
Bayesian Methods and
Computation

N A Heard

CONTENTS

1. Uncertainty and Decisions 1
1.1. Subjective uncertainty and possibilities . 1

1.1.1. Subjectivism . 1
1.1.2. Subjective uncertainty . 2
1.1.3. Possible outcomes and events . 2

1.2. Decisions: Actions, outcomes, consequences 3
1.2.1. Elements of a decision problem . 3
1.2.2. Preferences on actions . 4

1.3. Subjective probability . 5
1.3.1. Standard events . 5
1.3.2. Equivalent standard events . 6
1.3.3. Definition of subjective probability . 6
1.3.4. Contrast with frequentist probability 7
1.3.5. Conditional probability . 7
1.3.6. Updating beliefs: Bayes Theorem . 8

1.4. Utility . 8
1.4.1. Principle of maximising expected utility 8
1.4.2. Utilities for bounded decision problems 9
1.4.3. Utilities for unbounded decision problems 10
1.4.4. Randomised strategies . 10
1.4.5. Conditional probability as a consequence of coherence 11

1.5. Estimation and prediction . 11
1.5.1. Continuous random variables and decision spaces 11
1.5.2. Estimation and loss functions . 12
1.5.3. Prediction . 13

i

2. Prior and Likelihood Representation 15
2.1. Exchangeability and infinite exchangeability 15
2.2. De Finetti’s representation theorem . 16
2.3. Prior, likelihood and posterior . 18

2.3.1. Prior elicitation . 18
2.3.2. Non-informative priors . 18
2.3.3. Hyperpriors . 19
2.3.4. Mixture priors . 19
2.3.5. Bayesian paradigm for prior to posterior reporting 19
2.3.6. Asymptotic consistency . 20
2.3.7. Asymptotic normality . 20

3. Graphical Modelling and Hierarchical Models 23
3.1. Graphs . 23

3.1.1. Specifying a graph . 23
3.1.2. Neighbourhoods of graph nodes . 25
3.1.3. Paths, cycles and directed acyclic graphs 25
3.1.4. Cliques and separation . 26

3.2. Graphical models . 26
3.2.1. Belief networks . 26

3.2.1.1. Connectedness and direct separation 27
3.2.1.2. Independence and conditional independence 28

3.2.2. Markov networks . 28
3.2.2.1. Conditional independence 29
3.2.2.2. Lattice models . 30

3.2.3. Factor graphs . 30
3.2.3.1. Conditional independence 31

3.3. Hierarchical models . 31

4. Parametric Models 35
4.1. Parametric modelling . 35
4.2. Conjugate models . 36
4.3. Exponential families . 38
4.4. Non-conjugate models . 39
4.5. Posterior summaries for parametric models . 39

4.5.1. Marginal distributions . 39
4.5.2. Credible regions . 40

5. Computational Inference 41
5.1. Intractable integrals in Bayesian inference . 41
5.2. Monte Carlo estimation . 42

5.2.1. Standard error . 43
5.2.2. Estimation under a loss function . 43
5.2.3. Importance sampling . 44

ii

5.2.4. Normalising constant estimation . 45
5.2.4.1. Marginal likelihood estimation in Bayesian inference 45

5.3. Markov chain Monte Carlo . 46
5.3.1. Technical requirements of Markov chains in MCMC 46
5.3.2. Gibbs sampling . 48
5.3.3. Metropolis-Hastings algorithm . 49

5.3.3.1. Random walk . 51
5.4. Hamiltonian Markov chain Monte Carlo . 52
5.5. Analytic approximations . 53

5.5.1. Normal Approximation . 54
5.5.2. Laplace Approximations . 54

5.5.2.1. Approximating marginal distributions 55
5.5.2.2. Integrated nested Laplace approximation 55

5.5.3. Variational inference . 56
5.5.3.1. Evidence lower bound . 57
5.5.3.2. Mean-field variational inference 58
5.5.3.3. Coordinate ascent variational inference 59

5.6. Further topics . 60

6. Bayesian Software Packages 61
6.1. Illustrative statistical model . 61
6.2. Stan . 62

6.2.1. PyStan . 64
6.3. Other software libraries . 65

6.3.1. PyMC . 65
6.3.2. Edward . 65

7. Criticism and Model Choice 67
7.1. Model uncertainty . 68
7.2. Model averaging . 68
7.3. Model selection . 69

7.3.1. Selecting from a set of models . 69
7.3.2. Pairwise comparisons: Bayes factors 69

7.3.2.1. Bayesian hypothesis testing 70
7.3.3. Bayesian information criterion . 71

7.4. Posterior predictive checking . 72
7.4.1. Posterior predictive 𝑝-values . 73
7.4.2. Monte Carlo estimation . 73
7.4.3. PPC with Stan . 74

8. Linear Models 79
8.1. Parametric regression . 79
8.2. Bayes linear model . 80

8.2.1. Conjugate prior . 81
8.2.2. Reference prior . 84

iii

8.3. Generalisation of the linear model . 85
8.3.1. General basis functions . 85

8.3.1.1. Polynomial regression . 86
8.3.1.2. Linear spline regression . 86

8.4. Generalised linear models . 87
8.4.1. Poisson regression . 87

8.4.1.1. Stan implementation . 87
8.4.2. Logistic regression . 89

8.4.2.1. Stan implementation . 90

9. Nonparametric Models 93
9.1. Random probability measures . 94
9.2. Dirichlet processes . 94

9.2.1. Discrete base measure . 97
9.3. Pólya trees . 98

9.3.1. Continuous random measures . 100
9.4. Partition models . 101

9.4.1. Partition models: Bayesian histograms 101
9.4.2. Bayesian histograms with equal bin widths 103

9.4.2.1. Approximate inference . 104

10. Nonparametric Regression 107
10.1. Nonparametric regression modelling . 107
10.2. Gaussian processes . 108

10.2.1. Normal errors . 109
10.2.2. Inference . 110

10.3. Spline models . 113
10.3.1. Spline regression with equally spaced knots 114

10.4. Partition regression models . 117
10.4.1. Changepoint models . 118

10.4.1.1. Changepoint regression with equally spaced changepoints . 118
10.4.2. Classification and regression trees . 119

11. Clustering and Latent Factor Models 121
11.1. Mixture models . 121

11.1.1. Finite mixture models . 122
11.1.1.1. Dirichlet prior for mixture weights 123
11.1.1.2. Mixture of Gaussians . 123
11.1.1.3. Inferring the clustering and number of clusters 124

11.1.2. Dirichlet process mixture models . 125
11.1.2.1. Inferring clusters . 126

11.2. Mixed-membership models . 127
11.2.1. Latent Dirichlet allocation . 128

11.2.1.1. Topic modelling . 129
11.2.1.2. Inference . 129

iv

11.2.2. Hierarchical Dirichlet processes . 130
11.2.2.1. Topic modelling . 131
11.2.2.2. Inference . 132

11.3. Latent factor models . 132
11.3.1. Stan implementation . 133

A. Conjugate parametric models 137
A.1. Notation . 137
A.2. Discrete models . 138
A.3. Continuous models . 140

Symbols 143

Solutions to exercises 145

Bibliography 169

Index 173

v

CHAPTER

1

UNCERTAINTY AND DECISIONS

1.1. Subjective uncertainty and possibilities

1.1.1. Subjectivism
In the seminal work of de Finetti (see the English translation of de Finetti, 2017), the central
idea for the Bayesian paradigm is to address decision-making in the face of uncertainty from
a subjective viewpoint. Given the same set of uncertain circumstances, two decision-makers
could differ in the following ways:

• How desirable different potential outcomes might seem to them.

• How likely they consider the various outcomes to be.

• How they feel their actions might affect the eventual outcome.

The Bayesian decision-making paradigm is most easily viewed through the lens of an in-
dividual making choices (“decisions”) in the face of (personal) uncertainty. For this reason,
certain illustrative elements of this section will be purposefully written in the first person.
This decision-theoretic view of the Bayesian paradigm represents a mathematical ideal of

how a coherent (non self-contradictory) individual should aspire to behave. This is a non-trivial
requirement, made easier with various mathematical formalisms which will be introduced in
themodelling sections of this text. Whilst these formalisms might not exactly match my beliefs
for specific decision problems, the aim is to present sufficiently many classes of models that one
of them might adequately reflect my opinions up to some acceptable level of approximation.
Coherence is also the most that will be expected from a decision-maker; there will be no

requirement forme to choose (in any sense) the right decisions from any perspective other than

1

my own at that time. Everything within the paradigm is subjective, even apparently absolute
concepts such as truth. Statements of certainty such as “The true value of the parameter is 𝑥”
should be considered shorthand for “It is my understanding that the true value of the parameter
is 𝑥”. This might seem pedantic, but crucially allows contradictions between individuals, and
between perspectives and reality: the decision-making machinery will still function.

1.1.2. Subjective uncertainty
There are numerous sources of individual uncertainty which can complicate decision-making.
These could include:

• Events which have not yet happened, but might happen some time in the future

• Events which have happened which I have not yet learnt about

• Facts which may yet be undiscovered, such as the truth of some mathematical conjecture

• Facts which may have been discovered elsewhere, but remain unknown to me

• Facts which I have partially or completely forgotten

In the Bayesian paradigm, these and other sources of uncertainty are treated equally. If there
are matters on which I am unsure, then these uncertainties must be acknowledged and in-
corporated into a rational decision process. Whether or not I perhaps should know them is
immaterial.

1.1.3. Possible outcomes and events
Suppose I, the decision-maker, am interested in a currently unknown outcome 𝜔, and believe
that it will eventually assume a single realised value from an exhaustive set of possibilities
Ω. When considering uncertain outcomes, the assumed set of possibilities will also be chosen
subjectively, as illustrated in the following example.

Example 1.1.1. If rolling a die, I might understandably assume that the outcome will be in
Ω = { , , , , , }. Alternatively, I could take a more conservative viewpoint and extend the
space of outcomes to include some unintended or potentially unforeseen outcomes; for example,
Ω = {Dice roll does not take place,No valid outcome, , , , , , }.

Neither viewpoint in Example 1.1.1 could irrefutably be said to be right or wrong. But if I am
making a decision which I consider to be affected by the future outcome of the intended dice
roll, I would possibly adopt different positions according to which set of possible outcomes
I chose to focus on. The only requirement for Ω is that it should contain every outcome I
currently conceive to be possible and meaningful to the decision problem under consideration.

Definition 1.1.1: Event
An event is a subset of the possible outcomes. An event 𝐸 ⊆ Ω is said to occur if and only
if the realised outcome 𝜔 ∈ 𝐸.

2

1.2. Decisions: Actions, outcomes, consequences

1.2.1. Elements of a decision problem

Definition 1.2.1: Decision problem
Following Bernardo and Smith (1994), a decision problem will be composed of three ele-
ments:

1. An action 𝑎, to be chosen from a set of possible actions.

2. An uncertain outcome 𝜔, thought to lie within a set Ω of envisaged possible out-
comes.

3. An identifiable consequence, assumed to lie within a set of possible conse-
quences, resulting from the combination of both the action taken and the ensuing
outcome which occurs.

Axiom 1. will be totally ordered, meaning there exists an ordering relation ≤ on such that
for any pair of consequences 𝑐1, 𝑐2 ∈ , necessarily 𝑐1 ≤ 𝑐2 or 𝑐2 ≤ 𝑐1.

If both 𝑐1 ≤ 𝑐2 and 𝑐2 ≤ 𝑐1, then we write 𝑐1 = 𝑐2. This provides definitions of (subjective)
preference and indifference between consequences.

Remark. Crucially, the ordering ≤ is assumed to be subjective; my perceived ordering of the
different consequences must be allowed to differ from that of other decision-makers.

Definition 1.2.2: Preferences on consequences
Suppose 𝑐1, 𝑐2 ∈ . If 𝑐1 ≤ 𝑐2 and 𝑐1 ≠ 𝑐2, then 𝑐2 is said to be a preferable consequence
to 𝑐1, written 𝑐1 < 𝑐2. If 𝑐1 = 𝑐2, then I am indifferent between the two consequences.

Definition 1.2.3: Action
An action defines a function which maps outcomes to consequences. For simplicity of
presentation, until Section 1.5.1 the actions in will be assumed to be discrete, meaning
that each can be represented by a generic form 𝑎 = {(𝐸1, 𝑐1), (𝐸2, 𝑐2),…}, where 𝑐1, 𝑐2,… ∈
, and 𝐸1, 𝐸2,… are referred to as fundamental eventswhich form a partition ofΩ, meaning
Ω = ∪𝑖𝐸𝑖, 𝐸𝑖 ∩ 𝐸𝑗 = ∅ for 𝑖 ≠ 𝑗 . Then, for example, if I take action 𝑎, then I anticipate that
any outcome 𝜔 ∈ 𝐸1 would lead to consequence 𝑐1, and so on.

Remark. When actions are identified, in this way, by the perceived consequences they will lead
to under different outcomes, they are subjective.

3

1.2.2. Preferences on actions

Rational decision-making requires well-founded preferences between possible actions. Let
𝑎, 𝑎′ ∈ be two possible actions, which for illustration could be written as

𝑎 = {(𝐸1, 𝑐1), (𝐸2, 𝑐2),…},
𝑎′ = {(𝐸′1, 𝑐

′
1), (𝐸

′
2, 𝑐

′
2),…}.

The overall desirability of each action will depend entirely on the uncertainty surrounding
the fundamental events 𝐸1, 𝐸2,… and 𝐸′1, 𝐸′2,… and the desirability of the corresponding conse-
quences 𝑐1, 𝑐2,… and 𝑐′1, 𝑐′2,…. This can be exploited in two ways, which will be developed in
later sections:

1. If I innately prefer action 𝑎 to 𝑎′, then this preference can be used to quantify my beliefs
about the uncertainty surrounding the fundamental events characterising each action.
This will form the basis for eliciting subjective probabilities (see Section 1.3).

2. Reversing the same argument, once I have elicited my probabilities for certain events
then these can be used to obtain preferences between corresponding actions through
the principle of maximising expected utility (see Section 1.4.1).

Definition 1.2.4: Preferences on actions
For actions 𝑎, 𝑎′ ∈ , a subjective decision-maker regarding 𝑎 not to be a preferable action
to 𝑎′ is written 𝑎 ≤ 𝑎′. For actions 𝑎, 𝑎′ ∈ , if both 𝑎 ≤ 𝑎′ and 𝑎′ ≤ 𝑎, then 𝑎 and 𝑎′ are
said to be equivalent actions, written 𝑎 ∼ 𝑎′.

Axiom 2. Preferences on actions must be compatible with preferences on consequences. Let 𝐸, 𝐹
be events such that ∅ ⊆ 𝐸 ⊆ 𝐹 ⊆ Ω, and let 𝑐1, 𝑐2 ∈ such that 𝑐1 ≤ 𝑐2. Then the following
preference on actions must hold:

{(𝐹 , 𝑐1), (𝐹 , 𝑐2)} ≤ {(𝐸, 𝑐1), (𝐸, 𝑐2)}.

Remark. The two actions {(𝐹 , 𝑐1), (𝐹 , 𝑐2)} and {(𝐸, 𝑐1), (𝐸, 𝑐2)} only differ in the consequences
anticipated from any 𝜔 ∈ 𝐸 ∩ 𝐹 ; that is, the event 𝐸 ∩ 𝐹 would lead to a consequence of 𝑐1 under
the first action and 𝑐2 under the second.

Remark. By Axiom 2, for ∅ ⊆ 𝐸 ⊆ Ω and 𝑐1, 𝑐2 ∈ , if 𝑐1 ≤ 𝑐2 then

{(Ω, 𝑐1)} ≤ {(𝐸, 𝑐1), (𝐸, 𝑐2)} ≤ {(Ω, 𝑐2)}.

That is, if consequence 𝑐2 is preferable to consequence 𝑐1, then I should prefer a strategy which
guarantees a consequence 𝑐2 against carrying any risk of exposure to consequence 𝑐1 through
the occurrence of event 𝐸. Similarly, rather than guaranteeing the lesser consequence 𝑐1, I should
prefer a strategy whereby the occurrence of event 𝐸 will improve the consequence to 𝑐2.

4

2𝜋𝑥

𝑥

Figure 1.1.: A spinning wheel with unit circumference and a fixed needle to depict a class of
standard events 𝑆𝑥 indexed by the arc length parameter 𝑥 ∈ [0, 1].

1.3. Subjective probability

1.3.1. Standard events
Central to the definition given by Bernardo and Smith (1994) for subjective probability is the
abstract concept of a continuous-indexed family of standard events, denoted 𝑆𝑥 for 𝑥 ∈ [0, 1].
These standard events are constructed in relation to a hypothetical, abstract experiment, such
that under the classical perspective of probability one would assign probability 𝑥 to the stan-
dard event 𝑆𝑥 occurring, for 0 ≤ 𝑥 ≤ 1.
As an illustrative example, consider the hypothetical spinning wheel depicted in Fig. 1.1.

This wheel is assumed to have unit circumference and to be plain in colour apart from a shaded
sector of arc length 𝑥 ∈ [0, 1], creating an angle of 2𝜋𝑥 radians from a horizontal axis. A fixed
needle is mounted above the wheel as shown. It could be imagined that the wheel is to be spun
(perhaps vigorously) from some arbitrary starting orientation; when the wheel has come to
rest, one observes whether the fixed needle is lying within the shaded area of arc length 𝑥 .

For each 𝑥 ∈ [0, 1], define the corresponding standard event

𝑆𝑥 = {Needle lies in the shaded area of arc length 𝑥}.

Classical probability would assign probability

arc length
circumference =

𝑥
1
= 𝑥

to the event 𝑆𝑥 . Later, these standard events will be used to form the basis of a definition of
subjective probability for quantifying individual uncertainty. Briefly, an individual will assign
probability 𝑥 to an event 𝐸 ⊆ Ω if they would be indifferent between receiving a reward if 𝐸
occurs or alternatively receiving the same reward if 𝑆𝑥 occurs.

