that the

cost is still linear in L, which the most important point since the horizon is typically very small

compared to the number of state trajectory samples L.

Assumption 4.4.1 The step-size sequences {αk} and {βk} are non-negative, sum to infinity, are squared

summable, and for some p > 0 satisfy
∑

k

(
αk

βk

)p
<∞.
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Typically, the step-sizes are

αk = k−α, βk = k−β, (4.34)

where α > β > 0.5. Thus,
∑

k

(
αk

βk

)p
< ∞ may only be satisfied for a large positive p. Since

αk tends to zero more quickly than βk, the recursion for the actions (4.29) is said to evolve on

a slower time-scale than that for the CV constants (4.30). By having U1:N,k evolve more slowly

than bk, we allow bk to ‘track’ the optimal CV constants, which depend on the point at which the

gradient∇Ĵ is evaluated (see (4.25)). In [148], we establish the convergence of algorithm (4.29)-

(4.32) for the choice of step-sizes in Assumption 4.4.1. However, in the numerical example

presented in Section 4.6, we set function Γ(b) = 1, use constant step-sizes αk = α and βk = β

and still demonstrate convergence. For SA in general, decreasing step-sizes are essential for

almost sure convergence. If fixed step-sizes are used, then we may still have convergence but

now the iterates ‘oscillate’ about their limiting values with variance proportional to the step-

size.

The convergence of a two time-scale SA algorithm related to (4.29)-(4.32) was studied in

[89]. We may write the slow time-scale process in a more general form than (4.29) as,θk+1 =

θk +αk+1Hk+1. If the parameter θk does not change, say θk = θ for all k, the process {bk}would

converge to some b̄(θ). When θk varies slowly, we would like the process {bk} to track b̄(θk).

Under certain regularity assumptions on the process {Hk} [89], it can be shown that this would

be the case when θk did change. As for the convergence of {θk}, we may use the line of proof

in [23] to show lim infk

∣∣∣∇(Ĵ ◦ F )(θk)
∣∣∣ = 0. Details are in [148].

4.5 Application to Observer Trajectory Planning

In observer trajectory planning, we wish to track a maneuvering target for N epochs. At epoch

n,Xn denotes the state of the target,An the position of the observer and Yn the partial observa-

tion of the target state, i.e., Yn = g(Xn, An, Vn), where Vn is measurement noise. Typically, the

observer has its own motion model and we let Xo
n denote state of the observer. The observer

state descriptor usually includes its position and therefore An corresponds to certain compo-

nents of Xo
n. The aim of OTP is to adaptively maneuver the observer to optimise the tracking

performance of the target.

In this section, we formalise the OTP problem for a bearings-only observation model as
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an instance of the sensor scheduling problem in Section 4.2. We also give results concerning

convergence of algorithm (4.29)-(4.32) for this application. As we show below, while most

existing work in the literature concerns OTP for one observer only, our proposed framework

can handle multiple observers simultaneously. There are some convergence issues though, as

we point out in the numerical examples in Section 4.6. Adding more observers can result in

an increased number of local minima of the cost function J while gradient based algorithms

are only guaranteed to converge to a local minimum. Also, J can be increasingly flat at the

minima, which means varying the trajectory of the observers at any minima will result in only

small changes to J . In practice, this can slow down the convergence of SA.

We do not need to specify the target model explicitly. Our only concern is that we can sam-

ple from the model. Maneuvering targets are often modelled as a jump Markov linear system

(JMLS) [49]. The state of the target is comprised of continuous and discrete valued variables,

i.e., Xn = [rx,n, vx,n, ry,n, vy,n, ξn]T ∈ R4 × Ξ, where (rx,n, ry,n) denotes the target’s (Cartesian)

coordinates at time n, (vx,n, vy,n) denotes the target velocity in the x and y directions, and ξn

denotes the mode of the target, which belongs to a finite set Ξ. The target switches discontin-

uously, as indicated by ξn, between constant velocity maneuvers. In Section 4.6, we consider a

maneuvering target in the examples.

As indicated in (4.9), we require an observer model of the form A1:N = F (U1:N ), where we

exert control on the observer positionsA1:N through the variables U1:N . For instance, the accel-

erations of the observer could be determined from the input U1:N , which will in turn determine

the observer trajectory. The convergence results of Propositions 4.5.1 and 4.5.2 below do not

depend on the specific form of F but only that this function is sufficiently regular. We now give

an example of F which is adopted in the Numerical Example section.

Example 4.5.1 Let the state of the observer be Xo
n =

[
ro
x,n, v

o
x,n, r

o
y,n, v

o
y,n

]T
, with An =

[
ro
x,n, r

o
y,n

]T
.

Assume a kinematic model for the evolution of the state,

Xo
n+1 =




1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1




︸ ︷︷ ︸
=: G

Xo
n +




T 2/2 0

T 0

0 T 2/2

0 T




︸ ︷︷ ︸
=: H

× C × arctan(Un+1) (4.35)
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where the initial state Xo
0 is fixed, T is the sampling interval, andUn+1 ∈ R2 determines the acceleration

in the x and y directions. We have included the function arctan and the positive diagonal matrix C . The

function arctan and its first two derivatives are bounded. Also, arctan is linear around zero and makes

a nice choice of saturating function for the acceleration; naturally the acceleration cannot be unbounded.

The matrix C alters the saturation behaviour of the acceleration. The observer trajectory is completely

determined once Xo
0 and U1:N are given,

An =


 1 0 0 0

0 0 1 0


×

(
GnXo

0 +

n∑

i=1

Gn−iHC arctan(Ui)

)
. (4.36)

The function F in (4.8) is now implicitly defined by (4.36).

In the bearings-only model, the observation process {Yn}n≥0 (⊂ R) is generated according

to

Yn = arctan

(
rx,n −An(1)

ry,n −An(2)

)
+ Vn, (4.37)

where Vn
i.i.d.
∼ N (0, σ2

Y ). In our simulation-based framework, we require the observation pro-

cess density to be known and differentiable w.r.t. An. The bearings-only case is one such ex-

ample. To present the convergence results of Proposition 4.5.1 and 4.5.2 below, we will assume

that the x and y position of the target corresponds to the first and third component of the state

descriptorXn,

Xn = [rx,n, ·, ry,n, · · · ]T , (4.38)

which is usual convention in the literature. The score is then given by

S(y, x, a)T

= [∇a(1)q(y|x, a), ∇a(2)q(y|x, a)] × q(y|x, a)−1

= −σ−2
Y

y − arctan(x(1)−a(1)
x(3)−a(2) )

1 + (x(1)−a(1)
x(3)−a(2) )

2
[

1

x(3)− a(2) ,−
x(1) − a(1)

(x(3) − a(2))2 ]. (4.39)

For the case of multiple observers, say p of them, let the position of observer l at epoch n be

denoted byA
(l)
n . Also, assume that each observer measures a bearings angle according to (4.37)

independently of the other observers, i.e., observer l receives the measurement Y
(l)
n generated

according to the model (4.37) based on its own position A
(l)
n . We stack these observations to-

gether as a vector-valued observation Yn = [Y
(1)
n , . . . , Y

(p)
n ]T . Likewise, we stack the positions

to form the effective position An = [(A
(1)
n )T , · · · , (A(p)

n )T ]T , The observation density for this
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multiple observer case is q(Yn|Xn, An) = q(Y
(1)
n |Xn, A

(1)
n )×· · ·× q(Y (p)

n |Xn, A
(p)
n ). It is apparent

that we are now effectively in the original single observer setting and may proceed to solve the

multiple OTP problem as above. Note that we are now optimising the tracking performance

criterion over the space of possible trajectories for p observers, which implies that the observers

cooperate. In the examples of Section 4.6, we study the two observer case.

4.5.1 Convergence For Bearings-Only Tracking

For the bearings-only observation model, we have the following sufficient conditions for the

convergence of the slow and fast time-scale. The sufficient conditions (4.40)-(4.43) are only

restrictions on the target state transition model, and the range of the function F that is used

to map the sequence U1:N (which could be accelerations) to the observer positions for all N

epochs. We omit the proof and refer to the reader to the technical report [148], which is available

online, for full details.

The following result concerns the cost function (4.17) with λ = 0 and can be generalised to

any λ ∈ [0, 1].

Proposition 4.5.1 Consider algorithm (4.29)-(4.32) for the bearings-only observation model (4.37).

Suppose the following assumptions hold:

supA1:N∈range(F ) EA1:N

{∣∣∣ 1
Xn(3)−An(2)

∣∣∣
p}

<∞,

1 ≤ n ≤ N, p > 0, (4.40)

supA1:N∈range(F ) maxl

∣∣∣∣ 1

X
(l)
n (3)−An(2)

∣∣∣∣ <∞,

1 ≤ n ≤ N, (4.41)

inf1≤n≤N infA1:N∈range(F ) EA1:N



σ

−2
Y

1

(Xn(3)−An(2))2[
1+
(

Xn(1)−An(1)
Xn(3)−An(2)

)2
]2



 > 0, (4.42)

inf1≤n≤N infA1:N∈range(F ) EA1:N



σ

−2
Y

[
Xn(1)−An(1)

(Xn(3)−An(2))2

]2

[
1+
(

Xn(1)−An(1)
Xn(3)−An(2)

)2
]2



 > 0. (4.43)

Then, almost surely, supk |bk| <∞ and

lim
k

∣∣∣bk − S2(A1:N,k)
−1S × h1(A1:N,k)

∣∣∣ = 0.

Furthermore, if F has bounded second order derivatives then, almost surely, lim infk

∣∣∣∇(Ĵ ◦ F )(U1:N,k)
∣∣∣ =

0.
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Proof. See [148].

Recall that the expectation operator EA1:N
{·} above is an abbreviation for E(X0:N ,Y1:N )∼PA1:N

{·}.
Condition (4.41) relates to the samples used to approximate the posterior density in (4.14)-

(4.15). Also, the first and third component of the target state is its x and y component respec-

tively. Note that the proposition does not limit the specific form of function F that relates

inputs U1:N to actions A1:N . It only restricts range(F ) and requires F to be sufficiently regu-

lar as specified by the last assumption concerning bounded second order derivatives. For F

defined implicitly by (4.36), this assumption is satisfied.

The next result gives the conditions under which assumptions (4.40)-(4.43) hold. This result

basically says that if the support of X0:N and the range of function F do not intersect, then

the assumptions hold and we have the desired convergence of two time-scale SA for OTP.

It is interesting to note that the scenario in which the support of X0:N and the range of F

do not intersect is a standard setting studied by previous works on OTP for bearings-only

observations [25, 108, 163] and hence the conditions of Proposition 4.5.1 are not restrictive for

the application.

Proposition 4.5.2 Write the mapping F : R2N → R2N as F = [F1,1, F1,2, · · · , FN,1, FN,2]
T . (Note

that An(j) = Fn,j(U1:N ).) Suppose that the density of X0:N , f(x0:N ), has a compact support Kf ⊂
R4(N+1). Furthermore, suppose that for each 1 ≤ n ≤ N , the compact set Kf,n := {xn(3)| x0:N ∈ Kf}
does not intersect with the closure of the set range(Fn,2), i.e., there exists a compact set KA,n such that

range(Fn,2) ⊂ KA,n, and Kf,n ∩ KA,n = ∅. Then, conditions (4.40)-(4.43) are satisfied.

Proof. We prove the result for (4.43) while the rest follow similar arguments. Note that

inf
X0:N∈Kf ,A1:N∈range(F )

1
(Xn(3)−An(2))4[

1 +
(

Xn(1)−An(1)
Xn(3)−An(2)

)2
]2 ≥

1(
supXn(3)∈Kf,n,An(2)∈KA,n

|Xn(3)−An(2)|

)4


1+

(
supX0:N∈Kf ,A1:N∈range(F )|Xn(1)−An(1)|

infXn(3)∈Kf,n,An(2)∈KA,n
|Xn(3)−An(2)|

)2



2 = C

(> 0).

The equality in the second line above follows since we are maximising, and minimising, con-

tinuous functions over compact sets; for each problem, at least one solution from the compact
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set exists. Thus,

EA1:N





[
Xn(1)−An(1)

(Xn(3)−An(2))2

]2

[
1+
(

Xn(1)−An(1)
Xn(3)−An(2)

)2
]2



 = EA1:N



IKf

(X0:N )

[
Xn(1)−An(1)

(Xn(3)−An(2))2

]2

[
1+
(

Xn(1)−An(1)
Xn(3)−An(2)

)2
]2





≥ EA1:N





IKf
(X0:N ) (Xn(1)−An(1))2

× infX0:N∈Kf ,A1:N∈range(F )

1

(Xn(3)−An(2))4[
1+
(

Xn(1)−An(1)
Xn(3)−An(2)

)2
]2





≥ C ×EA1:N

{
(Xn(1) −An(1))2

}

≥ C × var {Xn(1)} ,

where in the last line, the density of X0:N is independent of the sequence of actions A1:N and

hence we write var {·} omitting reference to the actions. For more details, see [148].

4.6 Numerical Example

The aim of this section is to demonstrate the utility of the proposed simulation-based algo-

rithm for the OTP problem. In addition to demonstrating various convergence aspects of the

algorithm, we will also solve for the optimal open-loop observer trajectory under a variety of

tracking scenarios, namely, with a fast observer, a slow observer and cooperating observers.

Open loop feedback control is also implemented for the cooperating observers case.

All examples below for OLFC concern a maneuvering target where the target follows a lin-

ear Gaussian model between maneuvers. However, when solving for the open loop trajectory

we assume a linear Gaussian model Xn+1 = GXn +HWn with increased acceleration noise to

account for the un-modelled maneuvers. This is more robust in practise as one usually knows

little about the target’s precise model. The particle cloud in Figure 4.1(a) are independent sam-

ples from the target’s dynamic model (4.3) to help visualise it. The target starts at (0, 0) and

moves northeast. Shown in Figure 4.1(c) is the actual maneuvering target when the OLFC tra-

jectory is constructed. The maneuvering target also starts at (0, 0) and moves northeast. For

the maneuvering target, at time t = 3, the velocity of the target in the y direction is increased to

induce the maneuver. Note that the target maneuver was intentionally chosen to be far more

drastic than that predicted by its model. This was done to contrast the constructed open-loop

and OLFC trajectories. In all the examples below, the problem horizon N is 7 and we choose

function ψ to be ψ(Xn) = w1Xn(1) + w2Xn(3) where weights w1, w2 ∈ [0, 1] are selected to
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trade-off accuracy in tracking the x and y coordinates.

Figure 4.1: (a) Single fast observer open loop trajectory. Particle clouds are trajectory samples from the target’s

dynamical model in (4.3). Shown are many trajectory samples (X1, X2, . . . , XN) where the various X1 samples

is the blue cloud, the red cloud is X2, lime is X3, black X4 and so on. Target moving northeast but observer moves

southeast and does a hook-turn. (b) Two cooperating fast observers open loop trajectory; both moving northeast.

Particle cloud as in part (a). (c) The OLFC trajectory of two cooperating fast observers moving northeast. A

maneuvering target is being tracked. Particle cloud are samples from the target filtering density {π̂n}Nn=0
. All

observers commence at (50,−250). The open loop trajectories of figures (a) and (b) took several hours to compute

with a 2.8 GHz Pentium 4 CPU.

4.6.1 Fast Observers

The setting for this example is a maneuvering target that is to be tracked by a single fast ob-

server and two cooperating fast observers. The term fast is to be understood in the sense that

the observer in the subsequent example is significantly more constrained in its motion. The

observer motion model is given by (4.35), with a fast or slow observer defined by choosing

constant matrix C appropriately. In Figure 4.1(a) the optimal open-loop trajectory of the single

fast observer is plotted for a horizon 7 problem. Figure 4.1(b) shows the difference in the op-
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timal open-loop trajectory obtained when there are two cooperating fast observers. The single

fast observer commences at coordinate (50,-250) and travels towards the southeast while mak-

ing a hook turn. This is in contrast to the two fast observers, both commencing at (50,-250),

and travelling in straight lines towards the northeast. Figure 4.1(c) shows the OLFC trajectory

obtained for the same two cooperating fast observers. The cloud of particles shown here are

samples from the filtering density at each time, which is implemented using a particle filter.

We note that the OLFC trajectory performs more maneuvers than the equivalent open loop one

in order to respond to the actual maneuvers of the target. Also, the open loop trajectory of a

single observer differs greatly from that of two cooperating observers.

4.6.2 Slow Observers

We now contrast the optimal trajectory of the fast observers above with that of slow observers.

Figure 4.2(a) shows the optimal open-loop trajectory of one slow observer, and Figure 4.2(b)

that of two cooperating slow observers. All observers commence at coordinate (250,-250). Note

that a single slow observer is obliged to do more maneuvers to improve the tracking perfor-

mance since it is significantly more constrained in motion. Figure 4.2(c) shows the OLFC trajec-

tory obtained for two cooperating slow observers. A more detailed plot of the OLFC trajectory

is shown in Figure 4.2(d). Figure 4.2(c) also shows the actual target maneuver and the particle

cloud surrounding it are samples from its filtering density.

Figure 4.3 shows a running plot of the performance criterion, as the (open loop) trajectories

are computed by algorithm (4.29)-(4.32), for the single and two cooperating slow observers

of Figure 4.2(a) and 4.2(b). The cost was estimated using Monte Carlo simulation. As Figure

4.3 indicates, two observers cooperating during tracking outperforms one. In Figure 4.4, the

convergence of the trajectory A1:N,k computed using algorithm (4.29)-(4.32) for the two slow

cooperating observers of Figure 4.2(b) is shown. Note that although it converges slowly, there

is little gain in performance beyond iteration 1.5 × 106 as indicated by the running cost plot in

Figure 4.3. All these results are very similar for the fast observers case and are omitted.

4.6.3 Variance Reduction

Here we illustrate the importance of using the control variate variance reduction scheme. In

algorithm (4.29)-(4.32), we do not update the actions, i.e., A1:N,k = A1:N,0 for all k. In Figure
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4.5(a) we show the gradient estimates without the control variate while in Figure 4.5(b) we

show the gradient estimate as the control variate iterated by (4.30) converges. The convergence

of the control variate iterated by (4.30) is shown in Figure 4.5(c). Note the significant variance

reduction achieved which will speed up the convergence of the actions iterated by (4.29). The

plots only show the gradient of the performance criterion with respect to x-coordinate of the

action at time 1, i.e., A1(1). The effect of the control variate on the remaining components of the

performance criterion gradient is similar.

4.7 Conclusion

In this chapter we proposed a novel simulation-based method to solve the sensor scheduling

problem for the case in which the state, observation and action spaces are continuous valued

vectors. This general continuous state-space case is important as it is the natural framework

for many applications, like observer trajectory planning. We avoided restrictive modelling as-

sumptions on the continuous state HMM, such as assuming a linear and (or) Gaussian system,

by recourse to simulation-based methods. This chapter solved the sensor scheduling prob-

lem with continuous action space directly, and not a surrogate problem defined through the

PCRLB or otherwise, which is the approach adopted in other works. The novel simulation-

based method presented used a two timescale Stochastic Approximation algorithm to find the

optimal actions. We presented general convergence results for convergence to a local minima

of the cost function.

As an instance of the sensor scheduling problem, we studied the observer trajectory plan-

ning problem for a bearings-only application. We established that in the standard scenario

where the observer and the target are well separated, our simulation-based algorithm con-

verged to a local minimum of the cost function. As a generalisation, it is also possible to extend

our work to sensor scheduling based on an information criterion like the Kullback-Leibler cri-

terion [108]. In future work we plan to apply our simulation-based method to related problems

in Robotics and Sensor Networks.
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Figure 4.2: (a) Single slow observer open loop trajectory. Particle clouds are trajectory samples from the target’s

dynamical model in (4.3). Shown are many trajectory samples (X1, X2, . . . , XN) where the various X1 samples

is the blue cloud, the red cloud is X2, lime is X3, black X4 and so on. Target moving northeast and observer moves

southwest while doing a hook-turn. (b) Two cooperating slow observers open loop trajectory; one moving northeast

and the other southwest. Particle cloud as in part (a). (c) Two cooperating slow observers OLFC trajectory with a

maneuvering target. Particle cloud are samples from the target’s filtering density {π̂n}Nn=0
. (d) Magnification of

the OLFC trajectory of the observers. All slow observers commence from coordinate (250,−250). The open loop

trajectories of figures (a) and (b) took several hours to compute with a 2.8 GHz Pentium 4 CPU.
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Figure 4.3: Plot of performance criterion as actions are iterated by algorithm (4.29)-(4.32), for the single and two

cooperating slow observers of Figure 4.2(a) and 4.2(b). Performance criterion was estimated using Monte Carlo

simulation.
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Figure 4.4: The convergence of the trajectories A1:N,k computed using Algorithm (4.29)-(4.32) for the two slow

cooperating observers of Figure 4.2(b) is shown. Figure (a) shows the convergence of the x coordinate of the

trajectory for observer 1. The blue line is the x position for epoch 1, green for epoch 2, red for epoch 3, cyan for

epoch 4 and so on. There are seven epochs in total. Figure (b) shows the convergence of the y coordinate of the

trajectory for observer 1. The blue line is the y position for epoch 1, green for epoch 2, red for epoch 3, cyan for

epoch 4 and so on. Figures (c) and (d) are the corresponding plots for observer 2’s trajectory computed using

Algorithm (4.29)-(4.32).
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Figure 4.5: Variance reduction by control variate: Figure 4.5(a) shows gradient estimate without control variate.

Figure 4.5(b) shows the gradient estimate variance decreasing as the control variate in Figure 4.5(c) converges.



5
Risk Sensitive Control using Policy Gradient

Summary. In this chapter we investigate a general risk sensitive control problem.

We aim to design a policy gradient implementation using Sequential Monte Carlo.

Initially we use the Feynman-Kac representation of a Markov chain flow to exploit

the properties of the logarithmic Lyapunov exponent. This can eventually lead to

a policy gradient solution for the parameterised problem. We have also presented

a particle algorithm that can be used to compute approximations when analytical

expressions are not available. Finally we have shown how our algorithm can be

implemented and used by means of a numerical example.

107
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5.1 Introduction

Consider the controlled Markov chain {Xn}n≥0 on a state space E, with initial distribution ν

and transition density Mn(a, x, dy), where a denotes the action variable. Let the policy ζ of the

control problem be a sequence of mappings between the state and action space, {Πn(Xn)}n≥0,

and consider only the case of deterministic policies, where An = Πn(Xn). The infinite horizon

risk sensitive control problem consists of minimizing with respect to all admissible policies ζ

the cost criterion

J(ζ) = lim sup
n→∞

1

βn
log


Ex0


exp

n∑

p=1

βV (Xp,Πp(Xp))




 , (5.1)

where β is a non-zero constant and V (Xp,Π(Xp)) is a non negative cost function. For β < 0,

the policies that attempt to minimise J(ζ) are characterised as risk averse , otherwise for β > 0

they are risk preferring [169]. In [42] we see that an optimal policy ζ∗ exists and is stationary, i.e.

satisfies An = Π(Xn).

Now assume we can parameterise a stationary policy ζ with respect to some parameter θ

and obtain Πθ, Mθ and Vθ. In this case, we could instead minimise

J(θ) = lim sup
n→∞

1

βn
log


Ex0


exp

n∑

p=1

βVθ(Xp)




 . (5.2)

Under certain regularity and aperiodicity conditions on Mn we know from [12, 92] that this

limit exists and that

inf
θ
J(θ) = sup

θ
Λ(exp (−βVθ(x))),

where Λ is referred as the logarithmic Lyapunov exponent, or the spectral radius of the bounded

operator

Q′(f) =

∫
exp (−βVθ(y))Mθ(x, dy)f(y), (5.3)

for any bounded measurable function f .

Most of the work so far dealing with the risk sensitive control problem is inspired by the

theory of large deviations involving countable state spaces [12, 27, 92]. By taking advantage

of multiplicative ergodicity of the Markov chain and the structure of the multiplicative Pois-

son equation, Value and Policy iteration algorithms within the Dynamic Programming concept

were derived [31, 58, 75]. This approach has been generalised to general state spaces in [41, 42],
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where the existence of a deterministic stationary optimal policy ζ∗ is proven under mild con-

ditions for a cost criterion like (5.1). In this chapter we shall aim to develop a policy gradient

algorithm for general state spaces based on a parameterisation of the policy. This approach is

influenced by the work in Reinforcement learning or Neurodynamic Programming [22], lead-

ing to policy gradient algorithm for Markov decision processes [16] for the average and dis-

count cost criterion. There are a large number of papers for the case of discrete state and action

spaces, but Sequential Monte Carlo methods have been used previously successfully for the

average and discount cost criterion for the general state space cases [52]. We shall be proposing

a Sequential Monte Carlo implementation for solving the risk sensitive control problem using

policy gradient.

Our approach is based on the work of Del Moral and Doucet [35] involving Markov motions

in absorbing media. There the long term behaviour of the Markov motion in absorbing media

is analysed and the authors use Feynman-Kac distributions [34] to characterise at each time the

distribution of motion conditioned on survival and the probability that motion is terminated.

Under weak conditions, quantities like the operatorQ′(f) are shown to be linear Feynman-Kac

operators and characterise the Lyapunov exponent as in equation (5.2). Assuming a suitable

parameterisation of the policy exists, we can use the results of [35] to develop a stochastic

approximation based algorithm to learn the parameter θ, as done in [52] for the average cost

case. Subsequently, we will be able to compute the optimal policy Πθ as in the standard the

reinforcement learning approach described in [16, 22].

