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Abstract. The mirror descent algorithm is known to be effective in applications where it is4
beneficial to adapt the mirror map to the underlying geometry of the optimization model. However, the5
effect of mirror maps on the geometry of distributed optimization problems has not been previously6
addressed. In this paper we propose and study exact distributed mirror descent algorithms in7
continuous-time under additive noise and present the settings that enable linear convergence rates.8
Our analysis draws motivation from the augmented Lagrangian and its relation to gradient tracking.9
To further explore the benefits of mirror maps in a distributed setting we present a preconditioned10
variant of our algorithm with an additional mirror map over the Lagrangian dual variables. This11
allows our method to adapt to the geometry of the consensus manifold and leads to faster convergence.12
We illustrate the performance of the algorithms in convex settings both with and without constraints.13
We also explore their performance numerically in a non-convex application with neural networks.14
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1. Introduction. The choice of mirror map has a significant impact on both the18
theoretical and numerical performance of the Mirror Descent (MD) algorithm [4, 9].19
With an appropriate choice of the mirror map, MD captures the geometry of the20
optimization model more faithfully than other first-order methods. We illustrate this21
point in Figure 1a by plotting the vector fields generated by MD (using the negative22
entropy function as the mirror map) and Projected Gradient Descent (PGD) (with23
Euclidean projection) for a strongly convex quadratic optimization problem over the24
three-dimensional simplex. It is clear from Figure 1a that the PGD vector field points25
in the correct direction towards the unique minimum. But as soon as the PGD vector26
field hits the boundary, then the algorithm slows down considerably. The slowdown27
is due to the fact that the gradient always points towards the direction of steepest28
descent for the objective function irrespective of the constraints. When PGD hits29
the boundary, then the steepest descent direction is no longer appropriate for the30
problem’s geometry. When MD hits the boundary of the feasible region, it glides31
across the boundary and towards the solution. This observation is reflected in the32
numerical performance of the two algorithms. In Figure 1b we indeed see that PGD33
initially makes good progress towards the solution but then stalls. MD, on the other34
hand, is slower in the first two iterations but converges to the optimal solution much35
faster. This phenomenon is not only present in problems with constraints but is also36
relevant in unconstrained problems, especially for ill-conditioned problems, and inverse37
optimization problems that have a sparsity inducing norm in the objective function.38
For example, in unconstrained ill-conditioned problems, the gradient descent method39
performs no preconditioning, whereas mirror descent uses the Hessian of the mirror40
map as a preconditioner (see Section 3.1).41

There exists no theoretical or algorithmic framework to explain how to compute42
an optimal mirror map for a given problem. However, mirror maps for some particular43
classes of problems are well known (see Appendix A.1, [4], [9]). Mirror descent,44
and especially the effect of the choice of the mirror map for distributed optimization45
problems has received much less attention (see Section 1.1 for related work). Distributed46
optimization problems, even when otherwise unconstrained, have to satisfy a consensus47
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(a) Vector Fields of Central-
ized PGD/MD

(b) PGD/MD iterations (c) Vector Fields of Distrib-
uted PGD/MD

Fig. 1: Vector fields for Projected Gradient Descent (PGD) and Mirror Descent
(MD) for a quadratic function over the three dimensional simplex (we plot the two
dimensional projection). MD uses the negative entropy function as the mirror map,
and PGD performs the projection using the `2 norm.

constraint, and existing algorithms do not capture the geometry of the consensus48
manifold. Motivated by the attractive features of the mirror descent algorithm49
described above, we attempt to answer the question: Does there exist a distributed50
variant of Mirror Descent that can accurately capture the geometry of distributed51
optimization models? To answer this question, we study distributed algorithms for the52
following optimization model,53

(1.1) min
xi∈X

N∑
i=1

fi(x
i), s.t. xi = xj ∀(i, j) ∈ E.54

The {xi}Ni=1 with indices i = 1, ..., N denote the computational nodes or particles,55
as we refer to them in previous work [6]. These communicate through a strongly56
connected, weighted, undirected graph G := (V,E,A); where V represents the nodes57
of the graph, E its edges and A is the adjacency matrix. Each particle has access to58
its own objective function fi : Rd → R, and constraint set X ⊂ Rd.59

For the purposes of motivating the results of our work consider the following60
natural generalization of Distributed Mirror Descent (DMD),61

(1.2) ∂t∇Φ(xit) = −∇fi(xit)−
N∑
j=1

Aij(x
i
t − x

j
t ) i = 1, . . . , N,62

where Φ is the mirror map, and Aij is the weight of edge (i, j). We call a distributed63
algorithm exact if it converges to a solution that it is both optimal and satisfies the64
consensus constraint. In Figure 1c we plot the vector field generated by (1.2) on a65
quadratic optimization model with N = 2 over the three dimensional simplex, and66
the centralized MD algorithm. The centralized MD algorithm for (1.1) substitutes the67
constraints in the objective function and follows the dynamics below,68

∂t∇Φ(xt) = −
N∑
j=1

∇fi(xt).69

As expected, the two algorithms generate different vector fields. What is more70
concerning is that the Distributed Mirror Descent in (1.2) does not converge to71
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Reference Mirror Rate Exact Noise Step-size

Liang et al. [21] No Linear Yes No -

[22, 16, 23, 43] No N/A Yes No -

Sun et al. [38] Yes N/A Yes No -

This work Yes Linear Yes Yes -

Shi et al. [36] No Linear Yes No Constant

Qu & Li [30] No Linear Yes No Constant

Jakovetic et al. [19] No Sub-Linear No No Diminishing

Pu & Nedic [29] No Linear Yes Yes Constant

Ram et. al. [32] No N/A Yes/No Yes Diminish./Const.

Duchi et al. [13] Yes Sub-Linear Yes/No Yes Diminish./Const.

Nedic et al. [27] Yes N/A Yes Yes Diminishing

Shahrampour et al. [33] Yes Sub-Linear Yes Yes Diminishing

Table 1: Overview of convergence rates for different types of algorithms. Exact refers
to whether or not the algorithm achieves exact consensus, and mirror refers to whether
or not the algorithm allows for mirror maps. Continuous time methods are marked as
- in the step size entry.

the unique solution of the problem. This observation is not surprising given that72
Distributed Gradient Descent (DGD) (unless suitable modifications are made to the73
algorithm) also fails to converge to the exact solution of distributed optimization74
problems [42]. The second question we seek to address in this paper is: How should75
the dynamics of distributed mirror descent be modified, so that convergence to the76
exact solution is guaranteed? These guarantees are meant to hold for determistic77
dynamics, but in this paper we will also consider the more general case of stochastic78
dynamics with additive noise, where the noise is added to account for corrupted79
gradient information, data sub-sampling (as is the case in stochastic gradient descent)80
or errors due to the network, such as communication channels being corrupted.81

1.1. Previous work. Distributed optimization has a variety of applications.82
Removing the existence of a central server and having the nodes communicate in a83
decentralized manner can remove both computational bottlenecks and privacy risks.84
A classic reference for distributed optimization is [5], and more recent applications85
in statistical learning are described in [8]. The authors in [10] also describe several86
interesting applications. A variant of distributed optimization known as federated87
learning [25] was proposed recently for solving optimization problems in which the88
data is stored across a very large number devices for privacy purposes.89

The literature on distributed optimization algorithms is vast. Since this paper90
focuses on distributed first-order algorithms for convex optimization models, we will91
focus on this class of algorithms. Two algorithmic techniques can be used to develop92
exact distributed optimization algorithms. The first technique uses diminishing step-93
sizes, and the second one relies on gradient tracking. Gradient tracking is closely94
related to augmented Lagrangian methods (see Section 3 for more details). Algorithms95
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with diminishing step-sizes tend to be very slow in practice, so recent literature focuses96
on using constant step-sizes. The algorithm we propose in this paper, and its variants,97
are developed in continuous time. The works of (among others) [16, 22, 38, 23, 43]98
also analyze decentralized optimization schemes in continuous time. The works of99
[13, 27, 33, 32] focus on an analysis of the distributed mirror descent algorithm. In100
Table 1, we summarize selected related works that show how this paper fits within101
the existing literature. Current works on exact distributed algorithms, with a fixed102
step-size, are only based on gradient or sub-gradient descent. Table 1 also lists103
earlier proposed exact distributed algorithms in discrete time, which rely on the slower104
mechanism of diminishing step-sizes to achieve exact convergence. Moreover, the mirror105
maps in the existing literature are used only to model accurately the geometry of the106
separable constraints and not the consensus constraint that is the distinguishing feature107
of this paper. Finally, we note mirror descent dynamics are related to Riemannian108
descent as presented in e.g. [2, 11] and preconditioning [17, 1, 34].109

1.2. Main results and contributions. Our results are based on a continuous-110
time analysis of stochastic mirror descent dynamics. Our contributions can be summa-111
rized as follows,112

