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STOCHASTIC MIRROR DESCENT FOR CONVEX OPTIMIZATION
WITH CONSENSUS CONSTRAINTS

A. BOROVYKH, N. KANTAS, P. PARPAS, G. A. PAVLIOTIS

Abstract. The mirror descent algorithm is known to be effective in applications where it is
beneficial to adapt the mirror map to the underlying geometry of the optimization model. However, the
effect of mirror maps on the geometry of distributed optimization problems has not been previously
addressed. In this paper we propose and study exact distributed mirror descent algorithms in
continuous-time under additive noise and present the settings that enable linear convergence rates.
Our analysis draws motivation from the augmented Lagrangian and its relation to gradient tracking.
To further explore the benefits of mirror maps in a distributed setting we present a preconditioned
variant of our algorithm with an additional mirror map over the Lagrangian dual variables. This
allows our method to adapt to the geometry of the consensus manifold and leads to faster convergence.
We illustrate the performance of the algorithms in convex settings both with and without constraints.
We also explore their performance numerically in a non-convex application with neural networks.

Key words. Distributed optimization, mirror descent, pre-conditioning, interacting particles,
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1. Introduction. The choice of mirror map has a significant impact on both the
theoretical and numerical performance of the Mirror Descent (MD) algorithm [4, 9].
With an appropriate choice of the mirror map, MD captures the geometry of the
optimization model more faithfully than other first-order methods. We illustrate this
point in Figure 1a by plotting the vector fields generated by MD (using the negative
entropy function as the mirror map) and Projected Gradient Descent (PGD) (with
Euclidean projection) for a strongly convex quadratic optimization problem over the
three-dimensional simplex. It is clear from Figure 1a that the PGD vector field points
in the correct direction towards the unique minimum. But as soon as the PGD vector
field hits the boundary, then the algorithm slows down considerably. The slowdown
is due to the fact that the gradient always points towards the direction of steepest
descent for the objective function irrespective of the constraints. When PGD hits
the boundary, then the steepest descent direction is no longer appropriate for the
problem’s geometry. When MD hits the boundary of the feasible region, it glides
across the boundary and towards the solution. This observation is reflected in the
numerical performance of the two algorithms. In Figure 1b we indeed see that PGD
initially makes good progress towards the solution but then stalls. MD, on the other
hand, is slower in the first two iterations but converges to the optimal solution much
faster. This phenomenon is not only present in problems with constraints but is also
relevant in unconstrained problems, especially for ill-conditioned problems, and inverse
optimization problems that have a sparsity inducing norm in the objective function.
For example, in unconstrained ill-conditioned problems, the gradient descent method
performs no preconditioning, whereas mirror descent uses the Hessian of the mirror
map as a preconditioner (see Section 3.1).

There exists no theoretical or algorithmic framework to explain how to compute
an optimal mirror map for a given problem. However, mirror maps for some particular
classes of problems are well known (see Appendix A.1, [4], [9]). Mirror descent,
and especially the effect of the choice of the mirror map for distributed optimization
problems has received much less attention (see Section 1.1 for related work). Distributed
optimization problems, even when otherwise unconstrained, have to satisfy a consensus
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Fig. 1: Vector fields for Projected Gradient Descent (PGD) and Mirror Descent
(MD) for a quadratic function over the three dimensional simplex (we plot the two
dimensional projection). MD uses the negative entropy function as the mirror map,
and PGD performs the projection using the ¢5 norm.

constraint, and existing algorithms do not capture the geometry of the consensus
manifold. Motivated by the attractive features of the mirror descent algorithm
described above, we attempt to answer the question: Does there exist a distributed
variant of Mirror Descent that can accurately capture the geometry of distributed
optimization models? To answer this question, we study distributed algorithms for the
following optimization model,

(1.1) min Zfl(mz), st. 2’ =27 V(i,j) € E.

The {z'}¥, with indices i = 1,..., N denote the computational nodes or particles,
as we refer to them in previous work [6]. These communicate through a strongly
connected, weighted, undirected graph G := (V, E, A); where V represents the nodes
of the graph, F its edges and A is the adjacency matrix. Each particle has access to
its own objective function f; : R? — R, and constraint set X c R

For the purposes of motivating the results of our work consider the following
natural generalization of Distributed Mirror Descent (DMD),

(1.2) VO (xh) = —V fi(x?) ZAU (¢t —xl) i=1,...,N,

where ® is the mirror map, and A;; is the weight of edge (¢, 7). We call a distributed
algorithm exact if it converges to a solution that it is both optimal and satisfies the
consensus constraint. In Figure 1lc we plot the vector field generated by (1.2) on a
quadratic optimization model with N = 2 over the three dimensional simplex, and
the centralized MD algorithm. The centralized MD algorithm for (1.1) substitutes the
constraints in the objective function and follows the dynamics below,

8tV¢ .’L‘t Zsz xt

As expected, the two algorithms generate different vector fields. What is more
concerning is that the Distributed Mirror Descent in (1.2) does not converge to
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Reference ‘ Mirror ‘ Rate ‘ Exact ‘ Noise ‘ Step-size
Liang et al. [21] ‘ No ‘ Linear ‘ Yes ‘ No ‘ -

[22, 16, 23, 43] |No | N/A | Yes | No| -

Sun et al. [38] | Yes ‘ N/A | Yes | No | -

This work ‘ Yes ‘ Linear ‘ Yes ‘ Yes ‘ -

Shi et al. [36] ‘ No ‘ Linear ‘ Yes ‘ No ‘ Constant
Qu & Li [30] | No | Linear | Yes | No | Constant
Jakovetic et al. [19] ‘ No ‘ Sub-Linear ‘ No ‘ No ‘ Diminishing
Pu & Nedic [29] | No |  Linear | Yes | Yes | Constant
Ram et. al. [32] ‘ No ‘ N/A ‘ Yes/No ‘ Yes ‘ Diminish. /Const.
Duchi et al. [13] | Yes | Sub-Linear | Yes/No | Yes | Diminish./Const.
Nedic et al. [27] ‘ Yes ‘ N/A ‘ Yes ‘ Yes ‘ Diminishing
Shahrampour et al. [33] | Yes | Sub-Linear | Yes | Yes | Diminishing

Table 1: Overview of convergence rates for different types of algorithms. Exact refers
to whether or not the algorithm achieves exact consensus, and mirror refers to whether
or not the algorithm allows for mirror maps. Continuous time methods are marked as
- in the step size entry.

the unique solution of the problem. This observation is not surprising given that
Distributed Gradient Descent (DGD) (unless suitable modifications are made to the
algorithm) also fails to converge to the exact solution of distributed optimization
problems [42]. The second question we seek to address in this paper is: How should
the dynamics of distributed mirror descent be modified, so that convergence to the
exact solution is guaranteed? These guarantees are meant to hold for determistic
dynamics, but in this paper we will also consider the more general case of stochastic
dynamics with additive noise, where the noise is added to account for corrupted
gradient information, data sub-sampling (as is the case in stochastic gradient descent)
or errors due to the network, such as communication channels being corrupted.

1.1. Previous work. Distributed optimization has a variety of applications.
Removing the existence of a central server and having the nodes communicate in a
decentralized manner can remove both computational bottlenecks and privacy risks.
A classic reference for distributed optimization is [5], and more recent applications
in statistical learning are described in [8]. The authors in [10] also describe several
interesting applications. A variant of distributed optimization known as federated
learning [25] was proposed recently for solving optimization problems in which the
data is stored across a very large number devices for privacy purposes.

The literature on distributed optimization algorithms is vast. Since this paper
focuses on distributed first-order algorithms for convex optimization models, we will
focus on this class of algorithms. Two algorithmic techniques can be used to develop
exact distributed optimization algorithms. The first technique uses diminishing step-
sizes, and the second one relies on gradient tracking. Gradient tracking is closely
related to augmented Lagrangian methods (see Section 3 for more details). Algorithms
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with diminishing step-sizes tend to be very slow in practice, so recent literature focuses
on using constant step-sizes. The algorithm we propose in this paper, and its variants,
are developed in continuous time. The works of (among others) [16, 22, 38, 23, 43|
also analyze decentralized optimization schemes in continuous time. The works of
[13, 27, 33, 32] focus on an analysis of the distributed mirror descent algorithm. In
Table 1, we summarize selected related works that show how this paper fits within
the existing literature. Current works on exact distributed algorithms, with a fixed
step-size, are only based on gradient or sub-gradient descent. Table 1 also lists
earlier proposed exact distributed algorithms in discrete time, which rely on the slower
mechanism of diminishing step-sizes to achieve exact convergence. Moreover, the mirror
maps in the existing literature are used only to model accurately the geometry of the
separable constraints and not the consensus constraint that is the distinguishing feature
of this paper. Finally, we note mirror descent dynamics are related to Riemannian
descent as presented in e.g. [2, 11] and preconditioning [17, 1, 34].