5

1.3.2. Equivalent standard events

Recall the standard events {𝑆𝑥 ∣ 0 ≤ 𝑥 ≤ 1}, introduced in Section 1.3.1.

Axiom 3. If 𝐸 ⊆ Ω, there exists a unique standard event 𝑆𝑥 , 𝑥 ∈ [0, 1], such that for any 𝑐1, 𝑐2 ∈
such that 𝑐1 < 𝑐2,

{(𝐸, 𝑐1), (𝐸, 𝑐2)} ∼ {(𝑆𝑥 , 𝑐1), (𝑆𝑥 , 𝑐2)}.

Remark. Axiom 3 uses the continuity in 𝑥 of the collection of standard events {𝑆𝑥 ∶ 𝑥 ∈ [0, 1]}.
It states that each event 𝐸 can be mapped to a unique number 𝑥 ∈ [0, 1] through equivalence
between 𝐸 and the standard event 𝑆𝑥 when imagined as alternative opportunities to improve
consequences (from 𝑐1 to 𝑐2). This provides the definition of subjective probability.

Axiom 4. Let 𝑐1, 𝑐, 𝑐2 ∈ such that 𝑐1 ≤ 𝑐 ≤ 𝑐2. Then there exists a standard event 𝑆𝑥 with
𝑥 ∈ [0, 1] satisfying

{(Ω, 𝑐)} ∼ {(𝑆𝑥 , 𝑐1), (𝑆𝑥 , 𝑐2)}. (1.1)

Remark. For 𝑐1 ≤ 𝑐 ≤ 𝑐2, clearly {(Ω, 𝑐1), (∅, 𝑐2)} ≤ {(Ω, 𝑐)} ≤ {(∅, 𝑐1), (Ω, 𝑐2)}. Using the
continuity in 𝑥 of the standard events {𝑆𝑥 ∶ 𝑥 ∈ [0, 1]}, it is reasonable to assume that between ∅
and Ω there should exist an event satisfying the equivalence (1.1).

1.3.3. Definition of subjective probability

Definition 1.3.1: Subjective probability

For 𝐸 ⊆ Ω, let 𝑆𝑥 be the standard event satisfying {(𝐸, 𝑐1), (𝐸, 𝑐2)} ∼ {(𝑆𝑥 , 𝑐1), (𝑆𝑥 , 𝑐2)}
(Axiom 3). Then define the probability of 𝐸 to be the classical probability of 𝑆𝑥 , written
P(𝐸) = 𝑥 .

Remark. Subjective probabilities can be elicited in two stages: First, a continuous family of
hypothetical standard events are constructed by the decision-maker, such that for each 𝑥 ∈ [0, 1]
there is a corresponding standard event 𝑆𝑥 with classical probability 𝑥 . Second, a probability
P(𝐸) ∈ [0, 1] is assigned to an uncertain event 𝐸 ⊆ Ω of interest by identifying equal preference
between the two dichotomies {(𝐸, 𝑐1), (𝐸, 𝑐2)} and {(𝑆P(𝐸), 𝑐1), (𝑆P(𝐸), 𝑐2)}.

Remark. In some circumstances, the subjective assessment of the range of possible outcomes
and the probabilities of events within that range may vary according to which action is being
considered; for example, the decision problem may be choosing to role either one or two dice, with
corresponding consequences resulting from the outcome. This presents no contradiction to the
above definition, but all subjective probabilities should be regarded as conditional probabilities
which implicitly condition on a particular action.

For further reading, see Section 5.3 of Gelman and Hennig (2017) for a discussion of subjec-
tive Bayesian reasoning within an interesting, wider discussion on objectivity and subjectivity
in science.

6

1.3.4. Contrast with frequentist probability

It is worth noting the contrast of Definition 1.3.1 with frequentist probability. Under the fre-
quentist interpretation, there exists a single probability of event 𝐸 occurring, equal to the long
run relative frequency at which 𝐸 would occur in a potentially unlimited number of repetitions
of the uncertain outcome.
Whilst these two interpretations of probability are fundamentally opposed, the two could

easily coincide when subjective probabilities are determined by an individual using frequentist
reasoning to arrive upon their own subjective beliefs.

1.3.5. Conditional probability

Having started from an initial state of information, a decision-maker may need to update
preferences and beliefs when additional information becomes available, encapsulated by the
occurrence of some event 𝐺 ⊂ Ω. Such considerations require a notational extension for
denoting consequently revised preferences on actions.

Definition 1.3.2: Conditional preferences on actions
For actions 𝑎, 𝑎′ ∈ , conditional preferences and equivalences assuming an event 𝐺 has
occurred will be denoted 𝑎 ≤∣𝐺 𝑎′ and 𝑎 ∼∣𝐺 𝑎′ respectively.

Using this notion of conditionally equivalent actions, Axiom 3 on equivalent standard events
can be suitably extended.

Axiom 5. If 𝐸, 𝐺 ⊆ Ω, there exists a unique standard event 𝑆𝑥 , 𝑥 ∈ [0, 1], such that for any
𝑐1, 𝑐2 ∈ such that 𝑐1 < 𝑐2,

{(𝐸, 𝑐1), (𝐸, 𝑐2)} ∼∣𝐺 {(𝑆𝑥 , 𝑐1), (𝑆𝑥 , 𝑐2)}.

Remark. This axiom says that once we condition on an event 𝐺 occurring, for any other event
𝐸 we can still find an equivalent standard event.

Definition 1.3.3: Subjective conditional probability
For 𝐸, 𝐺 ⊆ Ω, the conditional probability of 𝐸 given 𝐺, written P∣𝐺(𝐸 ∣ 𝐺), is the index 𝑥
of the standard event 𝑆𝑥 satisfying {(𝐸, 𝑐1), (𝐸, 𝑐2)} ∼∣𝐺 {(𝑆𝑥 , 𝑐1), (𝑆𝑥 , 𝑐2)}.

Proposition 1.1. For events 𝐸, 𝐺 ⊆ Ω such that P(𝐺) > 0, the conditional probability of 𝐸 given
the assumed occurrence of 𝐺 must necessarily be

P∣𝐺(𝐸 ∣ 𝐺) ∶=
P(𝐸 ∩ 𝐺)

P(𝐺)
. (1.2)

Proof. See Section 1.4.5.

7

1.3.6. Updating beliefs: Bayes Theorem
The updating equation (1.2) provides the unique recipe for how beliefs must be updated when
additional information becomes available, and this can be further refined in the following
theorem.

Theorem 1.1 (Bayes’ theorem). For events 𝐸, 𝐺 ⊆ Ω such that P(𝐺) > 0,

P∣𝐺(𝐸 ∣ 𝐺) =
P∣𝐸(𝐺 ∣ 𝐸) P(𝐸)

P(𝐺)
.

Proof. From Proposition 1.1, P(𝐸 ∩ 𝐺) = P(𝐺) P∣𝐺(𝐸 ∣ 𝐺) and by symmetry, it must also hold
that P(𝐸 ∩ 𝐺) = P(𝐸) P∣𝐸(𝐺 ∣ 𝐸). Hence P(𝐺) P∣𝐺(𝐸 ∣ 𝐺) = P(𝐸) P∣𝐸(𝐺 ∣ 𝐸).

1.4. Utility

Definition 1.4.1: Utility function
A utility function is a subjective, order-preserving mapping 𝑢 ∶ → R such that 𝑐1 ≤
𝑐2 ⟺ 𝑢(𝑐1) ≤ 𝑢(𝑐2).

Remark. A utility function assigns a subjective numerical value to each of the possible conse-
quences.

Since each action-outcome pair (𝑎, 𝜔) in a decision problem leads to a consequence in , a
utility function can equivalently be defined as a function 𝑢 ∶ × Ω → R, with

𝑢(𝑎, 𝜔) ≡ 𝑢(𝑐)

for the corresponding consequence 𝑐 for that action-outcome pair.

1.4.1. Principle of maximising expected utility
In complex decision problems with uncertain outcomes, an additional principle on how to com-
bine uncertainty with utilities is required to identify optimal decisions. This can be illustrated
by a simple example.

Example 1.4.1. Consider two actions

𝑎1 = {(𝐸, 𝑐0), (𝐸, 𝑐1)},
𝑎2 = {(𝐹 , 𝑐0), (𝐹 , 𝑐2)},

for consequences 𝑐0 < 𝑐1 < 𝑐2 and events 𝐸, 𝐹 ⊂ Ω with 0 < P(𝐹) < P(𝐸) < 1.
Without a method to trade-off between utility and uncertainty, there would be no basis on

which to prefer either action. Action 𝑎2 offers the opportunity of a superior consequence than 𝑎1,
but with lower enhancement probability.

This leads to the following axiom for preferences being determined by expected utility.

8

Definition 1.4.2: Expected utility of a deterministic action
For a probability measure P and utility function 𝑢, the expected utility �̄�(𝑎) of an action
𝑎 = {(𝐸1, 𝑐1), (𝐸2, 𝑐2),…} ∈ is defined to be

�̄�(𝑎) ∶= ∑
𝑖

P(𝐸𝑖) 𝑢(𝑐𝑖).

Axiom 6. For two actions 𝑎, 𝑎′ ∈ ,

𝑎 ≤ 𝑎′ ⟺ �̄�(𝑎) ≤ �̄�(𝑎′),

implying one action will be preferable to another if and only if it has higher expected utility.

Exercise 1.1 Linear transformations of utilities. Show that decision problems are unaf-
fected by positive-gradient linear transformations to the utility function.

Example 1.4.2. Continuing Example 1.4.1, but now assuming a utility function, the expected
utilities of the two actions are

�̄�(𝑎1) = {1 − P(𝐸)} 𝑢(𝑐0) + P(𝐸) 𝑢(𝑐1),
�̄�(𝑎2) = {1 − P(𝐹)} 𝑢(𝑐0) + P(𝐹) 𝑢(𝑐2).

The action 𝑎1 is preferable to 𝑎2 if and only if

P(𝐸)
P(𝐹)

>
𝑢(𝑐2) − 𝑢(𝑐0)
𝑢(𝑐1) − 𝑢(𝑐0)

.

The following two sections on bounded and unbounded decision problems together demon-
strate that Axioms 4 and 6 ensure that the form of the utility function will be uniquely deter-
mined by the total ordering of , up to any positive-gradient linear rescaling (cf. Exercise 1.1).

1.4.2. Utilities for bounded decision problems

Definition 1.4.3: Bounded decision problem
A decision problem is said to be bounded if there exist worst and best consequences
𝑐∗, 𝑐∗ ∈ such that ∀𝑐 ∈ , 𝑐∗ ≤ 𝑐 ≤ 𝑐∗.

If the decision problem is bounded, then for simplicity and without loss of generality it can
be assumed that 𝑢(𝑐∗) = 0, 𝑢(𝑐∗) = 1.
Then for any 𝑐 ∈ , the order-preserving requirement of a utility function determines that

𝑢(𝑐) ∈ [0, 1] is the index of the standard event 𝑆𝑢(𝑐) such that {(Ω, 𝑐)} ∼ {(𝑆𝑢(𝑐), 𝑐∗), (𝑆𝑢(𝑐), 𝑐∗)}
(Axiom 4).

Exercise 1.2 Bounded utility. Suppose 𝑐∗, 𝑐∗, 𝑐 ∈ , with 𝑢(𝑐∗) = 0, 𝑢(𝑐∗) = 1, and
𝑐∗ ≤ 𝑐 ≤ 𝑐∗. Using Axiom 6, show that for any event 𝐸 satisfying P(𝐸) = 𝑢(𝑐), {(Ω, 𝑐)} ∼
{(𝐸, 𝑐∗), (𝐸, 𝑐∗)}.

9

1.4.3. Utilities for unbounded decision problems

If the decision problem is not bounded, then for some 𝑐1 < 𝑐2, (perhaps after linear rescaling)
it could be assumed without loss of generality that 𝑢(𝑐1) = 0, 𝑢(𝑐2) = 1. Again, Axiom 4 and
the order-preserving requirement then determine the rest of the utility function; specifically,
for 𝑐 ∈ :

1. If 𝑐1 ≤ 𝑐 ≤ 𝑐2, {(Ω, 𝑐)} ∼ {(𝑆𝑢(𝑐), 𝑐2), (𝑆𝑢(𝑐), 𝑐1)}.

2. If 𝑐 < 𝑐1, then 𝑢(𝑐) < 0 and if {(Ω, 𝑐1)} ∼ {(𝑆𝑥 , 𝑐), (𝑆𝑥 , 𝑐2)}, then 𝑢(𝑐) = −𝑥/(1 − 𝑥).

3. If 𝑐2 < 𝑐, then 𝑢(𝑐) > 1 and if {(Ω, 𝑐2)} ∼ {(𝑆𝑥 , 𝑐1), (𝑆𝑥 , 𝑐)}, then 𝑢(𝑐) = 1/𝑥 .

Exercise 1.3 Unbounded utility. Suppose 𝑐1, 𝑐2, 𝑐 ∈ , with 𝑢(𝑐1) = 0, 𝑢(𝑐2) = 1. Show
that by Axiom 6, the following must hold.

(i) If 𝑐 < 𝑐1 and {(Ω, 𝑐1)} ∼ {(𝐸, 𝑐), (𝐸, 𝑐2)}, then 𝑢(𝑐) = −P(𝐸)/(1 − P(𝐸)) < 0.

(ii) If 𝑐2 < 𝑐 and {(Ω, 𝑐2)} ∼ {(𝐸, 𝑐1), (𝐸, 𝑐)}, then 𝑢(𝑐) = 1/P(𝐸) > 1.

Exercise 1.4 Transitivity of preference. Show that for 𝑎, 𝑎′, 𝑎′′ ∈ , if 𝑎 ≤ 𝑎′ and 𝑎′ ≤ 𝑎′′,
then 𝑎 ≤ 𝑎′′.

Exercise 1.5 Coherence with probabilities. For events 𝐸, 𝐹 ⊆ Ω and consequences 𝑐1< 𝑐2,
show that if P(𝐸) ≤ P(𝐹) then {(𝐹 , 𝑐1), (𝐹 , 𝑐2)} ≤ {(𝐸, 𝑐1), (𝐸, 𝑐2)}.

1.4.4. Randomised strategies

Definition 1.4.4: Randomised action
Let 𝐺1, 𝐺2,… be a partition of Ω. For each partition event 𝐺𝑖, suppose there is a corre-
sponding action 𝑎𝐺𝑖 = {(𝐸𝑖1, 𝑐𝑖1), (𝐸𝑖2, 𝑐𝑖2),…} which is determined to be taken if and only
if 𝐺𝑖 occurs. Denote this randomised action 𝑎 = {(𝐺1, 𝑎𝐺1), (𝐺2, 𝑎𝐺2),…}.

Remark. Randomised actions are a useful extension of the deterministic actions considered until
now. Although sometimes counter-intuitive, in many circumstances they can sometimes be shown
to correspond to optimal or near-optimal behaviours.

10

Definition 1.4.5: Expected utility of a randomised action
The expected utility of a randomised action 𝑎 = {(𝐺1, 𝑎𝐺1), (𝐺2, 𝑎𝐺2),…} is

�̄�(𝑎) ∶= ∑
𝑖

P(𝐺𝑖) �̄�∣𝐺𝑖(𝑎𝐺𝑖 ∣ 𝐺𝑖),

where �̄�∣𝐺𝑖(𝑎𝐺𝑖 ∣ 𝐺𝑖) ∶= ∑𝑗 P∣𝐺𝑖(𝐸𝑖𝑗 ∣ 𝐺𝑖) 𝑢(𝑐𝑖𝑗) is the conditional expected utility of action
𝑎𝐺𝑖 given the occurrence of event 𝐺𝑖.

Remark. Definition 1.4.5 simply says that the expected utility of a randomised action is the
expectation of the conditional expected utilities of the individual actions.

1.4.5. Conditional probability as a consequence of coherence
By considering randomised actions, it can now be shown that the equation for conditional
probability (1.2) is necessary when specifying subjective probabilities if those probabilities are
to yield coherent expected utilities, and therefore coherent decisions.
Consider a randomised action 𝑎 = {(𝐺, 𝑎𝐺), (𝐺, 𝑎𝐺)} such that 𝑎𝐺 = {(𝐸, 𝑐∗), (𝐸, 𝑐∗)} and

𝑎𝐺 = {(Ω, 𝑐∗)}, where 𝑢(𝑐∗) = 0 and 𝑢(𝑐∗) = 1. Then by Definition 1.4.5, 𝑎 has expected utility

�̄�(𝑎) = P(𝐺) �̄�∣𝐺(𝑎𝐺 ∣ 𝐺) + P(𝐺) �̄�∣𝐺(𝑎𝐺 ∣ 𝐺)
= P(𝐺)[P∣𝐺(𝐸 ∣ 𝐺) 𝑢(𝑐∗) + P∣𝐺(𝐸 ∣ 𝐺) 𝑢(𝑐∗)] + P(𝐺) P∣𝐺(Ω ∣ 𝐺) 𝑢(𝑐∗)
= P(𝐺) P∣𝐺(𝐸 ∣ 𝐺).

But equivalently, 𝑎 could be rewritten as a deterministic action, 𝑎 = {(𝐸 ∩ 𝐺, 𝑐∗), (𝐸 ∩ 𝐺, 𝑐∗)}.
Then from Definition 1.4.2, it must also hold that

�̄�(𝑎) = P(𝐸 ∩ 𝐺) 𝑢(𝑐∗) + P(𝐸 ∩ 𝐺) 𝑢(𝑐∗) = P(𝐸 ∩ 𝐺).

Hence for coherence in expected utility, P(𝐸 ∩ 𝐺) = P(𝐺) P∣𝐺(𝐸 ∣ 𝐺).