• In Section 4.1 we show that without strong assumptions on the minimizers113
of each fi, the classic distributed stochastic mirror descent formulation with114
constant noise achieves exponential convergence to a neighborhood around115
a different point than the optimum and that the size of this neighborhood116
cannot be reduced using the mirror map or reducing noise.117

• To address the inexactness of the conventional DMD algorithm we propose an118
exact variant called Exact Interacting Stochastic Mirror Descent (EISMD),119
that is able to converge exponentially fast to a much smaller neighborhood120
than the conventional distributed mirror descent (Section 4, Proposition 4.4).121

• We propose a preconditioned version of EISMD, which adapts the mirror122
map based on the geometry of the consensus manifold resulting in even faster123
convergence (Proposition 4.6).124

• In Section 5 we illustrate in detail the performance of our algorithms in125
constrained and unconstrained convex optimization problems.126

2. Preliminaries. In this section we fix our notation, state our main assumptions127
and establish some useful technical lemmas that will be used later.128

2.1. Notation. We use ⊗ to denote the Kronecker product, Id the d-dimensional129
identity matrix and 1d denotes the d-dimensional vector of ones. Diag(a) with a ∈ Rd130
denotes a matrix with diagonal elements [a1, ..., ad]. We use A to denote the N ×N131
weighted adjacency matrix associated with a graph G = (V,E). The graph Laplacian132
is given by L := Diag(A1N ) − A and we use the following notation L := L ⊗ Id133
with L ∈ RNd×Nd to denote the vectorized version of the graph Laplacian. We use134
〈x, y〉 = x>y for the standard dot product, and 〈x, y〉Q = 〈x,Qy〉 = x>Qy for the135
Q-inner product, for some positive definite matrix Q. We use A � B to denote a partial136
matrix ordering meaning A−B � 0. We assume that X ⊆ Rd is a convex set. We use D137
to denote an open set such that X ⊂ cl(D). The set D will be used to denote the domain138
of the mirror maps of the mirror descent algorithm. We use X ? to denote the dual space139
of X . The normal cone of X is defined as NX (x) = {z ∈ X ? | 〈z, y − x〉 ≤ 0 ∀y ∈ X}.140

Given an arbitrary norm || · || on Rd, we will define B‖·‖ := {v ∈ Rd : ‖v‖ ≤ 1}.141
The dual norm ‖ · ‖∗ is defined as ‖z‖∗ := sup{〈z, v〉 : v ∈ B‖·‖}. If A is a matrix142
then ‖A‖2 denotes its spectral norm and we assume that the dual norm is compatible143
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with the spectral norm, i.e. ‖Az‖∗ ≤ ‖A‖2 ‖z‖∗. We will make use of the following144
generalized Cauchy inequality,145

|〈v, w〉| ≤ ‖v‖∗‖w‖ ∀w ∈ X , v ∈ X ?.146147

Since 0 ≤ (‖v‖∗ − ‖w‖))2 = ‖v‖2∗ + ‖w‖2 − 2‖v‖∗‖w‖, we also have,148

(2.1) 〈v, w〉 ≤ 1

2
‖v‖2∗ +

1

2
‖w‖2.149

A function g is said to be L-Lipschitz continuous with respect to a norm ‖ · ‖ if150
‖g(x) − g(y)‖ ≤ L‖x − y‖, ∀x, y ∈ X . The Bregman divergence associated with a151
convex, differentiable function g : X → R is defined as follows,152

Dg(x, y) = g(x)− g(y)− 〈∇g(y), x− y〉.153154

If the second-order derivative of g exists it furthermore holds,155

∇xDg(x, y) = ∇g(x)−∇g(y), ∇yDg(x, y) = ∇2g(y)(y − x).(2.2)156157

The aggregate cost function will be written as f(x) =
∑N
i=1 fi(x

i), where x =158

[x1T , . . . , xN
T

]T denotes the stacked vector of particles and each xi ∈ X . We will159
use (X?,Λ?) to denote the set of primal-dual variables that satisfy the first order160
optimality conditions for (1.1). Unless specified otherwise gradient vectors ∇f are161
taken with respect to the joint particle vector x following the usual conventions and162
the same applies for Hessian matrices.163

Remark 2.1. The space of the Lagrange multipliers for the consensus constraint,164
λ ∈ Λ ⊂ RNd, will play an important role in the definition of the algorithms below.165
We note that the norm associated with λ ∈ Λ will not necessarily be the same as the166
one used for the primal variables x ∈ XN . We will however use the same notation:167
‖ · ‖, and its dual ‖ · ‖∗ for both spaces, and it will be clear from context which norm168
is being used. For w = [x>, λ>]> we will use the following mixed norm convention169
‖w‖ = ‖x‖+ ‖λ‖, with the understanding that the two norms could be different. For170
example, the norm in XN could be the `1, and in Λ the Q-norm (for some positive171
definite matrix Q) so that, ‖w‖ = ‖x‖1 + ‖λ‖Q.172

2.2. Assumptions and Definitions.173

2.2.1. Optimality Conditions and Model Assumptions. The consensus174
constraint in (1.1) is satisfied if and only if Lx = 0, where L denotes the vectorized175
graph Laplacian. Therefore the optimality conditions for (1.1) are as follows,176

−∇f(x?)− Lλ? ∈ NX (x?).177178

If the solution of (1.1) is in the interior of X , and if f is convex, then we must have179
that NX (x?) = {0} for any x? ∈ X?. Because the focus of this paper is on the effect180
of the consensus constraint and its impact on the dynamics of the algorithm, we181
will assume that the optimal solution of (1.1) is in the interior of X . Because the182
consensus constraint couples all the particles together, its impact on the algorithm’s183
convergence is far less understood than dealing with separable constraints on X . For184
certain applications, especially in machine learning, the assumption that the solution185
lies in the interior of the feasible set holds (e.g. [26, 37]). The extension to the general186
case requires some minor technical modifications to our convergence analysis similar187
to [26]. We gather our assumptions so far below.188
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Assumption 1. Each fi in (1.1) is convex and twice differentiable. The elements189
in X? are in the interior of X .190

Derivatives of f are required so that we can apply Itô’s formula. Since we assume that191
the function is convex this assumption could be relaxed (see [26] Proposition C.2),192
but the assumption is kept here for simplicity and brevity. We proceed with some193
standard convexity and smoothness definitions.194

Definition 2.2. We say that f : XN → R is µ-strongly convex w.r.t. some norm195
|| · || provided that ‖∇f(x)−∇f(y)‖∗ ≥ µ‖x−y‖. Similarly, a function f is Lf -smooth196
w.r.t. some norm ‖ · ‖ when ‖∇f(x)−∇f(y)‖∗ ≤ Lf‖x− y‖.197

Some of our results will use the notion of relative strong convexity and smoothness.198
We refer the reader to [24] for more properties and [12] for the stochastic case. Below199
we present some definitions and properties that will be useful later on.200

Definition 2.3 (Relative strong convexity). A function g : XN → R is µ-strongly
convex with respect to some convex function h if for any x,y ∈ XN the following holds,

g(x) ≥ g(y) +∇g(y)T (x− y) + µDh(x,y).

Or equivalently, 〈x− y,∇g(x〉 − ∇g(y)) ≥ µ〈x− y,∇h(x)−∇h(y)〉.201

Definition 2.4 (Relative smoothness). A function g : XN → R is α-smooth with
respect to some function h if for any x,y ∈ XN the following holds,

g(x) ≤ g(y) +∇g(y)T (x− y) + αDh(x,y).

Or equivalently, 〈(x− y,∇g(x)−∇g(y)〉 ≤ α〈x− y,∇h(x)−∇h(y)〉.202

If we assume that g is µ-strongly convex and α-smooth with respect to h it holds,203

µDh(x,y) ≤ Dg(x,y) ≤ αDh(x,y).204205

We adopt the following definition for the convex conjugate of a relatively strong convex206
function.207

Definition 2.5 (Convex conjugate). Let g : XN → R be a µ-strongly convex208
function with respect to some h. Then g∗(z) := maxx∈XN 〈zT ,x〉 − g(x) is its209
Legendre-Fenchel convex conjugate. When g is differentiable, we also have ∇g∗(z) :=210
arg maxx∈XN 〈zT ,x〉 − g(x). and ∇g ◦ ∇g∗(z) = z.211

2.2.2. Network Assumptions. We first state our assumptions on the network212
topology.213

Assumption 2. The graph G is connected, undirected and the adjacency matrix214
A is doubly stochastic.215

These assumptions imply that the graph Laplacian L is a real symmetric matrix with216
nonnegative eigenvalues. We will denote the pseudo-inverse of L by L+ such that,217

(2.3) LL+L = L.218

We will use the following definition of the β-regularized Laplacian [10],219

(2.4) Lβ = L+
β

N
1N1>N ⊗ Id.220
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Fig. 2: Stochastic Mirror Descent with two mirror maps. Φ maps the primal variables
to the dual space, and Ψ maps the Lagrangian dual variables associated with the
consensus constraint to the algebraic dual of the Lagrange multipliers.