A similar approach has been carried out in online parameter estimation problems for Hid-

den Markov Models, where the long run average of the log likelihood admits a structure similar

to J(θ), [135, 136]. Parallel to our work, more recently in [33] an interacting particle algorithm

was developed to estimate the gradients of Feynman-Kac flows propagated in time. We aim

to provide an alternative method for estimating these gradients and at the same time consider

problems involving controlled Markov chains, or Markov decision processes, with a risk sen-

sitive criterion. The idea of developing policy gradient algorithms for the infinite horizon risk

sensitive Markov decision problem using Feynman-Kac models is to our best knowledge novel.

The organisation of this chapter is as follows. In Section 5.2 we formulate the decision

problem using Feynman-Kac models. In Section 5.3 we develop a generic gradient algorithm to

learn the parameters of the policy and present its particle implementation in Section 5.4. Finally,
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in Section 5.5 we present a numerical example to show the effectiveness of our approach.

5.2 Problem Formulation

In Section 2.8 we introduced the Feynman-Kac model for a Markov chain. In this chapter, we

shall attempt to use the model for the case where the Markov chain {Xn}n≥0 is the state of

a decision process, controlled by an action sequence {An}n≥0, where each action An ∈ A. In

this case, the transition density changes to Mn(an,xn−1, dxn), so as to show the dependence

of the state Xn on the current action. In the previous section we defined Feynman-Kac mod-

els, but made no assumption on the particular structure of Mn. Therefore all the definitions

and results above are eligible to be used for a controlled Markov chain, just by substituting

Mn(an,xn−1, dxn) instead of Mn(xn−1, dxn). In this chapter we shall restrict ourselves to the

fully observable Markov decision problem, i.e. the state sequence {Xn}n≥0 is fully observable.

We will now present the problem more formally. Let {Xn}n≥0 be a Markov process on some

measurable space (E, E) with initial distribution ν and a family of transition kernels {Mn}n≥0

such that

P(Xn ∈ dxn|X0:n−1 = x0:n−1, A1:n = a1:n) = Mn(xn−1, an, dxn).

In addition, let the policy ζ be the sequence of mappings {Πn}n≥0. The policy is called ran-

domised if each Πn is a kernel with domain E × A→ P(A) and such that

P(An ∈ da|Xn = xn, An−1 = an−1) = Πn(xn, an−1, da).

Alternatively, we may set ζ = {Πn}n≥0 , where each Πn is deterministic mapping from E → A

such that

An = Πn(Xn).

Then the policy will be characterised as deterministic. In any case, the class of policies such

that the sequence {Πn}n≥0 are time invariant, i.e. Πn = Π, are called stationary. In this chapter

we will consider only stationary deterministic policies.

At each time n we associate each state and action pair (Xn, An) with a non-negative cost

V (Xn, An). The aim of the decision problem is to find the optimal policy ζ∗ such that a long

term cost is minimised respectively. For example, in equation (5.1) if we let β → 0, the resulting
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long term cost to be minimised will tend to the following infinite horizon average cost

lim sup
n→∞

1

n

n∑

k=1

Ex0 [V (Xk,Πk(Xk))] ,

which is also referred in the literature as the risk neutral cost [169]. Another example of a long

term risk neutral cost is the finite horizon criterion found in Chapter 4. However we shall not

examine any of these cases. Instead we will consider only the case where β 6= 0 and shall be

examining policies minimising the infinite horizon risk sensitive cost defined as

J(ζ) = lim sup
n→∞

1

βn
log


Ex0


exp

n∑

p=1

βV (Xp,Πp(Xp))




 ,

where β is a constant. So the risk sensitive control problem is to find a policy ζ∗ such that

ζ∗ = arg inf
ζ
J(ζ).

In many real world problems it is possible to parameterise the policy through a parameter

θ ∈ Θ. In this case we can write the policy ζ as ζθ. Similarly the instantaneous cost V (Xn, An)

can be expressed as V (Xn,Πθ(Xn)) or more simply as Vθ(Xn). In the same context we write

J(ζ) as

J(θ) = lim sup
n→∞

1

βn
log


Ex0


exp

n∑

p=1

βVθ(Xp)




 ,

and transform the decision problem to a minimisation problem seeking the optimal parameter

θ∗

θ∗ = arg inf
θ
J(θ).

Similarly, the state’s transition density Mn can be written as Mn(θ, xn−1, dxn).

5.2.1 Properties of J(θ)

For the sake of simplicity only, we will from now on assume the Markov chain {Xn}n≥0 is

time homogeneous and write the transition kernel as Mθ(x, dy) on some measurable space

acting from E into E. Note that our framework can also tolerate the inhomogeneous case with

the only restriction being that Mn obeys assumption (A1) , or the accessibility condition (A2)

presented earlier in Section 2.8. Therefore the methodology and algorithms to be presented are

can be directly applied any Mn that does not violate one of (A1) or (A2).
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Inspired by [35] we represent the controlled Markov chain as a Feynman-Kac flow, which

is characterised by means of a potential function G. Define the potential function as the unnor-

malised Boltzmann-Gibbs measure on E, taking values in (0, 1],

Gθ(Xn) = exp(βVθ(Xn))

Since now Gn and Mn do not vary with time any more, the time subscripts for them have

been omitted and instead we put θ at the subscript to explicitly denote their dependance on

that parameter. Let also S = G−1
θ ((0, 1)). In the discussion that follows we shall exploit some

properties of these Feynman-Kac models found in [35], that will eventually lead to a policy

gradient algorithm. Note that in this section an the remainder of this chapter the material

presented in Section 2.8 will be used extensively.

We wish to consider the Feynman-Kac models for the pair (Gθ,Mθ). For any bounded mea-

surable function f ∈ Bb(E), from E → R, the distribution flows of the Feynman-Kac functional

representation formula associated with the pair (Gθ,Mθ) are,

ηn(f) =
γn(f)

γn(1)
=

Ex0

(
f(Xn) exp(β

n−1∑
p=1

Vθ(Xp))

)

Ex0

(
exp(β

n−1∑
p=1

Vθ(Xp))

) ,

µn(f) =
λn(f)

λn(1)
=

Ex0

(
f(Xn) exp(β

n∑
p=1

Vθ(Xp))

)

Ex0

(
exp(β

n∑
p=1

Vθ(Xp))

) .

So far we have not made any discussion regarding the sign of β apart from the distinction

between the risk averse case for β < 0 and the risk preferring for β > 0. An important re-

quirement for the distribution flows of the above Feynman-Kac model is Gθ to be bounded

measurable functions. For the risk averse case this is not a problem asGθ is obviously bounded

and takes values in (0, 1). However, this is not true in general for the risk preferring case ex-

cept in the simple case when Vθ is bounded or when dealing with compact state spaces. To

tackle this we shall require that Assumption (A1) is satisfied. Therefore, for β > 0 we can use

the transformed Feynman-Kac model (G′
θ,M

′
θ) presented in (2.29)-(2.30) and require that G′

θ

is bounded instead. In the remainder of this section we shall focus more on the problem that

is formulated using (Gθ,Mθ), but naturally all the results can be reproduced for the (G′
θ,M

′
θ)
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case. For more details, see [35]. An alternative approach is to use a different model instead of

(G′
θ,M

′
θ). This can be according to an Importance Sampling approach, where instead of using

Mθ one uses a different kernel Qn, and considers the Feynman-Kac model of the pair (Qn, Gn),

where Gn = Gθ(xn)dMθ(xn−1,xn)
dQn(xn−1,xn) . In order for the model to be well defined we shall require

instead that Gn is bounded. We will present more details on this approach later in this chapter.

Having made this discussion, for the remainder of this chapter we shall consider the model

(Gθ,Mθ) and assume that it is well defined for the problem with Gθ ∈ (0, 1) without worrying

about the sign of β.

We shall proceed now with a few definitions in order to examine the relation of the un-

normalised prediction and updated flows γn(f) and λn(f) with the cost criterion J(θ) to be

minimised.

Definition 5.2.1 From [34, Def. 2.7.2]. LetQ′
θ be the bounded operator on the Banach space of bounded

measurable function f ∈ Bb(E) defined for any x ∈ E by

Q′
θ(f)(x) =

∫
Mθ(x, dy)Gθ(y)f(y) = Mθ(Gθf)(x) = G′

θ(x)M
′
θ(f)(x).

We denote by Q
′(n)
θ the semigroup on Bb(E) associated to the operator Q′

θ and defined by

Q
′(n)
θ = Q

′(n−1)
θ Q′

θ. We initialise using Q
′(0)
θ = I , where I is an appropriate identity matrix. The

expression for Q
′(n)
θ is

Q
′(n)
θ (1)(x0)

=

∫

En

Mθ(x0, dx1)Gθ(x1)...Mθ(xn−1, dxn)Gθ(xn)

= Ex0




n∏

p=1

Gθ(Xp)




Note that at the subscript θ of Q′
θ has been added in order to emphasise on the dependance of

Q
′(n)
θ (1) on the parameter. When v = δx0 , we have

Q
′(n)
θ (1)(x0) = λn(1)

Using (2.21)-(2.23) and (2.31)-(2.32) from Section 2.8, we get

λn(1) = Ex0




n∏

p=1

Gθ(Xp)


 =

n∏

p=1

ηn(Gθ) =

n−1∏

p=0

η′n(G′
θ).
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Hence

Q
′(n)
θ (1)(x0) =

n∏

p=1

ηn(Gθ) =

n−1∏

p=0

η′n(G′
θ). (5.4)

We shall now define the spectral radius or logarithmic Lyapunov exponent of the semigroup

operator Q′
θ.

Definition 5.2.2 [35, Eqn. (3)]The logarithmic Lyapunov exponent or spectral radius of Q′
θ on Bb(E)

is defined by

Λ(Gθ) ≡ logLyap(Q′
θ)

= lim
n→∞

1

n
sup

x0∈S
logQ

′(n)
θ (1).

Now, rewrite Λ as

Λ(Gθ) = lim
n→∞

sup
x0∈E

Λn(Gθ),

where Λn(G)(x0) is given by

Λn(Gθ) =
1

n
logQ

′(n)
θ (1).

In [35, p. 1184] this was combined with (5.4) to give

Λn(G) =
1

n

n∑

p=1

log ηn(Gθ) =
1

n

n−1∑

p=0

log η′n(G′
θ).

This definition starts to reveal that the asymptotical properties of the semigroup Q
′(n)
θ closely

match the structure of J(θ), which can be written as

J(θ) = lim sup
n→∞

β−1Λn(G).

Note that since Gθ ∈ (0, 1), we have Λn ∈ (−∞, 0). It is therefore clear that the minimisers of

J with respect to θ are the same for any x0 and therefore coincide with the maximisers of Λ

giving

θ∗ = arg inf
θ
J(θ) = arg sup

θ
Λ(Gθ).

The problem has now been transformed into a problem of finding parameter θ∗ that max-

imises Λ instead of minimising J directly. For more details on the properties of logarithmic

Lyapunov exponent and other similar type operators we refer the reader to [36]. In [35] we

find the fundamental theoretical justification for our approach, giving asymptotic results and
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particle approximations. We reproduce a theorem that shows both existence of Λ and investi-

gates the how long term behaviour of the Feynman-Kac flow µn can be used to approximate

it.

Theorem 5.2.1 From [35, p. 1185]. Assume that there exists an integer parameter m ≥ 1 and a pair

(r′, δ′) ∈ [0, 1] such that for each x, y ∈ S,

G′
θ(x) ≥ r′G′

θ(y) and Q
′(m)
θ (x, ·) ≥ δ′Q′(m)

θ (y, ·).

Then there exists a unique distribution µ∞ ∈ P(S) such that

µn
a.s.−→

n→∞
µ∞.

Also, µ∞ is such that

Λ(Gθ) = log µ∞Mθ(Gθ), (5.5)

and for any f ∈ Bb(S)

µ∞Mθ(Gθf) = eΛ(Gθ)µ∞(f). (5.6)

In addition we have the uniform estimates

sup
x0∈S

||µn − µ∞||TV ≤
2

δ′
(1− δ′2)[ n

m
],

sup
x0∈S

|Λn(Gθ)− Λ(Gθ)| ≤
2m

r′δ′3
1

n
,

sup
x0∈S

| log µnMθ(Gθ)− Λ(Gθ)| ≤
4

δ′
(1− δ′2)[ n

m
].

The particular Feynman-Kac flow µn leads to a stationary distribution µ∞, which in turn

guarantees that

Λ(Gθ) = lim
n→∞

Λn(Gθ).

We refer the interested reader to [35] for a particle methods to approximate Λn(Gθ) and

asymptotic convergence results. As it is not of our interest to approximate Λn(Gθ) directly, but

instead to maximise it we omit further discussion on that topic. Finally, it is important to add

that the assumption of Theorem 5.2.1 can be replaced with similar condition for Mθ instead of

that for the operatorQ′
θ. This condition is that there exists ϕ′ ∈ [0, 1] such that for each x, y ∈ S,

M ′
θ( Q

′(m)
θ )(x, ·) ≥ ϕ′M ′

θ(Q
′(m)
θ )(y, ·).

In the next section we will propose a gradient method to find the maximiser of Λ(Gθ) that

could be regarded as a general way for performing policy gradient for risk sensitive control

problems.
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5.3 Policy Gradient Search for the Policy’s Parameter θ

So far we have examined the long time behaviour of a risk sensitive controlled Markov chain

assuming one can obtain a suitable parameterisation for the policy ζ . In this section we shall

see how the optimal policy ζ∗ can be computed. To do so, we shall propose a stochastic gra-

dient method on the parameter space Θ. This method is based on the work done in [136] for

parameter estimation for general state space models using Recursive Maximum Likelihood.

Our criterion to be maximised Λ(Gθ) admits very similar properties as the recursive likelihood

of [136], which enables the use of stochastic approximation for an gradient ascent algorithm.

It is important to note that having obtained (5.6)-(5.5) the effect of x0 can be ignored and we

can rewrite Λ(Gθ) as

Λ(Gθ) = lim
n→∞

Λn(Gθ),

where Λn(Gθ) = 1
n

n∑
p=1

log ηn(Gθ). Using same ergodicity assumptions as in [157] the authors

in [35] show that

Λ(Gθ) = log(η∞(Gθ)),

where η∞ = µ∞Mθ . Under additional regularity assumptions, the assumptions and results

found in [157] can be extended for defining the gradient of the limit as

∇θΛ(Gθ) = lim
n→∞

∇θΛn(Gθ)

= lim
n→∞

1

n

n∑

p=1

∇θ log ηn(Gθ).

In [157] the authors also show that ∇θ log ηn(Gθ) is an asymptotically unbiased estimate of

∇θΛ(Gθ). This allows us to use ∇θΛ(Gθ) propose to perform a stochastic gradient search on

the space of θ ∈ Θ using stochastic approximation,

θn+1 = θn + αn[∇θ log ηn(Gθ)]θ=θn .

where the step-size αn is a non-increasing positive sequence tending to zero.

As we rely on a gradient search to compute the parameter of the optimal policy, θ∗, this is

a policy gradient method. For discrete state-space, everything can be done analytically. For

continuous state-spaces we can see that the iteration can be written as

θn+1 = θn + αn[
∇θηn(Gθ)

ηn(Gθ)
]θ=θn ,
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and it may not be possible to solve analytically the integrals found in ∇θηn(Gθ)
ηn(Gθ) . We shall resort

to Sequential Monte Carlo methods and use an interacting particle algorithm to approximate

these expressions. Before presenting a complete algorithm for solving the parameterised prob-

lem, we first have to consider how to propagate the gradient of the flows µn(f) and ηn(f) with

respect to θ.

5.3.1 Propagating the Gradient of a Feynman Kac Flow

In this section we shall consider how to compute the gradients of the Feynman-Kac represen-

tation. The problem of computing gradients of distributions or measures has already received

a lot of attention, but mostly in the literature dealing with parameter estimation for hidden

Markov models. In [136] in the context of online maximum likelihood parameter estimation,

the long run average of the log likelihood admits a structure similar to J(θ) and there has been

a detailed study on how to approximate the gradients of optimal filters. In the control liter-

ature, for the case of infinite average cost criterion and Partially Observed Markov Decision

Processes, in [52] we have seen how the gradient of the optimal filter has been approximated

in a policy gradient algorithm.

More recently there have been developments to extend the ideas found in these papers for

the case of Feynman-Kac flows. In [33] we find two ways to approximate the gradient of the

flows µn(f) and ηn(f) with respect to a parameter θ. One uses an infinitesimal perturbation

analysis (IPA) method and the other a score method. We will first illustrate the core of their

ideas and then proceed to propose a different approach that extends the work of [136].

Recently proposed methods

It is of interest to find a method to approximate∇θηn(f), so we have that

∇θηn(f) = ∇θ
γn(f)

γn(1)
=
∇θγn(f)

γn(1)
− ηn(f)

∇θγn(1)

γn(1)
.

Therefore calculating the gradient of the normalised flow ηn reduces to the calculation of the

unnormalised flow∇θγn(f). We write

∇θγn(f) = ∇θEν


f(Xn)

n−1∏

p=0

Gθ(Xp)



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= Eν


[∇θf(Xn) +∇xnf(Xn)∇θXn]︸ ︷︷ ︸

Zn

n−1∏

p=0

Gθ(Xp)




+ Eν



f(Xn)[

n−1∑

p=0

∇xnGθ(Xp)∇θXp +∇θGθ(Xp)

Gθ(Xp)
︸ ︷︷ ︸

Rn

]
n−1∏

p=0

Gθ(Xp)




In [33] an Infinitesimal Perturbation Analysis (IPA) approach is used to compute Zn and Rn

for each particle in order to use them for an approximation of ∇θηn(f). We also find in that

paper an alternative method using a score approach, [131]. For the score method let us further

assume Mθ poses a particular structure suited for many examples and that Mθ(xn−1, dxn) =

mθ(xn−1, xn)h(dxn). Starting from

∇θγn(f) = ∇θ

∫

En+1

ν(dx0)Gθ(x0)Mθ(x0, dx1)Gθ(x1)...Gθ(xn−1)Mθ(xn−1, dxn)f(xn),

and assuming that all functions are smooth so that we can interchange the integral with the

derivative operators, we get

∇θγn(f)

=

∫

En+1

(
n−1∑

p=0

[
∇θGθ(xp)

Gθ(xp)
+
∇θmθ(xp, xp+1)

mθ(xp, xp+1)
] +
∇θf(xn)

f(xn)
)

× ν(dx0)Gθ(x0)Mθ(x0, dx1)...Gθ(xn−1)Mθ(xn−1, dxn)f(xn)

= Eν(ϕ(X0:n)

n−1∏

p=0

Gθ(Xp))

where ϕ(X0:n) = f(Xn)
n−1∑
p=0

[
∇θGθ(Xp)

Gθ(Xp) +
∇θmθ(Xp,Xp+1)

mθ(Xp,Xp+1)
] + ∇θf(Xn) is the score. Again an un-

biased estimate of the score can be computed for each particle that is used to approximate

∇θηn(f). Note both these approaches, although they both use a recursive method to approxi-

mate∇θηn(f), they inherently rely on the path of X0:n and so this might bring up the degener-

acy issue concerning the variance of particle methods used to approximate path integrals [47].

Furthermore we remark that in the context of [16] in order to prevent the variance of the gradi-

ents from growing infinitely large, a discount factor will have to be added to their algorithm at

the cost of adding a bias. This discount factor approach has already been used in [52] success-

fully for the infinite horizon average cost case.
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Our proposed method

Although the attempt to approximate gradients of Feynman Kac flows in [33] seems to be a

computationally attractive approach, it is clear from the previous work in [16,52] that it would

not be possible to implement it for infinite horizon problems without using an appropriate

discount factor, which introduces bias in the approximation. In addition, numerical compar-

isons using a finite but large horizon for parameter estimation examples1 between the methods

in [33] and the method of [136] show that the latter is more accurate, although computationally

more demanding. We will therefore adopt the approach of [136] and extend it to the Feynman-

Kac framework. We feel in general that method suits our framework better and is more generic.

Our method essentially is to propagate in time the gradients of flows∇θµn(f) and∇θηn(f)

as well as µn(f) and ηn(f). This should can be done in parallel as illustrated below:

ηn(f)

∇θηn(f)

update−→
µn(f)

∇θµn(f)

prediction−→
ηn+1(f)

∇θηn+1(f)

Initially we remark that

∇θµn(f) = ∇θ

∫

E
µn(dy)f(y)

and assuming that all functions are smooth and continuous, we can change the order of the

integral and the differentiation operator to get

∇θµn(f) =

∫

E
∇θµn(dy)f(y) +

∫

E
µn(dy)∇θf(y). (5.7)

This means that in order to propagate the flow it is sufficient to propagate only the signed

measure∇θµn(dx). Similarly the same holds for∇θηn(dx). Moreover, as far as the computation

of ∇Λn(Gθ) is concerned, which was the motivation for propagating the gradients in the first

place, we observe that

∇Λn(Gθ) =
∇θηn(Gθ)

ηn(Gθ)
=
∇θµn(1)

µn(1)
.

Then it seems that for our problem, propagating just the measures ∇θηn(dx) and ∇θµn(dxn)

and not the entire gradients of flows ∇θµn(f) and ∇θηn(f) for some defined function f is

sufficient. Of course, equation (5.7) is useful for the sake of completeness and generality.

1The horizon size is determined by the number of observations used to estimate the static parameter sequentially.
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To implement the recursion for the gradients, we can take advantage of (2.27) and differen-

tiate with respect to θ,

∇θηn = ∇θΦη(ηn−1)

= ∇θΨn−1(ηn−1)Mθ + Ψn−1(ηn−1)∇θMθ,

where∇θηn stands for the signed measure ∇θηn(dx). We could present this recursion as a one

step procedure but for the sake of clarity we shall follow the two step pattern shown earlier. So

we separate Φη to its prediction and update steps, and rewrite the gradients. For the update

step we start by assuming that ∇θηn is available and then derive ∇θµn (or ∇θµn(dx)) as a

function of Gθ, µn, ηn, ∇θηn.

∇θµn = ∇θΨn(ηn)

= ∇θ

(
Gθ(xn)ηn

ηn(Gθ)

)

=
∇θGθ(xn)ηn +Gθ(xn)∇θηn − µn(dxn) (ηn(∇θGθ) +∇θηn(Gθ))

ηn(Gθ)
.

This expression can be also written as

∇θµn(dxn) =
∇θπn(dxn)∫
E

πn(dxn)
− πn(dxn)

∫
E

∇θπn(dxn)

∫
E

πn(dxn)
, (5.8)

where πn = Gθ(xn)ηn and
∫
E

πn(dxn) = ηn(Gθ). We shall be using this expression later to derive

smooth approximations for∇θµn.

Similarly, for the prediction step we use∇θµn that has just been computed to derive∇θηn+1

as a function of Gθ, µn, ηn, ∇θµn.

∇θηn+1 = ∇θ(µnMθ)

= (∇θµn)Mθ + µn∇θMθ

Note that using the notation ∇θηn and ∇θµn may consist of some abuse, so to avoid any con-

fusion we rewrite the equations properly with some integrals expressed in full.

∇θµn(dxn)

= µn(dxn)


∇θGθ(xn)

Gθ(xn)
+
∇θηn(xn)

ηn(xn)
− ηn(∇θGθ)

ηn(Gθ)
−
∫

E

Gθ(xn)

ηn(Gθ)
∇θηn(dxn)



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= µn(dxn)

[(∇θGθ(xn)

Gθ(xn)
+
∇θηn(xn)

ηn(xn)

)
− µn

(∇θGθ(xn)

Gθ(xn)
+
∇θηn(xn)

ηn(xn)

)]
(5.9)

∇θηn+1(dxn+1)

=

∫

E

∇θµn(dxn)Mθ(xn, dxn+1) +

∫

E

µn(dxn)∇θMθ(xn, dxn+1) (5.10)

Of course, if these equations could be solved analytically there would be no reason to use

any form of approximation. Unfortunately the integrals in equations (5.9)-(5.10) do not have

closed form expressions in general. The same holds for the methods in [33] presented earlier.

Therefore, we shall use equations (5.9)-(5.10) to derive particle approximations for∇θµn,∇θηn,

and ∇Λn(Gθ). This will lead to a particle algorithm for policy gradient for parameterised risk

sensitive control problems.

5.4 Particle Approximations for Policy Gradient Search

In this section we shall derive particle approximations for the distribution flows and their gra-

dients described earlier in Section 5.3. We will base these approximations on the particle al-

gorithm described on Section 2.8.4, but will modify this to address a couple of limitations.

The first is that in general it might not be possible in some cases to sample from Mθ . Sec-

ondly it is possible that an a particle approximation of ∇Λn(Gθ) could suffer from high vari-

ance when a low number of samples is used. Both of these limitations indicate that a particle

system based on Importance Sampling should be proposed. The main idea would be that in-

stead of sampling from Mθ(xn, ·), we could use a proposal kernel Qn+1(xn, ·) proportional to

Mθ(xn, xn+1)Gθ(xn+1) or some distribution as close as possible to it. This would improve the

approximations to the flows and their gradients without altering in any fashion how we use

these for searching in the parameter’s space to improve our policy.