1.5. Estimation and prediction

1.5.1. Continuous random variables and decision spaces
As noted in Definition 1.2.3, the initial notation used for actions has presumed discreteness,
with a countable partition ofΩ leading to countablymany consequences and associated utilities.
This section will consider cases where Ω and the space of actions might be uncountable.

Definition 1.5.1: Decision space
A decision space (or continuous action space) is a set of mappings = {𝑑 ∶ Ω → } such
that the consequence of taking a decision 𝑑 ∈ and observing outcome 𝜔 is 𝑑(𝜔) ∈ .

11

Definition 1.5.2: Expected utility of a decision
For a utility function 𝑢 ∶ → R, the expected utility of a decision 𝑑 ∶ Ω → is the usual
expectation

�̄�(𝑑) = ∫
Ω
𝑢(𝑑(𝜔)) dP(𝜔).

Remark. If my probability distribution on Ω, P, admits a density function representation 𝑓 such
that P(𝐸) = ∫𝐸 𝑓 (𝜔) d𝜔 for all events 𝐸 ⊆ Ω, then

�̄�(𝑑) = ∫
Ω
𝑢(𝑑(𝜔)) 𝑓 (𝜔) d𝜔.

1.5.2. Estimation and loss functions
Consider the special case of the decision problem which is to estimate the future realised value
of the unknown outcome 𝜔 ∈ Ω. In the typical notation of statistical estimation, a decision
constitutes providing an estimated value �̂�. The eventual performance of that estimate is
evaluated by a loss function 𝓁(⋅ , ⋅), where 𝓁(�̂�, 𝜔) quantifies an assumed penalty incurred by
estimating the outcome with �̂� when the true value transpires to be 𝜔.

In this presentation of decision problems:

• The loss function value 𝓁(�̂�, 𝜔) is the real-valued consequence of estimating 𝜔 with �̂�.

• The utility of the above consequence is simply the negative loss, 𝑢(𝓁(�̂�, 𝜔)) = −𝓁(�̂�, 𝜔).

The decision of estimating 𝜔 by �̂� could therefore be denoted

𝑑�̂� = 𝓁(�̂�, ⋅)

such that for 𝜔 ∈ Ω, 𝑑�̂�(𝜔) = 𝓁(�̂�, 𝜔), and the expected utility is the negative expected loss,

�̄�(𝑑�̂�) = −∫
Ω
𝓁(�̂�, 𝜔) 𝑓 (𝜔) d𝜔.

Exercise 1.6 Absolute loss (also known as 𝐿1 loss). If 𝓁(�̂�, 𝜔) = |�̂� − 𝜔|, show that the
Bayes optimal decision is to estimate 𝜔 by the median of P.

Exercise 1.7 Squared loss (also known as 𝐿2 loss). If 𝓁(�̂�, 𝜔) = (�̂� − 𝜔)2, show that the
Bayes optimal decision is to estimate 𝜔 by the mean of P.

Exercise 1.8 Zero-one loss (also known as 𝐿∞ loss). If 𝓁(�̂�, 𝜔) = 1−1{�̂�}(𝜔), show that the
Bayes optimal decision is to estimate 𝜔 by the mode of P.

12

1.5.3. Prediction

In the preceding sections it would have been natural to envisage 𝜔 as a scalar number, such as
the outcome from rolling a die. However, this need not be the case. Bayesian prediction is the
task of estimating an entire probability distribution, rather than a scalar; correspondingly, in
this case 𝜔 is an unknown probability distribution on a space 𝑋 and Ω is a space of probability
distributions on 𝑋 which I believe contains 𝜔.

As discussed throughout this chapter, in a Bayesian setting I will have my own beliefs about
𝜔, characterised by my own subjective probability distribution P(𝐸) for my probability that 𝜔
lies in a subset of probability distribution space 𝐸 ⊆ Ω.

To avoid self-contradiction, for coherent prediction it should be a requirement that my opti-
mal decision when estimating𝜔 should be to state my own beliefs. That is, the optimal decision
𝑑�̂� should satisfy, for events 𝐹 ⊆ 𝑋 ,

�̂�(𝐹) = ∫
Ω
𝜔(𝐹) dP(𝜔), (1.3)

where the right-hand side is mymarginal probability for the event 𝐹 , obtained as an expectation
of the probability of 𝐹 , 𝜔(𝐹), with respect to my uncertainty about 𝜔 encapsulated by P.
Satisfying (1.3) clearly places constraints on what are allowable loss functions to lead to

coherence. In fact, it can be shown (Bernardo and Smith, 1994, Section 2.7) that the only proper
loss functions for coherent prediction have a canonical formwhich is the well-known Kullback-
Leibler divergence from information theory for measuring the difference of one probability
distribution from another.

Definition 1.5.3: Kullback-Leibler divergence
For two probability distributions 𝑃, 𝑄 where 𝑃 is absolutely continuous with respect to
𝑄, the Kullback-Leibler divergence (or simply, the KL-divergence) of 𝑄 from 𝑃 is

KL(𝑃 ∥ 𝑄) ∶= ∫ log
d𝑃
d𝑄

d𝑃 = E𝑃 log
d𝑃
d𝑄
.

If 𝑝, 𝑞 are corresponding density functions satisfying 𝑝(𝑥) > 0 ⟹ 𝑞(𝑥) > 0, then

KL(𝑝 ∥ 𝑞) ∶= ∫ 𝑝(𝑥) log
𝑝(𝑥)
𝑞(𝑥)

d𝑥 = E𝑝 log
𝑝(𝑥)
𝑞(𝑥)

.

Using this definition of KL-divergence, the necessary form for a proper loss function is

𝓁(�̂�, 𝜔) = KL(𝜔 ∥ �̂�) = ∫
𝑋
log

d𝜔
d�̂�

d𝜔. (1.4)

This justifies the use of KL-divergence for measuring discrepancy between two probability
distributions from a Bayesian perspective.

13

Exercise 1.9 KL-divergence non-negative. For two probability density functions 𝑝, 𝑞,
show that KL(𝑝 ∥ 𝑞) ≥ 0 with equality when 𝑝 = 𝑞, and therefore KL-divergence is
a proper loss function for prediction. (You may assume without proof that for 𝑎 > 0,
log(𝑎) ≥ 1 − 𝑎−1.)

14

CHAPTER

2

PRIOR AND LIKELIHOOD
REPRESENTATION

The first chapter introduced the philosophy of Bayesian statistics: when making individual
decisions in the face of uncertainty, probability should be treated as a subjective measure of
beliefs, where all quantities unknown to the individual should be treated as random quantities.
Eliciting individual probability assessments is a non-trivial endeavour. Even if I have a

relatively well-formed opinion about some uncertain quantity, coherently assigning precise
numerical values (probabilities) to all potential outcomes of interest for that quantity can be
particularly challenging when there are infinitely many possible outcomes.

To counter these difficulties, it can be helpful to consider mathematical models to represent
an individual’s beliefs. There is no presumption that these models should be somehow correct
in terms of representing true underlying dynamics; nonetheless, they can provide structure
for representing beliefs coherently to a good enough degree of approximation to enable valid
decision-making.

The main simplification which will be considered, exchangeability, occurs in contexts where
a sequence of random quantities are to be observed and a joint probability distribution for the
sequence is required. Symmetries in one’s beliefs about sequences lead to familiar specifications
of probability models which are often considered to be the hallmark of Bayesian thinking: a
likelihood distribution combined with a prior distribution.

2.1. Exchangeability and infinite exchangeability
Let𝑋1, 𝑋2,… be a sequence of real-valued random variables to be observed,which aremappings
of an underlying unknown outcome 𝜔 ∈ Ω with probability distribution P.

15

Definition 2.1.1: Exchangeability
For 𝑛 ≥ 1, the finite sequence 𝑋1,… , 𝑋𝑛 is said to be exchangeable if, for any permutation
𝜎 on 𝑛 symbols, their induced probability distribution satisfies

P𝑋1,…,𝑋𝑛 = P𝑋𝜎(1),…,𝑋𝜎(𝑛)

Definition 2.1.2: Infinite exchangeability
An infinite sequence 𝑋1, 𝑋2,… is said to be infinitely exchangeable if, for all 𝑛 ≥ 1 and all
choices of 𝑛 indices 1 ≤ 𝑖1 < … < 𝑖𝑛 < ∞, the subsequence 𝑋𝑖1 ,… , 𝑋𝑖𝑛 is exchangeable.

Remark. Exchangeability for a probability measure on 𝑛 random variables simply implies that
their probability distribution is invariant to the order in which they have been defined. Infinite
exchangeability extends the concept to infinite sequences of random variables, requiring that any
finite subsequence must be exchangeable.

Exchangeability can be a very natural (perhaps approximate) assumption in practical reasoning
about uncertainty, such as assigning no importance to the order of observed outcomes from a
(possibly unending) sequence of tosses of a coin.

Remark. A sequence of exchangeable random variables are identically distributed, but not nec-
essarily independent.

Exercise 2.1 Marginal distribution of exchangeable variables. Show that if a sequence
𝑋1, 𝑋2,… is infinitely exchangeable, then all variables are identically distributed.

2.2. De Finetti’s representation theorem
On exchangeability, the Italian probability theorist Bruno de Finetti (1906–1985) is accredited
with the following theorem, which might be regarded as astonishing for its generality and
impact.
Theorem 2.1 (De Finetti’s representation theorem). Let𝑋1, 𝑋2,… be an infinitely exchangeable
sequence of binary random variables, 𝑋𝑖 ∈ {0, 1}. Then there must exist a probability measure
𝑄 on [0, 1] such that, for any 𝑛 ≥ 1, the corresponding mass function p𝑋1,…,𝑋𝑛 of the probability
distribution P𝑋1,…,𝑋𝑛 satisfies

p𝑋1,…,𝑋𝑛(𝑥1,… , 𝑥𝑛) = ∫
1

𝜃=0

𝑛

∏
𝑖=1
𝜃𝑥𝑖 (1 − 𝜃)1−𝑥𝑖 d𝑄(𝜃). (2.1)

Proof. See Bernardo and Smith (1994, p. 172).
Remark. Theorem 2.1 shows that any infinitely exchangeable sequence of binary random vari-
ables must arise as a sequence of independent and identically distributed Bernoulli(𝜃) random
variables, with a single probability parameter 𝜃 drawn from some distribution 𝑄.

The same property does not extend to finitely exchangeable sequences.

16

Exercise 2.2 Finitely exchangeable binary sequences. Find an example of a finite exchange-
able sequence of binary random variables for which (2.1) does not hold.

Exercise 2.3 Predictive distribution for exchangeable binary sequences. Suppose an in-
finitely exchangeable binary sequence𝑋1, 𝑋2,…. For 1 ≤ 𝑚 < 𝑛, show that the conditional
probability mass function for future elements 𝑋𝑚+1,… , 𝑋𝑛 after observing 𝑥1,… , 𝑥𝑚 has
the form

p𝑋𝑚+1,…,𝑋𝑛 ∣𝑥1,…,𝑥𝑚(𝑥𝑚+1,… , 𝑥𝑛) = ∫
1

𝜃=0

𝑛

∏
𝑖=𝑚+1

𝜃𝑥𝑖 (1 − 𝜃)1−𝑥𝑖 d𝑄(𝜃 ∣ 𝑥1,… , 𝑥𝑚),

where
d𝑄(𝜃 ∣ 𝑥1,… , 𝑥𝑚) =

∏𝑚
𝑖=1 𝜃𝑥𝑖 (1 − 𝜃)1−𝑥𝑖 d𝑄(𝜃)

∫ 1
𝜃=0 ∏𝑚

𝑖=1 𝜃𝑥𝑖 (1 − 𝜃)1−𝑥𝑖 d𝑄(𝜃)
.

Remark. Observing part of the sequence does not affect exchangeability, and therefore Theo-
rem 2.1. The initial prior distribution 𝑄(𝜃) is simply updated to the current posterior distribution
𝑄(𝜃 ∣ 𝑥1,… , 𝑥𝑚).

Theorem 2.1 extends to non-binary, infinitely exchangeable sequences.
Theorem 2.2. Let 𝑋1, 𝑋2,… be a sequence of real-valued random variables, 𝑋𝑖 ∈ R, which are
believed to be infinitely exchangeable and let be the space of all probability distributions on R.
Then necessarily there exists a probability measure 𝑄 on such that, for any 𝑛 ≥ 1,

P𝑋1,…,𝑋𝑛(𝑥1,… , 𝑥𝑛) = ∫
𝐹∈

𝑛

∏
𝑖=1
𝐹(𝑥𝑖) d𝑄(𝐹). (2.2)

Proof. See Bernardo and Smith (1994, p. 177).
Remark. From Bernardo and Smith (1994), the probability distribution 𝑄 has an operational in-
terpretation, representing the uncertainty surrounding “what we believe the empirical distribution
function would look like for a large sample”.

Remark. In parametric statistical modelling, the probability function 𝐹 in Theorem 2.2 is as-
sumed to have a set parametric form 𝐹(⋅; 𝜃) for an unknown vector of parameters 𝜃 ∈ R𝑘. The
representation then simplifies to

P𝑋1,…,𝑋𝑛(𝑥1,… , 𝑥𝑛) = ∫
𝜃∈R𝑘

𝑛

∏
𝑖=1
𝐹(𝑥𝑖; 𝜃) d𝑄(𝜃). (2.3)

Similarly to Exercise 2.3, the predictive distribution satisfies

P𝑋𝑚+1,…,𝑋𝑛 ∣𝑥1,…,𝑥𝑚(𝑥𝑚+1,… , 𝑥𝑛) = ∫
𝜃∈R𝑘

𝑛

∏
𝑖=𝑚+1

𝐹(𝑥𝑖; 𝜃) d𝑄(𝜃 ∣ 𝑥1,… , 𝑥𝑚),

where

d𝑄(𝜃 ∣ 𝑥1,… , 𝑥𝑚) =
∏𝑚

𝑖=1 𝐹(𝑥𝑖; 𝜃) d𝑄(𝜃)
∫ 1
𝜃=0 ∏𝑚

𝑖=1 𝐹(𝑥𝑖; 𝜃) d𝑄(𝜃)
. (2.4)

17

2.3. Prior, likelihood and posterior

Theorem 2.2 justifies the standard “prior × likelihood” approach commonly applied to Bayesian
statistical modelling of real-valued data: assuming a sampling distribution comprising iden-
tically distributed observables which are conditionally independent given an unknown pa-
rameter, where the parameter is assumed to be an initial draw from some “prior” probability
distribution.
The likelihood component in this mixture is common to both Bayesian and frequentist

statistical approaches, and so more scepticism and attention is often directed towards how the
prior component is specified in Bayesian methods. It is referred to as the “prior distribution”
because it reflects one’s beliefs about the generative mechanism, 𝐹 , before observing any of
the variables 𝑋1, 𝑋2,…; in contrast the “posterior distribution” (2.4) reflects updated beliefs
about 𝐹 after observing those data.

2.3.1. Prior elicitation

Eliciting the prior beliefs of an individual as a fully coherent probability distribution, obeying
all the axioms of probability, presents a daunting challenge which has regularly been offered
as a criticism of Bayesian reasoning. However, the difficulty in achieving this objective does
not undermine its logical necessity. Rather than conceding defeat at the impossibility of ex-
actly quantifying beliefs, various mathematical devices, such as exchangeability and different
modelling ideas introduced in later chapters, are typically deployed to propose probability dis-
tributions which might hopefully reflect the degrees of belief of an individual to an acceptable
degree of approximation.

2.3.2. Non-informative priors

The difficulties of accurate prior elicitation for an individual, or perhaps a desire to identify
decisions which might generalise to other individuals, often lead practitioners to try to pro-
pose vague or non-informative prior distributions, so that the observed data “may speak for
themselves”.

The word vague is often translated to mean high variance; assuming probability to be more
widely spread around the mean will typically assign less mass to any one particular neigh-
bourhood. However, without care this distinction may be artificial, as higher variance under
one parameterisation may, under certain transformations, imply lower variance for a different
parameterisation.

The word non-informative can assume a more specific interpretation: the prior distribution
whichwouldmaximise the observed change between the prior and the corresponding posterior
distribution, given observed data and a chosen distributional discrepancy measure. See Section
5.4 of Bernardo and Smith (1994) for discussion of reference priors and reference decisions; the
latter identify the optimal decisions under a least informative prior – not for operational use
for any individual decision-maker, but to serve as an illustrative benchmark for comparison.

18

Exercise 2.4 Variances under transformations. Show that if 𝜃 ∼ Gamma(𝑎, 𝑏) (see Sec-
tion A.3), then choices of (𝑎, 𝑏) implying high variance for 𝜃 correspond to low variance
for 1/𝜃.

2.3.3. Hyperpriors
For some applications, it can be convenient to specify a hierarchy of prior distributions. For
example, it might seem easier for a practitioner to specify a prior distribution for a parameter
𝜃 conditional on the value of some other unknown parameter 𝜙, 𝑄𝜃∣𝜙(𝜃). A marginal prior
for 𝜃 can then be recovered through specifying a prior measure for this hyperparameter (in
frequentist statistics, nuisance parameter) 𝜙, 𝑄𝜙(𝜙), as then

𝑄𝜃(𝜃) = ∫
𝜙
𝑄𝜃∣𝜙(𝜃) d𝑄𝜙(𝜙). (2.5)

The additional level of prior modelling, 𝑄𝜙(𝜙), is sometimes referred to as a hyperprior . By
noting that a similar construction could be proposed for 𝑄𝜙(𝜙), this hierarchical structure can
be applied recursively to arbitrarily many nested levels.