1.2. Main results and contributions. Our results are based on a continuous-
time analysis of stochastic mirror descent dynamics. Our contributions can be summa-
rized as follows,

e In Section 4.1 we show that without strong assumptions on the minimizers
of each f;, the classic distributed stochastic mirror descent formulation with
constant noise achieves exponential convergence to a neighborhood around
a different point than the optimum and that the size of this neighborhood
cannot be reduced using the mirror map or reducing noise.

e To address the inexactness of the conventional DMD algorithm we propose an
exact variant called Exact Interacting Stochastic Mirror Descent (EISMD),
that is able to converge exponentially fast to a much smaller neighborhood
than the conventional distributed mirror descent (Section 4, Proposition 4.4).

e We propose a preconditioned version of EISMD, which adapts the mirror
map based on the geometry of the consensus manifold resulting in even faster
convergence (Proposition 4.6).

e In Section 5 we illustrate in detail the performance of our algorithms in
constrained and unconstrained convex optimization problems.

2. Preliminaries. In this section we fix our notation, state our main assumptions
and establish some useful technical lemmas that will be used later.

2.1. Notation. We use ® to denote the Kronecker product, I; the d-dimensional
identity matrix and 1, denotes the d-dimensional vector of ones. Diag(a) with a € R?
denotes a matrix with diagonal elements [a1, ..., aq]. We use A to denote the N x N
weighted adjacency matrix associated with a graph G = (V| E). The graph Laplacian
is given by L := Diag(Aly) — A and we use the following notation £ := L ® I
with £ € RNV t5 denote the vectorized version of the graph Laplacian. We use
(z,y) = a Ty for the standard dot product, and (z,y)g = (z,Qy) = ' Qy for the
Q-inner product, for some positive definite matrix Q. We use A = B to denote a partial
matrix ordering meaning A— B = 0. We assume that X C R? is a convex set. We use D
to denote an open set such that X C cl(D). The set D will be used to denote the domain
of the mirror maps of the mirror descent algorithm. We use X* to denote the dual space
of X. The normal cone of X is defined as Ny (z) = {z € X* | (z,y —z) <0 Vy € X}.

Given an arbitrary norm || - || on R?, we will define By := {v € R : [jo]| < 1}.
The dual norm | - ||, is defined as ||z|« := sup{(z,v) : v € By,j}. If A is a matrix
then ||Al|2 denotes its spectral norm and we assume that the dual norm is compatible
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with the spectral norm, i.e. ||Az|[. < [|A4|l2 [|z]l«. We will make use of the following
generalized Cauchy inequality,

(v, w)] < Jvfl«]w] Vwe X, vex™

Since 0 < ([Jv[l« — [[w]))? = [lv]IZ + [lw]* = 2[|v]l+[|wl], we also have,
1 1
(2.1) (v, w) < Sl + 5 llw]*
A function g is said to be L-Lipschitz continuous with respect to a norm || - || if

lg(z) — g(v)|| < L||x — y||, Yo,y € X. The Bregman divergence associated with a
convex, differentiable function g : X — R is defined as follows,

Dy(z,y) = g(z) — g(y) = (Vg(y), z — y).

If the second-order derivative of g exists it furthermore holds,

(2.2) VaDy(z,y) = Vg(x) = Vg(y), VyDy(z,y) = Vg(y)(y — ).
The aggregate cost function will be written as f(x) = Zfil fi(x?), where x =
[xlT, .. ,xNT]T denotes the stacked vector of particles and each z; € X. We will

use (X*,A*) to denote the set of primal-dual variables that satisfy the first order
optimality conditions for (1.1). Unless specified otherwise gradient vectors Vf are
taken with respect to the joint particle vector x following the usual conventions and
the same applies for Hessian matrices.

REMARK 2.1. The space of the Lagrange multipliers for the consensus constraint,
AeAC RNd, will play an important role in the definition of the algorithms below.
We note that the norm associated with A € A will not necessarily be the same as the
one used for the primal variables x € XN . We will however use the same notation:

I -1, and its dual || - ||« for both spaces, and it will be clear from context which norm
is being used. For w =[x, )\T]T we will use the following mized norm convention
[lw]| = [Ix|| + IAl|, with the understanding that the two norms could be different. For

example, the norm in XN could be the {1, and in A the Q-norm (for some positive
definite matriz Q) so that, |[w|| = ||x]|1 + [|A]lo-

2.2. Assumptions and Definitions.

2.2.1. Optimality Conditions and Model Assumptions. The consensus
constraint in (1.1) is satisfied if and only if £x = 0, where £ denotes the vectorized
graph Laplacian. Therefore the optimality conditions for (1.1) are as follows,

—Vf(x*) = LX* € Ny (x*).

If the solution of (1.1) is in the interior of X, and if f is convex, then we must have
that N (x*) = {0} for any x* € X*. Because the focus of this paper is on the effect
of the consensus constraint and its impact on the dynamics of the algorithm, we
will assume that the optimal solution of (1.1) is in the interior of X'. Because the
consensus constraint couples all the particles together, its impact on the algorithm’s
convergence is far less understood than dealing with separable constraints on X'. For
certain applications, especially in machine learning, the assumption that the solution
lies in the interior of the feasible set holds (e.g. [26, 37]). The extension to the general
case requires some minor technical modifications to our convergence analysis similar
to [26]. We gather our assumptions so far below.
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ASSUMPTION 1. Each f; in (1.1) is convex and twice differentiable. The elements
i X* are in the interior of X.

Derivatives of f are required so that we can apply It6’s formula. Since we assume that
the function is convex this assumption could be relaxed (see [26] Proposition C.2),
but the assumption is kept here for simplicity and brevity. We proceed with some
standard convexity and smoothness definitions.

DEFINITION 2.2. We say that f : XN — R is p-strongly convex w.r.t. some norm
[|-1] provided that ||V f(x) =V f(¥)|l« > nllx—yl|. Similarly, a function f is Ly-smooth
w.r.t. some norm || - || when ||V f(x) = Vf(y)ll« < Lsllx—yl.

Some of our results will use the notion of relative strong convexity and smoothness.
We refer the reader to [24] for more properties and [12] for the stochastic case. Below
we present some definitions and properties that will be useful later on.

DEFINITION 2.3 (Relative strong convexity). A function g : X~ — R is p-strongly
convex with respect to some convex function h if for any x,y € XN the following holds,

9(x) > g(y) + Vg(y)" (x — y) + uDp(x, y).

Or equivalently, (x —y,Vg(x) — Vg(y)) > u(x —y, Vh(x) — Vh(y)).

DEFINITION 2.4 (Relative smoothness). A function g : XV — R is a-smooth with
respect to some function h if for any x,y € XN the following holds,

9(x) < g(y) + Vg(y)" (x —y) + aDp(x,y).

Or equivalently, (x —y,Vg(x) — Vyg(y)) < a{x —y, Vh(x) — Vh(y)).

If we assume that g is p-strongly convex and a-smooth with respect to h it holds,

MDh(Xa Y) < D!J(X7 y) < aDh(X,Y)'
We adopt the following definition for the convex conjugate of a relatively strong convex
function.

DEFINITION 2.5 (Convex conjugate). Let g : XN — R be a p-strongly convex
function with respect to some h. Then g*(z) = maxycxn (z1,%) — g(x) is its
Legendre-Fenchel convex conjugate. When g is differentiable, we also have Vg*(z) :=
arg maxycyn (z1,%) — g(x). and Vgo Vg*(z) = z.

2.2.2. Network Assumptions. We first state our assumptions on the network
topology.

ASSUMPTION 2. The graph G is connected, undirected and the adjacency matriz
A is doubly stochastic.

These assumptions imply that the graph Laplacian £ is a real symmetric matrix with
nonnegative eigenvalues. We will denote the pseudo-inverse of £ by £+ such that,

(2.3) LLY L = L.

We will use the following definition of the S-regularized Laplacian [10],

(2.4) Lgs =£+%1N1L®Id.
6
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Fig. 2: Stochastic Mirror Descent with two mirror maps. ® maps the primal variables
to the dual space, and ¥ maps the Lagrangian dual variables associated with the
consensus constraint to the algebraic dual of the Lagrange multipliers.

Note that the S-regularized Laplacian is positive definite. We define the Rayleigh
quotient associated with the S-regularized Laplacian as follows,

1£ad, 2
25 K = ma. —_—.
25) BN = L T

It holds that [10, p.103],

1
(2.6) Lt =L+ B—NlNﬂV @Iy = L,

where the latter inequality follows from the fact that 1511(;r ® Iy is positive semidefinite.