Of course, this means we should also modify the recursion to propagate η̂n and µ̂n as seen in

Section 2.8.3. As before, the particle system is initialised by sampling N independent samples

or particles, from common initial density ν,

ξi
0 ∼ ν(·),

where i is the sample’s index and 1 ≤ i ≤ N . At each time n we have a set of N independent,

uniformly weighted, particles ξi
n. Define the discrete collection of particles as ξn = (ξ1n, ..., ξ

N
n ),

where ξn ∈ EN
n .
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We will now present the recursion from time n to time n+ 1. At time n, the prediction flow

approximation η̂n is given from the previous iteration and takes the form

η̂n(dxn) =
N∑

i=1

ρi
nδξi

n
(dxn).

Then we can derive an approximation to use for the distribution flow µn as

µ̂n(dxn) = Ψn(η̂n) =

N∑

i=1

ρ̂i
nδξi

n
(dxn),

where

ρ̂i
n =

G(ξi
n)ρi

n
N∑

k=1

G(ξk
n)ρk

n

. (5.11)

To propagate the particles ξn further we shall use the following Markov transition in the

same spirit as (2.33) in Section 2.8.3

Pν(ξn+1 ∈ dx1:N
n |ξn) = Kn+1,η̂n

(ξn, dx
1:N
n+1)

=

∫
Sn,η̂n

(ξn, dx
1:N
n )Qn+1(x

1:N
n , dx1:N

n+1).

The transition kernel Kn+1,η̂n
for the Markov chain {ξn}n≥0 is decomposed to an update and

prediction step resembled by Sn,η̂n
and Qn+1 respectively. These are given by

Sn,η̂n
(ξn, dx

1:N
n ) =

N∏

i=1

Sn,η̂n
(ξi

n, dx
i
n),

Qn+1(x
1:N
n , dx1:N

n+1) =
N∏

i=1

Qn+1(x
i
n, dx

i
n+1)

For the selection kernel in (2.36) and (2.37)we set εn = 0 and have

Sn,η̂n
(ξi

n, dx
i
n) = Ψn(η̂n) =

N∑

j=1

G(ξj
n)ρj

n

N∑
k=1

G(ξk
n)ρk

n

δ
ξj
n
(dxj

n).

Compared to Section 2.8.3, we now use an instrumental kernel Qn+1(x
i
n, dx

i
n+1) for each parti-

cle, which aims to resemble the properties of Mθ(xn, xn+1)Gθ(xn+1) closely. For the general in-

homogeneous case with transition densityMn+1,Qn+1 has to be such that the Radon-Nikodym

derivative dMn

dQn
of (Mn)n≥0 with respect to (Qn)n≥0 is well defined obeying

∀n ≥ 0,∀xn ∈ En, Qn+1(xn, ·)≪Mn+1(xn, ·).
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We can then sample the next particle sets according to ξ̂i
n ∼ Sn,η̂n

(ξi
n, ·) and then ξi

n+1 ∼

Qn+1(ξ̂
i
n, ·) to approximate µn and ηn+1 respectively as

η̂n+1(dxn+1) =
N∑

i=1

ρi
n+1δξi

n+1
(dxn+1),

where

ρi
n+1 =

1

N

dMθ

dQn+1
(ξ̂i

n, ξ
i
n+1).

Before proceeding with deriving approximations for the propagation of the gradient mea-

sures seen in (5.9)-(5.10) we shall take the opportunity to comment on how the choice of Qn+1

affects the risk sensitive problem for the risk preferring case, where β > 0. When modelling

the propagation of measures ηn, µn, one has to be careful when selecting each Qn so that the

flow is properly defined, especially for the risk preferring case. We can pose the resulting con-

trolled Markov chain with transition kernel Qn as a Feynman-Kac model with the associated

pair being (Qn, Gn), where Gn = Gθ(xn)dMθ(xn−1,xn)
dQn(xn−1,xn) . In order for the model to be well de-

fined we require that dMθ(xn−1,xn)
dQn(xn−1,xn) is well defined, i.e. Qn(xn−1, ·) ≪ Mθ(xn−1, ·) and Gn is

bounded. This should be taken into account when designingQn for particular problems. Also,

all the particle approximations in this chapter can be used in the same fashion to derive particle

approximations for the measure flow defined by (Qn, Gn).

For the propagation of the gradient approximations, we assume that a particle approxima-

tion ∇̂θηn(dxn) is available for the recursion at time n,

∇̂θηn(dxn) =
N∑

i=1

ρi
nb

i
nδξi

n
(dxn).

First we will consider how obtain a particle approximation gradient of the update measure,

∇θµn. We will use equation (5.8) to derive a smooth approximations for πn and ∇θπn. Let

π̃n and ∇̃θπn denote the pointwise approximations resulting from substituting η̂n and ∇̂θηn

instead of ηn and∇θηn in the following expressions for πn and ∇θπn

πn = Gθ(xn)ηn,∇θπn = ∇θGθ(xn)ηn +Gθ(xn)∇θηn.

This gives for π̃n and ∇̃θπn

π̃n(dxn) =
N∑

i=1

Gθ(xn)ρi
nδξi

n
(dxn), (5.12)

∇̃θπn =

N∑

i=1

(
∇θGθ(xn)ρi

n +Gθ(xn)ρi
nb

i
n

)
δξi

n
(dxn), (5.13)
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and for the corresponding integrals we have

∫

E

π̃n(dxn) =

N∑

k=1

G(ξk
n)ρk

n, (5.14)

∫

E

∇̃θπn(dxn) =

N∑

k=1

(
∇θGθ(ξ

k
n)ρk

n +Gθ(ξ
k
n)ρk

nb
k
n

)
. (5.15)

Substituting (5.12)-(5.15) and (5.11) into (5.8) leads to the following pointwise approximation

for∇θµn

∇̃θµn =
∇̃θπn(dxn)∫
E

π̃n(dxn)
− π̃n(dxn)

∫
E

∇̃θπn(dxn)

∫
E

π̃n(dxn)

=

N∑

i=1




Gθ(xn)ρi
n

N∑
k=1

G(ξk
n)ρk

n

−
(
∇θGθ(xn)ρi

n +Gθ(xn)ρi
nb

i
n

)
∫
E

∇̃θπn(dxn)

∫
E

π̃n(dxn)


 δξi

n
(dxn).

Evaluating at the particle set ξn gives the following particle approximation

∇̂θµn(dxn) =

N∑

i=1

b̂inρ̂
i
nδξ̂i

n
(dxn),

where

b̂in =

(∇θGθ(ξ
i
n)

Gθ(ξi
n)

+ bin

)
−

N∑

j=1

ρ̂i
n

(
∇θGθ(ξ

j
n)

Gθ(ξ
j
n)

+ bjn

)
.

Note that this resembles (5.9) since one can show that bin = ∇̃θηn

ηn
(ξi

n), where ∇̃θηn

ηn
is the point-

wise approximation of ∇θηn

ηn
.

We can apply the same procedure for the gradient of the prediction measure,∇θηn+1(dxn+1).

Using (5.10) the resulting smooth approximation will be

∫

E

∇̃θµn(dxn)Mθ(xn, dxn+1) +

∫

E

µ̃n(dxn)∇θMθ(xn, dxn+1),

where µ̃n(dxn) = π̃n(dxn)∫
E

π̃n(dxn)
. Note that now we have used Qn+1 to generate particle set ξn+1, so

using Importance Sampling we write ∇̃θηn+1(dxn+1) as

∇̃θηn+1(dxn+1) =

∫

E

∇̃θµn(dxn)
dMθ

dQn+1
(xn, dxn+1) +

∫

E

µ̃n(dxn)
d(∇θMθ)

dQn+1
(xn, dxn+1).
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Evaluating at the particle set ξn gives the following particle approximation

∇̂θηn+1(dxn+1) =

N∑

i=1

bin+1ρ
i
n+1δξi

n+1
(dxn+1),

where the weights are given by

bin+1ρ
i
n+1 =

N∑

j=1

b̂jnρ̂
j
n

Mθ(ξ̂
j
n, ξi

n+1)

Qn+1(ξ̂
j
n, ξi

n+1)
+

N∑

j=1

ρ̂j
n

∇θMθ(ξ̂
j
n, ξi

n+1)

Qn+1(ξ̂
j
n, ξi

n+1)
.

Finally, we are now ready to obtain an estimate of the gradient of ∇Λn(Gθ), given by

∇̂Λn(Gθ) =
∇̂θµn(1)

µ̂n(1)
=

N∑
i=1

b̂inρ̂
i
n

N∑
i=1

ρ̂i
n

.

5.4.1 Particle Based Policy Gradient Algorithm

We summarise all the approximations in this section to present the following algorithm, which

can be used to solve the risk sensitive control problem using particle methods, when a suitable

parameterisation of the policy is possible.

Algorithm 5.1 Policy Gradient for Risk Sensitive Control using particle methods:

Initialisation ξi
0 ∼ ν(·)

For each time n , proceed with the following steps.

Update distribution flow For i = 1, .., N

• Compute weights ρ̂i
n = G(ξi

n)ρi
n

N∑
k=1

G(ξk
n)ρk

n

,

b̂in =
(
∇θGθ(ξi

n)
Gθ(ξi

n)
+ bin

)
−

N∑
j=1

ρ̂i
n

(
∇θGθ(ξj

n)

Gθ(ξj
n)

+ bjn
)
.

Selection For i = 1, .., N

• Sample ξ̂i
n ∼

N∑
j=1

Gθn (ξj
n)

N∑
k=1

Gθn (ξk
n)

δ
ξj
n
(dxj

n).

Update θ

• θn+1 = θn + αn

N∑
i=1

b̂i
nρ̂i

n

N∑
i=1

ρ̂i
n

.
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Mutation For i = 1, .., N

• Sample ξi
n+1 ∼ Qn+1(ξ̂

i
n, ·),

• Compute weights ρi
n+1 = 1

N

Mθ(ξ̂i
n,ξi

n+1)

Qn+1(ξ̂i
n,ξi

n+1)
,

bin+1ρ
i
n+1 =

N∑
j=1

b̂jnρ̂
j
n

Mθ(ξ̂j
n,ξi

n+1)

Qn+1(ξ̂
j
n,ξi

n+1)
+

N∑
j=1

ρ̂j
n
∇θMθ(ξ̂j

n,ξi
n+1)

Qn+1(ξ̂
j
n,ξi

n+1)
..

Continue until convergence.

Typically, the step-sizes for the iteration of θ are αk = k−α,where α > 0.5. Note that he have

chosen εn = 0 in the selection step, which results to a standard resampling mechanism. The

approximations found in the algorithm require O(N2) amount of computation, which is quite

high, but on the other hand the computation can be parallelised as in most cases when SMC

is used. We refer the reader to [86] for a treatment on how to implement fast SMC algorithms

with O(N2) computation. We would like to remind the reader that during the formulation of

the problem and derivation of the particle approximations, we have not made any restrictive

assumptions for the state evolution, such as linearity or the use of particular distributions,

e.g. Gaussian noise. So our generic algorithm can be suitable for any nonlinear non-Gaussian

problem in general state spaces

5.5 Numerical Example

In this section we shall demonstrate the proposed methodology by means of a simple numerical

example. We will be using a linear Gaussian example with a quadratic instantaneous cost. This

simple model has been well studied in the control literature [169] and there exist analytical

expressions for the optimal policy of the risk sensitive problem. The risk neutral problem is

commonly referred as the Linear Quadratic Gaussian (LQG) control, [169]. At each time n,

consider a the state Xn evolving according to

Xn+1 = HXn +BAn +Wn,

where An is the action, H,B are known matrices and Wn
i.i.d.∼ N (0,Σ). Let also

V (Xn, An) =
1

2
XT

nQXn +
1

2
AT

nRAn,
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Figure 5.1: Plot Jβ(θ) against θ for the cases when β = {−0.001, 0, 0.001}.

where Q,R are positive definite matrices. For the risk sensitive LQG problem the optimal

policy can be computed analytically and is given by

An = FβXn,

To see how matrix Fβ can be obtained we will follow the approach found in [169]. First we

need to solve the general discrete-time algebraic Riccati equation for P ,

HTPH − P +HTPB(BTPB +R)−1BTPH +Q = 0, (5.16)

and then use

Pβ = (P−1 + βΣ)−1, (5.17)

Fβ = −(BTPβB +R)−1BTPβH, (5.18)

where β is the risk sensitivity constant. For β = 0 this the solution coincides with that of the

risk neutral LQG problem found in [3, 20].

The parameterisation for this problem is obvious. One can use Fβ as parameter θ. We will

consider the scalar case, where θ = F with H = 1.7, B = 1, Σ = 4, Q = 4 and R = 1. To
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Figure 5.2: Plot of the error θn − θ∗β against n for β = 0.001, αn = 0.01, L = 1000, θ0 = 5.

distinguish between different choices of β, we shall denote the long term cost of equation (5.2)

as Jβ(θ) and the parameter of the optimal policy as θ∗β . In Figure 5.1 we plot Jβ(θ) for three

cases where β = {−0.001, 0, 0.001}. For each β the corresponding optimal parameters given

by equations (5.16)-(5.18) are θ∗β = {−1.4942,−1.4735,−1.4533} respectively. In Figure 5.1, it is

apparent that for the risk averse case with β = −0.001 the long term cost is higher than the risk

neutral one. This leads to more pessimistic policies with a higher value of |θ∗β|. The opposite

holds for the risk preferring case when β = 0.001.

In order to illustrate that Algorithm 5.1 converges to the optimal parameter θ∗β , we plot in

Figure 5.2 the error at each iteration, θn − θ∗β , for L = 1000, θ0 = 5, β = −0.001. We have used a

constant step size α = 0.01. The same plot for β = 0.001 is very similar and is therefore omitted.

In Table 5.1 we also record the total mean squared error (MSE) of the particle algorithm as well

as the absolute value of the resulting bias in estimating θ∗β for β = {0.001,−0.001} and different

values of L. When using more than 500 particles the algorithm seems to perform well. As we

expect, increasing L improves the accuracy of the particle approximations and subsequently

the optimal parameter’s estimate.
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L bias for β = 0.001 bias for β = −0.001 MSE for β = 0.001 MSE for β = −0.001

100 0.0263 0.0196 0.345 0.313

200 0.0141 0.0102 0.184 0.181

500 0.0067 0.0060 0.163 0.147

1000 0.0046 0.0039 0.123 0.109

2000 0.0036 0.0027 0.097 0.098

5000 0.0024 0.0018 0.081 0.080

Table 5.1: Observed absolute bias and total mean squared error (MSE), when using a single run of Algorithm 5.1

to compute θ∗β for β = {0.001,−0.001}.

5.6 Conclusions

In this chapter we solved a risk sensitive control problem, by using the Feynman-Kac represen-

tation of a Markov chain. We exploited the properties of the logarithmic Lyapunov exponent,

which lead to a policy gradient solution for the parameterised problem. We have also presented

an SMC algorithm that can be used to compute approximations when analytical expressions

are not available. Finally we have shown how our algorithm can be implemented and used by

means of a numerical example.
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6
Self Localisation of Sensor Networks for Target

Tracking

Summary. In this chapter we present an overview of the self localisation problem

for sensor networks deployed for target tracking. We shall propose a novel formu-

lation using distributed state space models with multiple frames of reference. We

will then cast the problem as one of static parameter inference using Maximum

Likelihood (ML). We describe how a completely decentralized version of Recur-

sive Maximum Likelihood (RML) can be implemented through the propagation of

suitable messages that are exchanged between neighbouring nodes of the network.

In the case when the network follows a tree topology, an exact implementation is

given for dynamic linear Gaussian models. If loops are present, a loopy version

of the algorithm is described. We conclude by discussing the disadvantages of

the proposed algorithm and provide motivation for the material in the subsequent

chapters.
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6.1 Introduction

The standard approach in centralised sensor management is to transmit measurements from

all sensor nodes to a fusion node which performs most of the computation [13]. This limits

the number of expensive sensors used [77]. However, the spatial deployment of the network

is limited to a restricted range relative to the central fusion node. Moreover, the (large) com-

munication bandwidth requirements also limit the maximum number of potentially utilised

sensors [1]. This motivates the adoption of decentralised or distributed approaches, such as

distributed sensor networks. In such networks neighbouring sensors-trackers exchange in-

formation between themselves in order to track the target optimally as in the centralised ap-

proach [28].

The use of distributed sensors forming a sensor network has influenced a great deal of re-

cent developments in the areas of control and signal processing. In a distributed architecture,

each node of the network obtains measurements of a common monitored state and the distri-

bution of the state is updated at each node using all the measurements of all the nodes in the

network instead of the observation of each individual sensor. Thus, the filtering distribution of

the state can be considered as a marginal of the joint distribution of all the measurements and

the common state. Problems in which the jointly filtered state is of great interest include envi-

ronmental monitoring [123], such as greenhouse control, where one controls the shutters, air

inflow, and the humidifier to regulate light intensity temperature and humidity [128], or dis-

tributed tracking [59,159], where the self calibration of the network is important for performing

joint sensor fusion.

Furthermore, in many distributed sensor networks it is also important for each node to

“learn” the position or coordinates of its neighbours relative to itself. This is known as sensor

self-localisation or self-calibration [1]; this problem also often appears in the computer vision

literature [79]. For example, let a sensor network consist of a collection of nodes: each node is

a tracker and considers itself as the origin of its own coordinate system. In a target tracking

scenario it is important for each sensor-tracker node to be able to translate the relative frame

of reference of its neighbour to its own in order to utilise and fuse the measurements. This is

essentially equivalent to knowing with precision the coordinates of its neighbours w.r.t. itself.

If these coordinates are imprecise or unknown, it might not be possible to perform distributed

sensor fusion at all.
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A related problem is that of sensor registration, where all sensors have to learn some pa-

rameters of its neighbouring nodes so as to be able to use their measurements for tracking.

The network should also be able to adapt to potentially changing parameters and/or network

topology. In particular, sensors’ measurements are known to exhibit errors, which in some

cases can be decomposed into random noise and systematic biases. The problem of identifying

these biases is known as sensor registration [124,125,165]. In a centralised approach this can be

solved at the fusion center by augmenting the state with this bias and maximising the result-

ing measurement likelihood. In a distributed context, the problem is somewhat more complex

and each node needs to estimate/register the biases of its neighbours. We want to achieve this

using only local messages between a node and its neighbours. Solving this problem is essential

in many real-world systems as a heterogeneous collection of sensors is often used and their

associated sensor biases can differ significantly [125].

In this chapter, we show that these problems -sensor registration and self-localisation for

sensor networks- can be cast as recursive static parameter estimation for dynamic Graphi-

cal models. We shall be adopting here a Recursive Maximum Likelihood (RML) approach

seen in Section 3.5.3, where the (average) log-likelihood of the unknown parameters is maxi-

mized on-line using a stochastic gradient approach. Belief Propagation ideas have been widely

used to perform statistical inference in undirected and directed graphs using message pass-

ing [130]. The novelty of our implementation relies on a fully decentralized calculation of the

log-likelihood gradient on graphs. In this respect, it can be interpreted as a generalization of

Belief Propagation to undirected graphs. Received messages at a node shall contain sufficient

statistics sent from the rest of the network, in order for that node to infer the optimal parameters

of its surrounding neighbourhood.

The rest of this Chapter is organized as follows: in Section 6.2 we present our framework,

which uses multiple frame of references for tracking and RML for self localisation. In Section

6.3 we propose a generic algorithm to solve the self-localisation problem. Finally, in Sections

6.4 and 6.5 we illustrate our ideas on an example and make some conclusive remarks, which

should motivate the work contained in the subsequent chapters.
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6.2 Problem Formulation

We consider a sensor network deployed for the tracking of moving targets. We will assume

that at each time only a single target is present and every node in the sensor network observes

the same target. Let the set of nodes of the network be indexed by the finite set V while the

connectivity of the network is specified by the set of edges E . We will deal with an undirected

Graphical model G = (V, E). We assume that two nodes i and j communicate provided the

edge e = (i, j) (or equivalently (j, i)) belongs to E .

6.2.1 Distributed State Space Models and Collaborative Filtering

The state of a node r is a random variable Xr
n that represents the state of the target . The state of

the targetXr
n would comprise of the cartesian position and velocities of the target being tracked

at time n, as measured with respect the local coordinate frame of reference of node r. The only

assumption on the target dynamic model is

Xr
n+1

∣∣Xr
n = xr ∼ f r ( ·| xr)

A local measurement Y r
n of the target’s state is generated based on the sensing capabilities of

node r. Let the measurement be generated according to the probability density function

Y r
n |Xr

n = xr ∼ gθr
∗
( ·|xr)

where θr
∗ is the unknown calibration parameter of sensor node r.

Since all nodes are engaged in tracking the same target, it is possible to utilise the mea-

surement of all nodes to enhance the tracking performance. For instance, for a completely

decoupled implementation, each node will maintain its own local filtering distribution

πr
n(dxr

n) = Pθr
∗
(Xr

n ∈ dxr
n|Y r

1 , . . . , Y
r
n ),

where it will only process its own measurements Y r
1 , . . . , Y

r
n . We are interested instead in a col-

laborative filtering approach, where all nodes are fully coupled by means of the sensor network

and process all the measurements received from all the sensors. In a fully coupled implementa-

tion, each node will also use the measurements of all other nodes in the graph to update the

Bayes recursion, i.e. it propagates the filtering distribution

πr
n(dxr

n) = Pθ∗(X
r
n ∈ dxr

n|Y1, . . . , Yn)
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where Yn denotes the vector of stacked observations [Y v
n ]v∈V and θ∗ denotes the vector of

stacked parameters [θv
∗ ]v∈V .

Similarly, the prediction distribution will be

πr
n|n−1(dx

r
n) = Pθ∗(X

r
n ∈ dxr

n|Y1, . . . , Yn−1)

It is clear that a fully coupled implementation is advantageous since nodes whose observations

are poor, due to distance or sensing capabilities, can benefit from other sensors with better

quality observations. In principle, even in the case where the target was out of the range of

a specific sensor, it could then utilise measurements from other nodes to know where it is,

although this case will not be considered further in this thesis.

The prediction step can be directly done in a decentralized way at each node. However in

the update step, each node receives an observation and all nodes in the network have to share

their information by passing messages around the network in order to compute their filtering

distribution. In addition, we have to account for the case when θ∗ is not known and has to be

estimated. We emphasise that ϑ∗ is a collection of static parameters that are distributed around

the network.

The present formulation is similar to that of Section 3.7.5, although here potentials have

not been explicitly defined. One interpretation of this framework is that θ∗is a collection of

measurement biases or calibration parameters of each sensor. With reference to the notation

of Section 3.7.5, in this case each θr
∗ is the same as parameter θr∗ in Section 3.7.5. Thus, the

present formulation can be used for bias registration or calibration problems. In the beginning

of Section 3.7.6, the discussion explains how such problems can be solved locally at each node.

Therefore we shall not discuss these problems further in this thesis. Another interpretation of

the present formulation is that θr
∗ corresponds to coordinate transformations between the frame

of references of two different nodes. In this case it can be shown that for a specific choice of

potentials θr
∗ of the present formulation resembles ϑe∗ in Section 3.7.5, where e is a particular

edge. This is explained in detail later in this chapter. Hence, we could use this framework

for the sensor self localisation problem as well. In the remainder of this thesis, we will mainly

consider the problem of self localisation, but it is clear that our framework is generic and that

the proposed methodology can be used for other problems as well.
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6.2.2 The Sensor Self Localisation Problem

We will concentrate on the sensor self localisation problem formulated as in the previous sec-

tion. For sake of clarity, we make the following assumption which we stress is not essential for

the framework we propose.

Assumption 6.2.1 All nodes maintain a 2D-cartesian coordinate system and maintain as the state of

the target its position and velocity in the relevant directions. Also, each node regards itself as located at

the origin of its own coordinate system.

We refer to a particular node r and would like to use the measurements of the rest of the

nodes to compute πr
n. Obviously the measurement likelihood depends on the coordinate of

each node w.r.t. node r. We denote θr,j
∗ as the coordinate transformation from node r to j, i.e.

θr,j
∗ is the origin of node r in the coordinate frame of node j. As regard to the notation the

previous section, we will use from now on θ∗ = [θr,j
∗ ](r,j)∈E as the self localisation parameter.

Also, due to Assumption 6.2.1 we have θr,r
∗ = 0.

We denote the observation likelihood of node r by gr( ·| xr). The Bayes recursion applied

independently to each node r would yield

πr
n+1(x

r
n+1) ∝ gr(Y r

n+1

∣∣xr
n+1)

∫
f r(xr

n+1|xr
n)πr

n(xr
n)dxr

n.

In a coupled implementation of only two nodes, node r incorporates the observation of adjacent

node j (connected by an edge),

πr
n+1(x

r
n+1) ∝ gr

(
Y r

n+1

∣∣ xr
n+1

)
gj(Y j

n+1|xr
n + θr,j

∗ )

∫
f r(xr

n+1|xr
n)πr

n(xr
n)dxr

n.

It is clear that sharing the observations is only possible when the coordinate transformation

variable θr,j
∗ is available. In this chapter, we will extend this two node coupling for an entire

network of nodes, in which each node aims to use the observations from the entire network to

update its filtering density. The problem is that each node r will need to know θr,j
∗ , where j will

be any neighbouring node. The problem that arises is estimating θr,j
∗ distributively. Using the

RML approach presented in Section 3.5.3, we will propose in the remainder of this thesis differ-

ent methods such that each node r can simultaneously estimate θr,j
∗ and perform collaborative

filtering to track xr
n.
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Assumption 6.2.2 All nodes have a consistent transition density for the target being tracked and let

this density for node r be denoted by f r(xr′|xr). By consistent we mean that for any two nodes r and j,

f r(xr′∣∣xr) = f j(xr′ + θr,j
∗
∣∣ xr + θr,j

∗ ).