2.3.4. Mixture priors
A special case of (2.5) occurs when the hyperparameter𝜙 is assumed to take one of only finitely
many possible values; without loss of generality, suppose 𝜙 ∈ {1, 2,… , 𝑘}. Writing 𝑤𝑖 = d𝑄𝜙(𝑖),
for 𝑖 = 1,… , 𝑘 with∑𝑘

𝑖=1𝑤𝑖 = 1, (2.5) simplifies to the finite mixture prior

𝑄𝜃(𝜃) =
𝑘

∑
𝑖=1
𝑤𝑖 𝑄𝜃∣𝜙=𝑖(𝜃)

on a finite collection of distributions 𝑄𝜃∣𝜙=1,… , 𝑄𝜃∣𝜙=𝑘.
Similarly, (2.5) is sometimes referred to as an infinite mixture model.

2.3.5. Bayesian paradigm for prior to posterior reporting
Given an initial probability distribution reflecting prior beliefs about 𝐹 and then observing
𝑋1,… , 𝑋𝑛 as draws from 𝐹 , Exercise 2.3 demonstrated the transition from prior distribution,
through the likelihood function, to the posterior distribution (in this case for infinitely ex-
changeable random variables). This transformation was a simple application of Theorem 1.1,
Bayes’ theorem, and represents the only coherent mechanism for updating subjective proba-
bilities.

In principle, the Bayesian paradigm for reporting scientific conclusions from a fixed collec-
tion of data suggests repeating this prior to posterior transformation for a range of different
prior distributions, selected to cover a broad range of prior beliefs which may plausibly be
held by the reader; for each prior distribution, the author would present the consequent pos-
terior distribution and perhaps a corresponding optimal decision. However, in practice this

19

procedure is often truncated, with authors preferring to show a single analysis under a non-
informative prior (cf. Section 2.3.2), with the implication that inputting any more informative
prior information would simply bias the conclusions in that direction, albeit by an unspecified
amount.

2.3.6. Asymptotic consistency
The sensitivity of posterior inferences to different prior distribution specifications (Section 2.3.5)
is determined by the relative amount of information contained in the sample likelihood func-
tion. Suppose, as in (2.3), that 𝑋1,… , 𝑋𝑛 are assumed to be conditionally independent draws
from the parametric distribution 𝐹(⋅; 𝜃) with a prior probability distribution 𝑄(𝜃) for the un-
known parameter 𝜃. If the parametric form 𝐹(⋅; 𝜃) were true, and the true parameter which
gave rise to these samples was 𝜃∗, then the following proposition typifies several results which
exist on posterior consistency.

Proposition 2.1. Suppose𝑄(𝜃) is a discrete distribution with d𝑄(𝜃∗) > 0. If, for all other 𝜃 ≠ 𝜃∗
satisfying d𝑄(𝜃) > 0, KL(𝐹(⋅; 𝜃) ∥ 𝐹(⋅; 𝜃∗)) > 0, then

lim
𝑛→∞

d𝑄(𝜃 ∣ 𝑥1,… , 𝑥𝑛) = 1{𝜃∗}(𝜃).

Proof. See Bernardo and Smith (1994, p. 286).

Remark. The requirement KL(𝐹(⋅; 𝜃) ∥ 𝐹(⋅; 𝜃∗)) > 0 is sometimes referred to as identifiability.
Under this condition, Proposition 2.1 states that as 𝑛 → ∞ the posterior distribution will converge
to a single atom of mass located at the true value, provided that value had non-zero prior mass.
In this sense, asymptotically the form of the prior 𝑄(𝜃) does not matter beyond its support, {𝜃 ∶
d𝑄(𝜃) > 0}.

Remark. It was remarked in Section 1.1.1 that the subjective Bayesian paradigm attaches no
particular importance to absolute truths. From that perspective, Proposition 2.1 might appear to
lack any operational significance; in subjective probability, there is no true likelihood and no true
parameter value, nor will there be infinite random samples to observe.
However, there is a useful conclusion to draw: If you and I agree on exchangeability, the form

of the sampling distribution 𝐹(; 𝜃) and the range of values which 𝜃 reasonably might take, then
even if we disagree on a form for the prior 𝑄(𝜃), as we observe more data our posterior beliefs
will uniformly converge. So for reporting scientific inference on “big data” applications, only the
likelihood function really matters.

2.3.7. Asymptotic normality
For continuous-valued parameters 𝜃 ∈ R𝑘, under some minor regularity conditions the pos-
terior distribution is asymptotically normal, analogous to the result in classical statistics con-
cerning the maximum likelihood estimator

�̂�𝑛 = argmax𝜃
𝑛

∏
𝑖=1
𝐹(𝑥𝑖; 𝜃).

20

For the maximum likelihood estimator, asymptotically �̂�𝑛 ∼ Normal𝑘(𝜃∗, 𝐼−1𝑛 (𝜃∗)), where 𝐼𝑛(𝜃)
is the so-called Fisher information matrix of the likelihood function,

𝐼𝑛(𝜃) = −
d2

d𝜃2
𝑛

∑
𝑖=1

log 𝐹(𝑥𝑖; 𝜃).

Proposition 2.2. Let𝑚0 = argmax𝜃 d𝑄(𝜃) be the mode of the prior distribution, and let 𝐼0(𝜃) =
− d2

d𝜃2 log d𝑄(𝜃). Then
𝐻𝑛 = 𝐼0(𝑚0) + 𝐼𝑛(�̂�𝑛) (2.6)

is the posterior information matrix and

𝑚𝑛 = 𝐻−1
𝑛 (𝐼0(𝑚0)𝑚0 + 𝐼𝑛(�̂�𝑛)�̂�𝑛) (2.7)

the posterior mode, and asymptotically as 𝑛 → ∞,

𝑄(𝜃 ∣ 𝑥1,… , 𝑥𝑛) → Normal𝑘(𝜃 ∣ 𝑚𝑛, 𝐻−1
𝑛) → Normal𝑘(𝜃 ∣ 𝜃∗, 𝐼−1𝑛 (𝜃∗)).

Proof. For a sketch proof involving a Taylor series expansion, see Bernardo and Smith (1994,
p. 287).

Remark. Proposition 2.2 states that a large sample posterior distribution can be well approxi-
mated by a Gaussian; as 𝑛 → ∞ the mean of that Gaussian tends to the true value 𝜃∗ and the
variance shrinks toward zero provided 𝜃∗ is identifiable, implying posterior consistency.

Exercise 2.5 Asymptotic normality. Let 𝑥1,… , 𝑥𝑛 be 𝑛 observations from an infinitely
exchangeable sequence of binary random variables as specified in Theorem 2.1. Suppose
𝑄(𝜃) = Beta(𝜃 ∣ 𝑎, 𝑏) (see Section A.2). Find the asymptotic normal distribution of 𝜃 as
𝑛 → ∞.

21

CHAPTER

3

GRAPHICAL MODELLING AND
HIERARCHICAL MODELS

In many contexts, straightforward exchangeability can be a useful simplifying assumption for
specifying the joint probability distribution of random variables. But sometimes, an individual
will require more complex structures of statistical dependence between random quantities to
properly represent their beliefs.Graphicalmodels provide a useful framework for characterising
joint distributions for random variables, putting primary focus on characterising uncertainty
in the dependency structure amongst the variables. Much of the material in this chapter is
drawn from Barber (2012) and related resources.

Before introducing graphical models, some basic graph concepts and definitions are required
to provide a language for relating probability distributions to graphs.

3.1. Graphs

3.1.1. Specifying a graph

Definition 3.1.1: Graph
A graph is a pair = (𝑉 , 𝐸) where 𝑉 is a non-empty set of entities, referred to as nodes,
and 𝐸 ⊂ 𝑉 × 𝑉 is a set of ordered pairs of nodes referred to as edges. The subset notation
is strict, since for any 𝑣 ∈ 𝑉 it is assumed here that (𝑣, 𝑣) ∉ 𝐸 (there are no self loops).

23

Definition 3.1.2: Directed and undirected graphs
For a graph = (𝑉 , 𝐸), if 𝐸 is symmetric such that (𝑣, 𝑣′) ∈ 𝐸 ⟺ (𝑣′, 𝑣) ∈ 𝐸, then the
graph is said to be undirected. Otherwise, the edges and graph are directed.

Remark. Figures 3.1 and 3.2 provide diagrammatic examples of directed and undirected graphs.
Each link drawn between nodes corresponds to an edge; in the directed graph, these links must
have arrows to indicate their direction.

In the context of graphical modelling, the set of nodes in the graph will correspond to a finite
set of random variables𝑉 = {𝑋1,… , 𝑋𝑛} forwhich a probabilitymodelmust be constructed. The
set of edges will correspond to proposed dependencies between variables, defined in different
ways according to different modelling constructs.

Definition 3.1.3: Adjacency matrix
For a finite graph = (𝑉 , 𝐸), where 𝑉 = {𝑋1,… , 𝑋𝑛}, the adjacency matrix of the graph
is a binary 𝑛 × 𝑛 matrix 𝐴 with entries in {0, 1}, such that (𝐴)𝑖𝑗 = 1 ⟺ (𝑋𝑖, 𝑋𝑗) ∈ 𝐸.

Remark. An adjacency matrix provides an alternative characterisation of the edges in a graph.
Figures 3.1 and 3.2 show the corresponding adjacency matrices implied by the example directed
and undirected graphs. The diagonal elements will always be zero, and for an undirected graph
the matrix is necessarily symmetric.

𝑋1 𝑋2

𝑋3 𝑋4

 = ⟹ 𝐴 =

⎡
⎢
⎢
⎢
⎢
⎣

0 1 0 1
0 0 0 1
0 0 0 0
0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎦

Figure 3.1.: An example graph with directed edges and the corresponding adjacency matrix.

𝑋1 𝑋2

𝑋3 𝑋4

 = ⟹ 𝐴 =

⎡
⎢
⎢
⎢
⎢
⎣

0 1 0 1
1 0 0 1
0 0 0 1
1 1 1 0

⎤
⎥
⎥
⎥
⎥
⎦

Figure 3.2.: An example graph with undirected edges and the corresponding adjacency matrix.

24

3.1.2. Neighbourhoods of graph nodes

Definition 3.1.4: Parents and children
In a directed graph = (𝑉 , 𝐸), the parents of node 𝑋𝑖 ∈ 𝑉 is the set of nodes which
connect to 𝑋𝑖 through an edge in 𝐸, parents(𝑋𝑖) = {𝑋𝑗 ∈ 𝑉 ∶ (𝑋𝑗 , 𝑋𝑖) ∈ 𝐸}. Similarly, the
children of𝑋𝑖 is the subset of 𝑉 connected to by𝑋𝑖, children(𝑋𝑖) = {𝑋𝑗 ∈ 𝑉 ∶ (𝑋𝑖, 𝑋𝑗) ∈ 𝐸}.

Exercise 3.1 Identifying parents and children. For the directed graph in Fig. 3.1, find the
parents and children of each node in 𝑉 = {𝑋1, 𝑋2, 𝑋3, 𝑋4}.

Definition 3.1.5: Neighbours
In an undirected graph = (𝑉 , 𝐸), the neighbours of a node 𝑋𝑖, written neighbours(𝑋𝑖),
is simply the set of nodes in 𝑉 connected to 𝑋𝑖 by an edge in 𝐸, neighbours(𝑋𝑖) = {𝑋𝑗 ∈
𝑉 ∶ (𝑋𝑖, 𝑋𝑗) ∈ 𝐸}.

Exercise 3.2 Identifying neighbours. For the undirected graph in Fig. 3.2, find the neigh-
bours of each node in 𝑉 = {𝑋1, 𝑋2, 𝑋3, 𝑋4}.

3.1.3. Paths, cycles and directed acyclic graphs

Definition 3.1.6: Path
A sequence of distinct nodes 𝑋𝑖1 , 𝑋𝑖2 ,… , 𝑋𝑖𝑛 in 𝑉 is a directed path in a graph = (𝑉 , 𝐸) if,
for each 1 ≤ 𝑗 < 𝑛, (𝑋𝑖𝑗 , 𝑋𝑖𝑗+1) ∈ 𝐸. The same sequence is an undirected path in the graph
if, for each 𝑗 , (𝑋𝑖𝑗 , 𝑋𝑖𝑗+1) ∈ 𝐸 or (𝑋𝑖𝑗+1 , 𝑋𝑖𝑗) ∈ 𝐸.

Definition 3.1.7: Cycle
A cycle is a directed path 𝑋𝑖1 , 𝑋𝑖2 ,… , 𝑋𝑖𝑛 such that 𝑋𝑖1 = 𝑋𝑖𝑛 .

Definition 3.1.8: Directed acyclic graph
A directed acyclic graph (DAG) is a directed graph containing no cycles.

Remark. DAGs provide an important link between graph theory and probability modelling. In
Section 3.2.1, they will be used to define a class of graphical models known as Bayesian belief
networks. The direction of the links indicate an assumption of causal dependence. Fig. 3.1 is an
example of a DAG.

25

Definition 3.1.9: Tree
A graph = (𝑉 , 𝐸) is singly-connected (or a tree) if there exists exactly one path of edges
from 𝐸 between every pair of nodes in 𝑉 .

3.1.4. Cliques and separation

Definition 3.1.10: Clique
In an undirected graph = (𝑉 , 𝐸), a clique is a fully connected subset of 𝑉 . Furthermore,
a clique is said to be maximal in the graph if there is no superset which is also a clique.

Exercise 3.3 Identifying cliques. For the graph of Fig. 3.2, identify the maximal cliques.

Definition 3.1.11: Separation through a set
For an undirected graph = (𝑉 , 𝐸) and disjoint node subsets ,, ⊂ 𝑉 = {𝑋1,… , 𝑋𝑛},
if every path from an element of to an element of contains an element of , then
is said to separate from .

Exercise 3.4 Identifying separating sets. For the graph in Fig. 3.2, find the separating sets.

Definition 3.1.12: Separation
For , ⊂ 𝑉 , is separated from in = (𝑉 , 𝐸) if there is no path in between an
element of and an element of .

3.2. Graphical models

3.2.1. Belief networks

Definition 3.2.1: Belief network
Let be a DAG on the node set of random variables 𝑉 = {𝑋1,… , 𝑋𝑛}. A belief network
(also known as a causal graph) with graph assumes the joint probability distribution
factorises as

P(𝑋1,… , 𝑋𝑛) =
𝑛

∏
𝑖=1

P(𝑋𝑖 ∣ parents(𝑋𝑖)). (3.1)

26

Remark. In a belief network, the set of DAG edges imply a collection of conditional independence
statements, although not uniquely; one joint probability distribution can often be represented by
multiple alternative DAGs.

Exercise 3.5 Belief network distribution. Interpreting the graph in Fig. 3.1 as a belief
network, state the form of the implied joint probability distribution using the notation
of (3.1).

3.2.1.1. Connectedness and direct separation

Definition 3.2.2: Connected graph
A (directed or undirected) graph is said to be connected if there exists an undirected path
between any two nodes in the graph.

Definition 3.2.3: Connected components
If graph = (𝑉 , 𝐸) is not connected, the nodes 𝑉 can be uniquely partitioned into
separated (see Definition 3.1.12) subsets 𝑉1,… , 𝑉𝑘, such that each subgraph 𝑖 = (𝑉𝑖, 𝐸 ∩
(𝑉𝑖 × 𝑉𝑖)) is connected and there are no connections in 𝐸 between the subgraphs. The
subgraphs 1,… ,𝑘 are said to be the connected components of .

Definition 3.2.4: Collider node
In an undirected path within a directed graph, a node within the path is said to be a
collider for that path if the edges on either side are both directed towards that node.

Exercise 3.6 Identifying colliders. Figure 3.3 shows the three possible three-node paths
that can exist within a directed graph. For each case, identify any colliders.

𝑋1

𝑋2

𝑋3

(a)

𝑋1

𝑋2

𝑋3

(b)

𝑋1

𝑋2

𝑋3

(c)

Figure 3.3.: The three possible directed graphs (up to label changes) with |𝑉 | = 3 and |𝐸| = 2.

27

Definition 3.2.5: 𝑑-connected and 𝑑-separated
Let = (𝑉 , 𝐸) be a directed graph and,, ⊂ 𝑉 be disjoint node subsets.

 is said to be 𝑑-connected to by if there exists an undirected path between an
element of and an element of such that each element on the path is either

1. a non-collider which lies outside ; or

2. a collider which either lies inside or has a descendant in .

Otherwise, is said to 𝑑-separate from .

Remark. The term 𝑑-separation is shorthand for “directional separation”.

Remark. If ∅ 𝑑-separates from , and are simply said to be 𝑑-separated.

Exercise 3.7 Identifying 𝑑-separated and 𝑑-connected nodes. For each path in Fig. 3.3,
identify any 𝑑-separated or 𝑑-connected nodes.

3.2.1.2. Independence and conditional independence

Proposition 3.1. For a belief network on a directed graph = (𝑉 , 𝐸) and disjoint node subsets
,, ⊂ 𝑉 , if 𝑑-separates from then ⟂⟂ ∣ in the joint distribution P of the belief
network.

Corollary 3.1. If ∅ 𝑑-separates from , then ⟂⟂ .
Corollary 3.2. Trivially from Proposition 3.1, the connected components of a graph in a belief
network are independent.

Exercise 3.8 Identifying conditional independencies in a belief network. For each of the
graphs in Fig. 3.3, state the dependence between𝑋1 and𝑋3 (i) marginally; (ii) conditionally
given 𝑋2.

3.2.2. Markov networks

Definition 3.2.6: Markov network
Let be an undirected graph on the node set {𝑋1,… , 𝑋𝑛}. A Markov network with graph
 assumes the joint probability distribution factorises as

P(𝑋1,… , 𝑋𝑛) ∝
𝐶

∏
𝑖=1
𝜙𝑖(𝑖), (3.2)

where 1,… ,𝐶 are the maximal cliques of . The non-negative functions 𝜙𝑖 are some-
times referred to as potentials.