LEMMA 2.6. Let Assumption 2 hold and suppose that kg n is as defined in (2.5)
then,

1
(x, Lx) > —||Lx])3.
KRB, N

Proof. Using the definition of the pseudo-inverse in (2.3) and its relationship with
the inverse of the regularized Laplacian in (2.6) we obtain,

1
]_dl:ir X IN)£X>

(6, £x) = b LLTLx) = (£x, (L5 = o

= (£x, L5 Lx),

where in the last equality we used the fact that (ldldT ®IN)L =0. Since Lg n = kg nI
then Egg\, > K)EjVI and the result follows. 0

2.2.3. Mirror Maps. The role of the mirror map, ® : D — R, in the Mirror
Descent algorithm is to transform the primal x € X variables to the dual space
V®(x) € R The dual variables will be denoted by z, i.e V®(x) = z. In the algorithm
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proposed in this paper we will use two mirror maps. The first mirror map ®, is used
to transform the primal variables z. The second mirror map ¥, is used to transform
the Lagrangian dual variables A associated with the consensus constraint in (1.1). The
algebraic dual variables will be denoted by p, i.e. V¥ (A\) = p. When no confusion
arises between Lagrangian and algebraic dual variables we will refer to them simply as
dual variables. Figure 2 explains the main steps in mirror descent with the two maps.
At time-step t the primal-dual pair (z, A¢) is mapped to (z¢, ) = (V®(x), VI(Ay)).
The algorithm then follows the stochastic dynamics specified in Section 3. For example,
a variant of the proposed scheme performs a gradient descent on the Augmented
Lagrangian w.r.t the primal = variables, and a dual ascent w.r.t the Lagrangian dual
variables A (see Section 3 for a detailed explanation). The inverse (V&1 V¥ ~1)
maps the algebraic duals back to the primal space X x A. The proposed algorithm,
and its variants, are described in Section 3. Below we state our related assumptions:

AssUMPTION 3 (Mirror map). @ : D — R is twice differentiable, pe-strongly
conver and Lg-smooth w.r.t. some norm || -||. The same holds for ¥ : A — R
with constants wy,Ly. respectively. We furthermore make the additional assumption
Vo (RY) = X, VU*(R?) = A, ®* is Lg--smooth and assume uniform boundedness of
the Laplacians of ®*, U* such that ||A®*||, ||[AT*||e0 < 00.

The assumption that V®* maps directly to X (and similarly for ¥) avoids the need
for projections. Extending our results without this assumption is possible by following
a route similar to [26].

A useful property of the Bregman divergence induced by mirror maps that satisfy
our assumptions is the following,

(2.7) Do+ (z,2') = Do(2', ),

where z = V®(x) and 2’ = V®(z2'). For z,y,z € R? we have the triangle property for
Bregman divergences (see Lemma 9.11 in [4])

(28) <:Ij - Y VCD(Z) - V(I)(y» = D@("E,y) + D@(yv Z) - D<I>(x7 Z)
We also make use of the following property,
(2.9) Dy(x,x') < a(®)Dg(x', %)

where a(®) = Lﬁ% This property follows from the relative smoothness assumption
combined with the strong convexity and Lipschitz assumption on ®,
LsL 2LsL
Ds(x,x') < LyDg(x,x') < %Hx/ —x|? < #Dé(x’,x),
Hae

where with slight abuse we denote ®(x) = Zf\il ®(z'). We will use the following
Rayleigh quotient,

[da[> 7 [ldx]1?

1 1
(2.10) oy = max  maxd 1£2delB L2l
. dweRNd,d/\ERNd

Note that the norms for d, and d, in the definition above may be different (see
Remark 2.1). We will also need the following generalized Rayleigh quotient,
[AG) (], Y] (%240 (s

mn
x,d,,dxeRNd [da )12 +[ldal?2
8
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where A(x) = [V2f(x) + L, £] € RVIX2Nd_If strong convexity is assumed then s,
is strictly positive. This fact is not obvious since A(x) is not a square matrix, and
the norm used in the definition of (2.11) is not standard, we therefore provide a short
proof below.

LEMMA 2.7. Suppose Assumptions 1-3 hold and that f is relatively strongly convex
with respect to @, then kg defined in (2.11) is positive.

Proof. We note that A(x) can be obtained by removing the last Nd columns and
rows of the following matrix,

Bx) = [sz(_xﬁ)—kﬁ g] .

Let d = [d;,dy]" and note that (d, B(x)d) = d]V2?f(x)d,. It follows from
the relative strong convexity assumption that B(x) = ueV2®(x) and therefore
||B(X)||2V2<I>(z)*1 > 0. Since A(x) can be obtained by removing the last Nd columns
and rows of B(x) the result follows from the interlacing theorem for singular values,
see e.g. Theorem 3.1.3 in [18]. d
Lastly, we will need the following result.

LEMMA 2.8. Suppose that Assumptions 1-3. Then for an arbitrary optimal primal
dual pair (x*,X*) we have

N
2 ) .
IVF(%) + LA + Lx]|var ) > —2 | Da(a*, %) + Dy(A*, \Y)
(z) i
=1

N
2K ) .
- ﬂg <Z Do (2", 2") + Dy~ (1", ﬂ*)> )
i=1
where i = min{pe, v }
Proof. Since f is twice differentiable there exists an y on the line segment joining
x and x* such that Vf(x) — Vf(x*) = (V2f(y),x — x*). We then have,
IV£(x) + LX + Lx]|Z2 g+ (z) = IV F(x) = V) + L = X) + Lx = X) [F20- ()
1A e =" A = AT [[Bge ()
g (1" = xe|* + [|A™ = A]|1%)
2K al , .
! (Z Dg(z*,2") + Dy (\*, x)) :

K i=1

v

Y

We use (2.7) to obtain the bound in terms of the (algebraic) dual variables. d

3. Distributed Stochastic Mirror Descent: Exact and Preconditioned
Dynamics. In this section we introduce different variants of distributed MD algo-
rithms. We adopt a dynamical systems point of view for our analysis. Numerical
realizations of the proposed schemes are discussed in Section 5. For an introduction to
the original mirror descent algorithm we refer the interested reader to [4, Ch. 9].

Interacting Stochastic Mirror Descent (ISMD). The starting point of our analysis
is the Interacting Stochastic Mirror Descent (ISMD) algorithm. This algorithm was
proposed in [31] but its convergence was only established in the linear case. The case

9
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where all the functions are identical (i.e. f; = ... = fy) and strongly convex was
analyzed in [6]. The discrete time version of the algorithm for the general convex case
was discussed in [13], but exact convergence was only established under a diminishing
step-size strategy. In the continuous time setting the dynamics of ISMD are as follows,

N
(3.1) dzj = —nV f;(z})dt + ez Aii(z = 2)dt + 0dBi, xi = V&*(2}),

j=1

for particles i = 1,..., N, and where Bf are independent Brownian motions. The matrix
A= {Aij}f\fj:l is an N x N doubly-stochastic matrix representing the interaction
weights and 7, € are tuning constants representing the learning rate and interaction
strength, respectively. For simplicity in most of the subsequent analysis we set n = ¢ =
1, but it is straightforward to extend the results for arbitrary values of 7 and e. In the
context of modern large scale applications, we note that understanding convergence
under the presence of noise is often motivated from computational considerations such
as when sub-sampling the gradient f or the interaction graph when N is large.
Using the graph Laplacian, we can rewrite the evolution in vector form as

(32) dZt = (—Vf(xt) - £Zt) dt + O'dBt, Xt = V(I)* (Zt)7

where B, := ((B})7, ..., (BN)T)T. In the case where the mirror map above is the /5
norm it is known that even in the deterministic case the dynamics in (3.2) will not
converge to the exact solution (see [36, 35]). In Section 4.1 we show that in general
the dynamics in (3.2) also fails to converge to the exact solution of (1.1) and identify
that this can occur only under additional assumptions. This motivates proposing a
different dynamics below.

Ezact Interacting Stochastic Mirror Descent (EISMD). To address the limitations
of the ISMD algorithm discussed above we propose the following,

dz; = =V f(x)dt — Lxgdt — LAt + odBy,

(3.3)
dAt = [,Xtdt,

with x; = V®*(z;) and initial conditions Ag = 0, zg = V®(xg). The idea behind this
method is to add historical feedback into the algorithm through the integral fg Lxgds.
At optimality this will cancel out the gradient term V f(x;). In Section 3.1 we show
that the drift term in EISMD is related to the Augmented Lagrangian. We exploit
this connection in the theoretical analysis in Section 4. Compared to previous works
considered in Table 1 this algorithm integrates past information into the dynamics
through the integral term and is applicable to the mirror descent framework. For
the case where o = 0, (3.3) has been considered in [38]. Here we extend the ideas
in [38] to allow f being only convex, adding Brownian noise and considering general
preconditioning.