This assumption is necessary for the problem to be formulated without any ambiguity when

translating the coordinate system from one node to another. All nodes should maintain the

same transition density or prediction model with respect to an arbitrary coordinate scheme.

This is important since we want all nodes to share the same filtering and prediction densities.

Moreover the transition density should in turn obey the physical coordinate transformation

of the state from one node to another. Using Assumption 6.2.2 we can also show that the

prediction and filtering density at each node can be propagated consistently:

Property 6.2.1 Assume πr
n and πj

n satisfy

πr
n(xr) = πj

n(xr + θr,j
∗ )

for all xr
n. This implies also πr

n(xj + θj,r
∗ ) = πj

n(xj) for all xj . Then one also has πr
n+1|n (xr) =

πj
n+1|n

(
xr + θr,j

∗
)

.

In the fully coupled implementation, each node r will incorporate the observations of all

other nodes in the network too. In the filtering step implemented by a node r, after all nodes

take a measurement, we have

πr
n+1(x

r
n) ∝


 ∏

v∈V\{r}
gv(Y v

n+1

∣∣xr
n + θr,v

∗ )


 gr(Y r

n+1

∣∣xr
n)πr

n+1|n(xr
n)

where θr,v
∗ for non adjacent nodes is defined as follows: for any path that connects nodes r and

v then

θr,v
∗ = θr,j1

∗ + θj1,j2
∗ + . . .+ θ

jn−1,jn
∗ + θjn,v

∗ . (6.1)

Since we start with the same prior distribution and all nodes have the same transition den-

sities, it is obvious that the filtering density shared in the network will be the same for all nodes

on it. The coordinate transformations are consistent at each filtering step and hence can be used

when one node needs to pass a message to another.
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Property 6.2.2 After the update step, for any two pair of nodes r and j, it follows that

πr
n(xr) = πj

n(xr + θr,j
∗ )

for all xi.

Note that for the localisation problem the coordinate transformation function h
θr,j
∗

of the

state from node r to node j can be generalised to

xj = h
θr,j
∗

(xr) = αr
∗H

r,j
∗ xr + θr,j

∗ ,

where αr is a scaling factor and Hr,j a rotation matrix. This could be very useful in many

computer vision or surveillance applications, where networks of cameras are used and observe

targets at different orientations. Our method to follow can handle this without any alteration,

and can even be extended to estimate αr
∗H

r,j
∗ . For the sake of simplicity only, we shall ignore

the case where rotation appears, and set αr
∗H

r,j
∗ = 0. In the general sensor registration case

h
θr,j
∗

could admit any nonlinear form, but only if Assumption 6.2.2 and is true then we could

possibly generalise our results without further considerations.

In addition, the framework presented in Section 6.2.1 is equivalent to Section 3.7.6, if the

prediction step is carried out at each node separately and for the potentials we set

φr
n(xr

n) = gr(Y r
n |xr

n),

ψrj
n (xr

n, x
j
n) = δ

xj
n+θj,r

∗
(xr

n).

A standard Belief Propagation message passing after the prediction step would yield the same

filtering density. Unfortunately, the RML recursion described in Section 3.7.6 cannot be used

for estimating the static parameter of the formulation of Section 6.2.1 directly, because it would

be impossible to differentiate ψrj
n (xr

n, x
j
n) = δ

xj
n+θj,r

∗
(xr

n). This might not look convenient to

start with, but later in this chapter we will to design appropriate algorithmic modifications to

bypass this problem.

6.2.3 Other Proposed Approaches for Collaborative Filtering and Localisation

In this section we shall try to justify why we choose to use the framework presented earlier in

Section 6.2.2 together a with maximum likelihood (ML) approach for estimating θ∗. We shall

compare it with a joint state parameter filtering approach, when the same or alternative settings
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for the coordinate framework are used. At the end of this discussion we aim to show that our

choice of framework is very sensible and show how it can be equivalent to a Graphical model

approach.

We shall consider first the case when each sensor node has a coordinate relative to some

fixed point 0. Let θ0 = [θi,0]i∈V and consider the problem of jointly estimating p(x0
n, θ

0), where

x0
n is the coordinate of the observed state at time n with respect to point 0. In a standard

Bayesian setting we would recursively update a prior using the likelihood to obtain a posterior.

Each sensor’s position can be derived by marginalising p(x0
n, θ) and obtaining p(x0

n, θ
i,0|Yn). As

far as the likelihood is concerned, we have already assumed that each node measures the state

independently. Hence the joint likelihood will always take the following form

p(Yn|xVn ) =
∏

v∈V
gv(Y v

n |xv
n),

where Yn denote the vector of stacked observations [Y v
n ]v∈V . It is trivial to spot that the likeli-

hood does not give sufficient information about θ0 and also

p(Yn|x0
n, θ) = p(Yn|x0

n + c, θ1,0 + c, ..., θM,0 + c),

where M is the total number of nodes in the graph. In other words, whatever we use for θv,0

and x0
n, we will always get the same measurement Yn regardless of where point 0 is located.

Furthermore, each node cannot possess any information about any other node’s locations or

the network size, therefore we could not pose any bound on the support (x0
n, θ

0). In a Bayesian

framework this means we would have to use uninformative flat priors. Given also that the

likelihood is only informative about differences of the variables in (x0
n, θ

0), we would end up

with improper posterior. This can be attributed also to the fact that there is no measurement

taken from a sensor at node 0. As a result, any selected reference point should be an arbitrary

node on the network. On the other hand, a choice of such a node would limit the effectiveness

of any solution to the localisation problem to many applications in distributed environments.

This motivated the idea of each node assuming itself as the origin and performing relative

localisation between the nodes.

On the other hand, one could consider jointly filtering p(x1
n, θ

1),where θ1 = [θi,1]i∈V denotes

the relative coordinate transformation with respect to node 1. Note that node 1 is an arbitrary

choice and it could be replaced by any node on the graph. This was done in [59] for an example

of a chain of twelve cameras. By the term chain, we mean a graph which could be though of a
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Figure 6.1: Four nodes jointly observing a target using the frame of reference of node 1 only.

single walk between a starting node to a finishing one, see a 4 node example drawn on Figure

6.2. In [59, 159] the authors explored possible factorisations of p(x1
n, θ

1) in order to remove

“weaker” dependencies between variables and relieve the computation. They constructed a

junction tree, which is a tree graph of cliques, and performed a filtering on p(x1
n, θ

1) following

an Extended Kalman filtering approach.

21 3 4

Figure 6.2: An example of a 4 node chain.

We will investigate their methodology for a four node example drawn in Figure 6.1, where

θ1 = [θ2,1T
, θ3,1T

, θ4,1T
]T .The joint filtering problem consists of performing sequentially in time
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the prediction and update steps on the joint vector containing x1
n and θ1:

Prediction pn(x1
n, θ

1|Y1:n−1) =

∫
f(x1

n|x1
n−1)pn−1(x

1
n−1, θ

1|Y1:n−1)dx
1
n−1, (6.2)

Update pn(x1
n, θ

1|Y1:n) ∝ p(Yn|x1
n, θ

1)pn(x1
n, θ

1|Y1:n−1), (6.3)

where Yn = [Y 1T

n , Y 2T

n , Y 3T

n , Y 4T

n ]T and

p(Yn|x1
n, θ

1) = p(Y 1
n |x1

n)p(Y 2
n |x1

n, θ
2,1)p(Y 3

n |x1
n, θ

3,1)p(Y 4
n |x1

n, θ
4,1). (6.4)

We will assume that at n = 0 independence holds and that the initial distribution π0(x
1
0, θ

1) is

given by

π0(x
1
0, θ) = π0(θ

2,1)π0(θ
3,1)π0(θ

4,1)π0(x
1
0).

Although this can be posed as a centralised problem and becomes straightforward to for-

mulate and solve, this approach is not useful in environments where distributed synchronised

sensors or trackers are used. We assume that each sensor has considerable computational abil-

ities, but does not access directly the measurements or estimates of x1
n, θ

2,1, θ3,1, θ4,1 that other

nodes may possess. In order each node to utilise all the measurements of the network to be able

to perform filtering jointly on x1
n and a small subset of θ2,1, θ3,1, θ4,1 we have to define messages

between the nodes. This has to be done in such a scalable way that the proposed solution can

be extended to a tree network of any size.

Funiak et al. in [59] have proposed a decentralised solution for a 12 node chain using in-

ference on junction trees. We shall illustrate the key elements of their approach using a 4 node

chain drawn in Figure 6.2. The inference graph they use is separate from the communication

graph. The communication graph is simply the 4 node chain of Figure 6.2 and they use as an

inference graph the junction tree of Figure 6.3. This relies on using following factorisation for

the joint distribution including all the states and parameters:

p(x1
n, θ) =

p(x1
n, θ

2,1)p(x1
n, θ

2,1, θ3,1)p(x1
n, θ

3,1, θ4,1)p(x1
n, θ

4,1)

p(x1
n, θ

2,1)p(x1
n, θ

3,1)p(x1
n, θ

4,1)
(6.5)

Note that this is an approximation since it does not include all dependencies between all the

localisation parameters of the nodes. The authors in [59] claim that the omitted dependencies

do not contribute much in further reducing the variance of the estimate. We verified this claim

using a simple linear Gaussian numerical example, but do not present that here as it does not

seem important.
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x1x1
x1

x1

θ2,1 θ2,1

θ3,1 θ4,1

θ3,1 θ4,1

Figure 6.3: Junction tree for 4 node chain used in Funiak et al. [59] as an inference graph for distributed compu-

tation.

There is an inherent drawback in the methodology of [59, 159]. Each sensor tracks the tar-

get using the frame of reference of a certain pin pointed reference node. So far we have used

node 1. It is not apparent how reference nodes can be chosen in many applications. It might

be impossible or cost inefficient to implement such an approach. In our framework proposed

earlier in Section 6.2.2, we used multiple frames of reference. Instead of using the location of

each node in the sensor network relative to a reference or anchor node, we used the relative

locations between adjacent nodes and showed how to perform distributed filtering. This sce-

nario is described by Figure 6.4. Each node maintains a its own frame of reference and tracks

state xi where xi is the state of the target relative to node i. For the remainder of this section

we drop the time subscripts onXi and Y for the sake of simplicity. For each node i, j, θi,j is the

relative position of node j with respect to node i. So since we are examining a chain this time

the localisation parameters can be stacked as θ = [θ1,2T
, θ2,3T

, θ3,4T
]T .

If we were to implement the algorithm of Funiak et al. [59], we would have to choose to use

the junction tree of Figure 6.5 for inference. This gives the following factorisation for the joint

distribution including all the states and parameters.

p(x1:4, θ) =
p(x1, θ1,2)p(x2, θ1,2, θ2,3)p(x3, θ2,3, θ3,4)p(x4, θ3,4)

p(θ1,2)p(θ2,3)p(θ3,4)
(6.6)

This factorisation seems to be the only sensible choice given that each node should process only

its own state, the relative location of its neighbours and incoming messages. We have found
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Figure 6.4: Four nodes jointly observing a target using multiple frame of references. We show only the state w.r.t.

node 2 and 3.

that the algorithm in [59] cannot be used in the multiple frame of reference case, since it will

not be able to produce informative posterior distributions of θ when we start with each element

in θ being independent from each other and also independent to each xi.

To make this clear, we shall examine a single prediction and update step after initialising

all variables to be independent. Let the initial distribution be

π0(x0, θ) = π0(θ
1,2)π0(θ

2,3)π0(θ
3,4)π0(x

1)π0(x
2)π0(x

3)π0(x
4).

After initialisation the centralised prediction step is given by

p1(x
1:4, θ) =

∫
π0(θ

1,2)π0(θ
2,3)π0(θ

3,4)π0(x
1′)π0(x

2′)π0(x
3′)π0(x

4′)

× f(x1|x1′)f(x2|x2′)f(x3|x3′)f(x4|x4′)dx1:4′,

We will use the junction tree of Figure 6.5 to perform the prediction step distributively. For

each state xi its corresponding clique can perform a local prediction step independently. In

each clique i the prediction step will be given for i = 1, ..., 4 by

pi
1(x

i) =

∫
π0(x

i′)f(xi|xi′)dxi′,
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x2x1
x3

x4

θ1,2 θ1,2

θ2,3 θ3,4

θ2,3 θ3,4

Figure 6.5: Junction tree for the multiple frame of reference problem.

Then, for example in clique 2 the joint distribution of the clique variables will be simply

p̃2
1(x

2, θ) = p2
1(x

2)π(θ1,2)π(θ2,3),

and one can obtain similar expressions for the rest. For the global prediction step a simple

message passing algorithm would yield the joint distribution of the variables given by

p̃1(x
1:4, θ) =

pi
1(x

1)π(θ1,2)pi
1(x

2)π0(θ
1,2)π0(θ

2,3)pi
1(x

3)π0(θ
2,3)π0(θ

3,4)pi
1(x

4)π0(θ
3,4)

π0(θ1,2)π0(θ2,3)π0(θ3,4)

This is the same factorisation as in (6.6) . Note that p̃1(x
1:4, θ) agrees completely with the cen-

tralised prediction step. Also, independence between all variables is preserved.

Assume now that an observation Y becomes available and likelihood is given by

p(Y |x1:4) = p(Y 1|x1)p(Y 2|x2)p(Y 3|x3)p(Y 4|x4).

For the centralised update step we have

p(x1:4, θ|Y ) ∝ p(Y |x1:4)p1(x
1:4, θ).

For performing the update step using the junction tree of Figure 6.5, in each clique i a local

update step can done as

p̃1(x
1:4, θ|Y ) ∝ p(Y i|xi)p̃i

1(x
i, θ)
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and then the global update will be given by the product of local updates as

p̃1(x
1:4, θ|Y )

∝ p(Y 1|x1)p(Y 2|x2)p(Y 3|x3)p(Y 4|x4)p1
1(x

1)p2
1(x

2)p3
1(x

3)p4
1(x

4)π0(θ
1,2)π0(θ

2,3)π0(θ
3,4).

Again p̃1(x
1:4, θ|Y ) agrees with the centralised update p(x1:4, θ|Y ) and independence is pre-

served. Each xi and θ will remain decoupled if the recursion is propagated further in time.

Unfortunately this is an issue, because any attempt to perform filtering recursively might ben-

efit the marginal distributions of xi, but the marginal distribution of θ will remain as in the

initial condition. This problem has not appeared in the formulation of Funiak et al [59] be-

cause the independence is not preserved by the prediction step and the likelihood appears as a

function of the localisation parameters explicitly (and not by means of transformation as in our

case,) conveying some information on θ. This is a direct consequence of using a single frame of

reference.

We feel that Maximum Likelihood (ML) estimation is the most sensible approach to perform

distributed parameter inference for our framework. Choosing ML for estimating the localisa-

tion parameters was strongly influenced by the choice of multiple frames of reference. The

formulation of Section 6.2.2 is to the best of our knowledge is novel and can address some

of the problems not seen at previous attempts to solve the self localisation problem. In addi-

tion, it can be used for simultaneous collaborative filtering and parameter estimation in a fully

decentralised way.

6.3 Distributed Recursive Maximum Likelihood for Self Localisa-

tion

We will propose a distributed implementation of RML for learning all the coordinate trans-

formations θr,j
∗ . Since there is one parameter per edge, namely θr,j for the edge (j, r) ∈ E , a

particular node, say r, will take ownership of the parameter and recursively update it as obser-

vations are received in the network. This node shall be referred to as root node for that edge,

since it shall be the node to collect messages from the rest of the network in order to iterate θr,j
n

as the RML parameter update in (3.23) as presented in Section 3.5.3. The messages received by

each node r from its neighbours should be sufficient to iterate the parameter θr,j
n and perform

the update step of the Bayesian recursion yielding the filtering density πr
n. Since the prediction
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step can be performed locally at each node, we shall be able to estimate θr,j while propagating

πr
n.

We now formulate the RML problem for node r as the reference node. Note this is an

arbitrary choice since any node in the network can become root node. For a fixed parameter

θ = [θi,j](i,j)∈E , the recursive log likelihood Jr
θr,j = log pθr,j (Yn|Y1:n−1) can be written as

Jr
θr,j = log

∫ ∏

v∈V
gv(Y v

n |xr
n + θr,v)πr

n|n−1(x
r
n−1)dx

r
n

where θr,r = 0. We will now take the gradient of this quantity with respect to θr,j, i.e., we are

assuming that node (r, j) is a valid edge and that node r has ownership of parameter θr,j, i.e.

node r is the controlling node in this case,

∇θr,jJr
θr,j =

(∫ ∏

v∈V
gv(Y r

n |xr
n + θr,v)πr

n|n−1(x
r
n)dxr

n

)−1

× {
∫ (∑

v∈V

∇θr,jgv(Y r
n |xr

n + θr,v)

gv(Y r
n |xr

n + θr,v)

)∏

v∈V
gv(Y r

n |xr
n + θr,v)πr

n|n−1(x
r
n)dxr

n+

∫ ∏

v∈V
gv(Y r

n |xr
n + θr,v)∇θr,jπr

n|n−1(x
r
n)dxr

n} (6.7)

In the context of recursive distributed parameter estimation πr
n|n−1(x

r
n) and its gradient

∇θr,jπr
n|n−1(x

r
n) should be propagated locally at node r. It also appears necessary to pass

∏
v∈V\{r}

gv(Y v
n |xr

n+θr,v) and
∑
v∈V

∇
θr,j gv(Y r

n |xr
n+θr,v)

gv(Y r
n |xr

n+θr,v) using appropriate messages from the network

to node r in order to be able to update θr,j
n using RML. It can be shown that these messages are

sufficient to propagate the filtering and prediction densities as well as their gradients.

6.3.1 Propagating the Filtering and Prediction Densities and its Derivatives

For node r we would like to implement a recursion for πr
n(xr

n) and ∇θr,jπr
n(xr

n) given that

πr
n−1(x

r
n−1) and∇θr,jπr

n−1(x
r
n−1) are available locally from previous epoch n− 1. As the choice

of node r as a root node is a completely arbitrary choice, the derivation for any other node is

identical. Consider the prediction and update stage of the filter

πr
n|n−1(x

r
n) =

∫
f r(xr

n|xr
n−1)π

r
n−1(x

r
n−1)dx

r
n−1, (6.8)

and

πr
n(xr

n) =

∏
v∈V

gv(Y r
n | xr

n + θr,v)πr
n|n−1(x

r
n)

∫ ∏
v∈V

gv(Y r
n |xr

n + θr,v)πr
n|n−1(x

r
n)dxr

n
(6.9)
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We aim to propagate not only these distributions but also their derivatives. For the derivatives

we have:

∇θr,jπr
n|n−1(x

r
n) =

∫
f r(xr

n|xr
n−1)∇θr,jπr

n−1(x
r
n−1)dx

r
n−1, (6.10)

and

∇θr,jπr
n(xr

n) =

πr
n(xr

n)




∇
θr,j πr

n|n−1
(xr

n)

πr
n|n−1

(xr
n) +

∑
v∈V

∇
θr,j gv(Y r

n |xr
n+θr,v)

gv(Y r
n |xr

n+θr,v)

−
∫ (∇

θr,j πr
n|n−1

(xr
n)

πr
n|n−1

(xr
n) +

∑
v∈V

∇
θr,j gv(Y r

n |xr
n+θr,v)

gv(Y r
n |xr

n+θr,v)

)
πr

n(xr
n)dxr

n


 .

(6.11)

Note that if
∏

v∈V\{r}
gv(Y v

n |xr
n + θr,v) and

∑
v∈V

∇
θr,j gv(Y r

n |xr
n+θr,v)

gv(Y r
n |xr

n+θr,v) are available at the root node

r, then the filtering and prediction distributions together with their derivatives can be com-

puted locally. These quantities should become available to node r by messages received from

its neighbours, which in turn receive messages from theirs. We aim to define an appropriate

message passing scheme so that all possible nodes can act as roots and update any parameters

associated with its adjacent edges.

6.3.2 Defining Message Passing in the Sensor Network

To derive a distributed implementation, consider first how for each v ∈ V , gv(Y v
n | xr

n +θr,v) and

∇θr,jgv(Y v
n |xr

n + θr,v) can be communicated to node r via a sequence of messages. Assume the

directed path from node v to r traverses the edges (v, jl), (jl, jl−1), . . . , (j2, j1), (j1, r).

In order to pass gv(Y v
n | xr

n + θr,v) from node v to r, the incoming message to node jk from

node jk+1 should be gv(Y v
n | xjk

n +θjk,v). Then node jk should forward to node jk−1 the message

gv(Y v
n |xjk

n + θjk,v)
∣∣
x

jk
n =x

jk−1
n +θjk−1,jk

= gv(Y v
n |x

jk−1
n + θjk−1,v)

So starting from gv(Y v
n |xv

n) at node v, after using repetitive coordinate transformations from

each node jk−1 to node jk and taking advantage of (6.1), gv(Y v
n | xr

n + θr,v) can reach root node

r.

In order to show how ∇θr,jgv(Y v
n | xr

n + θr,v) could be passed from node v to r in a similar

fashion, we note from (6.1) that for any path connecting node r and v, which does not include

the edge (r, j), then ∇θr,jgv(Y v
n |xv

n + θr,v) = 0. If θr,v is defined over a path that includes edge

(r, j) then

∇θr,jgv(Y v
n | xr

n + θr,v) = ∇zg
v(Y v

n | z)|z=xr
n+θr,v
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since∇θr,j (xr
n + θr,v) = 1. As before, each node jk should forward to node jk−1 the message

∇
x

jk
n +θjk→vg

v(Y v
n |xjk

n + θjk,v)|
x

jk
n =x

jk−1
n +θjk−1,jk

= ∇
x

jk−1
n +θjk−1,vg

v(Y v
n | x

jk−1
n + θjk−1,v)

so that ∇θr,jgv(Y v
n |xv

n + θr,v) travels along the path (v, jl), (jl, jl−1), . . . , (j2, j1), (j1, 1).

Previously we showed that
∏

v∈V\{r}
gv(Y v

n |xr
n + θr,v) and

∑
v∈V

∇
θr,j gv(Y r

n |xr
n+θr,v)

gv(Y r
n |xr

n+θr,v) are needed to

be available to root node r as the sufficient statistics to compute θr,j
n as well as propagating the

densities in (6.8)-(6.11). Therefore, we could define messages from each node in a way that it

is not necessary to transmit each ∇θr,jgv(Y v
n |xv

n + θr,v) and gv(Y v
n | xv

n + θr,v) separately in all

different possible paths (v, jl), (jl, jl−1), . . . , (j2, j1), (j1, r).

For this reason we inherit a generalized version of Belief Propagation, where messages are

defined as mi,j
n and

◦
m

i,j

n from node i to j for all (i, j) ∈ E

mi,j
n (xj

n) = gi(Y i
n

∣∣xj
n + θj,i)

∏

p∈ne(i)\{j}

(
mp,i

n (xi
n)|

xj
n+θj,i

)
(6.12)

◦
m

i,j

n (xj
n) =

∇θj,igi(Y i
n

∣∣xj
n + θj,i)

gi(Y i
n|xj

n + θj,i)
+

∑

p∈ne(i)\{j}

(
◦
m

i,j

n (xi
n)|

xj
n+θj,i

)
(6.13)

where ne(i) is the set of neighbouring nodes of i in V .

Equations (6.7)-(6.11) can be reproduced for any other root node r and parameter θr,j,

(j, r) ∈ E . In addition, we can define for each root node r an appropriate message schedul-

ing, where we choose to use only messages mi,j
n and

◦
m

i,j

n only for (i, j) directed towards that

root node, i.e. start from the outer branches of the Graphical model and leading each time to

node r. So after the root node receives its messages from its neighbours it will have available:

∏

p∈ne(r)

mp,r
n (xr

n) =
∏

v∈V\{r}
gv(Y v

n |xr
n + θr,v),

◦
m

j,r

n (xr
n) =

∑

v∈V

∇θr,jgv(Y v
n |xr

n + θr,v)

gv(Y v
n | xr

n + θr,v)
,

as desired.

6.3.3 Distributed RML Algorithm for the Self Localisation problem

In this section we demonstrate how the general distributed parameter estimation problem for

sensor localisation can be solved using RML. Using the results of Section 6.3 we estimate θr,j

for any edge (r, j) using now an arbitrary root node r. At each iteration n all edges should
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be updated in a cyclic fashion using a valid root node and hence θi,j will be updated for all

(i, j) ∈ E .

Algorithm 6.1 Distributed RML Algorithm for the Self Localisation problem:

For each edge (j, r) ∈ E assign a valid root node, say r, so as to update parameter θr,j
n . At time n,

Prediction Update for all nodes: For all nodes r ∈ V propagate the prediction densities πr
n|n−1(x

r
n)

as in (6.8) and their derivatives ∇
θr,j
n
πr

n|n−1(x
r
n) as in (6.10).

Propagate messages: After Yn is received pass all possible messages mi,j
n and

◦
m

i,j

n given by (6.12) and

(6.13) for all edges (i, j) ∈ E in the network.

Use messages to compute sufficient statistics: At each node r compute
∏

p∈ne(r)

mp,r
n (xr) and

◦
m

j,r

n (xr).

Update the parameter θr,j: At each root node r set

θr,j
n+1 = θr,j

n + γr
n∇θr,jJr

θr,j
n
,

where ∇θr,jJr
θr,j
n

is given by evaluating expression (6.7) at θr,j
n .