28

Exercise 3.9 Markov network distribution. Interpreting the graph in Fig. 3.2 as a Markov
network, state the form of the implied joint probability distribution using the notation
of (3.2).

Definition 3.2.7: Pairwise Markov network
Let = (𝑉 , 𝐸) be an undirected graph on the node set {𝑋1,… , 𝑋𝑛}. A pairwise Markov
network with graph assumes the joint probability distribution factorises as

P(𝑋1,… , 𝑋𝑛) ∝ ∏
(𝑋𝑖,𝑋𝑗)∈𝐸

𝜙𝑖,𝑗(𝑋𝑖, 𝑋𝑗). (3.3)

Exercise 3.10 Pairwise Markov network distribution. Interpreting the graph in Fig. 3.2 as
a pairwise Markov network, state the form of the implied joint probability distribution
using the notation of (3.3).

Remark. The definitions of a Markov network and pairwise Markov network coincide if and
only if the maximal cliques are all edges, meaning there are no triangles in the graph.

Remark. For the graph in Fig. 3.4, the definitions of Markov networks and pairwise Markov
networks coincide, both implying P(𝑋1, 𝑋2, 𝑋3) ∝ 𝜙1(𝑋1, 𝑋2)𝜙2(𝑋2, 𝑋3). In general, this simple
graph would imply 𝑋1 and 𝑋3 are dependent, but conditionally independent given 𝑋2.

𝑋1

𝑋2

𝑋3

Figure 3.4.: A three-node graph with two undirected edges.

3.2.2.1. Conditional independence

Proposition 3.2. Markov property. For disjoint,, ⊂ 𝑉 , if separates from in a graph
 = (𝑉 , 𝐸) then ⟂⟂ ∣ in any Markov network on graph .

Remark. In Fig. 3.4, 𝑋1 ⟂⟂ 𝑋3 ∣ 𝑋2. More generally, a node will be conditionally independent of
any other nodes in the graph given its neighbours.

29

Definition 3.2.8: Markov random field
Let be an undirected graph on the node set {𝑋1,… , 𝑋𝑛}. A Markov random field on
assumes the full conditional probability distributions satisfy

P(𝑋𝑖 ∣ 𝑋1,… , 𝑋𝑖−1, 𝑋𝑖+1,… , 𝑋𝑛) = P(𝑋𝑖 ∣ neighbours(𝑋𝑖)).

Remark. The definition of a Markov random field is equivalent to the earlier definition of a
Markov network, as characterised by (3.2).

Exercise 3.11 Gaussian Markov random field. Let = (𝑉 , 𝐸) be a graph on 𝑉 =
{𝑋1,… , 𝑋𝑛}. A multivariate normal distribution N𝑛(𝜇,Σ) is a Gaussian Markov random
field (GMRF) with respect to if the covariance matrix satisfies the condition

(Σ−1)𝑖𝑗 ≠ 0 ⟺ (𝑋𝑖, 𝑋𝑗) ∈ 𝐸.

Show that a GMRF satisfies Definition 3.2.8 for a Markov random field.

3.2.2.2. Lattice models

Figure 3.5 shows an example of a lattice graph. Lattice graphs provide another case where the
definitions of a Markov network/random field and a pairwise Markov network coincide. As
Markov random fields, these structures are known as lattice models.

𝑋1 𝑋2

𝑋3 𝑋4

Figure 3.5.: An example lattice graph.

3.2.3. Factor graphs

Factor graphs provide a further generalisation to (3.2), by allowing products of potentials (or
factors) on arbitrary node subsets through the inclusion of additional (latent) factor nodes
𝜃1,… , 𝜃𝑘.

30

Definition 3.2.9: Factor graph
Let be an (undirected) graph on the extended node set {𝑋1,… , 𝑋𝑛} ∪ {𝜃1,… , 𝜃𝑘}. A factor
graph model assumes the joint probability distribution for 𝑋1,… , 𝑋𝑛 factorises as

P(𝑋1,… , 𝑋𝑛) ∝
𝑘

∏
𝑖=1
𝜙𝑖(neighbours(𝜃𝑖) ∩ {𝑋1,… , 𝑋𝑛}). (3.4)

Remark. There should be no edges between factor nodes or variable nodes in a factor graph,
since these would have no bearing on (3.4).

Remark. By introducing additional nodes, factor graphs can represent richer dependency struc-
tures than either belief networks or Markov networks; one belief network or one Markov network
could correspond to multiple possible factor graphs.

Figure 3.6 shows an example factor graph, where the shaded nodes indicate latent factors.

𝜃1 𝜃2

𝑋1 𝑋2

𝑋3 𝑋4

𝑋5

Figure 3.6.: A factor model for variables 𝑋1,… , 𝑋5.

The edge structure in Fig. 3.6 implies a factorisation of the joint distribution

P(𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5) ∝ 𝜙1(𝑋1, 𝑋3, 𝑋5)𝜙2(𝑋2, 𝑋4, 𝑋5).

3.2.3.1. Conditional independence

Proposition 3.3. For disjoint ,, ⊂ {𝑋1,… , 𝑋𝑛}, if separates from in a factor graph
 = ({𝑋1,… , 𝑋𝑛} ∪ {𝜃1,… , 𝜃𝑘}, 𝐸) then ⟂⟂ ∣ .

Remark. In Fig. 3.6, {𝑋1, 𝑋3} and {𝑋2, 𝑋4} are conditionally independent given 𝑋5.

3.3. Hierarchical models
Section 2.3.3 introduced the idea of specifying probability distributions for unknowns through
hierarchies. Such hierarchies can be interpreted as graphical models.

Definition 3.3.1: Hierarchical model
ABayesian hierarchical model for random variables𝑋1,… , 𝑋𝑛 is a multilayered expression
for the joint probability distribution with one or more hyperparameters.

31

Remark. Hierarchical model formulations are equivalent to both belief networks (Section 3.2.1)
and factor graphs (Section 3.2.3). They can be represented graphically in either way.

Example 3.3.1. De Finetti’s representation equations (2.2) and (2.3) for exchangeable variables
𝑋1,… , 𝑋𝑛 are simple hierarchical models. This representation is depicted graphically as both a
belief network and a factor model in Fig. 3.7. The differences are the undirected edges and the
explicit interpretation of 𝜃 as a latent parameter in the factor graph. The shaded nodes indicate
latent random variables which will not be observed.

𝜃

𝑋1 𝑋2 𝑋… 𝑋𝑛

(a)

𝜃

𝑋1 𝑋2 𝑋… 𝑋𝑛

(b)

Figure 3.7.: Exchangeability for𝑋1,… , 𝑋𝑛 represented as a (a) belief network or (b) factor graph.

Example 3.3.2. Hierarchical models can be used to incorporate groups of dependencies into
probability models. Again consider 𝑋1,… , 𝑋𝑛 to be exchangeable, but now suppose each 𝑋𝑖 is a
𝑝-vector 𝑋𝑖 = (𝑋𝑖,1,… , 𝑋𝑖,𝑝) which can also be assumed to be exchangeable.
For example, on a degree course there could be 𝑛 students who each sit 𝑝 tests, such that 𝑋𝑖𝑗 ∈

[0, 100] corresponds to the percentage score obtained by the 𝑖th student in the 𝑗th test. The implied
𝑛 × 𝑝 matrix (𝑋𝑖𝑗) could be regarded as a spreadsheet recording the student grades, where each
row corresponds to a different student and each column to a different test.

Without further information about the students and the relative difficulty of the tests, a doubly-
exchangeable assumption (for 𝑋1,… , 𝑋𝑛 and 𝑋𝑖,1,… , 𝑋𝑖,𝑝) could seem reasonable. (In contrast,
assuming full exchangeability between all 𝑛 × 𝑝 test scores would be less comfortable, since each
student might be expected to perform comparably in each of the different tests, according to their
aptitude.)
Figure 3.8 shows the hierarchical model resulting from these two nested layers of exchange-

ability. The root node at the top of the hierarchy, 𝐹 , is a probability distribution on the space of
probability distributions. Each child node 𝐹𝑖 is a draw from 𝐹 corresponding to the grade proba-
bility distribution of student 𝑖. Finally, each individual test score 𝑋𝑖𝑗 is an independent random
draw from the grade distribution 𝐹𝑖 for that student.

32

𝐹1

𝐹2

𝐹…

𝐹𝑛

𝐹

𝑋11 𝑋12 𝑋1… 𝑋1𝑝

𝑋21 𝑋22 𝑋2… 𝑋2𝑝

𝑋𝑛1 𝑋𝑛2 𝑋𝑛… 𝑋𝑛𝑝

Figure 3.8.: A belief network representation of a hierarchical model for an 𝑛 × 𝑝 matrix of
random variables (𝑋𝑖𝑗) with two layers of exchangeability: firstly in the rows,
secondly in the row entries.

33

CHAPTER

4

PARAMETRIC MODELS

This chapter introduces examples of parametric inferential models commonly used in the
representation framework for exchangeable random variables from Chapter 2, and also the
conditional distributions of more general dependency structures considered in Chapter 3.

4.1. Parametric modelling

Suppose 𝒙 = (𝑥1,… , 𝑥𝑛) are the observed values of exchangeable random variables which are
assumed to be conditionally independent given an unknown parameter 𝜃 ∈ Θ (see Section 2.2).
To simplify the notation of (2.3), the density of the joint distribution P𝑋1,…,𝑋𝑛(𝑥1,… , 𝑥𝑛) will
now be written as 𝑝(𝒙); the prior density for 𝜃, d𝑄(𝜃)/ d𝜃 will be written simply as 𝑝(𝜃);
𝐹(𝑥; 𝜃) will be denoted 𝑝(𝑥 ∣ 𝜃); and the posterior density d𝑄(𝜃 ∣ 𝑥1,… , 𝑥𝑛)/ d𝜃 will simply be
written as 𝜋(𝜃). In this simplified notation, defining the joint likelihood

𝑝(𝒙 ∣ 𝜃) ∶=
𝑛

∏
𝑖=1
𝑝(𝑥𝑖 ∣ 𝜃),

De Finetti’s representation theorem becomes

𝑝(𝒙) = ∫
Θ

𝑛

∏
𝑖=1
𝑝(𝑥𝑖 ∣ 𝜃) 𝑝(𝜃) d𝜃 (4.1)

and the posterior density for 𝜃 (2.4) can be expressed most simply as

𝜋(𝜃) ∝ 𝑝(𝒙 ∣ 𝜃) 𝑝(𝜃). (4.2)

35

Remark. In Bayesian inference it is common to see (posterior) probability densities being specified
only up to a constant of proportionality. If 𝜋(𝜃) ∝ 𝑔(𝜃), then since all probability densities
must integrate1 to 1, it necessarily follows that 𝜋(𝜃) = 𝑔(𝜃)/{∫Θ 𝑔(𝜃

′) d𝜃′}. So (4.2) is simply a
shortening of the full expression

𝜋(𝜃) =
𝑝(𝒙 ∣ 𝜃) 𝑝(𝜃)

∫Θ 𝑝(𝒙 ∣ 𝜃′) 𝑝(𝜃′) d𝜃′
=
𝑝(𝒙 ∣ 𝜃) 𝑝(𝜃)

𝑝(𝒙)
. (4.3)

However, a note of caution is required: Although the transition from an equation of pro-
portionality (4.2) to equality (4.3) for the posterior density is automatic from a theoretical
viewpoint, this normalisation requires evaluation of an integral in the denominator of (4.3)
which may not always be analytically tractable.

4.2. Conjugate models

Definition 4.2.1: Conjugacy
A likelihood-prior representation (2.3) is said to be conjugate if the prior and posterior
densities 𝑝(𝜃) and 𝜋(𝜃) from (4.2) are from the same parametric family.

Remark. For conjugacy to occur, the likelihood terms 𝑝(𝑥𝑖 ∣ 𝜃)must also resemble a density from
the same parametric family as the prior 𝑝(𝜃), up to a constant of proportionality.

Tables 4.1 and 4.2 give examples of conjugate models for discrete and continuous random
variables. In each row of either table, there is a likelihood model for which there exists a
conjugate prior for one of the parameters, each time denoted 𝜃. The right hand column shows
the transformation from prior 𝑝(𝜃) to posterior 𝑝(𝜃 ∣ 𝑥) implied by a single observation 𝑥
from the likelihood model 𝑝(𝑥 ∣ 𝜃).

Likelihood, 𝑝(𝑥 ∣ 𝜃) Conjugate prior, 𝑝(𝜃) Posterior, 𝑝(𝜃 ∣ 𝑥)

Bernoulli(𝜃) Beta(𝑎, 𝑏) Beta(𝑎 + 𝑥, 𝑏 + 1 − 𝑥)
Geometric(𝜃) Beta(𝑎, 𝑏) Beta(𝑎 + 1, 𝑏 + 𝑥)
Binomial(𝑚, 𝜃) Beta(𝑎, 𝑏) Beta(𝑎 + 𝑥, 𝑏 + 𝑚 − 𝑥)
Negative Binomial(𝑟, 𝜃) Beta(𝑎, 𝑏) Beta(𝑎 + 𝑟, 𝑏 + 𝑥)
Multinomial𝑘(𝑚, 𝜃) Dirichlet𝑘(𝛼) Dirichlet𝑘(𝛼 + 𝑥)
Poisson(𝜃) Gamma(𝑎, 𝑏) Gamma(𝑎 + 𝑥, 𝑏 + 1)

Table 4.1.: Conjugate parametric models for discrete random variables.

1 Integration, here and elsewhere, refers to Lebesgue integration for densities of continuous random variables,
and summation for densities (or mass functions) of discrete random variables.

36

Likelihood, 𝑝(𝑥 ∣ 𝜃) Conjugate prior, 𝑝(𝜃) Posterior, 𝑝(𝜃 ∣ 𝑥)

Uniform(0, 𝜃) Pareto(𝑎, 𝑏) Pareto(𝑎 + 1,max{𝑏, 𝑥})
Exponential(𝜃) Gamma(𝑎, 𝑏) Gamma(𝑎 + 1, 𝑏 + 𝑥)
Gamma(𝜓, 𝜃) Gamma(𝑎, 𝑏) Gamma(𝑎 + 𝜓, 𝑏 + 𝑥)
Normal𝑘(𝜃,Λ−1) Normal𝑘(𝜇, 𝑃−1) Normal𝑘((Λ + 𝑃)−1(Λ𝑥 + 𝑃𝜇), (Λ + 𝑃)−1)
Normal𝑘(𝜇, 𝜃) Inverse Wishart𝑘(𝑎, 𝑏) Inverse Wishart𝑘(𝑎 + 1, 𝑏 + (𝑥 − 𝜇) ⋅ (𝑥 − 𝜇)⊺)

Table 4.2.: Conjugate parametric models for continuous random variables.

Remark. In Table 4.1, the negative binomial distribution refers to the parameterisation

𝑝(𝑥 ∣ 𝜃) = (
𝑟 + 𝑥 − 1
𝑟 − 1)𝜃

𝑟(1 − 𝜃)𝑥 ,

corresponding to the number of “failures” observed before seeing 𝑟 “successes” in a sequence of inde-
pendentBernoulli(𝜃) variables. Similarly the geometric distribution corresponds toNegative Binomial(1, 𝜃),
the distribution for the number of failures before the first success.

Generalisations of the results in Tables 4.1 and 4.2 to more than one observation from the
likelihood model are straightforward; for a second observation, the posterior 𝑝(𝜃 ∣ 𝑥) from
the right hand column adopts the role of the prior in the middle column, simply updating the
parameter values within the same parametric family.

Exercise 4.1 Conjugacy of Bernoulli and beta distributions. Suppose 𝒙 = (𝑥1,… , 𝑥𝑛) are
𝑛 independent Bernoulli(𝜃) random samples, and 𝜃 ∼ Beta(𝑎, 𝑏). Derive the posterior
distribution for 𝜃 ∣ 𝒙.

Exercise 4.2 Conjugacy of Poisson and gamma distributions. Suppose 𝒙 = (𝑥1,… , 𝑥𝑛) are
𝑛 independent Poisson(𝜃) random samples, and 𝜃 ∼ Gamma(𝑎, 𝑏). Derive the posterior
distribution for 𝜃 ∣ 𝒙.

Exercise 4.3 Conjugacy of uniform and Pareto distributions. Suppose 𝒙 = (𝑥1,… , 𝑥𝑛) are
𝑛 independent Uniform(0, 𝜃) random samples, and 𝜃 ∼ Pareto(𝑎, 𝑏). Derive the posterior
distribution for 𝜃 ∣ 𝒙.

Exercise 4.4 Conjugacy of exponential and gamma distributions. Suppose 𝒙 = (𝑥1,… , 𝑥𝑛)
are 𝑛 independent Exponential(𝜃) random samples, and 𝜃 ∼ Gamma(𝑎, 𝑏). Derive the
posterior distribution for 𝜃 ∣ 𝒙.

37

Exercise 4.5 Conjugacy of normal and normal-inverse-gamma distributions. Suppose
𝒙 = (𝑥1,… , 𝑥𝑛) are 𝑛 independent Normal(𝜃1, 𝜃2) random samples with mean 𝜃1 ∈ R and
variance 𝜃2 ∈ R+, and

𝜃1 ∣ 𝜃2 ∼ Normal(𝜇, 𝜃2/𝜆)
𝜃−12 ∼ Gamma(𝑎, 𝑏).

This construction is sometimeswritten as 𝜃 = (𝜃1, 𝜃2) ∼ Normal-Inverse-Gamma(𝜇, 𝜆, 𝑎, 𝑏),
and suggests the joint prior density

𝑝(𝜃) =
√
𝜆 𝑏𝑎√

2𝜋𝜃2 Γ(𝑎) (
1
𝜃2)

𝑎+1

exp
{
−
2𝑏 + 𝜆(𝜃1 − 𝜇)2

2𝜃2

}
.