Ezact Preconditioned Interacting Stochastic Mirror Descent (EPISMD). A poten-
tial limitation of ISMD in (3.3) is that the mirror map ® only captures the geometry
of the primal space X C RY. Even if X = R?, our optimization problem is still con-
strained to the consensus manifold X©. In order to incorporate information from the
consensus constraint we introduce a second mirror map ¥ that acts on the Lagrangian
dual variable (see Figure 8). The preconditioned dynamics (EPISMD) is given by,

dZt = —Vf(xt)dt — EXtdt — EAtdt + O'dBt7

dpy, = Lxedt, Ay = VI* (),
10

(3.4)
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where p is the mirrored version of the A variable using the mirror map V. As we will
show in Section 3.1, this algorithm is related to preconditioning A; and we will later
show numerically that it can lead to faster convergence.

3.1. Preconditioning and the Augmented Lagrangian. The Augmented
Lagrangian for the standard gradient descent setting is well-known (see e.g. [28, 40, 16]).
The Alternating Direction Method of Multipliers (ADMM) is based on an Augmented
Lagrangian with a Bregman divergence [39, 41] and Riemannian primal-dual methods
over the Augmented Lagrangian were considered in [2] (see also [15] for a continuous
time analysis of ADMM). Below we discuss the relationship between the different
variants of the proposed methods.

Consider the Augmented Lagrangian,

(3.5) L6 A) = Fx) + {0 0) + 5 |£3xB.

The Augmented Lagrangian Method (ALM) proceeds by a descent step in the primal
variables and an ascent step in the Lagrangian dual variables. When Bregman
divergence is used to define the ALM, then (in discrete time) the iterates are given by
the following,

Xit At argmc}n At(VxL(x¢,At),d) + Do (d, x¢),
(3.6)

1
Atpar = argmax AL(VAL(xt, At),d) — §||d - XA

Writing down the optimality conditions of the two subproblems above and taking the
limit At — 0, we obtain the deterministic version of (3.3).

Alternatively, we can rewrite the dynamics of ISMD in (3.2) in terms of x; drawing
a connection with preconditioned or Riemannian gradient descent [26]. Note that
V®(V®*(z)) = z. Differentiating this w.r.t. 2z we obtain V2®*(z)V2®(V®*(z)) = Iy
Therefore,

(3.7) V20*(z) = V2&(x) L.

By applying Itd’s lemma to V®*(z;), using the definition of the Bregman divergence
and properties (2.2) and (3.7),

dw} = — V2®(x}) "'V fi(a))dt — V2O(x}) TN SN Agj(zf — 2] )dt

+ éaQVQ(V¢*(z§))dt +oV2®(z)~tdB!.
From this expression we see that mirror descent is a preconditioned algorithm where
the choice of preconditioner is determined through the function ®. Preconditioned
dynamics have been studied in previous work to improve communication complexity in
a distributed setting [17] or speed up mixing rates of the dynamics [20]. The additional
drift term with the third-order gradient of the mirror map arises as a correction term
due to the nonlinearity of the mirror map. A similar scheme can be derived for EISMD.
Preconditioning of the Interaction. The choice of mirror map can be used to
precondition the dynamics and accelerate convergence. Now we show, based on
the primal-dual interpretation, that the dynamics in (3.4) can also be cast into the
preconditioned setting, where preconditioning is done on the A; variable. Motivated

11
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by the augmented Lagrangian and preconditioning, as opposed to the dynamics in
(3.6), one could redefine the dual variable dynamics as,

AtrAe = argmax AUV AL(x¢, At),d) — Dy (d, A).

The first order optimality conditions of the problem above are,
VU (Ariar) = VI(Ay) + AtLxy.

Taking At — 0 we obtain,

(3.8) dX; = VAU (\) "1 Lxdt,

where we used V2W¥*(u) = V2W(A)~! as in (3.7). Therefore, the method in (3.4)
allows for additional flexibility due to the preconditioning of the dual variable.

4. Convergence Analysis. In this section we present a convergence analysis
for the exact interacting mirror descent algorithm. EISMD with a strongly convex
objective is able to converge exponentially fast to an area of the optimum, however
the size of this area can be made arbitrarily small by decreasing o.

4.1. When first-order optimization fails. Our first result shows that if there
exists an x* such that V f;(*) = 0 for all i = 1, ..., N, exact consensus can be obtained
for ISMD.

LEMMA 4.1. Let Assumptions 1-3 hold. Consider the dynamics in (3.2) with
oc=0.If

N

(4.1) [V fi(z) =0} #0,

=1

then limy_, oo ) = ™.

Proof. Let xg be the initial point of the algorithm, and let z* be an optimal (dual)
point closest to zg = V®(xg) with respect to the divergence generated by ®*,

* :
2z* = argmin Dg~ (2, 2o
z€2* ( ’ )

where Z* = {2z | z=V®(x),Jr € X : Vfi(x) =0,i =1,..., N}. By assumption (4.1),
Z* is not empty. With a slight abuse of notation we let * = V®*(z*) and note that
(x*, 2*) is an equilibrium point for (3.2) (for a strongly convex function it is also the
unique equilibrium point, but here we only assume convexity of f).

Define the Lyapunov candidate function V; = Ziil Dg- (2%, 2*). Then we obtain,

N N N
AV = (@ — )TV i(a)dt + Y (a — )"y Aij(a] — 2.
i=1 i=1 j=1
Under convexity of f and optimality at * we have
N N
Z(x _mt vaz xt Z — fi( xt)) >
i=1 i=1

12
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By the triangle equality of the Bregman divergence in (2.8),
(et —a")T( —z}) = —(a* —2})"(z] - )
= — (V& (") = V& ()" ( — =)
—Dag(2],20) — D (21, 2*) + Dg- (2], 2%).

(42) >3 Aij(ai — )T — =)

i=1 j=1

N N
= 33 Ay (~Dae (e 50) — Da (5.2%) + D () <0,
i=1 j=1

where we have used A;; > 0, Zil Zévzl Do« (2%, 2*) = Zf\[:l E;\Ll Dg- (2], 2%), and
DQ*(zf,zf) >0. Since V; >0forz#1y®z*, V; =0when z =1y ® z* and dV; <0
with equality only at z = 1y ® z* we conclude that V; is a Lyapunov function for z;.
Since Do+ (2, 2*) = Dg(x*, x}) the statement follows. 0

The Lemma above can be extended to an if and only if statement based on the
arguments of [35, Theorem 1], but precise details lie beyond the scope of this paper. If
(4.1) is violated, even with the right choice of mirror map, achieving exact consensus
is not possible. In general imposing «* to satisfy (4.1) is quite restrictive as V f(x) =
Zi\[:l V fi(x*) = 0 does not necessarily imply Vf;(z*) =0 for all i = 1,..., N. The
crucial point to realise here is that if and only if (4.1) holds then (x*,z*) will also be
the minimizer of f(x) 4+ 127 Lz; see [35, Lemma 7| for details. As a result one can
establish consensus at equilibrium and V; will approach zero at large ¢t. If x* does
not satisfy (4.1) and one has just Vf(x*) = 0, the arguments above can be used to
establish exponential but approzimate convergence for (3.2).

PROPOSITION 4.2 (Approximate convergence of (3.2)). Let Assumptions 1-3
hold and assume that f is us-strongly conver w.r.t. ®. Let x! = argmin{f(x) +
IVe(x)TLVP(x)} with x' =1y @ 2! and V;, = & Ziil Dg- (2L, 21), where 2} obeys
the dynamics of (3.2). Then

t 1 N . + (72 Cf
E[V,] <e ™'— N Dg«(24,2") + —||A®*|| o + =,
[Vi] N; 0 2y <y

where Cy > 0 is a constant depending on f.

The proof and details are in Appendix A.2. While the relative strong convexity of
the objective function can speed up convergence, only approximate convergence can
be obtained even with ¢ = 0. In this setup the additional preconditioning via the
mirror map does not facilitate exact convergence nor consensus. When (4.1) holds the
arguments above can be used to show that C'y = 0 thus achieving exact convergence.

4.2. Exact Interacting Stochastic Mirror Descent Analysis. In this sec-
tion we show that the EISMD algorithm in (3.3) allow us to converge close to the
optimum and this convergence is exact when o = 0.

13
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We note that x* = 27 for (i, j) € E if and only if £Lx = 0, therefore the problem in
(1.1) can be written as,

. 1, .1 5
min 76+ 312303
st. Lx=0.

The application of the Karush-Kuhn-Tucker (KKT) conditions to the problem above
implies that if (x*, A\*) = (1y ®2*, 1y ® A\*) is an arbitrary point that satisfies the first
order optimality conditions for (1.1), then when o = 0, (x*, A*) is also an equilibrium
point of (3.3). The connection of the dynamics of (3.3) and the augmented Lagrangian
is key to the convergence analysis below.

The analysis of the algorithm in (3.3) is based on the following Lyapunov function,

(4.3) V(x,A) = c(Vi(x) + Va(N)) + Va(x, A),

where,
al . 1
Vi(x) = ;de*,w’), Va(A) = S = A"[3,

1, 1
Va(x,A) = Dy(x,x") + (x = x*, LA = X")) + §||E5XII§,

and ¢ > ¢ with ¢ > 0 to be specified below for different contexts. In the case that f
is only convex and thus multiple minimizers might exist, then we define the optimal
primal dual pair, (2*, A*) to be the one that is closest to the initial conditions,

* ) = i D A — Mol
(*, A7) arg |\ Jnin o(7,20) + || ol

Below we establish upper and lower bounds for (4.3) that will be useful later on.