Update Filtering density and derivative: Using incoming messages, update at all nodes the current

πr
n(xr

n) as in (6.9) and its derivative ∇
θr,j
n
πr

n(xr
n) as in (6.11).

Typically, the step-sizes are selected as γr
n = n−γr

, where γr > 0.5, so that
∑

n γ
r
n = ∞ and

∑
n γ

r
n
2 <∞.

As for standard Belief Propagation [130], this algorithm will only be exact when the graph or

network admits a tree structure. Applying belief propagation algorithms to non-tree topologies

is generally referred as Loopy Belief Propagation (LBP). In some cases LBP can lead to very

good approximations [167]. In the next section, we apply this algorithm to an example using a

Gaussian Markov Random field, whose graph topology has a single loop and we demonstrate

in simulations that this loopy version can exhibit very good performance.

6.4 Numerical Examples

In this section we shall demonstrate how to solve the sensor self-localisation problem using our

framework. We will be using the ideal algorithm of Section 6.3.3 to solve the sensor network
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self localisation problem for the linear Gaussian case and a nonlinear example using a particle

implementation.

6.4.1 A Linear Gaussian Example

We consider an M node sensor network. At each node r, the target being tracked yields obser-

vation Y r
n and obeys the following dynamics

Xr
n = AXr

n−1 +BV r
n ,

Y r
n = CXr

n +DW r
n

with V r
n

i.i.d.∼ N (0, Q) and W r
n

i.i.d.∼ N (0, R).

Thanks to the linear and Gaussian assumptions, we have at time n

πr
n|n−1(x

r
n) = Nxr

n
(µr

n|n−1,Σ
r
n|n−1)

πr
n(xr

n) = Nxr
n
(µr

n|n,Σ
r
n|n)

whose parameters can be computed using a distributed Kalman filter recursion for each node

r

µr
n|n−1 = Aµr

n−1|n−1

Σr
n|n−1 = AΣr

n−1|n−1A
T +BQBT

mr
n = Cµr

n|n−1

Sr
n = CΣr

n|n−1C
T +M−1DRDT

Kr
n = Σr

n|n−1C
TSr−1

n

µr
n|n = µr

n|n−1 +Kr
n(M−1

∑

i∈V
(Y i

n − Cθr,i)−mn)

Σr
n|n = Σr

n|n−1 −Kr
nCΣr

n|n−1

As far as the collaborative filtering part is concerned, it is only necessary to propagate the mean

and covariance of these densities. For the localisation part of the problem, given∇θr,jNxr(m,Σ)

= (∇θr,jm)TNxr(m,Σ)Σ−1 (x−m), we only need to propagate ∇θr,jµr
n|n−1 and ∇θr,jµr

n|n in

order to propagate the derivatives of the densities. To update each edge parameter θr,j, we

can use the analytical expression of p(Yn|Y0:n−1) to obtain the derivative of log p(Yn|Y0:n−1). We

present all analytical calculations for deriving ∇θr,jJr
θr,j in the appendix of this chapter.
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Figure 6.6: Sensor Network used for target tracking; in the numerical example its localisation parameter θ is

estimated.

We can define message m as

mi,j
n = [Y i

n − Cθj,i
n ] +

∑

p∈ne(i)\{j}
mp,i

n

in order to be able to obtain
∑
i∈V

(Y i
n − Cθr,i) at each node r. Also we define message

◦
m as

◦
m

i,j

n = 1 +
∑

p∈ne(i)\{j}

◦
m

p,i

n .

The cardinality of the graph, M , is given at each node i by
∑

p∈ne(i)

◦
m

p,i

n .

For the linear Gaussian example we shall be investigating we use

A =




1 τ 0 0

0 1 0 0

0 0 1 τ

0 0 0 1



, B =




τ2

2 0

τ 0

0 τ2

2

0 τ



, Q = 3I, C = I,D = I,R = 5I,

where I is an appropriate identity matrix. The choice of A,B,Q are a common practice mod-

eling the target dynamics in the target tracking literature, [13]. The measurement parameters,



6.4. Numerical Examples 152

0 5000 10000 15000
−15

−10

−5

0

5

10

15

20

iteration n

θ 6→
 v

,n
(1

)

Convergence of x−coordinate of θ
6→ v

 

(a) X-coordinate of θ6,v
n

0 5000 10000 15000
−40

−30

−20

−10

0

10

20

30

40

iteration n

θ 6→
 v

,n
(2

)

Convergence of y−coordinate of θ
6→ v

(b) Y-coordinate of θ6,v
n

Figure 6.7: Convergence of x- and y- coordinates of θ6,v
n for the sensor net with dotted line not connected.

C,D,Q, should actually depend on the particular specifications of each sensor used, but for

simplicity we choose these values.

For the sensor network in Figure 6.6 ignore first the dotted line between nodes 3 and 6.

In this case, the graph has a tree structure and we can solve for any θi,j exactly. We choose

nodes {3, 4, 6, 9} as root nodes and update at each iteration their adjacent edges. Also, we use

τ = 0.1. For practical implementation reasons we choose to use a constant step size γn =

10−3. For stochastic approximation in general, decreasing step-sizes are essential conditions

of convergence. If fixed step-sizes are used, then we may still have convergence, but now the

iterates “oscillate” about their limiting values with variance proportional to the step-size. We

also initialise θi,j = 0 for all (i, j) ∈ E . In Figures 6.7(a), 6.7(b) we illustrate the convergence to

the correct values of all the localisation parameters relative to node 6, θ6,v
n , for all v ∈ V .

Next we solve for the sensor network in Figure 6.6 but with the dotted line connected. Now

the sensor network has a loop in its topology defined by E at {3, 4, 6}. We choose again nodes

{3, 4, 6, 9} as root nodes and update at each iteration their adjacent edges. As before, we choose

to use a constant step size γn = 10−3 and initialise θi,j = 0. In Figures 6.8(a), 6.8(b) we illustrate

the convergence of all the localisation parameters relative to node 6, θ6,v
n when LBP is used.

Note that the errors of the solution for θ6,v
n are very small, but the convergence rate is now

slower.
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Figure 6.8: Convergence of y-coordinate of θ6,v
n when LBP is applied to the sensor net with the dotted line con-

nected.

6.4.2 A Nonlinear Example using SMC

The tree version of the same sensor network of Figure 6.6 will be used. We would like to solve

the self localisation problem using bearings only tracking. At each node r, the target being

tracked yields observation Y r
n and obeys the following dynamics

Xr
n = AXr

n−1 +BV r
n ,

Y r
n = tan−1(Xr

n(1)/Xr
n(3)) +W r

n

with V r
n

i.i.d.∼ N (0, Q) and W r
n

i.i.d.∼ N (0, σ2
y). At each time all measurements at each node are

independent, so at each node r we have f(xr
n|xr

n−1) = Nxr
n
(Axr

n−1, BQB
T ) and gr(Y r

n |xr
n) =

NY r
n
(tan−1(xr

n(1)/xr
n(3)), σ−2

y ).

Filtering with bearing only tracking is a well known problem. Observing a target using only

bearings measurements can lead in some cases to certain problems concerning the observabil-

ity of the target, especially when abrupt maneuvers take place. This was studied in [121]. As

we are using multiple measurements from different sensors, we shall not face such or similar

problems, such as ambiguities of where the target could be located. On the other hand we are

more interested whether these measurements provide enough information on the relative loca-

tion of the nodes. This has appeared in the wireless networks literature, in [129]. In [146] there

has been a study on how nodes of network can be localised with the aid of a mobile beacon of

known positions. It was found that the motion of that beacon should have an adequate num-

ber of turns so that all nodes could be discovered without any ambiguity. As the scope of our
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work is to show how our setting can be used to perform collaborative filtering and localisation

for sensor networks on a difficult nonlinear scenario, such as bearings only tracking, and not

to present complex methods for resolving any observability issues, we opt for using succes-

sive targets that pass through the monitored area instead of having to design a single target of

desired properties. These targets should not coincide in time and we shall limit ourselves to

the single target at each time scenario avoiding any data association problems. This approach

could be viewed as a realistic representation of the problem of using sensor networks to track

unmanned aerial vehicles (UAVs). Note that we shall use the same approach in the next two

chapters when dealing with the bearings only tracking problem.

The algorithm of Section 6.3.3 relies on the evaluation of complex multi-dimensional inte-

grals given in equations (6.7)-(6.11). In the general non linear non Gaussian case this is impos-

sible and one must rely on approximation. It is important to emphasise that we have not made

any linearity or Gaussianity assumption in our framework. In [133, 134] a centralised imple-

mentation of a particle filter for RML has been derived. This implementation can be extended

to our distributed framework. In the above algorithm πr
n and πr

n|n−1 will have to be replaced

by their particle approximations. Particle approximations can be derived for the gradients as

well. Unfortunately, implementing a particle based message passing algorithm is not trivial.

In this section only, we will assume that each node r has [Y v
n ]v∈V , [θr,v]v 6=j,(r,v)∈E available to

itself, and can solve for θr,j, where (r, j) ∈ E without the need of message passing. This means

that at each node r we are solving for the parameter of its adjacent edge assuming that r has

knowledge of all the necessary variables. Thus, the centralised problem is solved at each node

with respect its own frame of reference. We we will implement the algorithm of [133, 134] for

this approach. Of course this approach does not consist of a proper decentralised solution and

lacks scalability. The main reason of presenting this here is that it can be used as motivation for

the development of proper decentralised particle methods based on message passing, which

will be presented later in this thesis.

We choose nodes {3, 4, 6, 9} as root nodes and update at each iteration their adjacent edges.

We use A,B,Q be as before. We choose to use a constant step size γn = 10−4 and also initialise

θi,j = 0 for all (i, j) ∈ E . In Figure 6.9 (a), (b) we present the plot θi,j
∗ − θi,j

n against the iteration

number n, i.e. the error at each iteration between the true parameter and the value of the

current iteration of the localisation parameter for all edges (i, j) ∈ E , when L = 3000 number of
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Figure 6.9: Error at each iteration between the true parameter and current update of the localisation parameter

for all edges of the sensor net.

particles are used. In Table 1 we present the total mean squared error (MSE) of all the estimated

Number of Particles Total MSE

1000 0.1228

3000 0.0437

5000 0.0284

Table 6.1: Mean squared errors after convergence when using different number of particles.

localisation parameters for each of the edges in the graph after convergence is met for different

number of particles used.
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6.5 Conclusion

In this chapter, we have presented a method for performing recursive static parameter esti-

mation in dynamic Graphical models. We describe how a completely decentralised version of

RML can be implemented in dynamic Graphical models through the propagation of suitable

messages that are exchanged between neighbouring nodes of the graph. The resulting algo-

rithm can be interpreted as a generalization of the Belief Propagation algorithm to compute

likelihood gradients. We have used this approach to formulate the sensor registration prob-

lem and proposed an algorithm to solve the sensor localisation problem. For linear Gaussian

graphs, our algorithm can be implemented exactly using a distributed version of the Kalman

filter and its derivative. In the general non linear and non Gaussian case, Sequential Monte

Carlo can be used.

As it was commented on Section 6.4, the generic algorithm to solve the localisation problem

in Section 6.3.3 relies on a certain substitution when computing the messages, see equations

(6.12)-(6.13). This seems to be a great disadvantage as we cannot obtain a general solution,

where each node computes the messages to be passed on to its neighbours using only its lo-

cal parameters and its received messages. This unfortunately limits the use of this algorithm

for large scale sensor networks, with hundreds or possibly thousands of nodes. In order to

improve this we have further studied the problem in next two Chapters and propose improve-

ments to obtain proper scalable algorithms, where each node uses solely functions of its re-

ceived messages and local variables to pass messages, estimate the localisation parameters of

its neighbours relative to itself, enabling in this manner collaborative filtering.

Another issue that has not been investigated in the numerical examples is the use of dif-

ferent observation densities at each node. This is quite important as our framework does not

make any assumptions like all nodes performing the same type of measurements. The use of

different sensors with different types of measurements is an important aspect for any real ap-

plication. Moreover, we are also interested to show that our methodology can be used also in

time varying state space models. We will address these issues in the next two Chapters.
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6.A Appendix - Linear Gaussian Example

In this section we shall derive the analytical expressions for Jr
θr,j and ∇θr,jJr

θr,j for the linear

gaussian problem of Section 6.4. We start from the definition of the recursive likelihood as

Jr
θr,j = p(Yn|Y0:n−1)

=

∫ ∏

v∈V
gv(Y v

n |xr
n + θr,v)πr

n|n−1(x
r
n)dxr

n,

where we have dropped the time subscript on xr for simplicity. For the linear Gaussian exam-

ple described in Section 6.4 we have πr
n|n−1(x

r
n) = Nxr(µr

n|n−1,Σ
r
n|n−1) and gv(Y v

n |xr
n + θr,v) =

NY v
n
(C(xr

n + θr,v),DRDT ). Let ΣY = DRDT . Therefore

p(Yn|Y0:n−1) =
1

Z

∫
exp(−1

2

∑

v∈V
(Y v

n − C(xr
n + θr,v))

T

ΣY −1
(Y v

n − C(xr
n + θr,v))

−1

2
(xr

n − µr
n|n−1)

T Σr−1

n|n−1(x
r
n − µr

n|n−1))dx
r
n, (6.14)

where Z is the appropriate normalisation constant. For the terms inside the integral, we shall

use the following identity
∫

exp(−1

2
xTAx+ bTx)dx =

√
det(2πA−1) exp(

1

2
bTA−1b).

It is trivial to show that in our case we have

A = MCTΣY −1
C + Σr−1

n|n−1,

b = CTΣY −1
∑

v∈V
(Y v

n − Cθr,v) + Σr−1

n|n−1µ
r
n|n−1,

where M is the number of nodes in the graph. Note that even if they are not needed for the

integration, we should not abandon the two remaining quadratic terms that come from the

expansion of the lhs of (6.14). So, for the likelihood we can write

p(Yn|Y0:n−1) ∝ exp(
1

2
b
T

A−1b−1

2
µrT

n|n−1Σ
r−1

n|n−1µ
r
n|n−1−

1

2

∑

v∈V
(Y v

n − Cθr,v)
T

ΣY −1
(Y v

n − Cθr,v)),

and for the log likelihood

log p(Yn|Y0:n−1) =
1

2
b
T

A−1b−1

2
µrT

n|n−1Σ
r−1

n|n−1µ
r
n|n−1−

1

2

∑

v∈V
(Y v

n − Cθr,v)
T

ΣY −1
(Y v

n − Cθr,v).

Note also

∇θr,jJr
θr,j = ∇θr,j log p(Yn|Y0:n−1)

= (∇θr,jb)TA−1b− (∇θr,jµr
n|n−1)

T Σr−1

n|n−1µ
r
n|n−1 −M rCTΣY −1

∑

v∈V
(Y v

n − Cθr,v),
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with

∇θr,jb = M rCT ΣY −1
C + Σr−1

n|n−1∇θr,jµr
n|n−1,

whereM r is the number of nodes in the subgraph commencing from j away from node r. Also,

note that

M r =
◦
m

j,r

n ,

so there is no need to define an extra message around the network to obtain M r.



7
Distributed Localisation and Tracking for

Linear Gaussian Sensor Networks

Summary. Recursive Maximum Likelihood (RML) and Expectation Maximisa-

tion (EM) are a popular methodologies for estimating unknown static parameters

in state-space models. We describe how a completely decentralized version of RML

and EM can be implemented in dynamic Graphical models through the propaga-

tion of suitable messages that are exchanged between neighboring nodes of the

graph. The resulting algorithm can be interpreted as an extension of the Belief

Propagation algorithm to compute likelihood gradients. This algorithm is applied

to solve the sensor localisation problem for sensor networks without loops.

159
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7.1 Introduction

Figure 7.1 depicts a sensor network that is deployed to perform target tracking. The network

is comprised of sensor-trackers where each node in the network has the processing ability to

perform the computations needed for target tracking. The lines joining the nodes indicate com-

munication links and defines the neighborhood structure of the network. It is assumed that a

sensor can only communicate with its neighboring nodes. A moving target will be simultane-

ously observed by more than one sensor. If the target is within the field-of-view of a sensor,

then that sensor will collect measurements of the target . In a centralized architecture all the

sensors transmit their measurements to a central fusion node, which then combines them and

computes the estimate of the target’s trajectory. The interest however is to perform collaborative

tracking but without the need for a central fusion node. Loosely speaking, in such networks

nodes collaborate by exchanging appropriate messages between neighboring nodes to achieve

the same effect as they would by communicating with a central fusion node.
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Sensor Network with 44 nodes

Figure 7.1: Sensor Network used for target tracking

Distributed collaborative tracking can be achieved if each node is able to accurately de-

termine the position of its neighboring nodes in its local frame of reference. (More details in

Section 7.2.) This is essentially an instance of the self-localisation problem [1]. In this chapter we
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solve the localisation problem without the need of a Global Positioning System (GPS) or direct

measurements of the distance between neighboring nodes. The latter is usually estimated from

the Received Signal Strength (RSS) when each node is equipped with a wireless transceiver.

The method we propose is significantly different. Essentially, the very task that the network is

deployed for, which is collaborative tracking, will be exploited to achieve self-localisation in a

completely decentralized manner. Initially as nodes are not localised they behave as indepen-

dent trackers. As the tracking task is performed on objects that traverse the field of view of the

sensors, information is shared between nodes in a way that allows them to self-localise. Even

though the target’s true trajectory is not known to the sensors, localisation can be achieved in

this manner because the same target is being simultaneously measured by the sensors. This

simple fact, which seems to have been largely overlooked in the literature, is the basis of our

solution.

This idea of using measurements of a common target to solve the self localisation problem

has also been independently developed by [59, 159]. However, our work differs from these

in the application studied as well as the inference scheme. Both [59, 159] formulate the lo-

calisation as a posterior inference problem and approximate the distributions of interest with

simple Gaussians. In this work we develop fully decentralized versions of the two most com-

mon likelihood inference techniques, namely Recursive Maximum Likelihood (RML) [134] and

Expectation-Maximisation (EM) [40]. Maximum Likelihood is the most popular approach to

parameter estimation in Hidden Markov Models [30] and these techniques have not been pre-

viously developed for the self-localisation problem. Our work addresses this shortfall. We

validate our approach in simulation with a large network of bearings-only trackers. The RML

algorithm we develop admits an online implementation which is important for the application

studied.

Most tracking problems are essentially non-linear non-Gaussian filtering problems and Se-

quential Monte Carlo (SMC) methods, also known as Particle Filters, provide very good ap-

proximations to the filtering densities [47]. While it is possible to develop SMC versions of our

algorithms, in the interest of execution speed, we use instead a linearization procedure simi-

lar to the Extended Kalman filter when dealing with a non-linear system. The decentralized

solution to the self-localisation and collaborative tracking problem necessitates the use of belief

propagation, which is a message passing algorithm widely used in the computer science liter-
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ature to perform inference on graphs [130]. However belief propagation computes posterior

distributions only while we also require a fully decentralized algorithm for calculating the gra-

dient of the log-likelihood function. We propose a message passing scheme similar to belief

propagation for doing so which is, to the best of our knowledge, novel.

There is a sizeable literature on the self-localisation problem. Furthermore, the topic has

been independently pursued by researchers working in different application areas, most no-

tably wireless communications [79, 129, 137] and sensor networks for environmental monitor-

ing [123]. Although all these works tend to be targeted for the application at hand and differ

in implementation specifics, they may however be broadly summarized as follows. There are

many works that rely on direct measurements between neighboring nodes [79,129,137]. Given

such measurements, it is then possible to solve for the geometry of the sensor network but with

ambiguities in translation and rotation of the entire network remaining. These ambiguities can

be removed if the absolute position of certain nodes, referred to as anchor nodes, are known.

There are non-statistical based approaches of this idea, like least squares [137], and statistical

ones based on statistical inference [79, 129]. There are also methods that utilize beacon nodes

which have either been manually placed at precise locations or are equipped with a GPS. The

un-localised nodes will use the signal broadcast by these beacon nodes to self-localise [129].

The related problem of sensor registration which aims to compensate for systematic biases in

the sensors has been studied by the target tracking community [124, 165]. The algorithms de-

vised therein are centralized. There is also the related problem of average consensus [170]. The

value of a global static parameter is measured at each node via a linear Gaussian observation

model and the aim is to obtain a maximum likelihood estimate in a distributed fashion. This

is not a distributed localisation and tracking task. Moreover, the work of [15] is based on the

principle shared by our approach and [59,159] . The authors exploit the correlation of the mea-

surements made by the various sensors of a hidden spatial process to perform self-localisation.

However for reasons concerned with the applications being addressed, which is not distributed

target tracking, their method is not on-line and centralized in nature.

The structure of the chapter is as follows. We begin with the specification of the statistical

model for the localisation and tracking problem in Section 7.2. In Section 7.3 we show how

message passing may be utilized to perform distributed filtering and smoothing. In Section

7.4 we derive the distributed RML and EM algorithms. Section 7.5 presents several numer-



7.2. Problem Formulation 163

ical examples on small and medium sized networks. The Appendix contains more detailed

derivations of the distributed versions of RML and EM.

7.2 Problem Formulation

We consider the sensor network (V, E) where V denotes the set of nodes of the network and E
is the set of edges (or communication links between nodes.) In this chapter we assume that the

sensor network has no loop. Nodes i, j ∈ V are connected provided the edge (i, j) ∈ E exists.

Also, we will assume that if (i, j) ∈ E holds, then (j, i) ∈ E holds as well. The nodes observe

the same physical target at discrete time intervals n ∈ N. Note though that the target may only

be in the field of view of a limited number of sensors at any given time. The hidden state, as is

standard in target tracking, is defined to comprise of the position and velocity of the target,

Xr
n = [Xr

n(1),Xr
n(2),Xr

n(3),Xr
n(4)]T,

where Xr
n(1) and Xr

n(3) is the target’s x and y position while Xr
n(2) and Xr

n(4) is the velocity

in the x and y direction. Subscript n denotes time while superscript r denotes the coordinate

system w.r.t. which these quantities are defined. For generality we assume that each node

maintains a local coordinate system (or frame of reference) and regards itself as the origin (or

center of) its coordinate system.

As a specific example, consider the following linear Gaussian model:

Xr
n = AnX

r
n−1 + brn + V r

n , n ≥ 1, (7.1)

where V r
n is zero mean Gaussian additive noise with variance Qn and brn are deterministic

inputs. The measurement Y r
n made by node r is also defined relative to the local coordinate

system at node r. For a linear Gaussian observation model the measurement is generated as

follows:

Y r
n = Cr

nX
r
n + dr

n +W r
n, n ≥ 1, (7.2)

where W r
n is zero mean Gaussian additive noise with variance Rr

n and dr
n is deterministic.

Note that the time varying observation model {(Cr
n, d

r
n, R

r
n)}n≥1 is different for each node. A

time varying state and observation model is retained for an Extended Kalman Filter (EKF)

implementation for the non-linear setting to be defined in the next chapter. It is in this setting

that the need for sequences {brn}n≥1 and {dr
n}n≥1 arises.
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The more general non-linear non-Gaussian setting can be expressed with the following Hid-

den Markov Model (HMM),

Xr
n|Xr

n−1 = xr
n−1 ∼ f r

n(.|xr
n−1), (7.3)

Y r
n |Xr

n−1 = xr
n ∼ gr

n(.|xr
n). (7.4)

where Xr
n is the hidden state and Y r

n ∈ Rdr
y is the measurement made by node r at time n. The

target’s transition model f r
n(.|.) is assumed time varying for generality. The observation model

(7.4) is time varying and is different for each node. Also, the dimension of the observation

vector Y r
n need not be the same for different nodes since each node may be equipped with a

different sensor type. For example, node r may obtain measurements of the target’s position

while node v measures bearing.

Figure 7.2: A three node network tracking a target traversing its field of view. The trajectory of the target is shown

with the solid line. Each node regards itself as the center of its local coordinate system. At time n a measurement is

registered by all three nodes. The ellipses show the support of the observation densities for the three nodes, i.e. the

support of g1
n(Y 1

n |.) is defined as all x1
n such that g1

n(Y 1
n |x1

n) ; similarly for the rest. The filtering update step at

node 1 will clearly benefit from the observations made by nodes 2 and 3. The localization parameters θ1,2
∗ , θ1,3

∗ are

the coordinates of node 1 in the local coordinate systems of node 2 and 3 respectively. While Xr
n was defined to be

the state of the target, which includes its velocity, for this illustration only, Xr
n is to be understood as the position

of the target at time n w.r.t. the coordinate system of node r.

Figure 7.2 illustrates a three node setting where a target is being jointly observed and
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tracked by three sensors. (Only the position of the target is shown.) At node 1, X1
n is defined

relative to the local coordinate system of node 1 which regards itself as the origin. Similarly for

nodes 2 and 3. We define θi,j
∗ to be the position of node i in the local coordinate system of node j.

This means that the vector Xi
n relates to the local coordinate system of node j as follows (see

Figure 7.2):

Xj
n = Xi

n + θi,j
∗ .

The localisation parameters {θi,j
∗ }(i,j)∈E are static as the nodes are not mobile. We note the fol-

lowing obvious but important relationship: if nodes i and j are connected through intermediate

nodes j1, j2, . . . , jm then

θi,j
∗ = θi,j1

∗ + θj1,j2
∗ + θj2,j3

∗ + . . .+ θ
jm−1,jm
∗ + θjm,j

∗ . (7.5)

This relationship is exploited to derive the distributed filtering and localisation algorithms in

the next section. We define θi,j
∗ so that the dimensions are the same as the target state vector.