Note that the β-regularized Laplacian is positive definite. We define the Rayleigh221
quotient associated with the β-regularized Laplacian as follows,222

(2.5) κβ,N = max
dx∈RNd

‖Lβdx‖22
‖dx‖22

.223

It holds that [10, p.103],224

(2.6) L−1
β = L+ +

1

βN
1N1>N ⊗ Id � L+,225

where the latter inequality follows from the fact that 1d1>d ⊗IN is positive semidefinite.226

Lemma 2.6. Let Assumption 2 hold and suppose that κβ,N is as defined in (2.5)227
then,228

〈x,Lx〉 ≥ 1

κβ,N
‖Lx‖22.229

Proof. Using the definition of the pseudo-inverse in (2.3) and its relationship with230
the inverse of the regularized Laplacian in (2.6) we obtain,231

〈x,Lx〉 = 〈x,LL+Lx〉 = 〈Lx, (L−1
β −

1

βN
1d1

>
d ⊗ IN )Lx〉

= 〈Lx,L−1
β Lx〉,

232

where in the last equality we used the fact that (1d1
>
d ⊗IN )L = 0. Since Lβ,N � κβ,NI233

then L−1
β,N � κ

−1
β,NI and the result follows.234

2.2.3. Mirror Maps. The role of the mirror map, Φ : D → R, in the Mirror235
Descent algorithm is to transform the primal x ∈ X variables to the dual space236
∇Φ(x) ⊂ Rd. The dual variables will be denoted by z, i.e ∇Φ(x) = z. In the algorithm237
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proposed in this paper we will use two mirror maps. The first mirror map Φ, is used238
to transform the primal variables x. The second mirror map Ψ, is used to transform239
the Lagrangian dual variables λ associated with the consensus constraint in (1.1). The240
algebraic dual variables will be denoted by µ, i.e. ∇Ψ(λ) = µ. When no confusion241
arises between Lagrangian and algebraic dual variables we will refer to them simply as242
dual variables. Figure 2 explains the main steps in mirror descent with the two maps.243
At time-step t the primal-dual pair (xt, λt) is mapped to (zt, µt) = (∇Φ(xt),∇Ψ(λt)).244
The algorithm then follows the stochastic dynamics specified in Section 3. For example,245
a variant of the proposed scheme performs a gradient descent on the Augmented246
Lagrangian w.r.t the primal x variables, and a dual ascent w.r.t the Lagrangian dual247
variables λ (see Section 3 for a detailed explanation). The inverse (∇Φ−1,∇Ψ−1)248
maps the algebraic duals back to the primal space X × Λ. The proposed algorithm,249
and its variants, are described in Section 3. Below we state our related assumptions:250

Assumption 3 (Mirror map). Φ : D → R is twice differentiable, µΦ-strongly251
convex and LΦ-smooth w.r.t. some norm || · ||. The same holds for Ψ : Λ → R252
with constants µΨ,LΨ. respectively. We furthermore make the additional assumption253
∇Φ∗(Rd) = X , ∇Ψ∗(Rd) = Λ, Φ∗ is LΦ∗-smooth and assume uniform boundedness of254
the Laplacians of Φ∗,Ψ∗ such that ||∆Φ∗||∞, ||∆Ψ∗||∞ <∞.255

The assumption that ∇Φ∗ maps directly to X (and similarly for Ψ) avoids the need256
for projections. Extending our results without this assumption is possible by following257
a route similar to [26].258

A useful property of the Bregman divergence induced by mirror maps that satisfy259
our assumptions is the following,260

(2.7) DΦ∗(z, z′) = DΦ(x′, x),261

where z = ∇Φ(x) and z′ = ∇Φ(x′). For x, y, z ∈ Rd we have the triangle property for262
Bregman divergences (see Lemma 9.11 in [4])263

〈x− y,∇Φ(z)−∇Φ(y)〉 = DΦ(x, y) +DΦ(y, z)−DΦ(x, z).(2.8)264265

We also make use of the following property,266

(2.9) Df (x,x′) ≤ α(Φ)DΦ(x′,x)267

where α(Φ) =
LfLΦ

µΦ
. This property follows from the relative smoothness assumption268

combined with the strong convexity and Lipschitz assumption on Φ,269

Df (x,x′) ≤ LfDΦ(x,x′) ≤ LfLΦ

2
‖x′ − x‖2 ≤ 2LfLΦ

2µΦ
DΦ(x′,x),270

271

where with slight abuse we denote Φ(x) =
∑N
i=1 Φ(xi). We will use the following272

Rayleigh quotient,273

(2.10) κN = max
dx∈RNd,dλ∈RNd

max

{
‖L 1

2dx‖22
‖dx‖2

,
‖L 1

2dλ‖22
‖dλ‖2

}
.274

Note that the norms for dx and dλ in the definition above may be different (see275
Remark 2.1). We will also need the following generalized Rayleigh quotient,276

(2.11) κg = inf
x,dx,dλ∈RNd

‖A(x)[dTx ,d
T
λ ]>‖2∇2Φ∗(z)

‖dx‖2 + ‖dλ‖2
,277
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where A(x) = [∇2f(x) + L,L] ∈ RNd×2Nd. If strong convexity is assumed then κg278
is strictly positive. This fact is not obvious since A(x) is not a square matrix, and279
the norm used in the definition of (2.11) is not standard, we therefore provide a short280
proof below.281

Lemma 2.7. Suppose Assumptions 1-3 hold and that f is relatively strongly convex282
with respect to Φ, then κg defined in (2.11) is positive.283

Proof. We note that A(x) can be obtained by removing the last Nd columns and284
rows of the following matrix,285

B(x) :=

[
∇2f(x) + L L
−L 0

]
.286

287

Let d = [dx,dλ]> and note that 〈d, B(x)d〉 = d>x∇2f(x)dx. It follows from288
the relative strong convexity assumption that B(x) � µΦ∇2Φ(x) and therefore289
‖B(x)‖2∇2Φ(z)−1 � 0. Since A(x) can be obtained by removing the last Nd columns290

and rows of B(x) the result follows from the interlacing theorem for singular values,291
see e.g. Theorem 3.1.3 in [18].292

Lastly, we will need the following result.293

Lemma 2.8. Suppose that Assumptions 1-3. Then for an arbitrary optimal primal294
dual pair (x?,λ∗) we have295

‖∇f(x) + Lλ + Lx‖∇Φ∗(z) ≥
2κg
µ̂

(
N∑
i=1

DΦ(x?, xi) +DΨ(λ?, λi)

)

=
2κg
µ̂

(
N∑
i=1

DΦ∗(zi, z?) +DΨ∗(µi, µ?)

)
,

296

297

where µ̂ = min{µΦ, µΨ}298

Proof. Since f is twice differentiable there exists an y on the line segment joining299
x and x? such that ∇f(x)−∇f(x?) = 〈∇2f(y),x− x?〉. We then have,300

‖∇f(x) + Lλ + Lx‖2∇2Φ∗(z) = ‖∇f(x)−∇f(x?) + L(λt − λ∗) + L(x− x∗)‖2∇2Φ∗(z)301

= ‖A(y)[xt − x∗,λ− λ∗]T ‖2∇2Φ∗(z)302

≥ κg
(
‖x∗ − xt‖2 + ‖λ∗ − λ]‖2

)
303

≥ 2κg
µ̂

(
N∑
i=1

DΦ(x?, xi) +DΨ(λ?, λi)

)
.304

305

We use (2.7) to obtain the bound in terms of the (algebraic) dual variables.306

3. Distributed Stochastic Mirror Descent: Exact and Preconditioned307
Dynamics. In this section we introduce different variants of distributed MD algo-308
rithms. We adopt a dynamical systems point of view for our analysis. Numerical309
realizations of the proposed schemes are discussed in Section 5. For an introduction to310
the original mirror descent algorithm we refer the interested reader to [4, Ch. 9].311

Interacting Stochastic Mirror Descent (ISMD). The starting point of our analysis312
is the Interacting Stochastic Mirror Descent (ISMD) algorithm. This algorithm was313
proposed in [31] but its convergence was only established in the linear case. The case314
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where all the functions are identical (i.e. f1 = . . . = fN ) and strongly convex was315
analyzed in [6]. The discrete time version of the algorithm for the general convex case316
was discussed in [13], but exact convergence was only established under a diminishing317
step-size strategy. In the continuous time setting the dynamics of ISMD are as follows,318