LEMMA 4.3. Let Assumptions 1-3 hold. Then (4.3) satisfies the following,
i V(x*, ) =0.
il.a If ¢ > max{kn/ue, KN} then

1 1 N
V(xA) 2 5 (nac — rn)lx - x|+ Sle=rmn)A=A 13> 0.

iii.a Let i = min{uqe,2}. Then,

N
3 2a(P
(4.4) V(XA < <c + “Nza()) (Z Da(z*,2:) + | A — A*||§> :
i=1
where a(®) = LyLg /e was defined in (2.9), and ky in (2.10).
If, in addition, f is pg-strongly convex relative to ® then:
ii.b For any ¢ > max{((kn — pyLa)/ta, KN},

1 1
V() 2 5 (pac+ pple = mn)llx =2 + 5 (e = ma) A = A3 > 0.

2
Proof. Property (i) is obvious. For (ii.a) we bound V; using the strong convexity
of &:

N
Vilx) = Y Dofa*,2) = B2 fa* — a2
i=1

14

This manuscript is for review purposes only.



519

520

o N

ot Ot

NN
w

We note that the convexity of f implies that D;(x,x*) > 0, and we bound V; as
follows,

Va(x,A)

v

1 1 1
(x = x" LA = A)) = =S (1£7x = x5 + 127X = A*[[3)

KN * *
x|+ A= A B)

v

where in the second inequality we used (2.1) and in the third one (2.10).
If, in addition, f is strongly convex relative to ® then,

S Hrle
ZDfx ) >ufZDq>x ) fTH x* — x|?

Using the preceding inequality to bound V3 we obtain the bound (ii.b).
For the upper bound in (iii.a) we bound the the first term in V3 using the symmetry
bound in (2.9),

N N

> Dy(a*,x:) < a(®) Y Do(a*,z;).

i=1 i=1

For the second term in V3 we use (2.1) again and for any v > 0,

1 * * K * 1 *
Fx=x"LA=AT) < %(vl\x—x H2+*II>\—>\ 1)

g”NVZDw x)+—|\A PN
Ho =1
< N Da (2%, 2%) + 2| A — A*|)2
<= (’YZ o(r*,2") + —|| 12)
fi - ol
S“N '%N"'a( )H)‘ A*H27

where in the second inequality we used the relative strong convexity of ® and for the

last inequality we set v = wiig(@) < 1. Finally, for the last term in V3 we use the

bound from (2.10), the strong convexity of ® and the definition of fi,

N
) .
l£x = 12 (x = x5 < mnvllxe = x| < =27 Do (o)
i=1
Using the upper bounds for the three terms in V3 we obtain the bound in (4.4). 0O
We then have the following convergence result for the dynamics in (3.3).

PROPOSITION 4.4 (Convergence of the dynamics in (3.3)). Let Assumptions 1-3
hold and assume k, > 0. Consider the dynamics in (3.3) and V; as defined in (4.3).
Let i = min{ug,2}. Then it holds,

T
(4.5) E[Vr] < e "TE[Vo] + /0 e "I M (x,)ds

15
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where Vip := V(xp, Ar),

— 24
© et +2a(®) + 3Ky’

2 2

M (x) = c%(tr(Cl(x)) +(x =X AV (2)) + tr(Ca(x)
ZW )IV2, De(z*, ") V2D(2) 1

Cy(x) = V2<I>(x) YUV f(x) + L)V (x) ™!

and ¢ > 2Kkg,N -

Proof. Let ¢ be as in Lemma 4.3 to ensure non-negativity of the Lyapunov function.
Since z' = V®*(2*) it follows from It6’s Lemma that,

) ) 1 )
dai = V20 (2")dz} + §U2A -V O*(2")dt

. d .
where the j' element of the It6 correction term is [A - VO*(2%)]; = Y 92,09,0*(2%).
k=1

For ease of exposition we define the following terms,

2
dM} = %(tr(C’l (x¢)) + (x¢ —x*, A - VO*(2;)))dt + (x; — X*,0dBy),

o2

AM? = “—tr(Ca(x¢))dt + (Vo L(xs, At ), V20" (2,)dB,).

Using the equilibrium points and the fact that V2®*(2)V2®(x) = I, we obtain,

(4.6)

AV + V) < —(x¢ — x*, L(x¢ — x*))dt + dM]}

1
< ——— L0k — x5 + dM;
KRB N

)

where for the first inequality we used the convexity of f and the symmetry of £ and
for the second inequality we used Lemma 2.6. We also have using L from (3.5),

2
AV3 = (VieL(xt, Ay, dx) + %tr(C’g(xt,)\t))dt F{L(xs — X)), dN)

= (f||me<xt,At>||2w<z,) + ll£xlI3) dt + an?

2/<V .
== (Z Da-(2f,2") + [|Ae = A ||§> dt + || Lx¢||5dt + dME,

where in the first line we used the optimality conditions V f(x*) + LA*, Lx* = 0, and
to obtain the last inequality we used Lemma 2.8 with ¥ = 1| - [3. If in addition
¢ > 2kg, N and using the bound in (4.6) we obtain,

dvi

I /\

ZHg

(Z Dg- (21, 2%) + || As — /\*|§> dt — ||Lx¢||3dt + cd M} + dM}

2kKg
cit + 2a(®) + 3k

V(x¢, A¢)dt + cdM} + dMZ,

16
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where in the last inequality we used (4.4) from Lemma 4.3. Finally, taking expectations,
integrating and using Gronwall’s lemma we obtain (4.5). O

It is clear that V is a stochastic Lyapunov function and exact convergence can be
achieved using ¢ = 0. We note that if k4 > 0 then the result above implies that
dVy < 0, but we may not have an exponential convergence rate. In Lemma 2.7 we
showed that the strong convexity of the objective function implies that x5 > 0 and we
note that the reverse is not true.

4.3. Convergence with preconditioned interaction. The motivation behind
the EPISMD algorithm in (3.4) is that in both unconstrained and constrained settings,
additional speedup can be obtained by preconditioning the dual variable XA. The use of
the mirror map ¥ results in additional flexibility in the convergence rate; furthermore
it allows to work with the Bregman divergence as the Lyapunov function. We observe
this additional flexibility through the term [, which is given by £ = min(ue, pw) so
that the proper choice of mirror map ¥ can additionally improve the convergence.

Consider V; as in (4.3) but with,

N
(4.7) VA =D Du(A,A).
i=1

As before we will change the definition of the optimal point the algorithm will converge
to as follows,

(z*, \*) = argz’)\er(n)ifr*l’A*) Dy (z,20) + Dy(A, o).

The convergence of (3.4) can be obtained using slight modifications of the proof of
Lemma 4.3.

LEMMA 4.5. Let Assumptions 1-3 hold. Then V; with V2 as in (4.7) satisfies
Lemma 4.3 (i) and,
ii.a If c > max{rn/pa, in/pv},

1 x
(toc — rn)llx = x*]* + S (nwe — £n)[[A = X5 > 0.

V(x,A) > L 5

=2

iii.a Let i = min{ue, pw}. Then,

3kn +20(®)\ [ R .

(48) V(x,A) < <c + N) <Z Dg(a*, ')+ Dy (N, x)) .
K i=1 i=1

If in addition f is pg-strongly convex relative to ® then:

ii.b For any ¢ > max{((kxy — ptfLa)/po, in/puw},

1 *
(Hoc+ ppLo — an)|lx = x| + 2 (pwe — sn)[[A = N[5 > 0.

>
VixA) > >

N |

The following convergence then holds.

PROPOSITION 4.6 (Convergence of the preconditioned dynamics in (3.4)). Let
Assumptions 1-3 hold and k4 > 0. Consider the dynamics in (3.4). Let the Lyapunov
function V; be defined as in (4.3) with V;? as in (4.7). Then the result from Proposition
4.4 holds with i = min{pe, pe} and ¢ > 2kg N/ pw.

17
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Proof. Let ¢ be as in Lemma 4.5 to ensure non-negativity of the Lyapunov function.
We follow similar steps as in the proof of Proposition 4.4. Observe that, assuming that
the Bregman divergence is differentiable in the second variable and using (3.8),

dVZ = (=V2U (X)) (A — Ap), V2O (N) 1 Lx,)
=X — /\*)T[,(Xt — x*)dt.

Then, a modification of Lemma 2.6 can be derived; using the positive semi-definiteness
of V2¥ we can derive N‘;“’N VZU(A) L < E;l and obtain,

(x4, L) > %th,v?qf(xt)—lzxg.