Derive the posterior distribution for 𝜃 ∣ 𝒙.

Proposition 4.1. For conjugate parametric models, the marginal likelihood 𝑝(𝒙) will have a
closed-form equation.

Proof. For conjugatemodels the posterior densitywill have a closed analytic form; themarginal
likelihood could therefore be obtained through rearranging (4.3),

𝑝(𝒙) =
𝑝(𝒙 ∣ 𝜃) 𝑝(𝜃)

𝜋(𝜃)
. (4.4)

Any terms involving 𝜃 in (4.4) will necessarily cancel, leaving a ratio of normalising constants
from the likelihood and prior densities and the posterior density which do not depend on
𝜃.

4.3. Exponential families

Definition 4.3.1: Exponential family
A density 𝑝(𝑥 ∣ 𝜃) belongs to an exponential family if there are functions 𝑔, ℎ, 𝜂, 𝑇 such
that

𝑝(𝑥 ∣ 𝜃) = ℎ(𝑥)𝑔(𝜃) exp{𝜂(𝜃)⊺ ⋅ 𝑇 (𝑥)}. (4.5)

Proposition 4.2. If 𝑝(𝑥 ∣ 𝜃) is an exponential family of the form (4.5), then any normalisable
density satisfying

𝑝(𝜃) ∝ 𝑔(𝜃)𝑟 exp(𝜂(𝜃)⊺ ⋅ 𝑠) (4.6)
for 𝑟 > 0 is a conjugate prior distribution for 𝜃.

Proof. From (4.2), the posterior density would be given up to proportionality by

𝑝(𝜃 ∣ 𝑥) ∝ 𝑔(𝜃)𝑟+1 exp{𝜂(𝜃)⊺ ⋅ (𝑠 + 𝑇 (𝑥))},

which is from the same parametric family as (4.6).

38

Remark. Proposition 4.2 provides another justification for the popularity of exponential fam-
ily models in statistics; they all have conjugate Bayesian priors. With the exception of the uni-
form/Pareto pairing, all of the likelihood models in Tables 4.1 and 4.2 are exponential families.

4.4. Non-conjugate models

For a given likelihood model in the De Finetti representation (4.1), adopting a conjugate prior
distribution is certainly attractive for mathematical convenience. However, outside of simple
exponential family examples, most likelihood models will not have a conjugate prior distribu-
tion.
Besides conjugate models, a tractable posterior distribution will always be theoretically

available whenever the prior distribution is discrete and has finite support Θ = {𝜃 ∶ 𝑝(𝜃) > 0};
in this case, the marginal likelihood 𝑝(𝒙) which serves as the normalising constant of (4.3) is
simply the finite sum

𝑝(𝒙) = ∑
𝜃∈Θ

𝑝(𝒙 ∣ 𝜃) 𝑝(𝜃). (4.7)

However, in practice, if the number of support points |Θ| is very large (for example, if 𝜃 is
high-dimensional) then the summation (4.7) may still be too expensive to compute.

Moreover, a Bayesian model specification should aim to reflect subjective beliefs, and adopt-
ing a prior distribution simply for reasons of mathematical convenience is not consistent with
this objective. Therefore, in many applications analysts will be faced with performing infer-
ence with non-conjugate statistical models with analytically intractable posterior distributions
which can be identified only up to proportionality through (4.2).

4.5. Posterior summaries for parametric models

Given a known posterior density 𝜋(𝜃) (4.2) obtained under an assumed parametric model, a
decision-maker might be interested in visualising or quantifying some lower-dimensional sum-
maries of this density; this can be particularly useful if the parameter 𝜃 is multi-dimensional,
perhaps with high dimension, meaning the density 𝜋(𝜃) cannot simply be plotted.

4.5.1. Marginal distributions

Suppose the parameter 𝜃 is a 𝑘-dimensional vector for 𝑘 > 1, such that 𝜃 = (𝜃1,… , 𝜃𝑘), and
consider a decision problem to predict the value of a single component 𝜃𝑗 from that vector. In
such circumstances the (𝑘 − 1)-vector of remaining parameters, denoted

𝜃−𝑗 ∶= (𝜃1,… , 𝜃𝑗−1, 𝜃𝑗+1,… , 𝜃𝑘), (4.8)

are often referred to as nuisance parameters.
Recall from Section 1.5.3 that in the Bayesian paradigm, prediction corresponds to reporting

one’s subjective probability distribution for that parameter. Predicting the parameter compo-
nent 𝜃𝑗 corresponds to reporting the marginal posterior density obtained from integrating out

39

the nuisance parameters,
𝜋(𝜃𝑗) = ∫

Θ−𝑗

𝜋(𝜃) d𝜃−𝑗 .

Exercise 4.6 Calculating a marginal distribution. Consider a bivariate target density
function

𝜋(𝜃) =
𝑏𝑎 𝜃𝑎1 𝑒−(𝑏+𝜃2)𝜃11[0,∞)2(𝜃)

Γ(𝑎)
,

for 𝜃 = (𝜃1, 𝜃2) ∈ [0,∞)2 and constants 𝑎, 𝑏 > 0. Calculate the marginal densities of 𝜃1
and 𝜃2. [Γ(𝑧) = ∫

∞

0
𝑥𝑧−1𝑒−𝑥 d𝑥 .]

4.5.2. Credible regions
Alternatively, it may be of interest to identify a representative interval or region in which the
parameter is believed to lie with some specified high probability, analogous to a confidence
interval or region in frequentist statistics.

In subjective probability, the corresponding notion is referred to as a credible region.

Definition 4.5.1: Credible regions
For 0 ≤ 𝛼 ≤ 1, a 100𝛼% credible region of a parameter 𝜃 with probability distribution P is
a subset 𝑅𝛼 ⊆ Θ such that

P(𝜃 ∈ 𝑅𝛼) = 𝛼.

Remark. For a given probability distribution and coverage probability 0 < 𝛼 < 1, infinitely
many valid credible intervals may exist.

For summarising a (marginal) posterior density 𝜋(𝜃) for a univariate continuous-valued
parameter 𝜃, a simple procedure for identifying a 100𝛼% credible interval [𝜃∗, 𝜃∗] for 𝜃 is to
identify interval boundaries such that

∫
𝜃∗

−∞
𝜋(𝜃) d𝜃 = ∫

∞

𝜃∗
𝜋(𝜃) d𝜃 =

1 − 𝛼
2

.

This particular choice of interval is sometimes referred to as an equal-tailed credible interval.

Exercise 4.7 Credible interval for the exponential distribution. Let 𝜋(𝜃) = 𝜆𝑒−𝜆𝜃1[0,∞)(𝜃)
with 𝜆 > 0. For 0 ≤ 𝛼 ≤ 1, calculate the equal-tailed 100𝛼% credible interval for 𝜃.

40

CHAPTER

5

COMPUTATIONAL INFERENCE

5.1. Intractable integrals in Bayesian inference
In Section 1.5, estimation and prediction were presented as Bayesian decision problems. Given
a subjective probability distribution for an unknown quantity and a subjectively chosen utility
or loss function, the Bayes estimatewas shown to be the valuewhichmaximises expected utility
or equivalentlyminimises expected loss. Obtaining this estimate apparently requires two stages
of calculation: obtaining an analytic expression for the subjective probability distribution and
then using this distribution to calculate expectations.

In the first stage, suppose I assume exchangeability for observable random variables𝑋1,… , 𝑋𝑛
and a parametric representation (2.3) with an unknown parameter 𝜃 ∈ Θ. After observing val-
ues 𝑥1,… , 𝑥𝑛, my posterior distribution Π(𝜃) can theoretically be obtained through updating
my prior beliefs via Bayes’ theorem (4.3); however, the denominator of (4.3) is the result of a
definite integral which was noted in Section 4.4 to be analytically intractable in many cases,
leaving the posterior density only available up to an unknown constant of proportionality
(4.2). Section 2.3.7 noted that almost any posterior distribution will asymptotically resemble
a multivariate Gaussian, and in some large sample cases this might provide an adequate ap-
proximation to the normalised posterior if the necessary maximum likelihood estimates can
be calculated, but in general, these asymptotic arguments cannot be relied upon.
In the second stage, taking a squared error loss function as an example, it is understood

from Section 1.5.2 that the Bayes estimate for 𝜃 under this loss function would be the mean
value with respect to my (updated) subjective probability distribution, Π(𝜃), and the required
calculation therefore requires a second integral

E𝜋(𝜃) ∶= ∫
Θ
𝜃 𝜋(𝜃) d𝜃, (5.1)

41

where 𝜋(𝜃) = dΠ(𝜃)/ d𝜃 is the corresponding density function.
Slightly more generally, I might wish to estimate a transformation 𝑔(𝜃). Under squared error

loss, the Bayes estimate would be the expectation of 𝑔(𝜃) with respect to my current beliefs
about 𝜃,

E𝜋{𝑔(𝜃)} ∶= ∫
Θ
𝑔(𝜃) 𝜋(𝜃) d𝜃. (5.2)

Like the denominator of (4.3) when calculating a posterior distribution, in general, the
integration required for calculating expectations (5.1) or (5.2) with respect to any target density
𝜋(𝜃) is also likely to be analytically intractable.

In summary, two sources of intractability have been identified:

1. Intractable posterior distribution calculation (4.3), where the normalising constant for
𝜋(𝜃) cannot be computed.

2. Intractable posterior expectation calculations (5.2), due to either the posterior 𝜋(𝜃) not
being calculable (Item 1), or the integral of 𝑔(𝜃) × 𝜋(𝜃) not being tractable.

5.2. Monte Carlo estimation
Monte Carlomethods are approximate, sampling-based approaches for evaluating expectations.
They exploit the fact that if 𝑀 ≥ 1 random samples 𝜃(1),… , 𝜃(𝑀) can be obtained from the
density 𝜋, then by linearity of expectation

E𝜋

{
1
𝑀

𝑀

∑
𝑖=1
𝑔(𝜃(𝑖))

}

= E𝜋{𝑔(𝜃)}.

Definition 5.2.1: Monte Carlo estimate of an expectation

For samples 𝜃(1),… , 𝜃(𝑀) from 𝜋, the Monte Carlo (MC) estimate of E𝜋{𝑔(𝜃)} (5.2) is

Ê𝜋{𝑔(𝜃)} ∶=
1
𝑀

𝑀

∑
𝑖=1
𝑔(𝜃(𝑖)). (5.3)

Remark. MC methods are well suited to addressing the case of Item 2 from Section 5.1, where
a target density 𝜋 might be fully known but the integrals required for calculating expectations
with respect to 𝜋 are not tractable.

Remark. As indicated above, by linearity of expectation (5.3) is an unbiased estimate of (5.2).
By the strong law of large numbers, (5.3) converges to (5.2) almost surely.

Exercise 5.1 Monte Carlo probabilities. Suppose 𝜃(1),… , 𝜃(𝑀) are random samples from
a density 𝜋(𝜃) over Θ. State the Monte Carlo estimate of P𝜋(𝜃 ∈ 𝐴) for a region 𝐴 ⊂ Θ.

42

Exercise 5.2 Monte Carlo estimate of a conditional expectation. Suppose 𝜃(1),… , 𝜃(𝑀) are
random samples from a density 𝜋(𝜃) over Θ, 𝑔(𝜃) is a transformation of interest and
𝐴 ⊆ Θ. State a Monte Carlo estimate for the conditional expectation E𝜋 ∣𝐴(𝑔(𝜃) ∣ 𝜃 ∈ 𝐴).

Exercise 5.3 Monte Carlo credible interval. For a univariate, real-valued parameter 𝜃 ∈ R,
suppose 𝜃(1),… , 𝜃(𝑀) are random samples from a density 𝜋(𝜃) and 𝜃(1) ≤ … ≤ 𝜃(𝑀) are
the corresponding order statistics. For 0 ≤ 𝛼 ≤ 1, use the order statistics to state a Monte
Carlo approximated 100𝛼% credible region for 𝜃 (cf. Section 4.5.2).

5.2.1. Standard error
The standard error of an estimator is the standard deviation of the sampling distribution of
the estimate, or more generally an estimate of that standard deviation.

Definition 5.2.2: Monte Carlo standard error

For independent samples 𝜃(1),… , 𝜃(𝑀) ∼ 𝜋(𝜃), the (estimated) standard error of the Monte
Carlo estimate (5.3) is

s.e.{Ê𝜋{𝑔(𝜃)}} ∶=

√
1

𝑀(𝑀 − 1)

𝑀

∑
𝑖=1

[𝑔(𝜃(𝑖)) − Ê𝜋{𝑔(𝜃)}]
2
. (5.4)

Remark. (5.4) is useful for assessing convergence of the MC estimate (5.3) to (5.2). The standard
error shrinks to zero at a rate proportional to

√
𝑀 .

5.2.2. Estimation under a loss function
Suppose the quality of an estimate �̂� of an unknown parameter 𝜃 is quantified by a loss function
𝓁(�̂�, 𝜃). From Exercise 1.7, under a squared loss function 𝓁(�̂�, 𝜃) = (�̂�−𝜃)2 the optimal Bayesian
estimate is known to correspond to the posterior mean for 𝜃; in this case, the Monte Carlo
estimate (5.3) would be directly applicable as the Bayes estimate for 𝜃.
More generally, for an arbitrary loss function, the Bayes estimate may not take such a

convenient form. However, by the same principle of minimising expected loss with respect
to 𝜋, the Bayes estimate can still be identified in principle via Monte Carlo sampling by first
using (5.3) to evaluate the expected loss for any proposed estimate �̂�,

Ê𝜋{𝓁(�̂�, 𝜃)} =
1
𝑀

𝑀

∑
𝑖=1

𝓁(�̂�, 𝜃(𝑖)).

Second, the Bayes estimate is the value �̂� ∈ Θ which minimises the (estimated) expected loss,

argmin�̂�∈Θ Ê𝜋{𝓁(�̂�, 𝜃)},

which will typically need to be identified through numerical optimisation.

43

§ Exercise 5.4 Monte Carlo optimal decision estimation. Suppose just three samples
𝜃(1) = 2, 𝜃(2) = 5, 𝜃(3) = 11 are obtained from a target density 𝜋(𝜃) describing uncertainty
about an unknown parameter 𝜃. Assuming a Gaussian kernel loss function

𝓁(�̂�, 𝜃) = − exp{−(�̂� − 𝜃)2/10},

plot the Monte Carlo expected loss function Ê𝜋{𝓁(�̂�, 𝜃)} for �̂� over the interval [0, 12] and
numerically evaluate an approximate Bayes estimate of 𝜃.

5.2.3. Importance sampling
Sometimes, it may not be possible or convenient to draw random samples directly from 𝜋(𝜃)
in order to calculate a Monte Carlo estimate, even when the density is fully known. Importance
sampling generalises Monte Carlo estimation by supposing instead that samples 𝜃(1),… , 𝜃(𝑀)

can be drawn from some other density ℎ(𝜃); a weighted average of the corresponding values
𝑔(𝜃(1)),… , 𝑔(𝜃(𝑀)) is then taken to approximate (5.2), where the weights are chosen to precisely
counterbalance the discrepancy between the sampling density ℎ and the target density 𝜋.
For any density ℎ(𝜃) which dominates 𝜋(𝜃), in the sense 𝜋(𝜃) > 0 ⟹ ℎ(𝜃) > 0, the

expectation (5.2) can be rewritten as

E𝜋{𝑔(𝜃)} = ∫
Θ

{
𝑔(𝜃)𝜋(𝜃)
ℎ(𝜃)

}
ℎ(𝜃) d𝜃 = Eℎ

{
𝑔(𝜃)𝜋(𝜃)
ℎ(𝜃)

}
. (5.5)

Defining a so-called importance function as the ratio of the two densities,𝑤(𝜃) = 𝜋(𝜃)/ℎ(𝜃),
the identity (5.5) implies

E𝜋{𝑔(𝜃)} = Eℎ{𝑤(𝜃)𝑔(𝜃)} (5.6)
for any dominating density ℎ, thereby expressing a general expectation with respect to 𝜋 as a
different expectation with respect to ℎ. It immediately follows that a Monte Carlo approxima-
tion of (5.1) can be obtained using samples 𝜃(1),… , 𝜃(𝑚) drawn from ℎ.

Definition 5.2.3: Importance sampling

For samples 𝜃(1),… , 𝜃(𝑀) from ℎ, the importance samplingMonte Carlo estimate ofE𝜋{𝑔(𝜃)}
(5.2), or equivalently (5.6), is

Ê
IS
𝜋 {𝑔(𝜃)} ∶=

1
𝑀

𝑀

∑
𝑖=1
𝑤𝑖 𝑔(𝜃(𝑖)), (5.7)

where 𝑤𝑖 = 𝑤(𝜃(𝑖)) = 𝜋(𝜃(𝑖))/ℎ(𝜃(𝑖)) are the importance weights.

Remark. Importance sampling Monte Carlo estimation with respect to 𝜋 is equivalent to Monte
Carlo estimation with respect to ℎ,

Ê
IS
𝜋 {𝑔(𝜃)} = Êℎ{𝑤(𝜃)𝑔(𝜃)}. (5.8)

44

Exercise 5.5 Importance sampling Monte Carlo standard error. For independent samples
𝜃(1),… , 𝜃(𝑀) ∼ ℎ(𝜃), state a formula for the standard error of the importance sampling
Monte Carlo estimate Ê

IS
𝜋 {𝑔(𝜃)} from (5.7).

Remark. The rate at which the importance sampling standard error from Exercise 5.5 shrinks
to zero and the estimate (5.7) converges to the true value depends upon the functional ratio 𝜋/ℎ.
Good convergence can be obtained when ℎ well approximates 𝜋 and ℎ possibly has heavier tails
(Amaral Turkman et al., 2019).