(3.1) dzit = −η∇fi(xit)dt+ ε

N∑
j=1

Aij(z
j
t − zit)dt+ σdBit, xit = ∇Φ∗(zit),319

for particles i = 1, ..., N , and where Bit are independent Brownian motions. The matrix320
A = {Aij}Ni,j=1 is an N × N doubly-stochastic matrix representing the interaction321
weights and η, ε are tuning constants representing the learning rate and interaction322
strength, respectively. For simplicity in most of the subsequent analysis we set η = ε =323
1, but it is straightforward to extend the results for arbitrary values of η and ε. In the324
context of modern large scale applications, we note that understanding convergence325
under the presence of noise is often motivated from computational considerations such326
as when sub-sampling the gradient f or the interaction graph when N is large.327

Using the graph Laplacian, we can rewrite the evolution in vector form as328

dzt = (−∇f(xt)− Lzt) dt+ σdBt, xt = ∇Φ∗(zt),(3.2)329330

where Bt := ((B1
t )T , ..., (BNt )T )T . In the case where the mirror map above is the `2331

norm it is known that even in the deterministic case the dynamics in (3.2) will not332
converge to the exact solution (see [36, 35]). In Section 4.1 we show that in general333
the dynamics in (3.2) also fails to converge to the exact solution of (1.1) and identify334
that this can occur only under additional assumptions. This motivates proposing a335
different dynamics below.336

Exact Interacting Stochastic Mirror Descent (EISMD). To address the limitations337
of the ISMD algorithm discussed above we propose the following,338

dzt = −∇f(xt)dt− Lxtdt− Lλtdt+ σdBt,

dλt = Lxtdt,
(3.3)339

with xt = ∇Φ∗(zt) and initial conditions λ0 = 0, z0 = ∇Φ(x0). The idea behind this340

method is to add historical feedback into the algorithm through the integral
∫ t

0
Lxsds.341

At optimality this will cancel out the gradient term ∇f(xt). In Section 3.1 we show342
that the drift term in EISMD is related to the Augmented Lagrangian. We exploit343
this connection in the theoretical analysis in Section 4. Compared to previous works344
considered in Table 1 this algorithm integrates past information into the dynamics345
through the integral term and is applicable to the mirror descent framework. For346
the case where σ = 0, (3.3) has been considered in [38]. Here we extend the ideas347
in [38] to allow f being only convex, adding Brownian noise and considering general348
preconditioning.349

Exact Preconditioned Interacting Stochastic Mirror Descent (EPISMD). A poten-350
tial limitation of ISMD in (3.3) is that the mirror map Φ only captures the geometry351
of the primal space X ⊂ Rd. Even if X = Rd, our optimization problem is still con-352
strained to the consensus manifold XC . In order to incorporate information from the353
consensus constraint we introduce a second mirror map Ψ that acts on the Lagrangian354
dual variable (see Figure 8). The preconditioned dynamics (EPISMD) is given by,355

dzt = −∇f(xt)dt− Lxtdt− Lλtdt+ σdBt,

dµt = Lxtdt, λt = ∇Ψ∗(µt),
(3.4)356
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where µ is the mirrored version of the λ variable using the mirror map Ψ. As we will357
show in Section 3.1, this algorithm is related to preconditioning λt and we will later358
show numerically that it can lead to faster convergence.359

3.1. Preconditioning and the Augmented Lagrangian. The Augmented360
Lagrangian for the standard gradient descent setting is well-known (see e.g. [28, 40, 16]).361
The Alternating Direction Method of Multipliers (ADMM) is based on an Augmented362
Lagrangian with a Bregman divergence [39, 41] and Riemannian primal-dual methods363
over the Augmented Lagrangian were considered in [2] (see also [15] for a continuous364
time analysis of ADMM). Below we discuss the relationship between the different365
variants of the proposed methods.366

Consider the Augmented Lagrangian,367

L(x,λ) = f(x) + 〈Lx,λ〉+
1

2
‖L 1

2x‖22.(3.5)368
369

The Augmented Lagrangian Method (ALM) proceeds by a descent step in the primal370
variables and an ascent step in the Lagrangian dual variables. When Bregman371
divergence is used to define the ALM, then (in discrete time) the iterates are given by372
the following,373

xt+∆t = argmin
d

∆t〈∇xL(xt,λt),d〉+DΦ(d,xt),

λt+∆t = argmax
d

∆t〈∇λL(xt,λt),d〉 −
1

2
‖d− λt‖2.

(3.6)374

Writing down the optimality conditions of the two subproblems above and taking the375
limit ∆t→ 0, we obtain the deterministic version of (3.3).376

Alternatively, we can rewrite the dynamics of ISMD in (3.2) in terms of xt drawing377
a connection with preconditioned or Riemannian gradient descent [26]. Note that378
∇Φ(∇Φ∗(z)) = z. Differentiating this w.r.t. z we obtain ∇2Φ∗(z)∇2Φ(∇Φ∗(z)) = IdN .379
Therefore,380

∇2Φ∗(z) = ∇2Φ(x)−1.(3.7)381382

By applying Itô’s lemma to ∇Φ∗(zt), using the definition of the Bregman divergence383
and properties (2.2) and (3.7),384

dxit =−∇2Φ(xit)
−1∇fi(xit)dt−∇2Φ(xit)

−1∑N
j=1Aij(z

i
t − z

j
t )dt385

+
1

2
σ2∇2(∇Φ∗(zit))dt+ σ∇2Φ(xit)

−1dBit.386
387

From this expression we see that mirror descent is a preconditioned algorithm where388
the choice of preconditioner is determined through the function Φ. Preconditioned389
dynamics have been studied in previous work to improve communication complexity in390
a distributed setting [17] or speed up mixing rates of the dynamics [20]. The additional391
drift term with the third-order gradient of the mirror map arises as a correction term392
due to the nonlinearity of the mirror map. A similar scheme can be derived for EISMD.393

Preconditioning of the Interaction. The choice of mirror map can be used to394
precondition the dynamics and accelerate convergence. Now we show, based on395
the primal-dual interpretation, that the dynamics in (3.4) can also be cast into the396
preconditioned setting, where preconditioning is done on the λt variable. Motivated397
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by the augmented Lagrangian and preconditioning, as opposed to the dynamics in398
(3.6), one could redefine the dual variable dynamics as,399

λt+∆t = argmax
d

∆t〈∇λL(xt,λt),d〉 −DΨ(d,λ).400
401

The first order optimality conditions of the problem above are,402

∇Ψ(λt+∆t) = ∇Ψ(λt) + ∆tLxt.403404

Taking ∆t→ 0 we obtain,405

dλt = ∇2Ψ(λt)
−1Lxtdt,(3.8)406407

where we used ∇2Ψ∗(µ) = ∇2Ψ(λ)−1 as in (3.7). Therefore, the method in (3.4)408
allows for additional flexibility due to the preconditioning of the dual variable.409

4. Convergence Analysis. In this section we present a convergence analysis410
for the exact interacting mirror descent algorithm. EISMD with a strongly convex411
objective is able to converge exponentially fast to an area of the optimum, however412
the size of this area can be made arbitrarily small by decreasing σ.413

4.1. When first-order optimization fails. Our first result shows that if there414
exists an x? such that ∇fi(x?) = 0 for all i = 1, ..., N , exact consensus can be obtained415
for ISMD.416

Lemma 4.1. Let Assumptions 1-3 hold. Consider the dynamics in (3.2) with417
σ = 0. If418

N⋂
i=1

{∇fi(x) = 0} 6= ∅,(4.1)419

420

then limt→∞ xit = x?.421

Proof. Let x0 be the initial point of the algorithm, and let z? be an optimal (dual)422
point closest to z0 = ∇Φ(x0) with respect to the divergence generated by Φ∗,423

z? = arg min
z∈Z?