When the state vector is comprised of the position and velocity of the target, only the first and

third components of θi,j
∗ are relevant while the other two are redundant and set to θi,j

∗ (2) = 0

and θi,j
∗ (4) = 0. Let

θ∗ ≡ {θi,j
∗ }(i,j)∈E , θi,i

∗ ≡ 0, (7.6)

where θi,i
∗ for all i ∈ V is defined to be the zero vector.

Let Yn denote all the measurements received by the network at time n, i.e. Yn ≡ {Y v
n }v∈V .

We also denote the sequence (Y1, ..., Yn) by Y1:n. In the collaborative filtering problem, each node

r computes the local filtering density:

pr
θ∗(x

r
n|Y1:n) ∝ pr

θ∗(Yn|xr
n)pr

θ∗(x
r
n|Y1:n−1), (7.7)

where pr
θ∗

(xr
n|Y1:n−1) is the predicted density and is related to the filtering density of the previ-

ous time through the following prediction step:

pr
θ∗(x

r
n|Y1:n−1) =

∫
f r

n(xr
n|xr

n−1)p
r
θ∗(x

r
n−1|Y1:n−1)dx

r
n−1. (7.8)

The likelihood term is

pr
θ∗(Yn|xr

n) =
∏

v∈V
gv
n(Y v

n |xr
n + θr,v

∗ ), (7.9)

where θv,v
∗ for all v ∈ V is defined to be the zero vector by default. The superscript on the

densities indicate the coordinate system they are defined w.r.t. (or node the density belongs to)
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while the subscript makes explicit the dependence on the localisation parameters. The predic-

tion step in (7.8) can be implemented locally at each node without exchange of information but

the update step in (7.7) incorporates all the measurements of the network. Figure 7.2 shows the

support of the three observation densities as ellipses where the support of g1
n(Y 1

n |·) is defined

to be all x1 such that g1
n(Y 1

n |·) > 0; similarly for the rest. The filtering update step at node 1 can

only include the observations made by nodes 2 and 3 provided the localisation parameters θ1,2
∗

and θ1,3
∗ are known locally to node 1, since the likelihood p1

θ∗
(Yn|x1

n) defined in (7.9) is

g1
n(Y 1

n |x1
n)g2

n(Y 2
n |x1

n + θ1,2
∗ )g3

n(Y 3
n |x1

n + θ1,3
∗ ).

The term collaborative filtering is used since each sensor benefits from the observation made

by all the other sensors. As is shown in Section 7.3, it is possible to implement collaborative

filtering in a truly distributed manner, i.e., each node executes a message passing algorithm

(with communication limited only to neighboring nodes) that is scalable with the size of the

network. However collaborative filtering hinges on knowledge of the localisation parameters

{θi,j
∗ }(i,j)∈E which are unknown a priori. We propose estimation algorithms based on RML and

EM to learn the localisation parameters. RML is an online algorithm and refines the parameter

estimates as new data arrives while EM is a batch algorithm that runs once a batch of obser-

vations have been acquired. These proposed algorithms in this context are to the best of our

knowledge novel.

We end this section with a simple (but key) lemma concerning the aggregation of sufficient

statistics locally at each node. Consider a sequence of localisation parameters {θn}n≥0 where it

is assumed that θi,j
n is known to nodes i and j only. Let ({F v

n}v∈V)n≥0 be a sequence of matrices

where F v
n is known to node v only.

Lemma 7.2.1 Consider the task of computing
∑

v∈V F
v
n and

∑
v∈V F

v
nθ

r,v
n at each node r of the net-

work. Define the following messages which are to be communicated between all pairs of neighboring

nodes in both directions at each time n:

mi,j
n = F i

n +
∑

p∈ne(i)\{j}
mp,i

n , (7.10)

m̈i,j
n = mi,j

n θj,i
n +

∑

p∈ne(i)\{j}
m̈p,i

n . (7.11)

It follows then that
∑

v∈V F
v
n = F r

n +
∑

j∈ne(r)

mj,r
n while

∑
v∈V F

v
nθ

r,v
n =

∑
j∈ne(r)

m̈j,r
n .
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Here ne(i) denote the neighbors of node i excluding node i itself. A message from node i to

j (the source node is indicated by the first letter of the superscript) can be sent once node i has

received message from all its neighbors except node j. Thus the leaf nodes of the network (or

nodes with only one neighbor) will originate the messages.

7.3 Distributed Collaborative Filtering and Smoothing

For a linear Gaussian system, the collaborative filter pv
θ(x

v
n|Y1:n) at node v is a Gaussian dis-

tribution with mean vector µv
n and covariance Σv

n. The derivation of the Kalman filter to im-

plement pv
θ(x

v
n|Y1:n) is standard upon noting that the measurement model at node v can be

written as Yn = CnX
v
n + d̃n + Wn where the r-th block of Yn, Y r

n , satisfies Y r
n = Cr

n(Xv
n +

θv,r) + dr
n + W r

n . However, there will be “non-local” steps due to the requirement that quan-

tities
∑
i∈V

(Ci
n)T(Ri

n)−1Y i
n,
∑
i∈V

(Ci
n)T(Ri

n)−1Ci
n and

∑
i∈V

(Ci
n)T(Ri

n)−1Ci
nθ

v,i be available locally at

node v. To solve this problem, we may use Lemma 7.2.1.

We summarise the result of these steps with the following distributed Kalman filter which

is to be implemented at every node of the network. To aid the development of the distributed

RML algorithm in Section 7.4, we assume the localisation parameter {θn}n≥1 is time varying

but known to the relevant nodes they belong to at time n.

Algorithm 7.1 Distributed Filtering

At time n, let the localization parameter be θn and the set of collected measurements be Yn = {Y v
n }v∈V .

Exchange the messages (mi,j
n , ṁi,j

n , m̈i,j
n ) and (mj,i

n , ṁ
j,i
n , m̈

j,i
n ) defined below between all neighboring

nodes (i, j) ∈ E :

mi,j
n = (Ci

n)T(Ri
n)−1Ci

n +
∑

p∈ne(i)\{j}
mp,i

n , (7.12)

ṁi,j
n = (Ci

n)T(Ri
n)−1Y i

n +
∑

p∈ne(i)\{j}
ṁp,i

n , (7.13)

m̈i,j
n = mi,j

n θj,i
n +

∑

p∈ne(i)\{j}
m̈p,i

n , (7.14)
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Update the local filtering densities at each node r ∈ V :

µr
n|n−1 = Anµ

r
n−1, Σr

n|n−1 = AnΣr
n−1A

T
n +Qn, (7.15)

M r
n = (Σr

n|n−1)
−1 + (Cr

n)T(Rr
n)−1Cr

n +
∑

i∈ne(r)

mi,r
n (7.16)

zr
n = (Σr

n|n−1)
−1µr

n|n−1 + (Cr
n)T(Rr

n)−1Y r
n +

∑

i∈ne(r)

ṁi,r
n − m̈i,r

n , (7.17)

Σr
n = (M r

n)−1, µr
n = Σr

nz
r
n, (7.18)

Note that messages (7.12)-(7.14) are matrix and vector valued quantities and require a fixed

amount memory for storage regardless of the number of nodes in the network. Also, the same

rule for generating and combining messages are implemented at each node.

For collaborative smoothing, once a batch of T observations have been obtained, each node

r aims to implement

pr
θ(x

r
n|Y1:T ) ∝

∫
pr

θ(x
r
1:T , Y1:T )dxr

1:T\{n}

where dxr
1:T\{n} means integration w.r.to all variables except xr

n. The standard Kalman smoother

is implemented with a forward pass (7.15)-(7.18) first to compute the filtering densities, and

then followed by a backward pass which is summarized by the following equations [139]:

Jr
n−1 = Σr

n−1A
T
n(Σr

n|n−1)
−1 (7.19)

µr
n−1|T = µr

n−1 + Jr
n−1(µ

r
n|T −Anµ

r
n−1) (7.20)

Σr
n−1|T = Σr

n−1 + Jr
n−1(Σ

r
n|T − Σr

n|n−1)
(
Jr

n−1

)T
(7.21)

The backward pass is performed commencing with n = T until n = 2 and the smoothed

density is pr
θ(x

r
n|Y1:T ) = N (µr

n|T ,Σ
r
n|T ). It is an entirely local procedure with no exchange of

information between neighboring nodes.

7.4 Distributed Collaborative Localisation

Our sensor localisation problem is a static parameter estimation problem as discussed in Sec-

tion 7.2. To solve the localisation problem, we propose to use likelihood inference techniques,

namely Recursive Maximum Likelihood and Expectation-Maximisation, which have been pre-

sented in Section 3.5. The RML and EM algorithm described in Section 3.5 centralized and here

we will derive distributed RML and EM counterparts.
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7.4.1 Distributed RML

Every edge is assigned to one node and all edge-controlling nodes will implement a RML al-

gorithm to learn the θ-parameter for its edge. For example in the three node network of Figure

7.2, edge (1,2) could be assigned to node 2 and edge (1,3) to node 3. Let θn = {θi,j
n }(i,j)∈E be

the estimate of the true parameter θ∗ given the available data Y1:n−1. At a given node r that

controls edge (r, j) the following RML algorithm is implemented,

θr,j
n+1 = θr,j

n + γr
n+1

[
∇θr,j log

∫
pr

θ(Yn|xr
n)pr

θ(x
r
n|Y1:n−1)dx

r
n

]

θ=θn

where γr
n+1 is the step-size and should satisfy the same conditions that were specified for (??).

In practice a constant step-size sequence is selected to ensure continual adaptation. The gradi-

ent is computed w.r.t. θr,j, the local collaborative predicted density pr
θ(x

r
n|Y1:n−1) at node r was

defined in (7.8) and is a function of θ = {θi,j}(i,j)∈E , and likelihood term is given in (7.9). Node

r updates θr,j
n in the direction of ascent of pr

θ(Yn|Y1:n−1), which is its local conditional likelihood

of Yn = {Y v
n }v∈V given all the measurements received in the network from time 1 to n−1. Also,

the gradient is evaluated at θn = {θi,j
n }(i,j)∈E while only θr,j

n is available locally at node r. The

remaining values θn are stored across the network. All nodes of the network that control an

edge parameter will implement such a local gradient algorithm.

The distributed RML algorithm is given as follows.

Algorithm 7.2 Distributed RML

At time n, let the current parameter estimate be θn. Upon obtaining measurements Yn = {Y v
n }v∈V the

following filtering and parameter update steps are to be performed.

Filtering step: Perform all steps in Algorithm 7.1.

Parameter update: Each node r ∈ V of the network will update the following quantities for every edge

(r, j) controlled by it:

∇r,jµ
r
n|n−1 = An∇r,jµ

r
n−1, (7.22)

∇r,jz
r
n = (Σr

n|n−1)
−1∇r,jµ

r
n|n−1 −mj,r

n , (7.23)

∇r,jµ
r
n = (M r

n)−1∇r,jz
r
n. (7.24)
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Upon doing so the localization parameter is updated:

θr,j
n+1 = θr,j

n + γr
n+1[−(∇r,jµ

r
n|n−1)

T(Σr
n|n−1)

−1µr
n|n−1

+ (∇r,jz
r
n)T(M r

n)−1zr
n + ṁj,r

n − m̈j,r
n ].

The derivation of the algorithm is presented in the Appendix. The intermediate quantities

(7.22)-(7.24) take values in R4×4 and may be initialized to zero matrices. The step-size sequences

should satisfy
∑

n γ
r
n = ∞ and

∑
n γ

r
n
2 < ∞, but in practice a constant step-size can be used

instead (see Section 7.5).

7.4.2 Distributed EM

The basic idea behind a distributed implementation of the EM is as follows. Let θk = {θi,j
k }(i,j)∈E

be the current estimate of θ∗ after k − 1 distributed EM iterations on the batch of observations

Y1:T .1 Each edge controlling node r will execute the following E and M steps to update the

estimate of the localisation parameter for its edge:

Qr(θk, θ) =

∫
log pr

θ(x
r
1:T , Y1:T )pr

θk
(xr

1:T |Y1:T )dxr
1:T ,

θr,j
k+1 = arg max

θr,j
Qr(θk, (θ

r,j, θ
−(r,j)
k )),

where θ
−(r,j)
k = {θe

k}e∈E\(r,j). These steps can be performed simultaneously by all edge control-

ling nodes r using an exchange of messages as detailed in Algorithm 7.1. Let

lr(θk) = log pr
θk

(Y1:T )

denote the log-likelihood of node r. From the general discussion of the EM algorithm in the

start of Section 7.4 it is evident that

lr(θr,j
k+1, θ

−(r,j)
k ) ≥ lr(θk).

In fact, we show in the simulations in Section 7.5 that the sequence of iterates θk converges to

θ∗.

1Each iteration of the EM involves all the observations from n = 1 to T . We use a different subscript k to denote

the k-th EM step.
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To show how the E-step can be computed we write pr
θ(x

r
1:T , Y1:T ) as,

pr
θ(x

r
1:T )pr

θ(Y1:T |xr
1:T ) =

T∏

n=1

f r
n(xr

n|xr
n−1)p

r
θ(Yn|xr

n),

where pr
θ(Yn|xr

n) was defined in (7.9). Note that pr
θk

(xr
1:T |Y1:T ) is a function of θk = {θi,i′

k }(i,i′)∈E
(and not just θr,j

k ) and the θ-dependance of pr
θ(x

r
1:T , Y1:T ) arises through the likelihood term

only as pr
θ(x

r
1:T ) is θ-independent. This means that it is sufficient to maintain the smoothed

marginals pr
θk

(xr
n|Y1:T ), 1 ≤ n ≤ T , to compute the E-step. The M-step is solved by setting the

derivative ofQr(θk, (θ
r,j, θ

−(r,j)
k )) w.r.t. θr,j to zero. The derivation of the EM is presented in the

Appendix and the main result is,

∇θr,j

∫
log pr

θ(Yn|xr
n)pr

θk
(xr

n|Y1:T ) = ṁj,r
n − m̈j,r

n − (mj,r
n )Tµr

n|T

where (mj,r
n , ṁj,r

n , m̈j,r
n ), defined in (7.12)-(7.14), are propagated with localisation parameter θk

for all observations from time 1 to T and µr
n|T is the mean of xr

n under pr
θk

(xr
n|Y1:T ) as given by

(7.19)-(7.21). Only m̈j,r
n is a function of θr,j. To perform the M-step, the following equation is

solved for θr,j

(

T∑

n=1

mj,r
n )θr,j =

T∑

n=1

(ṁj,r
n − (mj,r

n )Tµr
n|T −

∑

p∈ne(j)\{r}
m̈p,j

n ) (7.25)

Note that θr,j is a function of quantities available locally to node r and j only.

A summary of the distributed EM is as follows:

Algorithm 7.3 Distributed EM

Consider a fixed batch of measurements Y1:T = {Y v
1:T }v∈V . At the k-th EM iteration (k ≥ 0 with θ0

arbitrary, the zero vector say) execute the following E and M steps.

E-step: For each node r, compute the smoothed marginals {pr
θk

(xr
n|Y1:T )}n=1:T by executing Algorithm

7.1 for time n = 1 to T with fixed localization parameter θk. Then perform the backward pass by

executing (7.19)-(7.21) for n = T until n = 2.

M-step: For each node r ∈ V , for all edges (r, j) controlled by node r, set θr,j
k+1 to be the solution to

(7.25).
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7.5 Numerical Examples

The performance of the distributed RML and EM algorithms are studied first for the Linear

Gaussian case in a numerical example. The model for the hidden target is given in (7.1) with

V r
n = BṼ r

n , where Ṽ r
n is zero mean Gaussian additive noise with variance Q̃n, and

An =




1 τ 0 0

0 1 0 0

0 0 1 τ

0 0 0 1



, B =




τ2

2 0

τ 0

0 τ2

2

0 τ



, Q̃n = 3I,

and I is the identity matrix. This choice forAn, B, Q̃n is common in the target tracking literature

[13]. The observation model is given by (7.2) with

Cr
n = αr

n


 1 0 0 0

0 0 1 0


 , Rn = βr

nI,

where αr
n, βr

n are known time varying scaling parameters sampled at each time n from the

uniform distribution defined over [1, 3].

Two networks of different sizes and configurations were considered as shown in Figures

7.3(a) and 7.3(b). The settings for the remaining parameters are as follows: τ = 0.1, a constant

step size γk = 10−3 for the RML, T = 1000 for the EM, θr,j
0 = 0 for all (r, j) ∈ E for the RML and

EM. In Figures 7.4(a) and 7.5(a) we plot the errors θr,j
∗ − θr,j

n against iteration n for RML and for

the EM in Figures 7.4(b) and 7.5(b). All errors converge to zero.

Figure 7.6 plots lr(θk) = log pr
θk

(Y1:T ) with respect to k for nodes r ∈ {3, 4, 6, 9}, where θk is

obtained using distributed EM for the sensor network of Figure 7.3(a). We observe that overall

each iteration of the distributed EM is increasing the log-likelihood of all nodes.

We observe that overall as θk approaches its true value θ∗ each lr converges to log p(Y1:T ).

In Figure 7.7 we plot contour plots of lr(θ) for r ∈ {3, 4, 6, 9} with respect to θ3,1, when the

other θi,js are set to zero vectors. Again as in Figure 7.6 one can see that when θ = θ∗ then

arg maxθ l
i(θ) = arg maxθ l

j(θ), but this does not hold in any other case. Fortunately, in Figure

7.7 we observe that arg maxθ3,1 l3(θ) remains the same regardless the value the other localisation

parameters have.



7.5. Numerical Examples 173

20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

1

3

2

4

5
6

7

8

9

10

11

(a) 11 node sensor network

0 5 10 15 20 25 30 35 40
−10

0

10

20

30

40

50

60

70

80
Sensor Network with 44 nodes

(b) 44 node sensor network

Figure 7.3: Sensor networks of different sizes used for target tracking; in each case the localisation parameters θ∗

are estimated.
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Figure 7.4: Simulation results for the 11 node sensor network of Figure 7.3(a). The convergence of the localization

parameter estimate to θ∗ is demonstrated using appropriate error plots for the distributed RML and.
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Figure 7.5: Simulation results for the 44 node sensor network of Figure 7.3(a). The convergence of localization

parameter estimate to θ∗ is demonstrated using appropriate error plots for the distributed RML and EM.

7.6 Conclusions

In this chapter, we have presented a general framework to perform recursive static parameter

estimation in dynamic Graphical models. We derive fully decentralized algorithms using RML

and EM to solve the sensor localisation problem. For linear Gaussian graphs, our algorithm

can be implemented exactly using a distributed version of the Kalman filter and its derivative.

In the non linear case, a solution based on linearisation and the Extended Kalman Filter can

be proposed. A Sequential Monte Carlo algorithm to solve the general nonlinear and non

Gaussian problem is presented in the next chapter.



7.6. Conclusions 175

0 20 40 60 80 100
−16

−14

−12

−10

−8

−6

−4

−2

0
x 10

5

k

l3 (θ
k)

(a) l3(θk) with respect to k.
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(b) l4(θk) with respect to k.
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(c) l6(θk) with respect to k.
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(d) l9(θk) with respect to k.

Figure 7.6: Likelihood plots of lr(θk) with respect to k, for the sensor network of Figure 7.3(b) and nodes r =

3, 4, 6, 9. For each sub-figure, the dotted line indicates log pr
θ∗

(Y1:T ). Note how (generally) each iteration is

increasing the likelihood of all nodes.
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Figure 7.7: Contour plots of lr(θ3,1) for r = 3, 4, 6, 9. The rest of the localisation parameters θi,j , with i 6= 3 and

j 6= 1, are set to initial values [0, 0, 0, 0]T . In each subfigure, the cross is at θ3,1
∗

7.A Distributed RML derivation

For the linear Gaussian case, we have

log pr
θ(Yn|Y0:n−1)

= −1

2

∑

i∈V
(Y i

n − Ci
nθ

r,i)TRi
n
−1(Y i

n − Ci
nθ

r,i)

− 1

2
µr

n|n−1
T(Σr

n|n−1)
−1µr

n|n−1

+
1

2
(zr

n)T(M r
n)−1zr

n + const

where all θ-independent terms have been lumped together in the term ‘const’. Differentiating

this expression w.r.t. θr,j yields

∇θr,j log pr
θ(Yn|Y0:n−1)

= −(∇θr,jµr
n|n−1)

T(Σr
n|n−1)

−1µr
n|n−1

+ (∇θr,jzr
n)T(M r

n)−1zr
n

+
∑

i∈V
(∇θr,jθr,i)T(Ci

n)T(Ri
n)−1(Y i

n − Ci
nθ

r,i).
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Using the recursion of (7.15)-(7.18) we can to propagate terms∇θr,jµr
n|n−1, ∇θr,jzr

n and ∇θr,jµv
n

locally at each node r as follows,

∇θr,jµr
n|n−1 = An∇θr,jµr

n−1, (7.26)

∇θr,jzr
n = (Σr

n|n−1)
−1∇θr,jµr

n|n−1 −
∑

i∈V
(Ci

n)T(Ri
n)−1Ci

n∇θr,jθr,i, (7.27)

∇θr,jµr
n = (M r

n)−1∇θr,jzr
n. (7.28)

Using property (8.3) we note that for the set of vertices i for which the path from r to i includes

edge (r, j), ∇θr,jθr,i = I (the identity matrix) whereas for the rest∇θr,jθr,i = 0. For all the nodes

i for which ∇θr,jθr,i = I , let them form a sub tree (V ′rj , E ′rj) branching out from node j away

from node r. Then the last sum in the expression for ∇θr,j log pr
θ(Yn|Y0:n−1) evaluates to,

∑

i∈V ′
rj

(Ci
n)T(Ri

n)−1(Y i
n − Ci

nθ
r,i) = ṁj,r

n − m̈j,r
n .

Similarly, we can write the sum in the expression for ∇θr,jzr
n as mj,r

n to obtain

∇θr,jzr
n = (Σr

n|n−1)
−1∇θr,jµr

n|n−1 −mj,r
n . (7.29)

7.B Distributed EM derivation

For the EM approach, once a batch of T observations have been obtained, each node r of the

network that controls an edge will execute the following E and M step iteration n,

Qr(θk, θ) =

∫
log pr

θ(x
r
1:T , Y1:T )pr

θk
(xr

1:T |Y1:T )dxr
1:T ,

θr,j
k+1 = arg max

θr,j∈Θ
Qr(θk, (θ

r,j, {θe, e ∈ E\(r, j)})),

where it is assumed that node r controls edge (r, j). The quantity pr
θk

(xr
1:T |Y1:T ) is the joint

distribution of the hidden states at node r given all the observations of the network from time

1 to T and is given up to a proportionality constant,

pr
θk

(xr
1:T )pr

θk
(Y1:T |xr

1:T ) =
T∏

n=1

f r
n(xr

n|xr
n−1)p

r
θk

(Yn|xr
n),

where pr
θk

(Yn|xr
n) was defined in (7.9). Note that pr

θk
(xr

1:T , Y1:T ) (and hence pr
θk

(xr
1:T |Y1:T )) is a

function of θk = {θi,i′

k }(i,i′)∈E and not just θr,j
k . Also, the θ-dependance of pr

θ(x
r
1:T , Y1:T ) arises
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through the likelihood term only as pr
θ(x

r
1:T ) is θ-independent. Note that

∑

v∈V
log gv

n(Y v
n |xr

n + θr,v)

=
∑

v∈V
cvn −

1

2

∑

v∈V
(Y v

n − Cv
nθ

r,v)T(Rv
n)−1(Y v

n − Cv
nθ

r,v)

+ (xr
n)T
∑

v∈V
(Cv

n)T(Rv
n)−1(Y v

n − Cv
nθ

r,v)

− 1

2
(xr

n)T

[∑

v∈V
(Cv

n)T(Rv
n)−1Cv

n

]
xr

n

where cvn is a constant independent of θ. Using the fact that xTAx = trace(AxxT) andE(xTAx) =

trace(AE(xxT)), taking the expectation w.r.t. pr
θn

(xr
n|Y1:T ) gives

∫
log pr

θ(Yn|xr
n)pr

θk
(xr

n|Y1:T )

= −1

2

∑

v∈V

[
(Y v

n − Cv
nθ

r,v)T(Rv
n)−1(Y v

n − Cv
nθ

r,v)
]

− (µr
n|T )T

∑

v∈V
(Cv

n)T(Rv
n)−1Cv

nθ
r,v + const

where all terms independent of θr,j have been lumped together as ’const’ and µr
n|T is the mean

of xr
n under pr

θk
(xr

n|Y1:T ). Taking the gradient w.r.t. θr,j we get and following the steps in the

derivation of the distributed RML we obtain

∇θr,j

∫
log pr

θ(Yn|xr
n)pr

θk
(xr

n|Y1:T ) = ṁj,r
n − m̈j,r

n − (mj,r
n )Tµr

n|T

where (mj,r
n , ṁj,r

n , m̈j,r
n ) is defined in (7.12)-(7.14). Only m̈j,r

n is a function of θr,j. Now to perform

the M-step, we solve

(
T∑

n=1

mj,r
n

)
θr,j =

T∑

n=1


ṁj,r

n − (mj,r
n )Tµr

n|T −
∑

p∈ne(j)\{r}
m̈p,j

n




and θr,j can recovered by standard linear algebra. Note that θr,j is solved by quantities available

locally to node r and j only.