5.2.4. Normalising constant estimation
Suppose 𝜋(𝜃) is known only up to proportionality by 𝜋(𝜃) ∝ 𝛾 (𝜃) for some known function
𝛾 , such that

𝜋(𝜃) = 𝛾 (𝜃)/𝛾∗, (5.9)
where 𝛾∗ = ∫ 𝛾 (𝜃) d𝜃.

Proposition 5.1. Let ℎ(𝜃) be a known density which dominates 𝜋(𝜃), such that ℎ can be eas-
ily sampled from and let 𝜃(1),… , 𝜃(𝑀) be a random sample drawn from ℎ. Then an importance
sampling Monte Carlo estimate for the normalising constant 𝛾∗ is

𝛾∗ =
1
𝑀

𝑀

∑
𝑖=1

𝛾 (𝜃(𝑖))
ℎ(𝜃(𝑖))

. (5.10)

Proof. Since

𝛾∗ = E𝜋(𝛾∗) = E𝜋 (
𝛾 (𝜃)
𝜋(𝜃))

,

the importance sampling estimate follows immediately from the identity (5.7).

5.2.4.1. Marginal likelihood estimation in Bayesian inference

A simple application of estimating normalising constants occurs frequently within Bayesian
inference,where the target density 𝜋(𝜃) is a posterior distribution known up to proportionality
(4.2) by the product of two known functions, the likelihood and the prior,

𝛾 (𝜃) = 𝑝(𝒙 ∣ 𝜃) 𝑝(𝜃).

The unknown normalising constant of (5.9) in this case is the marginal likelihood, 𝛾∗ = 𝑝(𝒙).
In the simplest implementation of Monte Carlo estimation, the prior 𝑝(𝜃) could be used as

the sampling density; given prior samples 𝜃(1),… , 𝜃(𝑀), the Monte Carlo estimate (5.10) of the
normalising constant is

�̂�(𝒙) =
1
𝑀

𝑀

∑
𝑖=1
𝑝(𝒙 ∣ 𝜃(𝑖)). (5.11)

Although sampling from the prior leads to this simplified equation for Monte Carlo esti-
mation of the marginal likelihood, the standard error of (5.11) can be large if the likelihood

45

is calculated on a large sample 𝒙 which strongly outweighs the effects of the prior (cf. Sec-
tion 2.3.6). As noted above, low variance estimates can be obtained when the sampling density
closely resembles the target. Therefore, in large sample cases, a better importance sampling
density could be the asymptotic normal distribution approximation of a posterior from Sec-
tion 2.3.7.

5.3. Markov chain Monte Carlo

If sampling directly from a particular target distribution Π(𝜃) (for the purpose of performing
Monte Carlo integration) does not seem possible, and when it is not clear how to identify a
suitable importance sampling density (cf. Section 5.2.3), Markov chain Monte Carlo (MCMC)
methods provide a general solution for obtaining approximate samples from any target density.
Conceptually, the idea is straightforward: A discrete-time homogeneous Markov chain of
parameter values 𝜃(1), 𝜃(2),… is sampled according to a transition probability density function
𝑝(𝜃(𝑖+1) ∣ 𝜃(𝑖)), chosen such that the limiting (stationary) distribution of the parameter value
sequence has density 𝜋(𝜃).

5.3.1. Technical requirements of Markov chains in MCMC

The following concepts of irreducibility, reversibility and stationarity are key to MCMC meth-
ods, described in more detail in Roberts and Rosenthal (2004). It should be supposed that an
initial value 𝜃(0) is drawn from an initial probability distribution (possibly a point mass at some
particular value) and then subsequent values 𝜃(1), 𝜃(2),… are drawn from the transition density
𝑝(𝜃(𝑖+1) ∣ 𝜃(𝑖)).

Definition 5.3.1: 𝑛-step transition probability distribution
For 𝐴 ⊆ Θ and 𝑛 ≥ 1, the 𝑛-step transition probability distribution, 𝑃𝑛, is the distribution
of the state 𝜃(𝑛) after 𝑛 iterations of the Markov chain starting from 𝜃(0) ∈ Θ,

𝑃𝑛(𝐴 ∣ 𝜃(0)) ∶= ∫
𝜃𝑛∈𝐴

∫
(𝜃1,…,𝜃𝑛−1)∈Θ𝑛−1

𝑝(𝜃(1) ∣ 𝜃(0)) …𝑝(𝜃(𝑛) ∣ 𝜃(𝑛−1)) d𝜃1 …d𝜃𝑛.

Definition 5.3.2: 𝜋-irreducible Markov chain

A Markov chain with transition density 𝑝(𝜃(𝑖+1) ∣ 𝜃(𝑖)) is said to be 𝜋-irreducible if for
each Π-measurable set 𝐴 ⊂ Θ with Π(𝐴) > 0 and for each 𝜃 ∈ Θ, there exists 𝑛 > 0 such
that 𝑃𝑛(𝐴 ∣ 𝜃) > 0.

Remark. Informally, a 𝜋-irreducible Markov chain can eventually reach any neighbourhood of
Θ where the target distribution has positive probability.

46

Definition 5.3.3: Aperiodic Markov chain

A Markov chain with transition density 𝑝(𝜃(𝑖+1) ∣ 𝜃(𝑖)) is said to be aperiodic if, for each
initial value 𝜃(0) ∈ Θ and each Π-measurable set 𝐴 ⊂ Θ with Π(𝐴) > 0, {𝑛 ∣ 𝑃𝑛(𝐴 ∣ 𝜃(0)) >
0} has greatest common divisor equal to 1.

Remark. Informally, an aperiodic Markov chain does not have a cyclic pattern to how it can
arrive at different states.

Definition 5.3.4: 𝜋-reversible Markov chain

A Markov chain transition density 𝑝(𝜃(𝑖+1) ∣ 𝜃(𝑖)) is said to be 𝜋-reversible if and only if

𝜋(𝜃) 𝑝(𝜃′ ∣ 𝜃) = 𝜋(𝜃′) 𝑝(𝜃 ∣ 𝜃′). (5.12)

Remark. The condition (5.12) required for reversibility is sometimes referred to as detailed bal-
ance.

Definition 5.3.5: Stationary distribution
The density 𝜋(𝜃) is said to be a stationary distribution for the transition density 𝑝(𝜃′ ∣ 𝜃)
if and only if

𝜋(𝜃′) = ∫ 𝜋(𝜃) 𝑝(𝜃′ ∣ 𝜃) d𝜃.

Proposition 5.2. If the transition density 𝑝(𝜃(𝑖+1) ∣ 𝜃(𝑖)) of a Markov chain satisfies detailed
balance (is reversible) with respect to 𝜋(𝜃), then 𝜋(𝜃) is a stationary distribution.

Proof.

∫
Θ
𝜋(𝜃) 𝑝(𝜃′ ∣ 𝜃) d𝜃 = 𝜋(𝜃′)∫

Θ
𝑝(𝜃 ∣ 𝜃′) d𝜃 = 𝜋(𝜃′).

Remark. A consequence of Proposition 5.2 is that if an aperiodic Markov chain can be constructed
which is irreducible and reversible with respect to a target density 𝜋, then samples from that
Markov chain would eventually converge to be (dependent) samples from 𝜋.

In MCMCmethods, a large number of samples are obtained from an aperiodic, 𝜋-irreducible,
𝜋-reversible Markov chain, perhaps discarding some initial burn-in samples before the chain
is deemed to have sufficiently converged towards the target. The retained samples are treated
as an approximate sample from 𝜋 for the purposes of Monte Carlo estimation (Section 5.2).
(The standard error formula (5.2.2) will not apply, even approximately, for MCMC samples
since this was based on an assumption of independent samples.)

The next two sections introduce the most commonly used mechanisms for constructing a 𝜋-
irreducible, 𝜋-reversible Markov chain required for MCMC: Gibbs sampling and theMetropolis-
Hastings algorithm.

47

5.3.2. Gibbs sampling
Suppose 𝜃 = (𝜃1,… , 𝜃𝑘) is a 𝑘-vector of parameters with 𝑘 > 1. Then, for 1 ≤ 𝑗 ≤ 𝑘, following
(4.8) let 𝜃−𝑗 denote the (𝑘 − 1)-vector comprising the entries of 𝜃 with the 𝑗th component
removed.

Gibbs sampling operates by selecting an index 𝑗 (either randomly, or through a deterministic
cycle) and sampling a new value for the component 𝜃𝑗 from the full conditional distribution

𝜋(𝜃𝑗 ∣ 𝜃−𝑗) ∶=
𝜋(𝜃)
𝜋(𝜃−𝑗)

, (5.13)

where
𝜋(𝜃−𝑗) ∶= ∫

Θ𝑗
𝜋(𝜃) d𝜃𝑗

is the marginal density for 𝜃−𝑗 .

Proposition 5.3. A Markov chain with transition density

𝑝(𝜃′ ∣ 𝜃) = 1𝜃−𝑗 (𝜃
′
−𝑗)𝜋(𝜃

′
𝑗 ∣ 𝜃−𝑗) (5.14)

is 𝜋(𝜃)-reversible.

Proof. Since 𝜃′−𝑗 = 𝜃−𝑗 with probability 1 under (5.14), then for all such 𝜃, 𝜃′,

𝜋(𝜃)
𝜋(𝜃′)

=
𝜋(𝜃𝑗 ∣ 𝜃−𝑗)
𝜋(𝜃′𝑗 ∣ 𝜃′−𝑗)

=
𝑝(𝜃 ∣ 𝜃′)
𝑝(𝜃′ ∣ 𝜃)

,

where the first equality derives from (5.13) and the second from (5.14).

Remark. Since the full conditional distributions are each 𝜋-reversible, a Markov chain which
updates 𝜃 by successively sampling new component values from the full conditionals has stationary
distribution 𝜋.

A cyclic implementation of the Gibbs sampling algorithm for obtaining approximate samples
from 𝜋 proceeds according to Algorithm 1.
Algorithm 1: Gibbs sampling
Result: 𝑀 approximate samples from 𝜋(𝜃)

1 Initialisation: Draw 𝜃(0) ∈ Θ from an initial distribution;
2 for 𝑖 ← 1 to 𝑀 do
3 Set 𝜃(𝑖) = 𝜃(𝑖−1);
4 for 𝑗 ← 1 to 𝑘 do
5 Draw 𝜃(𝑖)𝑗 ∼ 𝜋(𝜃(𝑖)𝑗 ∣ 𝜃(𝑖)−𝑗) (see (5.13)) ;
6 end
7 end

Gibbs sampling can be particularly convenient within certain classes of Bayesian hierarchi-
cal models (cf. Section 3.3); in such cases, the full conditional distributions can have tractable

48

−4 −2 0 2 4 −4
−2

0
2

4
0

5

·10−2

θ1
θ2

π
(θ

1
,θ

2
)

µ = 1

−5 0
5 −5

0
5

0

5

·10−2

θ1
θ2

π
(θ

1
,θ

2
)

µ = 3

Figure 5.1.: Mixture density of two bivariate normal distributions with identity covariance
matrix and means (𝜇, 𝜇) and (−𝜇,−𝜇).

forms due to the hierarchical parameterisation. However, Gibbs sampling should be used
with caution, particularly with high-dimensional (large 𝑘) models with strong dependencies
between variables; in such cases the variances of the individual parameter full conditional
distributions can become relatively small. Consequently, the sampler can fail to traverse mul-
timodal target distributions, instead becoming stuck in local modes.

Exercise 5.6 Gibbs sampling. Consider a mixture target distribution for 𝜃 = (𝜃1, 𝜃2)⊺
where 𝜃1, 𝜃2 are independent, identically normally distributed random variables with
variance 1 and mean which is equal to 𝜇 with probability 1

2 and equal to −𝜇 otherwise,
for some value 𝜇 > 0.
The target density is depicted in Fig. 5.1 for two different values of the mean parameter,

𝜇 = 1 and 𝜇 = 3.

(i) State the target density 𝜋(𝜃1, 𝜃2) in terms of the standard normal density 𝜙(𝑧) =
𝑒−𝑧2/2√

2𝜋 .

(ii) Calculate the full conditional densities 𝜋(𝜃1 ∣ 𝜃2) and 𝜋(𝜃2 ∣ 𝜃1).

(iii) Show that Gibbs sampling will become less likely to move between two local modes
as 𝜇 increases.

§ Exercise 5.7 Gibbs sampling implementation. Implement𝑀 = 100 iterations of Gibbs
sampling (Algorithm 1) for the target distribution from Exercise 5.6, for the two cases
(i) 𝜇 = 1 and (ii) 𝜇 = 3 depicted in Fig. 5.1. For each case, plot the trace of sampled values
𝜃(1),… , 𝜃(𝑀) ∈ R2 to demonstrate the mixing of the Markov chain.

5.3.3. Metropolis-Hastings algorithm
The Metropolis-Hastings algorithm provides a more general framework for constructing 𝜋-
reversible Markov chains.

49

Let 𝑞(𝜃′ ∣ 𝜃) be the transition density of any irreducible Markov chain on Θ. Then the
Metropolis-Hastings algorithm modifies the dynamics of this Markov chain by only accepting
the moves proposed by 𝑞 with probability

𝛼(𝜃, 𝜃′) = min
{
1,
𝜋(𝜃′) 𝑞(𝜃 ∣ 𝜃′)
𝜋(𝜃) 𝑞(𝜃′ ∣ 𝜃)

}
(5.15)

and otherwise keeping the chain in its current state. The full algorithm is stated in Algorithm 2.
Algorithm 2: The Metropolis-Hastings algorithm
Result: 𝑀 approximate samples from 𝜋(𝜃)

1 Initialisation: Draw 𝜃(0) ∈ Θ from an initial distribution;
2 for 𝑖 ← 1 to 𝑀 do
3 Draw 𝜃′ ∼ 𝑞(𝜃′ ∣ 𝜃(𝑖−1)) ;
4 Draw 𝑢 ∼ Uniform(0, 1);
5 if 𝑢 < 𝛼(𝜃, 𝜃′) (see (5.15)) then
6 𝜃(𝑖) = 𝜃′;
7 else
8 𝜃(𝑖) = 𝜃(𝑖−1);
9 end

10 end

Proposition 5.4. The Markov chain transition density

𝑝(𝜃′ ∣ 𝜃) = 𝛼(𝜃, 𝜃′)𝑞(𝜃′ ∣ 𝜃) +(1 − ∫
Θ
𝛼(𝜃, �̃�)𝑞(�̃� ∣ 𝜃) d�̃�)1𝜃(𝜃′) (5.16)

implied by the Metropolis-Hastings algorithm is 𝜋-reversible.

Exercise 5.8 Detailed balance of Metropolis-Hastings algorithm. Prove Proposition 5.4 by
checking the detailed balance equation (5.12) for the transition density (5.16), considering
separately the two cases 𝜃′ = 𝜃 and 𝜃′ ≠ 𝜃.

Remark. Since the transition density (5.16) is 𝜋-reversible, the Markov chain obtained from the
Metropolis-Hastings algorithm has stationary distribution 𝜋.

Remark. The target density 𝜋 only enters Algorithm 2 through the ratio 𝜋(𝜃)/𝜋(𝜃′) in the
acceptance probability (5.15); consequently, 𝜋 (and also the proposal density 𝑞) only needs to be
known up to proportionality to utilise the Metropolis-Hastings algorithm. This is a very useful
property in Bayesian inference, where it has earlier been noted in Section 4.4 that a target posterior
distribution can often only be identified up to an unknown normalising constant.

Remark. As with importance sampling (cf. Section 5.2.3), convergence of the Metropolis-Hastings
algorithm depends upon the choice of the proposal density 𝑞, with good performance achieved
when 𝑞 closely resembles the target density 𝜋. The extreme case where 𝑞(𝜃′ ∣ 𝜃) = 𝜋(𝜃′) would
lead to a sequence of independent samples drawn directly from 𝜋 (all accepted with probability
1) and the algorithm reverts to straightforward Monte Carlo sampling (cf. Section 5.2).

50

Exercise 5.9 Gibbs sampling asMetropolis-Hastings special case. Show thatGibbs sampling
(Section 5.3.2) is a special case of theMetropolis-Hastings algorithmwith proposal density

𝑞(𝜃′ ∣ 𝜃) = 1𝜃−𝑗 (𝜃
′
−𝑗)𝜋(𝜃

′
𝑗 ∣ 𝜃−𝑗)

for updating the 𝑗th component of 𝜃.

5.3.3.1. Random walk

The most common implementations of the Metropolis-Hastings algorithm propose new values
of 𝜃 using local moves generated by a simple random walk with a symmetric proposal density,
such that 𝑞(𝜃′ ∣ 𝜃) = 𝑞(𝜃 ∣ 𝜃′). Under this symmetry, the Metropolis-Hastings acceptance
probability (5.15) conveniently simplifies to the posterior ratio

𝛼(𝜃, 𝜃′) = min
{
1,
𝜋(𝜃′)
𝜋(𝜃)

}
.

For example, in a univariate setting, commonly used symmetric proposals for local moves
include

𝑞(𝜃′ ∣ 𝜃) ∝ exp(−(𝜃′ − 𝜃)2/(2𝜀))

for a symmetric Gaussian proposal, or

𝑞(𝜃′ ∣ 𝜃) ∝ 1(𝜃−𝜀,𝜃+𝜀)(𝜃′)/(2𝜀)

for a symmetric uniform proposal. In either case, the parameter 𝜀 > 0 can be tuned to influence
the acceptance rate of the proposed moves; as 𝜀 → 0, the acceptance rate tends to 1, but at
the expense of proper exploration of Θ. In practice, different values of 𝜀 can be explored to
get a good trade-off between exploration and acceptance, with published research (Roberts
et al., 1997) suggesting an acceptance ratio of 0.234 can optimise the efficiency of the algorithm
under some quite general conditions. The consequent advice from the authors is to “tune the
proposal variance so that the average acceptance rate is roughly 1/4”.
Whilst a random walk Metropolis-Hastings algorithm avoids the difficulty of finding a

proposal density that globally matches the target, these methods can sometimes perform
poorly in practice by being slow to explore the parameter space, getting stuck in local modes
of the target density. This phenomenon is sometimes described as poor mixing.