DΦ∗(z, z0)424

where Z? = {z | z = ∇Φ(x),∃x ∈ X : ∇fi(x) = 0, i = 1, . . . , N}. By assumption (4.1),425
Z? is not empty. With a slight abuse of notation we let x? = ∇Φ∗(z?) and note that426
(x?, z?) is an equilibrium point for (3.2) (for a strongly convex function it is also the427
unique equilibrium point, but here we only assume convexity of f).428

Define the Lyapunov candidate function Vt =
∑N
i=1DΦ?(zit, z

?). Then we obtain,429

dVt =

N∑
i=1

(x? − xit)T∇fi(xit)dt+

N∑
i=1

(xit − x?)T
N∑
j=1

Aij(z
j
t − zit)dt.430

431

Under convexity of f and optimality at x? we have432

N∑
i=1

(x? − xit)T∇fi(xit) ≤
N∑
i=1

(fi(x
?)− fi(xit)) ≤ 0.433

434
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By the triangle equality of the Bregman divergence in (2.8),435

(xit − x?)T (zjt − zit) = −(x? − xit)T (zjt − zit)436

= −(∇Φ∗(z?)−∇Φ∗(zit))
T (zjt − zit)437

= −DΦ∗(zjt , z
i
t)−DΦ∗(zit, z

?) +DΦ∗(zjt , z
?).438439

Then,440

N∑
i=1

N∑
j=1

Aij(x
i
t − x?)T (zjt − zit)(4.2)441

=

N∑
i=1

N∑
j=1

Aij

(
−DΦ∗(zjt , z

i
t)−DΦ∗(zit, z

?) +DΦ∗(zjt , z
?)
)
≤ 0,442

443

where we have used Aij ≥ 0,
∑N
i=1

∑N
j=1DΦ∗(zit, z

?) =
∑N
i=1

∑N
j=1DΦ∗(zjt , z

?), and444

DΦ∗(zjt , z
i
t) ≥ 0. Since Vt > 0 for z 6= 1N ⊗ z?, Vt = 0 when z = 1N ⊗ z? and dVt ≤ 0445

with equality only at z = 1N ⊗ z? we conclude that Vt is a Lyapunov function for zt.446
Since DΦ∗(zit, z

?) = DΦ(x?, xit) the statement follows.447

The Lemma above can be extended to an if and only if statement based on the448
arguments of [35, Theorem 1], but precise details lie beyond the scope of this paper. If449
(4.1) is violated, even with the right choice of mirror map, achieving exact consensus450
is not possible. In general imposing x? to satisfy (4.1) is quite restrictive as ∇f(x) =451 ∑N
i=1∇fi(x?) = 0 does not necessarily imply ∇fi(x?) = 0 for all i = 1, ..., N . The452

crucial point to realise here is that if and only if (4.1) holds then (x?, z?) will also be453
the minimizer of f(x) + 1

2z
TLz; see [35, Lemma 7] for details. As a result one can454

establish consensus at equilibrium and Vt will approach zero at large t. If x? does455
not satisfy (4.1) and one has just ∇f(x?) = 0, the arguments above can be used to456
establish exponential but approximate convergence for (3.2).457

Proposition 4.2 (Approximate convergence of (3.2)). Let Assumptions 1-3458
hold and assume that f is µf -strongly convex w.r.t. Φ. Let x† = arg min{f(x) +459
1
2∇Φ(x)TL∇Φ(x)} with x† = 1N ⊗ x† and Vt = 1

N

∑N
i=1DΦ∗(zit, z

†), where zit obeys460
the dynamics of (3.2). Then461

E [Vt] ≤ e−µf t
1

N

N∑
i=1

DΦ∗(zi0, z
†) +

σ2

2µf
||∆Φ∗||∞ +

Cf
µf
,462

463

where Cf ≥ 0 is a constant depending on f .464

The proof and details are in Appendix A.2. While the relative strong convexity of465
the objective function can speed up convergence, only approximate convergence can466
be obtained even with σ = 0. In this setup the additional preconditioning via the467
mirror map does not facilitate exact convergence nor consensus. When (4.1) holds the468
arguments above can be used to show that Cf = 0 thus achieving exact convergence.469

4.2. Exact Interacting Stochastic Mirror Descent Analysis. In this sec-470
tion we show that the EISMD algorithm in (3.3) allow us to converge close to the471
optimum and this convergence is exact when σ = 0.472
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We note that xi = xj for (i, j) ∈ E if and only if Lx = 0, therefore the problem in473
(1.1) can be written as,474

min
x∈XN

f(x) +
1

2
‖L 1

2x‖22

s.t. Lx = 0.
475

The application of the Karush–Kuhn–Tucker (KKT) conditions to the problem above476
implies that if (x?,λ?) = (1N ⊗x?,1N ⊗λ?) is an arbitrary point that satisfies the first477
order optimality conditions for (1.1), then when σ = 0, (x?,λ?) is also an equilibrium478
point of (3.3). The connection of the dynamics of (3.3) and the augmented Lagrangian479
is key to the convergence analysis below.480

The analysis of the algorithm in (3.3) is based on the following Lyapunov function,481

(4.3) V (x,λ) = c(V1(x) + V2(λ)) + V3(x,λ),482

where,483

V1(x) =

N∑
i=1

DΦ(x?, xi), V2(λ) =
1

2
‖λ− λ?‖22,484

V3(x,λ) = Df (x,x?) + 〈x− x?,L(λ− λ?)〉+
1

2
‖L 1

2x‖22,485
486

and c ≥ c with c > 0 to be specified below for different contexts. In the case that f487
is only convex and thus multiple minimizers might exist, then we define the optimal488
primal dual pair, (x?, λ?) to be the one that is closest to the initial conditions,489

(x?, λ?) = arg min
x,λ∈(X?,Λ?)

DΦ(x, x0) + ‖λ− λ0‖22.490

Below we establish upper and lower bounds for (4.3) that will be useful later on.491

Lemma 4.3. Let Assumptions 1-3 hold. Then (4.3) satisfies the following,492
i V (x?,λ?) = 0.493
ii.a If c ≥ max{κN/µΦ, κN} then494

V (x,λ) ≥ 1

2
(µΦc− κN )‖x− x?‖2 +

1

2
(c− κN )‖λ− λ?‖22 ≥ 0.495

496

iii.a Let µ̂ = min{µΦ, 2}. Then,497

(4.4) V (x,λ) ≤
(
c+

3κN + 2α(Φ)

µ̂

)( N∑
i=1

DΦ(x?, xi) + ‖λ− λ?‖22

)
,498

where α(Φ) = LfLΦ/µΦ was defined in (2.9), and κN in (2.10).499
If, in addition, f is µf -strongly convex relative to Φ then:500
ii.b For any c ≥ max{((κN − µfLΦ)/µΦ, κN},501

V (x,λ) ≥ 1

2
(µΦc+ µfLΦ − κN )‖x− x?‖2 +

1

2
(c− κN )‖λ− λ?‖22 ≥ 0.502

Proof. Property (i) is obvious. For (ii.a) we bound V1 using the strong convexity503
of Φ:504

V1(x) =

N∑
i=1

DΦ(x?, x) ≥ µΦ

2
‖x? − x‖2.505

506
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We note that the convexity of f implies that Df (x,x?) ≥ 0, and we bound V3 as507
follows,508

V3(x,λ) ≥ 〈x− x?,L(λ− λ?)〉 ≥ −1

2
(‖L 1

2x− x?‖22 + ‖L 1
2λ− λ?‖22)509

≥ −κN
2

(‖x− x?‖2 + ‖λ− λ?‖22)510
511

where in the second inequality we used (2.1) and in the third one (2.10).512
If, in addition, f is strongly convex relative to Φ then,513

N∑
i=1

Df (x?, xi) ≥ µf
N∑
i=1

DΦ(x?, xi) ≥ µfLΦ

2
‖x? − x‖2514

515

Using the preceding inequality to bound V3 we obtain the bound (ii.b).516
For the upper bound in (iii.a) we bound the the first term in V3 using the symmetry517

bound in (2.9),518

N∑
i=1

Df (x?, xi) ≤ α(Φ)

N∑
i=1

DΦ(x?, xi).519

For the second term in V3 we use (2.1) again and for any γ > 0,520

1

2
〈x− x?,L(λ− λ?)〉 ≤ κN

2
(γ‖x− x?‖2 +

1

γ
‖λ− λ?‖22)

≤ κNγ

µΦ

N∑
i=1

DΦ(x?, xi) +
κN
2γ
‖λ− λ?‖22

≤ κN
µ̂

(γ

N∑
i=1

DΦ(x?, xi) +
1

γ
‖λ− λ?‖22)

≤ κN
µ̂

N∑
i=1

DΦ(x?, xi) +
κN + α(Φ)

µ̂
‖λ− λ?‖22,

521

where in the second inequality we used the relative strong convexity of Φ and for the522
last inequality we set γ = κN

κN+α(Φ) ≤ 1. Finally, for the last term in V3 we use the523

bound from (2.10), the strong convexity of Φ and the definition of µ̂,524

‖L 1
2x‖22 = ‖L 1

2 (x− x?)‖22 ≤ κN‖x− x?‖2 ≤ 2κN
µ̂

N∑
i=1

DΦ(x?, xi)525

Using the upper bounds for the three terms in V3 we obtain the bound in (4.4).526

We then have the following convergence result for the dynamics in (3.3).527

Proposition 4.4 (Convergence of the dynamics in (3.3)). Let Assumptions 1-3528
hold and assume κg > 0. Consider the dynamics in (3.3) and Vt as defined in (4.3).529
Let µ̂ = min{µΦ, 2}. Then it holds,530