8
Distributed Localisation and Tracking for

Nonlinear Non-Gaussian Sensor Networks

Summary. Sequential Monte Carlo methods have been used successfully for non-

gaussian and non-linear filtering and inference problems. When used within the

Graphical models context, they can be combined with Nonparametric Belief Prop-

agation at each node of a graph. This has already been developed for problems

involving dynamic filtering for distributed environments. We aim to extend this

methodology for the static parameter inference problem using a distributed imple-

mentation of Recursive Maximum Likelihood (RML). The resulting algorithm can

be thought as an extension of Nonparametric Belief Propagation to compute likeli-

hood gradients. This algorithm is applied to solve the sensor localisation problem

for sensor networks.

179
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8.1 Introduction

In the previous chapter we proposed to use distributed likelihood inference techniques, namely

Recursive Maximum Likelihood (RML) and Expectation-Maximization (EM), to solve the self

localisation problem when collaborative filtering is used. We focused on the linear gaussian

case and proposed an extended Kalman filter approach for the nonlinear case. The main mo-

tive was computational efficiency in order to be able to apply our methodology for large scale

sensor networks. In this chapter we shall concentrate on how to develop fully distributed Se-

quential Monte Carlo (SMC) methods using RML for static parameter estimation problems in

dynamic Graphical Models. We will mainly focus on solving the self localisation problem for

sensor networks considered earlier in Chapters 6 and 7. Note that we are dealing with static

parameters because we assume that sensors’ positions remain fixed.

Most tracking problems are essentially non-linear non-Gaussian filtering problems and Se-

quential Monte Carlo (SMC) methods, also known as Particle Filters, provide very good ap-

proximations to the filtering densities under weak assumptions. Posterior inference for static

parameters using SMC is a widely studied problem. A common approach is to include the un-

known parameter and cast the problem as a filtering one. This has appeared in the Sequential

Monte Carlo literature in [56, 105, 154], but has proved to be inefficient due to a degeneracy

problem inherent in the standard SMC algorithm [10]. It is well known that posterior inference

for static parameters with SMC suffers from the degeneracy problem. As more and more obser-

vations are made over time, the initial diversity of samples for the unknown static parameters

will be lost as result of the resampling step in a particle filter. Several methods have been pro-

posed in the literature to overcome this limitation. They include introducing artificial dynamics

for the static parameter or Markov Chain Monte Carlo (MCMC) moves to re-introduce diversity

lost during resampling. The first method will alter the problem and yields imprecise estimates

of the static parameters. Furthermore, there is ambiguity on how much “dynamics”should be

introduced. Incorporating MCMC steps does not alter the problem being solved but additional

complications arise during implementation. The MCMC steps rely on sufficient statistics that

are based on a particle approximation to the path posterior density pθ (x0:n|Y0:n). In Chapter

3 of [136] it was demonstrated that this density cannot be properly approximated using SMC

methods, for a fixed number of particles, and the sufficient statistics degrade over time due to

error accumulation [10], which will result in the static parameter estimates to diverge.
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To circumvent all these problems, some gradient approaches that use Recursive Maximum

Likelihood (RML) have been proposed, [98]. They approximate the gradient of the optimal

filter using standard path-based particle filtering methods [32, 51, 72], but suffer from similar

limitations. Recently in [136], particle methods have been developed to approximate the first

derivative of the optimal filter with respect to the unknown parameters of the dynamic model,

in order to solve the problem with a RML approach. We aim to extend this methodology for

Graphical Models, in order to benefit from the merits of SMC approximations and be able to

derive parameter estimation algorithms for distributed environments.

8.1.1 Inference in Graphical Models

Collaborative filtering for Graphical models is a well studied area, [82], [166], [59], [159]. How-

ever, a large proportion of the literature is dedicated to a finite valued hidden state and obser-

vation process. Recently, driven by applications in Computer Vision, several works have been

dedicated to inference in Graphical models for continuous hidden state and observation mod-

els [29], [81], [155]. All these works are SMC versions of the Belief Propagation algorithm but

differ in implementation. The Particle Message Passing (PAMPAS) algorithm of [81] is a SMC

algorithm for graphs where each node has a small number of neighbours. The Nonparametric

Belief Propagation (NBP) algorithm of [155] can handle more dense graphs by incorporating

MCMC steps. In [29] the author proposes a purely Importance Sampling based alternative to

NBP. NBP is perhaps the most general of these and is more suited to our sensor network lo-

calisation and tracking problem. In this section, we extend the NBP algorithm to propagate

not just the filters (πn|n−1, πn) but their derivatives as well. Doing so allows us to implement

RML for estimating the localisation parameters. The development of NBP for propagating the

derivatives (πn|n−1, πn), denoted as (̊πn|n−1, π̊n), is based on the work [136], which studies a

centralised implementation of filter derivatives only.

The organisation of this chapter shall be as follows. In Section 8.2 we formulate the collabo-

rative filtering problem for sensor networks as a distributed Hidden Markov Model and adopt

a Recursive Maximum Likelihood approach for the localisation problem. In Section 8.3 we

show how the algorithms of Chapter 7 can be extended for nonlinear models by appropriate

linearisations. In Section 8.4, we analyse how message passing can be used around the net-

work to perform distributed filtering and localisation and also show how we can approximate
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the messages so that they can be used for a particle implementation. In Section 8.5 we present

the particle approximations for the filters, their derivatives and the likelihood gradients. In

Section 8.6 we present the particle algorithm to solve the problem. Finally, in Section 8.7 we

use this algorithm to solve the problem for a particular numerical example.

8.2 Problem Formulation

In this section we shall formulate the distributed filtering problem suited to the collaborative

filtering and sensor self localisation problem. As this has been done in much detail in the

previous two chapters we shall only define the variables and parameters that are necessary for

this chapter. We understand that this might involve some repetition of the material presented

in Chapters 6 and 7, but this was done so that the material in this chapter is self contained. In

any case, we shall assume that the reader is familiar with the problem, and keep the repetition

of previously made definitions and comments to a minimum.

8.2.1 Parameter Estimation for Hidden Markov Models using Recursive Maximum

Likelihood

A HMM suited for parameter estimation is defined in Section 3.3. RML is an online algorithm

that refines the parameter estimates as new data arrives using a stochastic gradient ascent ap-

proach. A detailed description is found in Section 3.5.3. In summary, a recursion is maintained

for computing the quantity [∇ log p(Yn|Y1:n−1)]|θ=θn
needed by the gradient ascent algorithm

and this recursion needs to propagate pθn(xn|Y1:n−1) and pθn(xn|Y1:n) as well as the gradient of

these filters with respect to the parameter θn.In the spirit of [98, 136] we provide the following

definitions to assist the exposition of this chapter:

πn|n−1(xn) = pθn(xn|Y1:n−1)

=

∫
f(xn|xn−1)πn−1(xn−1)dxn−1,

π̊n|n−1(xn) ≡ ∇θnpθ(xn|Y1:n−1)

=

∫
∇θnf(xn|xn−1)πn−1(xn−1)dxn−1 +

∫
f(xn|xn−1)̊πn−1(xn−1)dxn−1,
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πn(xn) = pθn(xn|Y1:n)

=
gθn(Yn|xn)πn|n−1(xn)∫
gθn(Yn|xn)πn|n−1(xn)dxn

,

π̊n(xn) ≡ ∇θnpθ(xn|Y1:n)

=

(∇gθn(Yn|xn)

gθn(Yn|xn)
+
π̊n|n−1(xn)

πn|n−1(xn)
−
∫ [∇gθn(Yn|xn)

gθn(Yn|xn)
+
π̊n|n−1(xn)

πn|n−1(xn)

]
πn(xn)dxn

)
πn(xn).

The recursion for (̊πn|n−1, π̊n) can be derived using the standard product rule for differentiation

and interchanging derivatives and integrals where required. The actual form of the steepest

ascent used in [136] is

θn+1 = θn+
γn+1∫

gθn(Yn|xn)πn|n−1(xn)dxn

[∫ (
∇gθn(Yn|xn)πn|n−1(xn) + gθn(Yn|xn)̊πn|n−1(xn)

)
dxn

]
,

8.2.2 Collaborative Filtering of Distributed Hidden Markov Models defined for

Sensor networks

In Section 3.7.5 and 3.7.6 we provide a generalisation of HMM and RML for distributed prob-

lems using Graphical Models. In this chapter, we will use a slightly different choice of poten-

tial functions and follow the problem formulation of Chapter 7. In summary, we consider the

sensor network (V, E) which is an undirected Graphical model with a tree topology where V
are the set of nodes of the network and E are the set of edges. Nodes i, j ∈ V are connected

provided the edge (i, j) ∈ E exists. All nodes are time synchronised distributed trackers and

observe a single physical target at discrete time intervals n ≥ 0.

The non-linear non-Gaussian setting can be expressed with the following distributed Hid-

den Markov Model (HMM),

Xr
n|Xr

n−1 = xr
n−1 ∼ fn(.|xr

n−1), (8.1)

Y r
n |Xr

n = xr
n ∼ gr

n(.|xr
n). (8.2)

where Xr
n ∈ Rdx is the hidden state and Y r

n ∈ Rdr
y is the measurement made by node r at time

n. A common state-space Rdx and transition model fn(.|xr
n−1) is adopted for all nodes r ∈ V

since they track the same physical target. The target’s transition model fn and is assumed time

varying for generality.

The vector Xr
n at node r is defined relative to the local coordinate system of node r which

regards itself as the origin. Similarly for nodes the rest of the nodes. In a standard target
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tracking setup the state-space is R4,

Xr
n = [Xr

n(1),Xr
n(2),Xr

n(3),Xr
n(4)]T ∈ R4,

whereXr
n(1) and Xr

n(3) is the target’s x and y position while Xr
n(2) and Xr

n(4) is the velocity in

the x and y direction. The measurement Y r
n made by node r is also defined relative to the local

coordinate system at node r. The observation model gr
n(.|xr

n) is time varying and is different

for each node. Also, the length of the observation vector Y r
n need not be the same for different

nodes, since each node may be equipped with a different sensor type. For example, node r may

obtain measurements of the target’s position while node v measures bearing.

We define θi,j
∗ to be the position of node i in the local coordinate system of node j. This

means that the vector Xi
n relates to the local coordinate system of node j as follows

Xj
n = Xi

n + θi,j
∗ .

By default, θv,v
∗ = 0 for all v ∈ V . We assume the nodes are not mobile. Therefore the localisation

parameters θ∗ := [θi,j
∗ ](i,j)∈E are static. We note the following obvious relationship: if nodes i

and j are connected through intermediate nodes j1, j2, . . . , jm then

θi,j
∗ = θi,j1

∗ + θj1,j2
∗ + θj2,j3

∗ + . . .+ θ
jm−1,jm
∗ + θjm,j

∗ . (8.3)

As in the previous chapters we define θi,j
∗ so that the dimensions are the same as the target

state vector. This means that only the first and third component of θi,j
∗ is relevant while for the

velocity components of θi,j
∗ we have θi,j

∗ (2) = θi,j
∗ (4) = 0. In general, in the collaborative filtering

problem, each node r propagates

prediction step: πr
n|n−1(x

r
n) =

∫
fn(xr

n|xr
n−1)π

r
n−1(x

r
n−1)dx

r
n−1, (8.4)

update step: πr
n(xr

n) ∝ pr
n(Yn|xr

n)pr
n(xr

n|Y1:n−1), (8.5)

where Yn ≡ [Y v
n ]v∈V , and

pr
n(Yn|xr

n) =
∏

v∈V
gv
n(Y v

n |xr
n + θr,v

∗ ).

The prediction step can be implemented locally at each node without exchange of information,

but the update step is replaced with

πr
n(xr

n) ∝ πr
n|n−1(x

r
n)
∏

v∈V
gv
n(Y v

n |xr
n + θr,v

∗ ). (8.6)
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The gradients of the distributed filters are denoted as (̊πr
n|n−1, π̊

r
n). The derivation of the recur-

sion for (̊πr
n|n−1, π̊

r
n) resembles the one above for (̊πn|n−1, π̊n) and therefore will be omitted.

We will derive a truly distributed implementation of the collaborative filtering problems,

i.e. each node executes the filtering update using its own variables and parameters as well as

incoming messages. The message passing algorithm should be scalable with the size of the

network. However, collaborative filtering hinges on knowledge of the localisation parameters

[θi,j
∗ ](i,j)∈E which are unknown apriori.

8.2.3 Distributed Recursive Maximum Likelihood Applied to Sensor Localisation

We consider first the RML procedure. Let θn = [θi,j
n ](i,j)∈E be the estimate of the true

parameter θ∗ given the available data Y1:n−1. At a given node r that controls edge (r, j) the

following RML algorithm is implemented,

θr,j
n+1 = θr,j

n + γr
n+1

[
∇θr,j log

∫ (∏

v∈V
gv
n(Y v

n |xr
n + θr,v)

)
πr

n|n−1(x
r
n)dxr

n

]∣∣∣∣∣
θ=θn

,

where we have used property (8.3) to obtain {θr,v}v∈V from θ = {θi,j}(i,j)∈E . We remark that

pr
θ(Yn|xr

n) is not a time homogeneous likelihood and perhaps should have been explicit with an

additional subscript n as follows pr
θ,n(Yn|xr

n). We write pr
θ(Yn|xr

n) to simplify the notation.

Furthermore, note that node r updates θr,j
n to ascend the log-likelihood of [Y v

n ]v∈V given all

the measurements received in the network from time 1 to n − 1. Thus the RML procedure is

truly collaborative. Also, the gradient is evaluated at θn, while only θr,j
n is available locally at

node r. The remaining values θn are stored across the network. All nodes of the network that

control an edge parameter will implement the RML recursion shown above.

8.2.4 Contribution of this Chapter

For a linear Gaussian state-space model, closed-form expressions exist for (πr
n|n−1, π

r
n) and

(̊πr
n|n−1, π̊

r
n). We have already presented these in Chapter 7. In the next section, we shall show

how to implement local linearisation steps, so that the algorithms in Chapter 7 can be used

for nonlinear Gaussian models. The remainder of the chapter shows how a truly distributed

implementation may be obtained for nonlinear non-Gaussian models. We shall propose this

time a Sequential Monte Carlo estimation algorithm based on RML that allows simultaneous

estimation of the localisation parameters and collaborative filtering. We will derive distributed
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SMC approximations for the recursion for (̊πr
n|n−1, π̊

r
n) in the spirit of [136]. These distributed

SMC approximations to (πr
n, π̊

r
n) build on Nonparametric Belief Propagation that has already

been proposed for Graphical models in [155].

8.3 Linearisation for Distributed Filtering and RML

An Extended Kalman Filter (EKF) implementation for distributed RML can be derived a based

on local linearisation. Let the distributed tracking system be given by the following model:

Xr
n = ϕn(Xr

n−1) + V r
n , (8.7)

Y r
n = φr

n(Xr
n) +W r

n. (8.8)

where noise V r
n and W r

n are iid, zero mean and Gaussian.

We will now illustrate how the distributed filtering and distributed RML algorithms of

Chapter 7 can be appropriately modified by employing linearisations of the nonlinear state

space model in (8.7)-(8.8). At time n, prior to receiving [Y v
n ]v∈V , let θn = {θi,j

n }(i,j)∈E be the

estimate of the true localisation parameter θ∗ given the available data Y1:n−1. Each node will

linearize its state and observation model about the filtered and predicted mean respectively.

Specifically, a given node r will implement:

Xr
n = ϕn(µr

n−1) +∇ϕn(µr
n−1)(X

r
n−1 − µr

n−1) + V r
n , (8.9)

Y r
n = φr

n(µr
n|n−1) +∇φr

n(µr
n|n−1)(X

r
n − µr

n|n−1) +W r
n. (8.10)

where for a mapping f : Rd → Rd, ∇f ≡ [∇f1, . . . ,∇fd]
T with each ∇fi being the vector of

partial derivatives.

Note that after linearisation extra additive terms appear as seen in the setting described

by equations (7.1)-(7.2). The appropriate modifications to Algorithm 7.1 are as follows. In

(7.15), to the right hand side of µr
n|n−1, the term ϕn(µr

n−1) −∇ϕn(µr
n−1)µ

r
n−1 should be added.

Furthermore, all instances of Y r
n should be replaced with Y r

n −φr
n(µr

n|n−1)+∇φr
n(µr

n|n−1)µ
r
n|n−1.

Algorithm 7.2 remains the same.

8.4 Belief Propagation and Message Passing

In Chapter 6 we have introduced the Belief Propagation (BP) algorithm in its general message

passing form to perform inference on graphs. Before showing how nonparametric approxima-
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tions of the messages used in BP can be derived, we shall outline the BP algorithm in a way

better suited for our problem.

The BP algorithm is a message passing algorithm for computing the collaborative filtering

densities

πr
n(xr

n) = pr
n(xr

n|Y1:n), r ∈ V, n ≥ 1,

At time n, upon receiving the observation Yn = {Y v
n }v∈V the following set of messages are

generated for each (j, r) ∈ E ,

m̃j,r
n (xr

n) = gj
n(Y j

n |xj
n)

∏

i∈ne(j)\{r}
m̃i,j

n (xj
n)

∣∣∣∣∣∣
xj

n=xr
n+θr,j

. (8.11)

Each node will send a different m-message to each of its neighbours. The message sent from

node j to r is the product of the m-messages received by node j from all its neighbours, except

node r, with its local likelihood gj
n(Y j

n |xj
n).

Thus the message mj,r
n can only be generated once node j has received all the messages

from its remaining set of neighbouring nodes. This implies that the messages are initiated by

the leafs of the tree, i.e., nodes with only one neighbour. This product is then converted into

a function of xr
n by the coordinate transformation xj

n = xr
n + θr,j. Note that we could have

defined instead undirected Graphical model potentials as

ψn(xr
n, x

j
n) = δxr

n+θr,j (xj
n),

φn(xj
n) = gj

n(Y j
n |xj

n),

and perform the standard BP algorithm presented in Section 3.7.1. For the sake of simplicity

we preferred to use the notation presented in equation (8.11).

We introduce an extra step to normalise each message

mj,r
n (xr

n) =
m̃j,r

n (xr
n)∫

m̃j,r
n (xr

n)dxr
n

, (8.12)

so that mj,r
n integrates to one. In standard BP this normalisation step is actually redundant.

Here it is added because Nonparametric Belief Propagation interprets the product of messages
∏

j∈ne(r)/j

mj,r
n (xr

n) as a product of normalised distributions, from which it is possible to sample

from. Also, this implies that the messages should be integrable.
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Once node r has received a message from all its neighbours, the desired collaborative filter-

ing distribution at node r is

πr
n(xr

n) ∝ πr
n|n−1(x

r
n)gr

n(Y r
n |xr

n)
∏

j∈ne(r)

mj,r
n (xr

n), (8.13)

where πr
n|n−1 is given by a local prediction step at node r. We remark that (8.13) agrees with

(8.6).

8.4.1 Nonparametric Belief Propagation for Approximating the Messages

In [155], the NBP approximation to the message mj,r
n is described as a simple two step proce-

dure. The first step is to use
∏

i∈ne(j)\{r}m
i,j
n (xj

n) as the instrumental distribution for sampling

from mj,r
n . This will require that the samples1 {Xj,(l)

n }Nl=1 from this instrumental be corrected

with a weight proportional to gj
n(Y j

n |Xj,(l)
n ). The actual step of generating these samples can

be achieved by Gibbs sampling assuming that each term in the product that defines the in-

strumental is a mixture of Gaussians. The second step is to smooth the importance sampling

approximation to mj,r
n using a Gaussian kernels, which will ensure that the approximate mes-

sage is again a mixture of Gaussians and hence the same algorithm can be applied by node r

when generating messages to its neighbours.

8.4.1.1 NBP and Sampling from Products of Mixtures

We represent the nonparametric approximation of each message as a mixture of Gaussian ker-

nels

m̂j,r
n (xr

n) =

N∑

l=1

αr,(l)
n N (xr

n;µr,(l)
n ,Σr

n),

where N (xr;µ
r,(l)
n ,Σr

n) is the multivariate Gaussian kernel with mean µ
r,(l)
n and covariance Σr

n.

Each weight α
(l)
n is associated to each lth kernel. The weights are normalised,

N∑

l=1

αr,(l)
n = 1,

so that m̂j,r
n (xr) integrates to one. The covariance Σr

n is also referred as the bandwidth or smooth-

ing parameter. Other possible kernels may be used as well, see [147], but for our approach we

shall consider only nonparametric representations of Gaussian mixtures.

1In this chapter any superscript enclosed in brackets denotes sample index while superscripts not enclosed in

brackets, j in the current example, implies the samples are defined w.r.t. the local coordinate system of node j.
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In equation (8.11), we see thatmj,r
n (xr

n) is a function of
∏

i∈ne(j)\{r}
mi,j

n (xj
n). Before computing

m̂j,r
n (xr) we assume that all m̂i,j

n (xj
n) are available for all i ∈ne(j)\{r}. Each m̂i,j

n (xj
n) is itself

a mixture of Gaussians. In order to obtain α
(l)
n , µ

r,(l)
n ,Σr

n and thus m̂j,r
n at each r, a sampling

mechanism will be used. At node r, we first sample from the product of the mixtures attributed

to all the incoming messages. The sample from this product is then corrected by reweighing to

take into account the effect of the local likelihood. Then, we then use a smooth kernel density

approximation so that the approximated message m̂j,r
n (xr) is guaranteed to be a mixture of

Gaussians. Then, it can be passed as an incoming message to the next node, so that the next

message passing iteration takes place.

This iterative BP scheme is referred as Nonparametric Belief propagation (NBP), since the

underlying messages are approximated by nonparametric representations. The procedure of

NBP is outlined in detail as follows. Before each node j passes a message to its neighbour r, it

samples N times from a density proportional to the product of mixtures of the neighbouring

nodes of j. Let each sample be denoted as

Xj,(l)
n

i.i.d
∼

∏

i∈ne(j)\{r}
mi,j

n (·),

where l = 1, ..., N . Then node j reweighs these samples according to gj
n(Y j

n |xj
n). The sample set{

X
j,(l)
n

}N

l=1
is passed to node r, which in turn uses it to produce N samples from the pairwise

potential function ψn(xr
n, x

j
n) as follows

Xr,(l)
n

i.i.d
∼ ψn(·,Xj,(l)

n ),

where l = 1, ..., N . In our case, sampling from ψn(xr
n, x

j
n) is equivalent to applying the coordi-

nate transformation. Of course the last step can be done also at node j. Finally, α
r,(l)
n , µ

r,(l)
n ,Σr

n

are computed to get a smooth approximation of mj,r
n .

It is apparent that NBP inherently relies on being able to sample from a product of mixture

distributions. Since the publication of the seminal work of [155] there has been increased atten-

tion to the problem of sampling from a product of mixture distributions. Moreover, the same

authors in [80] proposed an improved intelligent sampling mechanism for sampling from a

product of Gaussian mixtures. We shall now present a Gibbs sampling routine presented for

the case of Gaussian mixtures, which is of interest and has also appeared in [81]. For simplicity

in the description of the algorithm we drop the time subscript n.
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Algorithm 8.1 Sampling from a product of Gaussian mixtures as in [155]: Given d mixtures of

N Gaussians, we aim to obtain M iid samples, {X(p)}Mp=1, from

d∏

k=1

N∑

l=1

ωk,(l)N (x;µk,(l),Σk)

• For j = 1, ..., d,

– For the jth mixture, choose a starting label lj ∈ [1, ..., N ], by sampling such that P (lj =

l) ∝ ωj,(l).

• For j = 1, ..., d,

– Calculate the mean µ̂ and Σ̂ of the product
∏
k 6=j

N (x;µk,(lk),Σk) using

Σ̂−1 =
∑

k 6=j

Σk−1
(8.14)

Σ̂−1µ̂ =
∑

k 6=j

Σk−1
µk,(lk) (8.15)

– For i = 1, ..., N ,

* Use (8.14)-(8.15) to calculate the mean µj,(i) and covariance Σ
j,(i)

of N (x;µj,(i),Σj)N (x; µ̂, Σ̂).

* Using any convenient x compute the weight

ωj,(i) = ωj,(i)N (x;µj,(i),Σj)N (x; µ̂, Σ̂)

N (x;µj,(i),Σ
j,(i)

)
.

– Sample a new label lj such that P (lj = l) ∝ ωj,(l).

• Repeat the previous step κ times until convergence.

• Using (8.14)-(8.15) compute mean µ and covariance Σ of
d∏

k=1

N (x;µk,(lk),Σk).

• For p = 1, ...,M , sample X(p) i.i.d.
∼ N (x;µ,Σ).

Note that it is possible to generalise this Gibbs sampling approach to products of non-

Gaussian mixtures. Whilst the above Gibbs sampling approaches presented is very elegant,
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there have been expressed slight considerations about executing an MCMC procedure within

an iterative algorithmic scheme such as Belief Propagation. MCMC within a particle filtering

context has been used [24], it sometimes referred to as being inefficient [132]. Assuming we run

κ Gibbs sampling iterations, the computational cost of such an algorithms is O(κdN2). In the

numerical example we observed that κ was quite small and Gibbs sampling converged very

fast. In addition, the computational cost can be reduced by employing the auxiliary particle

filtering approach of [132]. This was done in [29] for the problem of filtering within dynamic

Graphical Models. Our methodology can be extended to follow the framework of [29] without

any problem.