Then,

(4.9) AV + eVE) < |24 By, -adt + A

)

Furthermore using (3.8),
avy = <—||VxL(Xt, A %20+ () + ||ﬁXt||v2\1/(,\t)—1) dt + dM}

Consequently apply Lemma 2.8, the bound in (4.9) and use the additional assumption
that ¢ > 2k5 v /1w to obtain

2/{
d‘/t < g <Z Dcp* Zt7 + ZD\I] )\ ) dt - ||£Xt||v2\y(k) 1dt

+ chtl + dM?.

Lastly use (4.8) and we complete the proof by integrating and taking expected values.O

The convergence of A, is affected by how well-conditioned the interaction graph and
objective function are. In the proof of Proposition 4.6 we observe that the use of the
mirror map V¥ results in an improved rate of convergence. In particular, when ”—‘I’ <1
we end up with r in Proposition 4.6 being larger than that seen in Proposition 1.4.

Choosing the preconditioner. For many interesting applications good mirror maps
are known, and the advantages of mirror descent over gradient descent are well
understood. Unfortunately, it is not clear how to select a good mirror map for the
space of Lagrange multipliers. However, if we restrict the mirror map to be quadratic,
we postulate that a positive definite approximation of the Hessian of the dual function
will work well in practice, e.g. as seen in the results of Section 5. We argue that the
extra computation associated with approximating the Hessian of the dual function
could be justified in the scenario where the Laplacian matrix is ill-conditioned. Below
we briefly outline the derivation of the Hessian for the dual function in the deterministic
setting and when f is strongly convex. In particular, the (negative) dual function g(A)
is defined as follows,

(4.10) q(A) = max {—(f(x) + (A, Lx))},

xeXN

and let x(A) be a maximizer of (4.10). We know that for the strongly convex case,
x(A) is unique and the gradient of the dual function is given by ( [3, Theorem 6.3.3]),

Vag(A) = —=Lx(N).
18
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Applying the KKT conditions to (4.10) and differentiating with respect to A we also
have that,

dx(A)

X +L£=0.

V2f(x(X))

Using the preceding equation we obtain the following expression for the Hessian of the
dual function,

dx ()

2 —_
V(N = L2

= LV2f(x(N) 1L

Unfortunately, even if f is strongly convex, the dual function in (4.10) is only convex
(and not strongly convex). So we cannot directly use the Hessian of the dual function
above, instead we proposed to use,

VEU(A) = LV f(x(N) " Lg,

where Lg is the f-regularized Laplacian defined in (2.4). Note that we can avoid
inverting the Hessian of f at every iteration and instead work with the convex conjugate
of ¥ which occurs a one-off cost of diagonalizing the regularized Laplacian,

VAU (A) = L5 V2 F(x(N) L5

The argument above could be made more precise and extended to more general settings.
We report promising numerical experiments with this choice for the mirror map in
Section 5.5.

5. Numerical results. Here we study the performance of the proposed algo-
rithms in three problems:

A An unconstrained ill conditioned linear system. We set the local cost
functions as f;(x) = 3||Q;z — b;||3. Unless mentioned otherwise X = R? with
d =200 and @Q; € R?9%290 i5 5 random matrix with condition number 15 and
bi ~ N(0, I5). For the mirror map we set ®(z) = 3|/z||>. We remark that in
this setting the only constraint in the problem comes from the consensus.

B A constrained linear system. The setup is similar to the unconstrained
linear system but we set X = Ay, the d-dimensional simplex. The mirror
map is set to be the negative entropy function ®(z) = Z?:I[a:]j log([x],) such
that [2]; = 1+ log([z];) (and [2]; = 0 if [z]; = 0) and [z]; = el*li~! and the
mapping onto the simplex is done using the normalization of this negative
entropy mirror map. Here we denote with [z]; the i-th element of vector z.

C A neural network. Motivated by federated learning applications [25] we
consider the training of a neural network with one hidden layer and 30 nodes
per layer using a ReLU activation, a softmax output and the cross-entropy
loss. The training data is the FashionMNIST data. Each particle ¢ has access
to 10 of these samples and the cross-entropy loss over this subset defines each
fi- We will assume the solution lies in the constraint set X = Ay (e.g. looking
for a sparse solution) and use the negative entropy mirror map.

For the connectivity graph we define three options: (i) a cyclic graph with each node
connected to the previous and next node, (ii) an Erdos-Rényi graph, or (iii) a barbell
graph. For the dynamics we use a standard Euler discretization with At = 0.01 and
50,000 epochs. We implement ISMD, EISMD and EPISMD dynamics that include
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Fig. 3: Loss function for problem (B) with cyclic graph (i). Left is centralized (N = 1),
right distributed (N = 10). ISGD, EISGD and ISMD, EISMD use (3.2), (3.3) with

1 2 . . . .
®(x) = 3[|z||* (i.e. x; = z¢) and the entropic mirror map, resp. projected to Aq.
Loss function for N=10 with noise=0.01 Loss function for N=10 without noise
"
e ISMD, eta=0.01 ISMD, eta=0.01
ISMD prec.,eta=0.01 2x10t ISMD prec.,eta=0.01
S E
= =
S >
10t 10*
15000 17500 20000 22500 25000 27500 30000 32500 35000 15000 17500 20000 22500 25000 27500 30000 32500 35000
Tterations Tterations

Fig. 4: Loss functions for Problem (A) and graph (i) with condition number set to
100, N = 10 and preconditioned with a local objective function for different learning
rates (eta in legend). Left o = 0.01, right ¢ = 0.

hyperparameters €, n for the interaction strength and learning rate; see Appendix B.1
for more details.

5.1. The effect of the mirror map. We first compare distributed mirror
descent with projected gradient descent for problem (B) using graph (i) to showcase
the benefits of the entropic mirror map in simplex constrained systems. In Figure 3
we present the results for ISMD and EISMD for N = 1 (centralized implementation)
and N = 10 (distributed). The benefits of the exact dynamics in (3.3) and the mirror
map are clear in both cases.

5.2. The limits of the mirror map for ISMD. As shown in Section 3.1, the
mirror map is equivalent to a preconditioner in the primal dynamics. In problem
(A) with & = R?, if the mirror map is chosen to be the local objective function then
ISMD results in a local Newton-like algorithm. Here we will explore the effectiveness
of using such a local preconditioner and set V2®(z') = Q7 Q;. Figure 4 shows the
convergence results for the problem A with condition number increased to 100, d = 20
and the cyclic interaction graph (i). The distributed case when preconditioned with
the local Hessian does not result in full convergence. Thus the mirror map alone cannot
facilitate convergence. The results are meant as motivation for using EISMD. We note
that other solutions are possible, e.g. extending [34] to provide an approximation of
the full preconditioner, but this will increase communication at each step.

5.3. The effects of the exact algorithm. Here we present a detailed analysis
of the benefits of EISMD compared to ISMD using both the ¢ error between the
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Fig. 5: ISMD and EISMD for Problem (A) and graph (i) for n = 0.01, N = 10, 0 = 0.1
and € = 1,10 (eps in legend). Left panel shows ||z} — z||> with b,w the best and
worst particle index at each time and right panel shows cost functions.

best and worst performing particle and the loss function computed over all particles.
Figure 5 shows results for problem (A) and graph (i). In all cases a higher interaction
strength allows to converge closer to the optimum and EISMD performs significantly
better then ISMD. Figure 6 shows similar results for problem (B). In the top panels
EISMD is clearly more effective than ISMD. The lower plots of Figure 6 show that
in the presence of noise a high interaction in ISMD is able to mitigate the process
variance due to the (appearing as oscillations) and result in convergence closer to the
optimum.

Average particle Loss function
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Fig. 6: ISMD and EISMD for Problem (B) and graph (i). Bottom row details as in
Figure 5. Top row panels same but with 0 =0, e = 1 and 5 = 0.01, 0.005.

5.4. The choice of interaction graph. Here we set the communication struc-
ture to be an Erdos-Rényi communication graph (ii). This is a random graph where
each edge is chosen with a certain probability p. The communication between the
nodes is thus determined by this connectivity probability with on average each node
being connected to p x N other nodes. The weight matrix A is set to be a doubly
stochastic version of this communication graph and additionally we use [7] to optimize
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Fig. 7: Loss functions of EISMD for problem (B) and graph (ii). Left panel contains
full results and right magnifies the initial epochs. We set ¢ =1, ¢ = 0.1, n = 0.01 and
vary the number of nodes each particle communicates with to 2, 5, 8 or 10.

the coefficients to get the fastest mixing in (3.3) whilst maintaining minimum commu-
nications. Figure 7 shows results for problem (B) and different graph connectivities.
The benefits of EISMD become even more clear from these results; using a graph
with an optimal interaction structure while maintaining minimal interaction costs
in combination with EISMD can result in very fast and computationally efficient
convergence. Even with a very low communication cost per round, specifically each
node communicating with approximately two other nodes per round, it results in a
convergence speed comparable to full communication seen earlier.