(4.5) E[VT ] ≤ e−rTE[V0] +

∫ T

0

e−r(T−s)M(xs)ds531
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where VT := V (xT ,λT ),532

r =
2κg

cµ̂+ 2α(Φ) + 3κN
,533

534
535

M(x) = c
σ2

2
(tr(C1(x)) + 〈x− x?,∆ · ∇Φ∗(z)〉) +

σ2

2
tr(C2(x))536

C1(x) =

N∑
i=1

∇2Φ(xi)−1∇2
xxDΦ(x?, xi)∇2Φ(xi)−1537

C2(x) = ∇2Φ(x)−1(∇2f(x) + L)∇2Φ(x)−1,538539

and c ≥ 2κβ,N .540

Proof. Let c be as in Lemma 4.3 to ensure non-negativity of the Lyapunov function.541
Since xi = ∇Φ∗(zi) it follows from Itô’s Lemma that,542

dxit = ∇2Φ∗(zi)dzit +
1

2
σ2∆ · ∇Φ∗(zi)dt,543

544

where the jth element of the Itô correction term is [∆ · ∇Φ∗(zi)]j =
d∑
k=1

∂2
kk∂jΦ

∗(zi).545

For ease of exposition we define the following terms,546

dM1
t =

σ2

2
(tr(C1(xt)) + 〈xt − x?,∆ · ∇Φ∗(zt)〉)dt+ 〈xt − x?, σdBt〉,547

548
549

dM2
t =

σ2

2
tr(C2(xt))dt+ σ〈∇xL(xt,λt),∇2Φ∗(zt)dBt〉.550

551

Using the equilibrium points and the fact that ∇2Φ∗(z)∇2Φ(x) = I, we obtain,552

d(V 1
t + V 2

t ) ≤ −〈xt − x?,L(xt − x?)〉dt+ dM1
t

≤ − 1

κβ,N
‖L(xt − x?)‖22 + dM1

t

(4.6)553

where for the first inequality we used the convexity of f and the symmetry of L and554
for the second inequality we used Lemma 2.6. We also have using L from (3.5),555

dV 3
t = 〈∇xL(xt,λt), dxt〉+

σ2

2
tr(C2(xt,λt))dt+ 〈L(xt − x?), dλt〉

=
(
−‖∇xL(xt,λt)‖2∇2Φ∗(zt)

+ ‖Lxt‖22
)
dt+ dM2

t

≤ −2κg
µ̂

(
N∑
i=1

DΦ∗(zit, z
?) + ‖λt − λ?‖22

)
dt+ ‖Lxt‖22dt+ dM2

t ,

556

where in the first line we used the optimality conditions ∇f(x?) + Lλ?, Lx? = 0, and557
to obtain the last inequality we used Lemma 2.8 with Ψ = 1

2‖ · ‖
2
2. If in addition558

c ≥ 2κβ,N and using the bound in (4.6) we obtain,559

dVt ≤ −
2κg
µ̂

(
N∑
i=1

DΦ∗(zit, z
?) + ‖λt − λ?‖22

)
dt− ‖Lxt‖22dt+ cdM1

t + dM2
t

≤ − 2κg
cµ̂+ 2α(Φ) + 3κN

V (xt,λt)dt+ cdM1
t + dM2

t ,

560
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where in the last inequality we used (4.4) from Lemma 4.3. Finally, taking expectations,561
integrating and using Gronwall’s lemma we obtain (4.5).562

It is clear that V is a stochastic Lyapunov function and exact convergence can be563
achieved using σ = 0. We note that if κg ≥ 0 then the result above implies that564
dVt ≤ 0, but we may not have an exponential convergence rate. In Lemma 2.7 we565
showed that the strong convexity of the objective function implies that κg > 0 and we566
note that the reverse is not true.567

4.3. Convergence with preconditioned interaction. The motivation behind568
the EPISMD algorithm in (3.4) is that in both unconstrained and constrained settings,569
additional speedup can be obtained by preconditioning the dual variable λ. The use of570
the mirror map Ψ results in additional flexibility in the convergence rate; furthermore571
it allows to work with the Bregman divergence as the Lyapunov function. We observe572
this additional flexibility through the term µ̂, which is given by µ̂ = min(µΦ, µΨ) so573
that the proper choice of mirror map Ψ can additionally improve the convergence.574

Consider Vt as in (4.3) but with,575

V 2
t (λt) =

N∑
i=1

DΨ(λ?, λit).(4.7)576

577

As before we will change the definition of the optimal point the algorithm will converge578
to as follows,579

(x?, λ?) = arg min
x,λ∈(X?,Λ?)

DΦ(x, x0) +Dψ(λ, λ0).580

The convergence of (3.4) can be obtained using slight modifications of the proof of581
Lemma 4.3.582

Lemma 4.5. Let Assumptions 1-3 hold. Then Vt with V 2
t as in (4.7) satisfies583

Lemma 4.3 (i) and,584
ii.a If c ≥ max{κN/µΦ, κN/µΨ},585

V (x,λ) ≥ 1

2
(µΦc− κN )||x− x?||2 +

1

2
(µΨc− κN )||λ− λ?||22 ≥ 0.586

587

iii.a Let µ̂ = min{µΦ, µΨ}. Then,588

(4.8) V (x,λ) ≤
(
c+

3κN + 2α(Φ)

µ̂

)( N∑
i=1

DΦ(x?, xi) +

N∑
i=1

DΨ(λ?, λi)

)
.589

If in addition f is µf -strongly convex relative to Φ then:590
ii.b For any c ≥ max{((κN − µfLΦ)/µΦ, κN/µΨ},591

V (x,λ) ≥ 1

2
(µΦc+ µfLΦ − κN )||x− x?||2 +

1

2
(µΨc− κN )||λ− λ?||22 ≥ 0.592

The following convergence then holds.593

Proposition 4.6 (Convergence of the preconditioned dynamics in (3.4)). Let594
Assumptions 1-3 hold and κg > 0. Consider the dynamics in (3.4). Let the Lyapunov595
function Vt be defined as in (4.3) with V 2

t as in (4.7). Then the result from Proposition596
4.4 holds with µ̂ = min{µΦ, µΨ} and c ≥ 2κβ,N/µΨ.597
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Proof. Let c be as in Lemma 4.5 to ensure non-negativity of the Lyapunov function.598
We follow similar steps as in the proof of Proposition 4.4. Observe that, assuming that599
the Bregman divergence is differentiable in the second variable and using (3.8),600

dV 2
t = 〈−∇2Ψ(λt)(λ

? − λt),∇2Ψ(λt)
−1Lxt〉601

= (λt − λ?)TL(xt − x?)dt.602603

Then, a modification of Lemma 2.6 can be derived; using the positive semi-definiteness604
of ∇2Ψ we can derive µΨ

κβ,N
∇2Ψ(λ)−1 � L−1

β and obtain,605

〈xt,Lxt〉 ≥
µΨ

κβ,N
〈Lxt,∇2Ψ(λt)

−1Lxt〉.606
607

Then,608

d(cV 1
t + cV 2

t ) ≤ − cµΨ

κβ,N
||Lxt||2∇2Ψ(λt)−1dt+ dM1

t .(4.9)609
610

Furthermore using (3.8),611

dV 3
t =

(
−||∇xL(xt,λt)||2∇2Φ∗(zt)

+ ||Lxt||∇2Ψ(λt)−1

)
dt+ dM2

t612
613

Consequently apply Lemma 2.8, the bound in (4.9) and use the additional assumption614
that c ≥ 2κβ,N/µΨ to obtain615

dVt ≤−
2κg
µ̂

(
N∑
i=1

DΦ∗(zit, z
?) +

N∑
i=1

DΨ(λit, λ
?)