8.4.1.2 Approximating the m-message

We shall now show how α
r,(l)
n , µ

r,(l)
n ,Σr

n can be computed in order to obtain m̂j,r
n (xr). As-

sume that all mi,j
n (xj

n) integrate to one and we can approximate them as a mixtures of Gaus-

sians. We can generate samples {Xj,(l)
n }Nl=1 from a density proportional to

∏
i6=r

mi,j
n (xj

n) using the

Gibbs sampling approach detailed in earlier in Algorithm 8.1, where the product
∏
i6=r

denotes

∏
i∈ne(j)\{r}

. The samples {Xj,(l)
n }Nl=1 are then assigned the weight

̺r,(l)
n :=

gj
n(Y j

n |Xj,(l)
n )

∑N
l=1 g

j
n(Y j

n |Xj,(l)
n )

Moreover, the weighted samples {(̺r,(l),X
j,(l)
n )}Nl=1 are transformed to {(̺r,(l), X̃

r,(l)
n := X

j,(l)
n −

θr,j)}Nl=1 by using the appropriate coordinate transformation.

The next step is to smooth the approximation for mj,r
n (xr). We compute the empirical co-

variance of {(̺r,(l), X̃n
r,(l)

)}Nl=1,

Σn =
N∑

l=1

̺r,(l)
n (X̃r,(l)

n − µn)(X̃r,(l)
n − µn)T

where

µn =
N∑

l=1

̺r,(l)
n X̃r,(l)

n .

We then set

Σr
n = diag(Σnii

)nx

i=1,

µr,(l)
n = X̃r,(l)

n = Xj,(l)
n − θr,j,
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αr,(l)
n = ̺(l)

n ,

where diag(Σnii
)nx

i=1 denotes the diagonal matrix composed from the elements of Σn. The re-

sulting smooth approximation of mj,r
n can be equivalently written as

m̂j,r
n (xr

n) =
1

|Σr
n|1/2

N∑

l=1

αr,(l)
n N (

√
Σr

n(xr
n − µr,(l)

n )) (8.16)

where N (x) is the pdf of a multivariate Gaussian random variable with mean zero and vari-

ance I . The m-message from node j to node r at iteration n may thus be summarised as(
{(α(l)

n , µ
r,(l)
n )}Nl=1,Σ

r
n

)
. In fact, the kernel smoothing step, i.e. computing Σr

n, can actually

be performed at the destination node r if desired. Note that this smoothing step using the em-

pirical covariance of {(α(l)
n , µ

r,(l)
n )}Nl=1 is a standard approach for constructing nonparametric

approximations of a density. For more details, see [147].

8.4.2 Nonparametric Belief Propagation for Approximating the Gradients of the

Messages

In the remainder of this section, we will see how the NBP algorithm can provide smooth ap-

proximations for the gradient ofmj,r
n (xr

n). This message, which is not part of the usual BP algo-

rithm, is needed for the propagation of the derivatives of the collaborative filters (̊πn|n−1, π̊n).

The gradient propagation of the gradients is a necessary for estimating the localisation param-

eters using RML.

At time n, the messages m̊j,r
n (xr

n) are defined for each (j, r) ∈ E as

m̊j,r
n (xr

n) ≡ ∇xrmj,r
n (xr

n). (8.17)

Let
̂̊
mj,r

n denote the smooth approximation of m̊j,r
n (xr

n). Once m̂j,r
n has been generated,

̂̊
mj,r

n

can be generated without any further need of sampling or smoothing. We will develop an

Importance Sampling (IS) approximation to m̊j,r
n (xr) using mj,r

n (xr) as the instrumental. This

requires the use of a re-weighting step.

The m̊j,r
n -message from node j to r can be written as

m̊j,r
n (xr

n) = C−1


∇g

j
n(Y j

n |xj
n)

gj
n(Y j

n |xj
n)

+
∑

i6=r

m̊i,j
n (xj

n)

mi,j
n (xj

n)


 gj

n(Y j
n |xj

n)
∏

i6=r

mi,j
n (xj

n)

∣∣∣∣∣∣
xj

n=xr
n+θr,j

, (8.18)

where C−1 is an unknown normalizing constant. We will use C−1gj
n(Y j

n |xj)
∏
i6=r

mi,j
n (xj) as
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the importance sampling distribution. Before in order to derive an approximation for mes-

sage mj,r
n above we generated weighted samples {Xj,(l)

n }Nl=1 from C−1gj
n(Y j

n |xj
n)
∏
i6=r

mi,j
n (xj

n)

by sampling from
∏
i6=r

mi,j
n (xj

n) then re-weighting according to gj
n(Y j

n |xj
n). This way we ob-

tained {(αr,(l)
n ,X

j,(l)
n )}Nl=1 as a weighted sample from C−1gj

n(Y j
n |xj

n)
∏
i6=r

mi,j
n (xj

n). Now, we will

re-weight {(Xj,(l)
n , α

r,(l)
n )}Nl=1 according to

(
∇gj

n(Y j
n |xj

n)

gj
n(Y j

n |xj
n)

+
∑

i6=r
m̊i,j

n (xj
n)

mi,j
n (xj

n)

)
to a particle approxima-

tion for C−1
(
∇gj

n(Y j
n |xj

n)

gj
n(Y j

n |xj
n)

+
∑

i6=r
m̊i,j

n (xj
n)

mi,j
n (xj

n)

)
gj
n(Y j

n |xj
n)
∏
i6=r

mi,j
n (xj

n) as

N∑

l=1

αr,(l)
n


∇g

j
n(Y j

n |Xj,(l)
n )

gj
n(Y j

n |Xj,(l)
n )

+
∑

i6=r

m̊i,j
n (X

j,(l)
n )

mi,j
n (X

j,(l)
n )


 δ

X
j,(l)
n

(xj
n). (8.19)

To get m̊j,r
n (xr

n) the coordinate transformation must be applied, i.e. as done in the previous

section for the sample set {Xj,(l)
n }Nl=1, we set xr

n to xj
n − θr,j to get: µ

r,(l)
n = X

j,(l)
n − θr,j.

Also, the same kernel bandwidth that is used to smooth mj,r
n is also used to smooth m̊j,r

n ,

which gives the nonparametric approximation for m̊j,r
n as

̂̊
mj,r

n (xr) =
1

|Σr
n|1/2

N∑

l=1

αr,(l)
n


∇g

j
n(Y j

n |Xj,(l)
n )

gj
n(Y j

n |Xj,(l)
n )

+
∑

i6=r

m̊i,j
n (X

j,(l)
n )

mi,j
n (X

j,(l)
n )


N (

√
Σr

n(xr
n − µr,(l)

n )). (8.20)

8.5 Particle Approximations for the filter derivatives and the likeli-

hood gradients

In the previous section we established how to generate mixtures of Gaussian kernels that ap-

proximate the incoming messages at each node. The message passing algorithm has been re-

duced to a sampling procedure where nonparametric approximations of the messages received

by neighbouring nodes are used to compute a nonparametric approximation of each incoming

message and its gradient at each node. This enables us to use these approximations formj,r
n (xr

n)

and m̊j,r
n (xr) when deriving SMC approximations for the collaborative filtering and prediction

density, their derivatives and the likelihood gradients needed to update the parameter θn using

distributed RML.

At time n − 1, let {(ωr,(i)
n−1,X

r,(i)
n−1)}Ni=1 and {(ω̊r,(i)

n−1,X
r,(i)
n−1)}Ni=1 be the particle approximations

at node r of πr
n−1 and π̊r

n−1 respectively:

π̂r
n−1(x

r
n−1) =

N∑

i=1

ω
r,(i)
n−1δXr,(i)

n−1

(xr
n−1)
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̂̊πr
n−1(x

r
n−1) =

N∑

i=1

ω̊
r,(i)
n−1δXr,(i)

n−1

(xr
n−1)

We assume these particle approximations are available at time n, and we aim to propagate

them in time. In addition, we assume that (j, r) is a valid edge, and also node r, controls or

updates θr,j recursively. We want to derive a particle approximation for the likelihood gradient

Jr
θr,j
n

= ∇θr,j log p(Yn|Y1:n−1)|θr,j
n
.

At the same time the rest of the nodes propagate their collaborative filters together with their

gradients and also update the localisation parameter defined by their adjacent edges. At node

r,we shall consider the approximations for the filters, their gradient and the likelihood gradient

separately.

8.5.1 Collaborative Filters

At time n the collaborative filters have to be computed for each node. The prediction density

at each node is given by

πr
n|n−1(x

r
n) =

∫
fn(xr

n|xr
n−1)π

r
n−1(x

r
n−1)dx

r
n−1.

Replacing πr
n−1 in the above integral with the particle approximation π̂r

n−1(x
r
n) gives the fol-

lowing particle approximation for the prediction density

π̂r
n|n−1(x

r
n) =

N∑

i=1

ω
r,(i)
n−1fn(xr

n|X
r,(i)
n−1). (8.21)

Moreover, the collaborative filter at node r at time n is,

πr
n(xr

n) ∝ πr
n|n−1(x

r
n)gr

n(Y r
n |xr

n)
∏

l

ml,r
n (xr

n).

A particle approximation of πr
n is implemented as follows. For each 1 ≤ i ≤ N , sample X

r,(i)
n

from a user specified importance density q(.|Xr,(i)
n−1 , Y

r
n ) and assign it the weight

ω̃r,(i)
n =

ω
r,(i)
n−1fn(X

r,(i)
n |Xr,(i)

n−1)g
r
n(Y r

n |Xr,(i)
n )

∏
l

m̂l,r
n (X

r,(i)
n )

q(X
r,(i)
n |Xr,(i)

n−1, Y
r
n )

. (8.22)

The weights are then normalised to sum to one

ωr,(i)
n =

ω̃
r,(i)
n∑N

i=1 ω̃
r,(i)
n

(8.23)
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A resampling step can be then used if the effective sample size is small, to obtain π̂r
n(xr

n). This

follows a SISR approach presented in Chapter 2. Note that now we have used m̂l,r
n to approxi-

mate each incoming message ml,r
n .

Many methods of optimally designing q(.|Xr,(i)
n−1, Y

r
n ) can be found in [47]. We shall not make

a detailed discussion on this as it is a well known topic, but rather sketch the most common

approach. Consider for example the nonlinear state-observation model in (8.7)-(8.8) of Section

8.3, The state transition density fn(X
r,(i)
n |Xr,(i)

n−1) is Gaussian and we can obtain a Gaussian ap-

proximation to the likelihood by linearising φr
n(xr) about ϕn(X

r,(i)
n−1). In this manner a Gaussian

approximation to q(.|Xr,(i)
n−1 , Y

r
n ) is constructed. Alternatively, a Laplace or an Unscented ap-

proximation to fn(xr
n|Xr,(i)

n−1)g
r
n(Y r

n |xr) can be constructed as a candidate for q(.|Xr,(i)
n−1 , Y

r
n ). For

more details, see [47].

8.5.2 Filter Derivatives

Our framework is designed so that each node can update or control any parameter defined by

its adjacent edges. The particular choice of which parameters are controlled by which nodes is

flexible, but for simplicity we assume that each parameter is controlled only by a specific node.

This restriction is not necessary, but it serves some practical purposes related with implemen-

tation. For example, if a particular node r controls no edges then it is not necessary to keep

π̊r
n.

Assume node r controls edge (r, j). For the gradient of the prediction density we have

π̊r
n|n−1(x

r
n) =

∫
fn(xr

n|xr
n−1)̊π

r
n−1(x

r
n−1)dx

r
n−1.

Particle approximations to π̊r
n|n−1, as for πr

n|n−1, are obtained by replacing π̊r
n−1 in the above

integral with its particle approximation, giving

̂̊πr
n|n−1(x

r
n) =

N∑

i=1

ω̊
r,(i)
n−1fn(xr

n|X
r,(i)
n−1). (8.24)

For the gradient of the collaborative filtering density we require

π̊r
n(xr

n) =

(
m̊j,r

n (xr
n)

mj,r
n (xr

n)
+
π̊r

n|n−1(x
r
n)

πr
n|n−1(x

r
n)
−
∫ [

m̊j,r
n (xr

n)

mj,r
n (xr

n)
+
π̊r

n|n−1(x
r
n)

πr
n|n−1(x

r
n)

]
πr

n(xr
n)dxr

n

)
πr

n(xr
n).

Let {(ωr,(i)
n ,X

r,(i)
n )}Ni=1 be samples from πr

n. We can obtain an importance sampling approxima-
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tion of π̊r
n, with πr

n as the instrumental distribution as follows,

̂̊πr
n(xr

n) =

N∑

i=1

ω̊r,(i)
n δ

X
r,(i)
n

(xr
n)

where the weight is given by

ω̊r,(i)
n = ωr,(i)

n



̂̊
mj,r

n (X
r,(i)
n )

m̂j,r
n (X

r,(i)
n )

+
̂̊πr
n|n−1(X

r,(i)
n )

π̂r
n|n−1(X

r,(i)
n )

−
N∑

i′=1

ω(i′)
r,n



̂̊
mj,r

n (X
r,(i′)
n )

m̂j,r
n (X

r,(i′)
n )

+
̂̊πr
n|n−1(X

r,(i′)
n )

π̂r
n|n−1(X

r,(i′)
n )




 .

(8.25)

Again as done for propagating π̂r
n, when computing the weight ω̊

r,(i)
n we use the ratio of the

nonparametric versions of the messages
̂̊
mj,r

n

m̂j,r
n

to approximate m̊j,r
n

mj,r
n

.

8.5.3 Likelihood Gradients

Upon making measurements at time n, the localisation parameters θn = {θi,j
n }(i,j)∈E are up-

dated to {θi,j
n+1}(i,j)∈E as follows. Again, assuming node r controls edge (r, j), the localisation

parameter update given by RML can be written as

θr,j
n+1 = θr,j

n + γn+1J
r
θr,j
n

= θr,j
n + γr

n




∫
gr
n(Y r

n |xr
n)m̊j,r

n (xr
n)
∏
l 6=j

ml,r
n (xr

n)πr
n|n−1(x

r
n)dxr

+
∫
gr
n(Y r

n |xr
n)
∏
l

ml,r
n (xr

n)̊πr
n|n−1(x

r
n)dxr

n


 .

Given the particle approximations π̂r
n−1 , ̂̊πr

n−1, and the nonparametric approximations m̂j,r
n ,

̂̊
mj,r

n , we can approximate the above quantities that multiply the step-size γr
n+1 as follows. For

1 ≤ i ≤ N , sample X
r,(i)
n from fn(.|Xr,(i)

n−1) and form the estimate of Jr,j
n as

Ĵr
θr,j
n

=

N∑

i=1

gr
n(Y r

n |Xr,(i)
n )

∏

l 6=j

m̂l,r
n (Xr,(i)

n )

(
ω

r,(i)
n−1

̂̊
mj,r

n (Xr,(i)
n ) + ω̊

r,(i)
n−1m̂

j,r
n (Xr,(i)

n )

)
. (8.26)

8.6 Distributed Particle Algorithm for Sensor Self Localisation

In this section we shall summarise how to solve the self localisation problem using a completely

decentralised RML approach that combines NBP and SMC. NBP is used to provide smooth

approximations of the messages around the network and SMC to compute the integrals needed

to implement the filtering recursion, the recursion of the filter derivatives and the parameter

update using the gradients of the likelihood.
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For each edge (r, j) ∈ E assign a valid controlling node, say r, so as to update parameter

θr,j. At each iteration n all edges should be updated in a cyclic fashion using a valid root node

and hence θr,j will be updated for all (r, j) ∈ E . The distributed algorithm is as follows.

Algorithm 8.2 Particle Algorithm for Sensor Self Localisation using RML and NBP: At time n,

we start having {(ωr,(i)
n−1,X

r,(i)
n−1)}Ni=1 and {(ω̊r,(i)

n−1,X
r,(i)
n−1)}Ni=1 available from time n− 1.

Prediction Filters: For all nodes r ∈ V propagate the prediction filters π̂r
n|n−1(x

r
n) and their deriva-

tives ̂̊πr
n|n−1(x

r
n) as in equations (8.21) and (8.24) respectively.

Propagate messages: After Yn is received, at node j, sample {X j,(l)
n }Nl=1 from a density proportional to

∏
i∈ne(j)\{r}

mi,j
n (xj

n) using Algorithm 8.1. Assign each sample the weight α
j,(l)
n := gj(Y j

n |X j,(l)
n )∑N

l=1 gj(Y j
n |X j,(l)

n )

and pass the weighted sample at node r. At node r, set µ
r,(l)
n = X j,(l)

n −θr,j
n and compute m̂j,r

n ,
̂̊
mj,r

n

as given by (8.16),(8.20) respectively.

Update the parameter θr,j : At each node r sampleX
r,(i)
n from fn(.|Xr,(i)

n−1) and update the localisation

parameter as

θr,j
n+1 = θr,j

n + γr
n+1Ĵ

r
θr,j
n

,

where Ĵr
θr,j
n

is given by (8.26).

Collaborative Filters: At each node r sampleX
r,(i)
n from q(.|Xr,(i)

n−1 , Y
r
n ) and assign it the weights ω

r,(i)
n

and ω̊
r,(i)
n given by equations (8.23) and (8.25) respectively.

• Resampling: At all nodes r resample only for the filter. Resample particles X̃
r,(i)
n with

respect to weights ω
r,(i)
n to obtain N new particles and denote the new particle by ϕn(i),

where ϕn(i) is determined by the resampling mechanism. The particle approximations are

now given by π̂r
n(xr

n) = 1
N

∑N
i=1 δXr,(ϕn(i))

v,n
(xr

n) and ̂̊πr
n(xr

n) =
∑N

i=1 ω̊
r,(i)
n δ

X
r,(i)
n

(xr
n).

Typically, the step-sizes are selected as γr
n = n−γr

, where γr > 0.5, so that
∑

n γ
r
n = ∞ and

∑
n γ

r
n
2 < ∞. As for standard Belief Propagation [130], this algorithm is designed for a sensor

network that admits a tree structure.
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8.7 Numerical Examples

We would like to solve the self localisation problem using Algorithm 8.2 and Algorithm 7.2

when linearisation is used together with a distributed Extended Kalman filter obtained by

Algorithm 7.1. For a bearings-only tracking example, we will demonstrate in both cases the

convergence of the localisation parameters to their true value. As in Chapter 6 we will be ob-

serving a sequence of targets passing through the field of view of the sensor network. Each

target will originate from a different point selected randomly from the boundary of the field

of view and will be moving towards a different direction. Only one target will appear at any

instant and we shall therefore avoid any association problems. The reason for observing many

targets are discussed in Chapter 6 and involves observability issues for θ, and also the practical

issue of having to use a new target when one has left the field of view. Each time a new target

appears the filter is initialised by sampling uniformly from the area around the target defined

by the region [xr − d, xr + d]. We shall use d = 5 for both the x- and y- direction.

As far as the dynamics of each target are concerned, at each node r the state follows a linear

Gaussian update as follows

Xr
n = AnX

r
n−1 +BnV

r
n ,

with V r
n

i.i.d.∼ N (0, Qn), where An, Bn, Qn are the same as in Chapter 7. At each node r, the

target being tracked yields observation Yr,n and obeys the following dynamics

Y r
n = tan−1(Xr

n(1)/Xr
n(3)) +W r

n.

with W r
n

i.i.d.∼ N (0, (σr
n)2), where at each time n, σr

n is randomly chosen for each node r from

the uniform distribution over the values [0.1, 0.5] so that a time varying observation can be

implemented. Note that σr
n is made known only to node r. Also, for the RML step sizes, we

use a constant step size γr = 10−3 and we initialize θr,j = 0 for all (r, j) ∈ E .

8.7.1 EKF Implementation

We we will use the two different sensor networks we used earlier in Chapter 7. The deployment

of the sensors is as shown in Figures shown in Figures 7.3(a) and 7.3(b) (Chapter 7). We plot

the errors θr,j
∗ − θr,j

n for each edge in Figure 8.1(a) and Figure 8.1(b) respectively.
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(a) Convergence of Algorithm 7.2 using the linearised observation model for the

sensor network of Figure 7.3(a)
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(b) Convergence of Algorithm 7.2 using the linearised observation model for the

sensor network of Figure 7.3(b)

Figure 8.1: Parameter error after each RML iteration between the true localization parameter and current estimate

for all edges of each sensor network used. In each plot (a) and (b) show the errors in the x- and y- coordinates

respectively.
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Figure 8.2: Convergence of Algorithm 8.2 using the nonlinear observation model for the sensor network of Figure

7.3(a). Error at each iteration between the true parameter and current update of the localization parameter for all

edges of the sensor net. (a) and (b) show the errors in the x- and y- coordinates respectively.

8.7.2 SMC Implementation with NBP

For the sensor network shown in Figures 7.3(a), we choose nodes {3, 4, 6, 9} as root nodes and

update at each iteration their adjacent edges. In Figure 8.2 we plot the errors θr,j
∗ − θr,j

n against

iteration n. We see that eventually all errors converge to zero. We observe that this implementa-

tion converges faster and with smaller errors than the one obtained earlier through linearisation

and Extended Kalman filtering for the same sensor network.

8.8 Conclusions

In this chapter we have demonstrated how particle methods can be can be combined with Non-

parametric Belief propagation, when used within the Graphical models context. Furthermore,

we have extended this methodology for the static parameter inference problem using a dis-
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tributed implementation of Recursive Maximum Likelihood (RML). The resulting algorithm

can be thought as an extension of the Nonparametric Belief Propagation to compute likelihood

gradients. In addition, we have extended the algorithms of Chapter 7 for nonlinear models by

using appropriate linearisations and Extended Kalman Filtering. All algorithms were applied

to solve the sensor localisation problem for sensor networks, when bearings only tracking is

used.



9
Conclusions

Sequential Monte Carlo (SMC) methods is a rapidly growing area of research in many branches

of science, engineering and computational statistics. In this thesis we aimed to use SMC for

constructing particle approximations that would enable gradient methods to be used in opti-

misation problems regarding control, on line parameter estimation and Graphical models. We

shall conclude by making some remarks on the contribution of our work to SMC methodolgy

and some possible future directions.

9.1 Contributions

In this section we shall summarize the contributions and novelties of the work presented earlier

in each chapter of the thesis.

Chapter 4 focuses on solving the sensor scheduling problem when cast as a controlled Hid-

den Markov Model. We consider the case in which the state, observation and action spaces are

continuous. This general case is important as it is the natural framework for many applica-

202
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tions. In sensor scheduling, our aim is to minimise the variance of the estimation error of the

hidden state with respect to the action sequence. We present a novel SMC method that uses a

stochastic gradient algorithm to find optimal actions. This is in contrast to existing works in

the literature that only solve approximations to the original problem.

In Chapter 5 we presented how an SMC can be used to solve a risk sensitive control prob-

lem. We adopt the use of the Feynman-Kac representation of a controlled Markov chain flow

and exploit the properties of the logarithmic Lyapunov exponent, which lead to a policy gra-

dient solution for the parameterised problem. The resulting SMC algorithm follows a similar

structure with the Recursive Maximum Likelihood (RML) algorithm presented for online pa-

rameter estimation.

In Chapters 6, 7 and 8, dynamical Graphical models were combined with with state space

models for the purpose of online decentralised inference. We have concentrated more on the

distributed parameter estimation problem using two Maximum Likelihood techniques, namely

Recursive Maximum Likelihood (RML) and Expectation Maximization (EM). The resulting al-

gorithms can be interpreted as an extension of the Belief Propagation (BP) algorithm to com-

pute likelihood gradients. In order to design an SMC algorithm, in Chapter 8 we have ap-

proximated the messages of BP using Nonparametric Belief propagation. The algorithms were

successfully applied to solve the sensor localisation problem for sensor networks of small and

medium size.

9.2 Future Directions

In this final section, we discuss of any possible extensions of the work presented in this the-

sis. First of all, a natural limitation of using gradient methods for optimisation problems is

that they guarantee convergence only to local optimum. Appropriate initialisation is therefore

important. We have not considered this at all so far, as there are many heuristics to tackle

this issue. Of course, one can also consider other optimisation methods suited to general state

spaces, such as MCMC or SMC algorithms for Simulated Annealing. A comparison would be

very interesting. From our point of view though, we felt that since in all our problems it was

possible to perform differentiation to the cost or reward function, gradient methods seemed as

the most sensible choice to start from.

Moreover, in the work of Chapter 4 we have considered the minimisation of a variance cri-
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terion. Without any alterations the results can apply also for a Kullback-Leibler (KL) informa-

tion criterion. Another useful extension may be to derive gradient free algorithms using Finite

Difference Stochastic Approximation or Simultaneous Perturbation Stochastic approximation.

This might be of a benefit as far as the high computational cost required is concerned.

The work of Chapter 5 is still at its very first stages and more complex numerical examples

have to be considered. The main purpose of including it in this thesis was to illustrate how the

underlying methodology found in RML can be useful in difficult control problems and register

some early results for risk sensitive control. This work may be very useful in other applications,

such as optimising portfolios in finance.

Chapters 6, 7 and 8 describe how Graphical models can be integrated with state space model

for the purpose of decentralised inference. We have particulary focused on the sensor network

localisation problem. Of course our methodology is generic and we could have included also

the effect of rotation, which would be useful for many computer vision problems, where cam-

eras of different orientations are used. Furthermore, in Chapter 8 the use of an Gibbs sampling

step to perform Nonparametric belief propagation can be replaced by sequential belief propa-

gation using an auxiliary SMC filter as done in [29].
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