5.5. Accelerated dual convergence. The right choice of mirror map (pre-
conditioner) in the unconstrained setting can also result in accelerated convergence
of the A variable. We know from the discussion in Section 4.3 the form of a good
preconditioner. For the linear case, it is given by V2U¥(X) = —L5(QQT) 1Lz with
@ being block diagonal composition of Q;-s. We use the regularized Laplacian here,
specifically L5 = £+ 0.01 - 1y1% ® I,. We show the benefits of this preconditioner
in EPISMD (shown in (3.4)) numerically in Figure 8 for a barbell graph with two
clusters (iii). Clearly, preconditioning allows to converge much faster and closer to
the optimum. We observe that preconditioning enables the algorithm to converge
much faster and closer to the optimum. In the case of the barbell graph (iii) where
the graph Laplacian is not well-conditioned, the ability to speed up the convergence
using the preconditioning of the dual variable can lead to very substantial benefits in
many real-world clustered systems.

5.6. Federated learning in a nonconvex example. In this example we study
the performance of ISMD and EISMD for problem (C) and graph (i). In Figure 9 we
compute the gradient over a random batch of data points. Each particle computes
the gradient in each iteration over a batch of size 10, which results in implicit noise in
the algorithm. We observe that the exact method results converge significantly faster
even in this nonconvex setting.

6. Discussion. Our work successfully presented the benefits of mirror maps and
how to use them while still achieving consensus in a distributed setting. For future
work several interesting extensions can be considered. If one discretizes the continuous
time dynamics, e.g. as in constant step size Euler-Maruyama schemes, then a bias will
be present that depends on the discretization interval. In this sense exactness is lost,
but could be recovered again using decreasing step sizes or constant ones combined
with ideas from sampling methods [14]. Addressing this in detail and comparing with
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Fig. 9: ISMD and EISMD for problem (C) and graph (i). Left shows training loss
against epoch and right shows test loss.

the discrete time methods in Table 1 is left for further work. The analysis shown
here for EISMD and EPISMD can be extended to a setting where the solution of
(1.1) does not lie in the constraint space X" using steps similar to [26]. Furthermore,
we only numerically explored the nonconvex setting in EISMD using a small neural
network with a negative entropy mirror map; future work can include a theoretical
analysis of the nonconvex case as well as exploring further the benefits of different
mirror maps using EPISMD in the distributed training of neural networks. Last, the
algorithm could be modified to one applying the Laplacian onto the mirrored variables;
preliminary numerical results showed that in high-dimensional and/or nonconvex
settings this could be of benefit; a more detailed converge analysis of this phenomenon
may be of interest which would require the definition of a different Lyapunov function.

Acknowledgements. This project was funded by JPMorgan Chase & Co under J.P.
Morgan A.I. Research Awards in 2019 and 2021. G.A.P. was partially supported by
the EPSRC through grant number EP /P031587/1.

23

This manuscript is for review purposes only.



763

764
765
766
767
768
769

NI
AW~ O

~N ~J
-~ =~ 1
S U

~

oo

3 =1 ~J

~N N
0 00 00 0 ~J I
YO W N~ OO

-3

3~ =
0

(1]
2l
3l

[4]
[5]

[6]

(7]
(8]

(9]

[10]
(11]

(12]

[13]

> O 2 2 <

[14] A

[15] G

[16]
(17]
(18]
[19]

20]

[21]

22]

23]
[24]

[25]

[26]

27]

REFERENCES

. ArRJEVANI AND O. SHAMIR, Communication complexity of distributed conver learning and

optimization, arXiv preprint arXiv:1506.01900, (2015).

. Bapier Kunuzant anp N. Li, Stochastic Primal-Dual Method on Riemannian Manifolds

with Bounded Sectional Curvature, arXiv e-prints, (2017), pp. arXiv-1703.

. S. Bazaraa, H. D. SueEraALI, aAND C. M. SHETTY, Nonlinear programming: theory and

algorithms, John Wiley & Sons, 2013.

. BEck, First-order methods in optimization, vol. 25, SIAM, 2017.
. P. BErTsEkAas AND J. N. TsitsikLis, Parallel and distributed computation: numerical

methods, 2015.

. BorovykH, P. Parras, N. KanTas, AND G. PavrioTis, On stochastic mirror descent with

interacting particles: convergence properties and variance reduction, Physica D.Nonlinear
Phenomena 418, (2021).

. Boyp, P. Diaconis, aND L. Xiao, Fastest mizing Markov Chain on a graph, SIAM review,

46 (2004), pp. 667—-689.

. Boyp, N. ParikH, E. Cuu, B. PELEATO, AND J. ECKSTEIN, Distributed optimization and

statistical learning via the alternating direction method of multipliers, Found. Trends Mach.
Learn., 3 (2011), p. 1-122.

. BuBeck, Convez optimization: Algorithms and complezity, arXiv preprint arXiv:1405.4980,

(2014).

. BurLLo, Lectures on Network Systems, Kindle Direct Publishing, 1.5 ed., 2021.
. CHEN, A. GaRrcia, M. HoNG, AND S. SHAHRAMPOUR, Decentralized Riemannian Gradient

Descent on the Stiefel Manifold, arXiv preprint arXiv:2102.07091, (2021).

. D’Orazio, N. Loizou, I. Larapji, AND I. MiTLIAGKAS, Stochastic mirror descent:

Convergence analysis and adaptive variants via the mirror stochastic polyak stepsize, arXiv
preprint arXiv:2110.15412, (2021).

. C. DucHi, A. AGARWAL, AND M. J. WAINWRIGHT, Dual averaging for distributed optimiza-

tion: Convergence analysis and network scaling, IEEE Transactions on Automatic control,
57 (2011), pp. 592-606.

. Durmus AND E. MouLINES, Sampling from strongly log-concave distributions with the

unadjusted Langevin algorithm, arXiv preprint arXiv:1605.01559, 5 (2016).

. Franca, D. RoBinsoN, AND R. VibaL, ADMM and accelerated ADMM as continuous

dynamical systems, in International Conference on Machine Learning, PMLR, 2018, pp. 1559~
1567.

. GHARESIFARD AND J. CoRTES, Distributed continuous-time convex optimization on weight-

balanced digraphs, IEEE Transactions on Automatic Control, 59 (2013), pp. 781-786.

. HEnDRIKX, L. X1a0, S. BuBeck, F. BacH, AND L. MASSOULIE, Statistically preconditioned

accelerated gradient method for distributed optimization, in International Conference on
Machine Learning, PMLR, 2020, pp. 4203-4227.

. A. Horn anD C. R. JounsoN, Topics in matriz analysis, Cambridge university press, 1994.
. JAKOVETIG, J. XAVIER, AND J. M. MouRra, Fast distributed gradient methods, IEEE

Transactions on Automatic Control, 59 (2014), pp. 1131-1146.

. L1, C. CuEN, D. CarLsoN, AND L. CARIN, Preconditioned stochastic gradient Langevin

dynamics for deep meural networks, in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 30, 2016.

. Liang, L. Wang, anp G. YIN, Exponential convergence of distributed primal—dual convex

optimization algorithm without strong convezity, Automatica, 105 (2019), pp. 298-306.

. Lin, W. REN, AnD J. A. FARRELL, Distributed continuous-time optimization: nonuniform

gradient gains, finite-time convergence, and convex constraint set, IEEE Transactions on
Automatic Control, 62 (2016), pp. 2239-2253.

. Liu, Z. Qmu, anxp L. Xig, Continuous-time distributed convexr optimization with set

constraints, IFAC Proceedings Volumes, 47 (2014), pp. 9762-9767.

. Lu, R. M. FREUND, AND Y. NESTEROV, Relatively smooth convex optimization by first-order

methods, and applications, SIAM Journal on Optimization, 28 (2018), pp. 333-354.

. McMaHAN, E. Moorg, D. RamaGEg, S. Hampson, anD B. A. v Arcas, Communication-

efficient learning of deep networks from decentralized data, in Artificial Intelligence and
Statistics, 2017, pp. 1273-1282.

. MERTIKOPOULOS AND M. STAUDIGL, On the convergence of gradient-like flows with noisy

gradient input, SIAM Journal on Optimization, 28 (2018), pp. 163-197.

. NEDIG, S. LEE, AND M. RAcINsKY, Decentralized online optimization with global objectives

and local communication, in 2015 American Control Conference (ACC), IEEE, 2015,

24

This manuscript is for review purposes only.



824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862

863

864

865

866

867
868

pp. 4497-4503.

[28] A. Nebic, A. OLsSHEVSKY, AND W. SHI, Achieving geometric convergence for distributed
optimization over time-varying graphs, SIAM Journal on Optimization, 27 (2017), pp. 2597—
2633.

[29] S. Pu anp A. NEDIC, Distributed stochastic gradient tracking methods, Mathematical Program-
ming, 187 (2021), pp. 409-457.