)
dt− ‖Lxt‖2∇2Ψ(λ)−1dt616

+ cdM1
t + dM2

t .617618

Lastly use (4.8) and we complete the proof by integrating and taking expected values.619

The convergence of λt is affected by how well-conditioned the interaction graph and620
objective function are. In the proof of Proposition 4.6 we observe that the use of the621
mirror map Ψ results in an improved rate of convergence. In particular, when µΦ

µΨ
< 1622

we end up with r in Proposition 4.6 being larger than that seen in Proposition 4.4.623
Choosing the preconditioner. For many interesting applications good mirror maps624

are known, and the advantages of mirror descent over gradient descent are well625
understood. Unfortunately, it is not clear how to select a good mirror map for the626
space of Lagrange multipliers. However, if we restrict the mirror map to be quadratic,627
we postulate that a positive definite approximation of the Hessian of the dual function628
will work well in practice, e.g. as seen in the results of Section 5. We argue that the629
extra computation associated with approximating the Hessian of the dual function630
could be justified in the scenario where the Laplacian matrix is ill-conditioned. Below631
we briefly outline the derivation of the Hessian for the dual function in the deterministic632
setting and when f is strongly convex. In particular, the (negative) dual function q(λ)633
is defined as follows,634

(4.10) q(λ) = max
x∈XN

{−(f(x) + 〈λ,Lx〉)} ,635

and let x(λ) be a maximizer of (4.10). We know that for the strongly convex case,636
x(λ) is unique and the gradient of the dual function is given by ( [3, Theorem 6.3.3]),637

∇λq(λ) = −Lx(λ).638
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Applying the KKT conditions to (4.10) and differentiating with respect to λ we also639
have that,640

∇2f(x(λ))
dx(λ)

dλ
+ L = 0.641

Using the preceding equation we obtain the following expression for the Hessian of the642
dual function,643

∇2q(λ) = −Ldx(λ)

dλ
= L∇2f(x(λ))−1L.644

Unfortunately, even if f is strongly convex, the dual function in (4.10) is only convex645
(and not strongly convex). So we cannot directly use the Hessian of the dual function646
above, instead we proposed to use,647

∇2Ψ(λ) = Lβ∇2f(x(λ))−1Lβ ,648

where Lβ is the β-regularized Laplacian defined in (2.4). Note that we can avoid649
inverting the Hessian of f at every iteration and instead work with the convex conjugate650
of Ψ which occurs a one-off cost of diagonalizing the regularized Laplacian,651

∇2Ψ∗(λ) = L−1
β ∇

2f(x(λ))L−1
β .652

The argument above could be made more precise and extended to more general settings.653
We report promising numerical experiments with this choice for the mirror map in654
Section 5.5.655

5. Numerical results. Here we study the performance of the proposed algo-656
rithms in three problems:657

A An unconstrained ill conditioned linear system. We set the local cost658
functions as fi(x) = 1

2 ||Qix− bi||
2
2. Unless mentioned otherwise X = Rd with659

d = 200 and Qi ∈ R20×200 is a random matrix with condition number 15 and660
bi ∼ N (0, I20). For the mirror map we set Φ(x) = 1

2 ||x||
2. We remark that in661

this setting the only constraint in the problem comes from the consensus.662
B A constrained linear system. The setup is similar to the unconstrained663

linear system but we set X = ∆d, the d-dimensional simplex. The mirror664
map is set to be the negative entropy function Φ(x) =

∑d
j=1[x]j log([x]j) such665

that [z]i = 1 + log([x]j) (and [z]i = 0 if [x]j = 0) and [x]i = e[z]i−1 and the666
mapping onto the simplex is done using the normalization of this negative667
entropy mirror map. Here we denote with [x]i the i-th element of vector x.668

C A neural network. Motivated by federated learning applications [25] we669
consider the training of a neural network with one hidden layer and 30 nodes670
per layer using a ReLU activation, a softmax output and the cross-entropy671
loss. The training data is the FashionMNIST data. Each particle i has access672
to 10 of these samples and the cross-entropy loss over this subset defines each673
fi. We will assume the solution lies in the constraint set X = ∆d (e.g. looking674
for a sparse solution) and use the negative entropy mirror map.675

For the connectivity graph we define three options: (i) a cyclic graph with each node676
connected to the previous and next node, (ii) an Erdos-Rényi graph, or (iii) a barbell677
graph. For the dynamics we use a standard Euler discretization with ∆t = 0.01 and678
50,000 epochs. We implement ISMD, EISMD and EPISMD dynamics that include679
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Fig. 3: Loss function for problem (B) with cyclic graph (i). Left is centralized (N = 1),
right distributed (N = 10). ISGD, EISGD and ISMD, EISMD use (3.2), (3.3) with
Φ(x) = 1

2 ||x||
2 (i.e. xt = zt) and the entropic mirror map, resp. projected to ∆d.

Fig. 4: Loss functions for Problem (A) and graph (i) with condition number set to
100, N = 10 and preconditioned with a local objective function for different learning
rates (eta in legend). Left σ = 0.01, right σ = 0.

hyperparameters ε, η for the interaction strength and learning rate; see Appendix B.1680
for more details.681

5.1. The effect of the mirror map. We first compare distributed mirror682
descent with projected gradient descent for problem (B) using graph (i) to showcase683
the benefits of the entropic mirror map in simplex constrained systems. In Figure 3684
we present the results for ISMD and EISMD for N = 1 (centralized implementation)685
and N = 10 (distributed). The benefits of the exact dynamics in (3.3) and the mirror686
map are clear in both cases.687

5.2. The limits of the mirror map for ISMD. As shown in Section 3.1, the688
mirror map is equivalent to a preconditioner in the primal dynamics. In problem689
(A) with X = Rd, if the mirror map is chosen to be the local objective function then690
ISMD results in a local Newton-like algorithm. Here we will explore the effectiveness691
of using such a local preconditioner and set ∇2Φ(xi) = QTi Qi. Figure 4 shows the692
convergence results for the problem A with condition number increased to 100, d = 20693
and the cyclic interaction graph (i). The distributed case when preconditioned with694
the local Hessian does not result in full convergence. Thus the mirror map alone cannot695
facilitate convergence. The results are meant as motivation for using EISMD. We note696
that other solutions are possible, e.g. extending [34] to provide an approximation of697
the full preconditioner, but this will increase communication at each step.698

5.3. The effects of the exact algorithm. Here we present a detailed analysis699
of the benefits of EISMD compared to ISMD using both the `2 error between the700
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Fig. 5: ISMD and EISMD for Problem (A) and graph (i) for η = 0.01, N = 10, σ = 0.1
and ε = 1, 10 (eps in legend). Left panel shows ||xbt − xwt ||2 with b, w the best and
worst particle index at each time and right panel shows cost functions.

best and worst performing particle and the loss function computed over all particles.701
Figure 5 shows results for problem (A) and graph (i). In all cases a higher interaction702
strength allows to converge closer to the optimum and EISMD performs significantly703
better then ISMD. Figure 6 shows similar results for problem (B). In the top panels704
EISMD is clearly more effective than ISMD. The lower plots of Figure 6 show that705
in the presence of noise a high interaction in ISMD is able to mitigate the process706
variance due to the (appearing as oscillations) and result in convergence closer to the707
optimum.708

Fig. 6: ISMD and EISMD for Problem (B) and graph (i). Bottom row details as in
Figure 5. Top row panels same but with σ = 0, ε = 1 and η = 0.01, 0.005.

5.4. The choice of interaction graph. Here we set the communication struc-709
ture to be an Erdos-Rényi communication graph (ii). This is a random graph where710
each edge is chosen with a certain probability p. The communication between the711
nodes is thus determined by this connectivity probability with on average each node712
being connected to p × N other nodes. The weight matrix A is set to be a doubly713
stochastic version of this communication graph and additionally we use [7] to optimize714
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Fig. 7: Loss functions of EISMD for problem (B) and graph (ii). Left panel contains
full results and right magnifies the initial epochs. We set ε = 1, σ = 0.1, η = 0.01 and
vary the number of nodes each particle communicates with to 2, 5, 8 or 10.

the coefficients to get the fastest mixing in (3.3) whilst maintaining minimum commu-715
nications. Figure 7 shows results for problem (B) and different graph connectivities.716
The benefits of EISMD become even more clear from these results; using a graph717
with an optimal interaction structure while maintaining minimal interaction costs718
in combination with EISMD can result in very fast and computationally efficient719
convergence. Even with a very low communication cost per round, specifically each720
node communicating with approximately two other nodes per round, it results in a721
convergence speed comparable to full communication seen earlier.722

5.5. Accelerated dual convergence. The right choice of mirror map (pre-723
conditioner) in the unconstrained setting can also result in accelerated convergence724
of the λ variable. We know from the discussion in Section 4.3 the form of a good725
preconditioner. For the linear case, it is given by ∇2Ψ(λ) = −Lβ(QQT )−1Lβ with726
Q being block diagonal composition of Qi-s. We use the regularized Laplacian here,727
specifically Lβ = L+ 0.01 · 1N1TN ⊗ Id. We show the benefits of this preconditioner728
in EPISMD (shown in (3.4)) numerically in Figure 8 for a barbell graph with two729
clusters (iii). Clearly, preconditioning allows to converge much faster and closer to730
the optimum. We observe that preconditioning enables the algorithm to converge731
much faster and closer to the optimum. In the case of the barbell graph (iii) where732
the graph Laplacian is not well-conditioned, the ability to speed up the convergence733
using the preconditioning of the dual variable can lead to very substantial benefits in734
many real-world clustered systems.735

5.6. Federated learning in a nonconvex example. In this example we study736
the performance of ISMD and EISMD for problem (C) and graph (i). In Figure 9 we737
compute the gradient over a random batch of data points. Each particle computes738
the gradient in each iteration over a batch of size 10, which results in implicit noise in739
the algorithm. We observe that the exact method results converge significantly faster740
even in this nonconvex setting.741

6. Discussion. Our work successfully presented the benefits of mirror maps and742
how to use them while still achieving consensus in a distributed setting. For future743
work several interesting extensions can be considered. If one discretizes the continuous744
time dynamics, e.g. as in constant step size Euler-Maruyama schemes, then a bias will745
be present that depends on the discretization interval. In this sense exactness is lost,746
but could be recovered again using decreasing step sizes or constant ones combined747
with ideas from sampling methods [14]. Addressing this in detail and comparing with748
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Fig. 8: Loss functions comparing EPISMD and EISMD for Problem A and graph (iii).
We use σ = 0.01 and top row panels use a barbell graph with two clusters and 10
nodes and bottom panels two clusters and 50 nodes.