[30] G. Qu anp N. Li, Harnessing smoothness to accelerate distributed optimization, IEEE Trans-
actions on Control of Network Systems, 5 (2017), pp. 1245-1260.

[31] M. Racinsky AND J. Bouvrig, Continuous-time stochastic mirror descent on a network:
Variance reduction, consensus, convergence, in 2012 IEEE 51st IEEE Conference on Decision
and Control (CDC), IEEE, 2012, pp. 6793-6800.

[32] S. S. Ram, A. NEDIC, AND V. V. VEERAVALLI, Distributed stochastic subgradient projection
algorithms for convex optimization, Journal of optimization theory and applications, 147
(2010), pp. 516-545.

[33] S. SHAHRAMPOUR AND A. JADBABAIE, Distributed online optimization in dynamic environments
using mirror descent, IEEE Transactions on Automatic Control, 63 (2017), pp. 714-725.

[34] O. Suamir, N. SREBRO, AND T. ZHANG, Communication-efficient distributed optimization
using an approzimate newton-type method, in International conference on machine learning,
PMLR, 2014, pp. 1000-1008.

[35] G. Sui, A. ProuTierg, AND K. H. JoHANSSON, Network synchronization with convezity,
SIAM Journal on Control and Optimization, 53 (2015), pp. 3562-3583.

[36] W. Sui, Q. Ling, G. Wu, anxp W. YIN, EXTRA: An exact first-order algorithm for decen-
tralized consensus optimization, STAM Journal on Optimization, 25 (2015), pp. 944-966.

[37] S. SrA, S. NowoziN, anD S. J. WRIGHT, Optimization for machine learning, Mit Press, 2012.

[38] Y. Sun AND S. SHAHRAMPOUR, Distributed mirror descent with integral feedback: Asymptotic
convergence analysis of continuous-time dynamics, arXiv preprint arXiv:2009.06747, (2020).

[39] H. WaNne AND A. BANERJEE, Bregman alternating direction method of multipliers, Advances
in Neural Information Processing Systems, (2014).

[40] J. Wanc anD N. ELiA, A control perspective for centralized and distributed convex optimization,
in 2011 50th IEEE conference on decision and control and European control conference,
IEEE, 2011, pp. 3800-3805.

[41] A. WiBisono, A. C. WiLsoN, AND M. I. JorDAN, A wvariational perspective on accelerated
methods in optimization, proceedings of the National Academy of Sciences, 113 (2016),
pp. E7351-E7358.

[42] K. Yuan, Q. Ling, aAND W. YIN, On the convergence of decentralized gradient descent, SIAM
Journal on Optimization, 26 (2016), pp. 1835-1854.

[43] X. Zeng, P. Y1, AND Y. HoNg, Distributed continuous-time algorithm for constrained convex
optimizations via nonsmooth analysis approach, IEEE Transactions on Automatic Control,
62 (2016), pp. 5227-5233.

Appendix A. Auxiliary results.

A.1. The benefits of the mirror map. To show the ability of mirror descent
to adapt to a particular geometry we present the classical mirror descent proof which
can be interpreted as having a central server; this server broadcasts z; € X to all
nodes which compute V f;(x;) and send this back to the server. In continuous-time
the algorithm at the server is given by

N
dzy = =Y Vfi(xy)dt + odB;.
i=1

The aim is to converge to the optimal point (z*, z*) given as
x* =argmin f(z), z*=Vo(z).
reX

We will make use of the inequality,

¢
(A1) / e =) Kds < 5,
0 a
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and [|A®*(z¢)||eo < 0o (by Assumption 3).

LEMMA A.1 (Convergence of centralized mirror descent). Let f(x) = vazl fi(x)
be p¢-strongly convex with respect to ®. Then,

2
B [Da (0", )] e Dafa” o) + 1|0 .
f

Proof. Let Vi = Dg+ (2, 2*). We have through Itd’s lemma,

N
1
dv, = — Z(m* —x) TV fixy)dt + 502tr(A<I>*(zt))dt + o(zy — z*)TdB,

i=1

IN

2
g
(—ns Da(a*,2e) = flae) + F(@*) + T ||A®"]|oo)dt + 02 — =) TdB,
2
< (=nDas (21,27) + |08 |)dt + o (2, — 2*) T dB,,

where in the first inequality we have used the p¢-strong convexity w.r.t. ® and in the
second inequality that by the properties of the mirror map Dg(2*,2¢) = Dg« (2, 2*)
and that f(z*) — f(z:) < 0. Using (A.1), taking expectations and applying Gronwall
inequality the result follows. ]

Comparing the results of mirror (preconditioned) gradient descent to the Euclidean
setting where @ (z) = 3||z||3, the effectiveness of the algorithm hinges on how large
py is compared to pug where pg is such that f is pg-strongly convex with respect
to 1|/z[|3. An optimal mirror map is then the one that is given by ®(z) = f(z), in
which case it holds that uy = 1. Discretizing the continuous-time algorithm would
then result in achieving convergence with a larger discretization step size. The works
of [17, 34, 1] study the discrete-time convergence if the mirror map is chosen to be
one of the objective functions, i.e. ®(z) = f;(x) for some i and show that convergence
can be obtained in one time step with the right (estimate of the) preconditioner. One
can seek to choose the mirror map ® in such a way that Dg (20, 2*) is smaller than
Dy, (z0,*) and get faster convergence, and in such a way that ||[A®*|| is smaller
than ||A®%; ||« for closer convergence.

A.2. Approximate convergence of distributed mirror descent. Recall the
vectorized ISMD dynamics of (3.1) are

(A?) dZt = (*T]Vf(Xf) — €£Zt) dt + O'dBt, Xt = V(D*(Zf)

If * as per Lemma 4.1 does not exist, even in the deterministic case exact consensus
and optimality at convergence can no longer be achieved. We present a result which
shows that exponential convergence holds only up to a certain neighborhood of (x',z")
both minimizing f(x) 4+ 3z Lz, the size of this neighborhood depending on the noise
and the distance between the f(x') and f(z*).

PROPOSITION A.2 (Approximate convergence of (A.2)). Let Assumptions 1-3

hold and assume that f is pp-strongly conver w.r.t. ®. Let V; = + Zf\;l Dy (21, 21),
where 2z} obeys the dynamics of (3.1) (or (A.2)). Then we have:

E[V] < e st ZD@ 22 + —||Ac1> lloo + ;Tf (fFxh) = f(x),

where x° = arg minge x f(x).
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Proof. Denote x' = arginf{f(x) + 3V®(x)TLV®(x)}, z' = VO(x'). Then
N N o
v, = N; )0V fi(w)dt + e NZ *)T;Am»zz — z)dt
1 N N s
(A.3) 5 Z Z —zHTdB!.

Using the p¢-strong convexity of f as in the proof of Lemma A.1 we obtain,

VFxe) " (x" = x0) <F(xY) = f(xe) = g Do(x", x2)
<Fx) = f(x°) + f(x°) — f( 6) = 1y Dy (xT, x¢)
<f(xT) = f(x°) = s Dy(x", %)

Substituting in (A.3) and using (2.7), (4.2) and taking expectations gives

dE[V; R 1 .
WL < BV () — F06) + 50?80
Standard Gronwall arguments gives the result. ]

Note that when (4.1) x°, x* and x* coincide [35, Lemma 7], so Cy = 0.
Appendix B. Additional information for the numerical results.

B.1. Dynamics with hyperparameters and their discrezation. In (A.2)
and (3.1) we included 7, € to allow tuning of the relative effect of the gradient and the
interaction. The expression of Proposition A.2 can be sharpened to include more precise
contributions from eLz; using similar Grénwall arguments to bound E[||z; — 2T||?]
instead of simply using (4.2). This is omitted here for brevity and we note e does
have an effect in the numerical results. For the discretization, let At be a constant
discretization interval and B;” ~ N(0,02At) form i.i.d. sequences for j = 1,2 and
t=1,...,N. Then the Euler discretization of the dynamics in (A.2) are given by

; ; ; N j ; i1
sz+1)At = zjar — NV fi(hal) At + 62;‘:1 Aij (a0 — Zhad) At + By,
$2k+1)At = V‘I’*(ZEkH)At)-

Similarly for the EISMD dynamics of (3.3) we can include a learning rate n and
interaction strength e

(B.1) dzy = —nV f(x¢)dt — eLzydt — LA dt + 0dBy,  dA; = Lxdt.

Similarly, the discretized dynamics of (B.1) are given by

, . , N } ;
sz+1)At =2rar — AV fi(zga) + Ate Zj:l Aij(Zha0 — Zkae)
N j ; 0,2
+ At Zj:l Aij()\?cAt - }cAt) + By”,
i i N j i
Arsnyar =Near = 2 j=1 Aij (Thar — Tha) At

The rest of the cases in Section 3 follow similarly.
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