Fig. 9: ISMD and EISMD for problem (C) and graph (i). Left shows training loss
against epoch and right shows test loss.

the discrete time methods in Table 1 is left for further work. The analysis shown749
here for EISMD and EPISMD can be extended to a setting where the solution of750
(1.1) does not lie in the constraint space X using steps similar to [26]. Furthermore,751
we only numerically explored the nonconvex setting in EISMD using a small neural752
network with a negative entropy mirror map; future work can include a theoretical753
analysis of the nonconvex case as well as exploring further the benefits of different754
mirror maps using EPISMD in the distributed training of neural networks. Last, the755
algorithm could be modified to one applying the Laplacian onto the mirrored variables;756
preliminary numerical results showed that in high-dimensional and/or nonconvex757
settings this could be of benefit; a more detailed converge analysis of this phenomenon758
may be of interest which would require the definition of a different Lyapunov function.759
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Appendix A. Auxiliary results.863

A.1. The benefits of the mirror map. To show the ability of mirror descent
to adapt to a particular geometry we present the classical mirror descent proof which
can be interpreted as having a central server; this server broadcasts xt ∈ X to all
nodes which compute ∇fi(xt) and send this back to the server. In continuous-time
the algorithm at the server is given by

dzt = −
N∑
i=1

∇fi(xt)dt+ σdBt.

The aim is to converge to the optimal point (x∗, z∗) given as864

x∗ = arg min
x∈X

f(x), z∗ = ∇Φ(x∗).865

We will make use of the inequality,866 ∫ t

0

e−α(t−s)Kds ≤ K

α
,(A.1)867

868
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and ||∆Φ∗(zt)||∞ ≤ ∞ (by Assumption 3).869

Lemma A.1 (Convergence of centralized mirror descent). Let f(x) =
∑N
i=1 fi(x)870

be µf -strongly convex with respect to Φ. Then,871

E [DΦ(x∗, xt)] ≤e−µf tDΦ(x∗, x0) +
σ2

2µf
||∆Φ∗||∞.872

873

Proof. Let Vt = DΦ∗(zt, z
∗). We have through Itô’s lemma,874

dVt = −
N∑
i=1

(x∗ − xt)T∇fi(xt)dt+
1

2
σ2tr(∆Φ∗(zt))dt+ σ(xt − x∗)T dBt875

≤ (−µfDΦ(x∗, xt)− f(xt) + f(x∗) +
σ2

2
||∆Φ∗||∞)dt+ σ(xt − x∗)T dBt876

≤ (−µfDΦ∗(zt, z
∗) +

σ2

2
||∆Φ∗||∞)dt+ σ(xt − x∗)T dBt,877

878

where in the first inequality we have used the µf -strong convexity w.r.t. Φ and in the879
second inequality that by the properties of the mirror map DΦ(x∗, xt) = DΦ∗(zt, z

∗)880
and that f(x∗)− f(xt) ≤ 0. Using (A.1), taking expectations and applying Grönwall881
inequality the result follows.882

Comparing the results of mirror (preconditioned) gradient descent to the Euclidean883
setting where ΦE(x) = 1

2 ||x||
2
2, the effectiveness of the algorithm hinges on how large884

µf is compared to µE where µE is such that f is µE-strongly convex with respect885
to 1

2 ||x||
2
2. An optimal mirror map is then the one that is given by Φ(x) = f(x), in886

which case it holds that µf = 1. Discretizing the continuous-time algorithm would887
then result in achieving convergence with a larger discretization step size. The works888
of [17, 34, 1] study the discrete-time convergence if the mirror map is chosen to be889
one of the objective functions, i.e. Φ(x) = fi(x) for some i and show that convergence890
can be obtained in one time step with the right (estimate of the) preconditioner. One891
can seek to choose the mirror map Φ in such a way that DΦ(x0, x

∗) is smaller than892
DΦE (x0, x

∗) and get faster convergence, and in such a way that ||∆Φ∗||∞ is smaller893
than ||∆Φ∗E ||∞ for closer convergence.894

A.2. Approximate convergence of distributed mirror descent. Recall the895
vectorized ISMD dynamics of (3.1) are896

dzt = (−η∇f(xt)− εLzt) dt+ σdBt, xt = ∇Φ∗(zt).(A.2)897898

If x? as per Lemma 4.1 does not exist, even in the deterministic case exact consensus899
and optimality at convergence can no longer be achieved. We present a result which900
shows that exponential convergence holds only up to a certain neighborhood of (x†, z†)901
both minimizing f(x) + 1

2z
TLz, the size of this neighborhood depending on the noise902

and the distance between the f(x†) and f(x?).903

Proposition A.2 (Approximate convergence of (A.2)). Let Assumptions 1-3904

hold and assume that f is µf -strongly convex w.r.t. Φ. Let Vt = 1
N

∑N
i=1DΦ∗(zit, z

†),905
where zit obeys the dynamics of (3.1) (or (A.2)). Then we have:906

E [Vt] ≤ e−ηµf t
1

N

N∑
i=1

DΦ∗(zi0, z
†) +

σ2

2ηµf
||∆Φ∗||∞ +

1

µf

(
f(x†)− f(x◦)

)
,907

908

where x◦ = arg minx∈X f(x).909
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Proof. Denote x† = arg inf{f(x) + 1
2∇Φ(x)TL∇Φ(x)}, z† = ∇Φ(x†). Then910

dVt =− 1

N

N∑
i=1

(xit − x†)T η∇fi(xit)dt+ ε
1

N

N∑
i=1

(xit − x†)T
N∑
j=1

Aij(z
j
t − zit)dt911

+
1

2
σ2 1

N

N∑
i=1

tr(∆Φ∗(zit))dt+
1

N

N∑
i=1

(xit − x†)T dBit.(A.3)912

913

Using the µf -strong convexity of f as in the proof of Lemma A.1 we obtain,914

∇f(xt)
T (x† − xt) ≤f(x†)− f(xt)− µfDφ(x†,xt)915

≤f(x†)− f(x◦) + f(x◦)− f(xt)− µfDφ(x†,xt)916

≤f(x†)− f(x◦)− µfDφ(x†,xt)917918

Substituting in (A.3) and using (2.7), (4.2) and taking expectations gives919

dE[Vt]

dt
≤ −ηµfE[Vt] + η

(
f(x†)− f(x◦)

)
+

1

2
σ2||∆Φ∗||∞.920

921

Standard Grönwall arguments gives the result.922

Note that when (4.1) x◦, x? and x? coincide [35, Lemma 7], so Cf = 0.923

Appendix B. Additional information for the numerical results.924

B.1. Dynamics with hyperparameters and their discrezation. In (A.2)925
and (3.1) we included η, ε to allow tuning of the relative effect of the gradient and the926
interaction. The expression of Proposition A.2 can be sharpened to include more precise927
contributions from εLzt using similar Grönwall arguments to bound E[||zt − z†||2]928
instead of simply using (4.2). This is omitted here for brevity and we note ε does929
have an effect in the numerical results. For the discretization, let ∆t be a constant930
discretization interval and Bi,jk ∼ N (0, σ2∆t) form i.i.d. sequences for j = 1, 2 and931
i = 1, . . . , N . Then the Euler discretization of the dynamics in (A.2) are given by932

zi(k+1)∆t = zik∆t − η∇fi(xik∆t)∆t+ ε
∑N
j=1Aij(z

j
k∆t − zik∆t)∆t+Bi,1k ,933

xi(k+1)∆t = ∇Φ∗(zi(k+1)∆t).934935

Similarly for the EISMD dynamics of (3.3) we can include a learning rate η and936
interaction strength ε937

(B.1) dzt = −η∇f(xt)dt− εLztdt− Lλtdt+ σdBt, dλt = Lxtdt.938

Similarly, the discretized dynamics of (B.1) are given by939

zi(k+1)∆t =zik∆t −∆tη∇fi(xik∆t) + ∆tε
∑N
j=1Aij(z

j
k∆t − zik∆t)

+ ∆t
∑N
j=1Aij(λ

j
k∆t − λik∆t) +Bi,2k ,

λi(k+1)∆t =λik∆t −
∑N
j=1Aij(x

j
k∆t − xik∆t)∆t

940

The rest of the cases in Section 3 follow similarly.941
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