§ Exercise 5.10 Metropolis-Hastings implementation. Using a bivariate Gaussian pro-
posal density

𝑞(𝜃′ ∣ 𝜃) ∝ exp{−(𝜃′ − 𝜃)⊺(𝜃′ − 𝜃)/8},

implement 𝑀 = 100 iterations of the Metropolis-Hastings algorithm for the target dis-
tribution from Exercise 5.6. Address the two cases (i) 𝜇 = 1 and (ii) 𝜇 = 3 depicted in
Fig. 5.1. For each case, plot the trace of sampled values 𝜃(1),… , 𝜃(𝑀) ∈ R2 to demonstrate
the mixing of the Markov chain.

51

5.4. Hamiltonian Markov chain Monte Carlo

A more sophisticated implementation of the Metropolis-Hastings algorithm which can avoid
the low acceptance rates or poor exploration of simplistic random walks is to generate pro-
posals using dynamics inspired from Hamiltonian mechanics. The resulting algorithms are
referred to as Hamiltonian Monte Carlo (HMC) methods (Neal, 2011; Betancourt, 2017).

To begin the mechanical analogy, the parameter 𝜃 of the target density 𝜋(𝜃) is first imagined
to be the location of a body (typically a small ball) in a frictionless dynamical system. Second, the
target density is augmented with a second 𝑘-vector parameter 𝒑, which acts as themomentum
of the body. For elegance and simplicity, prior beliefs about the synthetic variable 𝒑 are usually
assumed to be described by a standard multivariate normal distribution that is statistically
independent of 𝜃; the joint density can then be written up to proportionality as

�̃�(𝜃,𝒑) ∝ 𝜋(𝜃) exp(−𝒑⊺𝒑/2).

The negative logarithm of the augmented density (ignoring normalising constants) is assumed
to correspond to total the energy of the body in this dynamical system, referred to as the
Hamiltonian,

𝐻 (𝜃,𝒑) ∶= − log𝜋(𝜃) +
𝒑⊺𝒑
2
. (5.17)

Continuing the mechanics analogy, the first term of (5.17) corresponds to the potential energy
held by the body, proportional to the height of the body on a surface which has contours of
− log𝜋(𝜃) at each location 𝜃; and the second term corresponds to the kinetic energy of the body,
proportional to the squared momentum, 𝒑⊺𝒑. The lowest point on the surface, corresponding
to minimal potential energy and therefore maximal kinetic energy, is the mode of the target
density 𝜋(𝜃).

Returning to the Metropolis-Hastings algorithm, to propose new values in Θ from a current
position, denoted here as 𝜃(0), the idea is to consider a trajectory of the body through time
after applying some momentum. Let 𝜃(𝑡) be the location of the body at time 𝑡, and 𝒑(𝑡) the
corresponding momentum. The principle of conservation of energy implies that when the
extended target density is interpreted as the Hamiltonian of a closed dynamical system, the
dynamics of that system should require 𝐻 (𝜃,𝒑) to be preserved. This leads to the Hamiltonian
equations for the system:

d𝜃(𝑡)
d𝑡

=
𝜕𝐻
𝜕𝒑
,

d𝒑(𝑡)
d𝑡

= −
𝜕𝐻
𝜕𝜃
.

Evolving the extended parameters 𝜃(𝑡),𝒑(𝑡) according to these equations would keep (5.17)
constant, which corresponds to the body travelling along contours of the extended target
density �̃�. Therefore, proposing new 𝜃 values in approximate accordance with these dynamics
can lead to proposals which are far away from the starting (previous) value but have similar
target density 𝜋(𝜃), leading to good exploration and high acceptance rates.
In practice, the Hamiltonian dynamics are numerically approximated at interleaved time

points using leapfrog integration; for an incremental time step 𝜀 > 0, and for each parameter

52

component 𝑗 = 1,… , 𝑘,

𝒑𝑗(𝑡 + 𝜀/2) = 𝒑𝑗(𝑡) + (𝜀/2)
𝜕 log𝜋(𝜃(𝑡))

𝜕𝜃𝑗
,

𝜃𝑗(𝑡 + 𝜀) = 𝜃𝑗(𝑡) + 𝜀𝒑𝑗(𝑡 + 𝜀/2),

𝒑𝑗(𝑡 + 𝜀) = 𝒑𝑗(𝑡 + 𝜀/2) + (𝜀/2)
𝜕 log𝜋(𝜃(𝑡 + 𝜀))

𝜕𝜃𝑗
. (5.18)

The partial derivatives of the target density are required in (5.18), implying the technique is
only appropriate for continuous-valued parameters.

TheHamiltonianMCMCalgorithm follows theMetropolis-Hastings algorithm (Algorithm 2),
with proposal density 𝑞(𝜃′ ∣ 𝜃(𝑖−1)) derived from a sampling procedure of first obtaining a new
starting momentum 𝒑(0) from the standard multivariate normal, and second evolving the
Hamiltonian dynamics implied by this initial momentum via the leapfrog algorithm for some
number of time steps 𝐿 > 0, beginning at 𝜃(0) = 𝜃(𝑖−1). The algorithm for this proposal mecha-
nism is given in Algorithm 3.

Algorithm 3: Hamiltonian Monte Carlo sampling
Result: A Metropolis-Hastings algorithm proposal 𝜃′ ∣ 𝜃(𝑖−1)

1 Initialisation: Set 𝜃(0) = 𝜃(𝑖−1);
2 for 𝑗 ← 1 to 𝑘 do
3 Draw 𝒑𝑗(0) ∼ N(0, 1);
4 end
5 for 𝓁 ← 1 to 𝐿 do
6 Update 𝒑(𝑡 + (𝓁 − 1)𝜖), 𝜃(𝑡 + (𝓁 − 1)𝜖) → 𝒑(𝑡 + 𝓁𝜖), 𝜃(𝑡 + 𝓁𝜖) via (5.18);
7 end
8 Set proposal 𝜃′ = 𝜃(𝑡 + 𝐿𝜖).

5.5. Analytic approximations

Markov chain Monte Carlo methods provide a general-purpose solution to computational
Bayesian inference, providing estimates of arbitrarily high accuracy for any inference prob-
lem given sufficiently many iterations. However, in high-dimensional applications the time
until reaching suitable convergence can be prohibitively long; in these circumstances, there
is growing popularity for analytic approximate solutions. These approximations trade off the
theoretical convergence guarantees of simulation-based inference methods for much faster
inference procedures.
In this section, suppose the target density 𝜋(𝜃) corresponds to a posterior distribution

density for a 𝑘-vector of parameters 𝜃 = (𝜃1,… , 𝜃𝑘) after observing 𝑛 likelihood samples
𝒙 = (𝑥1,… , 𝑥𝑛), such that 𝜋 is known up to proportionality by (4.2).

53

5.5.1. Normal Approximation
Recall Proposition 2.2 from Section 2.3.7, which stated that for increasing sample sizes almost
every target posterior distribution approaches an asymptotic normal distribution,

𝜋(𝜃) → Normal𝑘(𝜃 ∣ 𝑚𝑛, 𝐻−1
𝑛) (5.19)

as 𝑛 → ∞, where 𝑚𝑛 (2.7) and 𝐻𝑛 (2.6) are respectively the posterior mode and information
matrix. For approximate inference, this large sample property (5.19) can be exploited in several
ways.

Most straightforwardly, the approximated normal distribution density could be directly
substituted in place of the true target density 𝜋(𝜃), for example if this simplifies an expecta-
tion calculation (5.2). However, lower error approximations can be obtained using a so-called
Laplace approximation.

5.5.2. Laplace Approximations
Combining (5.2) with the expression for the posterior distribution (4.3) obtained from Bayes’
theorem, it follows that a posterior expectation for a function of interest 𝑔(𝜃) can be expressed
as a ratio of two integrals,

E{𝑔(𝜃) ∣ 𝒙} =
∫Θ 𝑔(𝜃) 𝑝(𝒙 ∣ 𝜃) 𝑝(𝜃) d𝜃

∫Θ 𝑝(𝒙 ∣ 𝜃) 𝑝(𝜃) d𝜃
. (5.20)

A Laplace approximation (Tierney and Kadane, 1986) for (5.20) assumes a normal approxima-
tion to both the denominator and the numerator of this ratio. In general, the Laplace method
of integration uses a second-order application of Taylor’s theorem to approximate positive
function integrands with normal distribution densities: let 𝜃∗ be the global maximum of a
twice-differentiable function ℎ(⋅), and 𝐻 (⋅) be the Hessian matrix of −ℎ(⋅), then

ℎ(𝜃) ≈ ℎ(𝜃∗) −
1
2
(𝜃 − 𝜃∗)⊺𝐻 (𝜃∗)(𝜃 − 𝜃∗)

⟹ ∫ 𝑒ℎ(𝜃) d𝜃 ≈
𝑒ℎ(𝜃∗) (2𝜋) 𝑘2
|𝐻 (𝜃∗)| 12

, (5.21)

by comparison with the density of a normal distribution with mean vector 𝜃∗ and inverse
covariance matrix 𝐻 (𝜃∗). To apply Laplace’s method to (5.20), it must be supposed that the
function of interest 𝑔(𝜃) is positive almost everywhere. For the logarithm of the integrands in
the denominator and numerator of (5.20), define

ℎ(𝜃) = log𝑝(𝒙 ∣ 𝜃) + log𝑝(𝜃),

ℎ̃(𝜃) = log 𝑔(𝜃) + log𝑝(𝒙 ∣ 𝜃) + log𝑝(𝜃).

The mode of ℎ and the negative Hessian of ℎ evaluated at the mode are the posterior den-
sity mode and information matrix (𝑚𝑛, 𝐻𝑛). Denoting the corresponding mode and negative
Hessian of ℎ̃ by (�̃�𝑛, �̃�𝑛), the Laplace approximation of (5.20) by application of (5.21) is

E{𝑔(𝜃) ∣ 𝒙} =
∫Θ 𝑒

ℎ̃(𝜃) d𝜃
∫Θ 𝑒

ℎ(𝜃) d𝜃
≈

|𝐻𝑛|
1
2 𝑔(�̃�𝑛) 𝑝𝒙∣𝜃(𝒙 ∣ �̃�𝑛) 𝑝𝜃(�̃�𝑛)
|�̃�𝑛|

1
2 𝑝𝒙∣𝜃(𝒙 ∣ 𝑚𝑛) 𝑝𝜃(𝑚𝑛)

. (5.22)

54

Remark. The Laplace approximation (5.22) is not invariant to transformations of the parame-
terisation 𝜃. At least in principle, improved approximations can be achieved by using alternative
parameterisations such that the resulting integrands in (5.20) more closely resemble normal dis-
tribution densities.

5.5.2.1. Approximating marginal distributions

Given a partition of the parameter 𝑘-vector 𝜃 = (𝜙, 𝜓), such that 𝜙 is a 𝑘′-vector with 1 ≤
𝑘′ < 𝑘, a Laplace approximation can be used to approximate marginal distributions from the
target density 𝜋(𝜃) ≡ 𝜋(𝜙, 𝜓),

𝜋(𝜙) = ∫
Ψ
𝜋(𝜙, 𝜓) d𝜓. (5.23)

For a fixed value of 𝜙, define

ℎ̃𝜙(𝜓) = log𝑝𝒙∣𝜃(𝒙 ∣ 𝜙, 𝜓) + log𝑝𝜃(𝜙, 𝜓).

Let (�̃�𝑛,𝜙, �̃�𝑛,𝜙) be the mode and negative Hessian of ℎ̃𝜙(𝜓), again conditioning on the fixed
value 𝜙. Then using (5.21) in a similar way to deriving (5.22), a Laplace approximation for the
marginal density (5.23) is

𝜋(𝜙) =
∫Ψ 𝑒

ℎ̃𝜙(𝜓) d𝜓
∫Θ 𝑒

ℎ(𝜃) d𝜃
≈

|𝐻𝑛|
1
2 𝑝𝒙∣𝜃(𝒙 ∣ 𝜙, �̃�𝑛,𝜙) 𝑝𝜃(𝜙, �̃�𝑛,𝜙)

|�̃�𝑛,𝜙|
1
2 𝑝𝒙∣𝜃(𝒙 ∣ 𝑚𝑛) 𝑝𝜃(𝑚𝑛) (2𝜋)

𝑘−𝑘′
2
. (5.24)

5.5.2.2. Integrated nested Laplace approximation

The integrated nested Laplace approximation (INLA), introduced by Rue et al. (2009), provides
a useful implementation of Laplace approximations for an important model class known as
latent Gaussian models (LGMs). An LGM has a likelihood function which assumes conditional
independence given unobserved parameters 𝜃 and hyperparameters 𝜙, such that the prior
distribution for 𝜃 is a Gaussian Markov random field (GMRF, cf. Exercise 3.11). Accordingly,

𝑥𝑖 ∼ 𝑝(𝑥𝑖 ∣ 𝜃, 𝜙), 𝑖 = 1,… , 𝑛,
𝜃 ∣ 𝜙 ∼ Normal𝑘(0,Σ(𝜙)),
𝜙 ∼ 𝑝(𝜙),

where Σ(𝜙) is a non-singular covariance matrix which can depend upon the hyperparameter
𝜙 and whose inverse contains zeros according to the GMRF model.
The normal distribution prior for 𝜃 makes models in this class well-suited to Laplace ap-

proximations. Noting the posterior density conditional on 𝒙 can be expressed as

𝜋(𝜃, 𝜙) ∝ 𝑝(𝜙)|Σ(𝜙)|
1
2 exp

{

−
1
2
𝜃⊺Σ−1(𝜙)𝜃 +

𝑛

∑
𝑖=1

log𝑝(𝑥𝑖 ∣ 𝜃, 𝜙)

}

,

the INLA approach combines multiple Laplace approximations for conditional distributions
involving 𝜃 with numerical integration techniques for 𝜙, and can therefore enable inference

55

for problems with a very high dimensional 𝜃 parameter, provided 𝜙 has low dimension. In
particular, using (5.24) the marginal posterior density for 𝜙 is approximated by

�̂�(𝜙) ∝
𝑝(𝜙)|Σ(𝜙)| 12 exp

{
− 1

2 �̃�
⊺
𝜙Σ−1(𝜙)�̃�𝜙 +∑𝑛

𝑖=1 log𝑝(𝑥𝑖 ∣ �̃�𝜙, 𝜙)
}

�̂�(�̃�𝜙 ∣ 𝜙)
,

where �̂�(𝜃 ∣ 𝜙) is the normal approximation to the corresponding full conditional distribution
and �̃�𝜙 is the constrained mode of that full conditional density for the fixed value 𝜙.
Full details of the INLA method are beyond the scope of this text, but can be found in Rue

et al. (2009). An open source implementation of the method is freely available, written in the
statistical language R1, called R-INLA2.

5.5.3. Variational inference
Not all posterior distribution densities can be well approximated with normal distributions,
and so variational inference methods (Blei et al., 2017) explore alternative classes of approxi-
mating densities. Let be such a class of densities, referred to as the variational family. Then
variational inference seeks to approximate the target density 𝜋(𝜃) with the closest member of
the variational family, typically using Kullback-Leibler divergence (cf. Definition 1.5.3),

𝑞∗(𝜃) = argmin𝑞∈ KL(𝑞(𝜃) ∥ 𝜋(𝜃)). (5.25)

The KL-divergence in (5.25) is taken in the reverse direction to the usual order, presented
in (1.4), for comparing an estimated density with the truth. In (5.25), expectations are taken
with respect to the estimating density 𝑞 rather than the target 𝜋. This can lead to advantages
in tractability, with freedom to chose a convenient form for the approximating density 𝑞.
An alternative algorithmic framework introduced by Minka (2001), known as expectation

propagation, instead minimises the forward direction KL-divergence, KL(𝜋(𝜃) ∥ 𝑞(𝜃)). There
are important differences between these two alternative formulations, which can be particu-
larly important when approximating multimodal target distributions.
Specifically, KL(𝑞(𝜃) ∥ 𝜋(𝜃)) is more critical of discrepancies where 𝑞(𝜃) is large and 𝜋(𝜃)

is small. Consequently, variational inference concentrates mass around a local mode of 𝜋(𝜃),
and is said to be zero-forcing for 𝑞. In contrast, KL(𝜋(𝜃) ∥ 𝑞(𝜃)) is sensitive to 𝑞(𝜃) being small
wherever 𝜋(𝜃) is large, and therefore must provide coverage to all modes of 𝜋(𝜃); it is therefore
said to be zero-avoiding for 𝑞.
Following the example of Bishop (2006, p. 468), the two plots in Fig. 5.2 illustrate the con-

trasting approximations, obtained under the two alternative KL-divergence formulations, for
a simple example where a bivariate normal distribution with correlation coefficient 0.95 is
approximated by two independent univariate normal distributions. Both approximations cor-
rectly fit the mean of the target distribution, but the variational inference estimate in the left-
hand plot focuses on the mode of the target distribution, where as the expectation-propagation
approximation in the right-hand plot has higher variance, providing better coverage of the
high target density region but also large areas of very low target density.

1 https://www.r-project.org 2 https://www.r-inla.org

56

https://www.r-project.org
https://www.r-inla.org

−2 −1 0 1 2

−2

−1

0

1

2

θ1

θ 2

(a)

−2 −1 0 1 2

−2

−1

0

1

2

θ1

(b)

Figure 5.2.: Approximating a bivariate normal distribution with correlation .95, 𝜋(𝜃1, 𝜃2), with
the closest independent bivariate normal distribution, 𝑞(𝜃1, 𝜃2), minimising (a)
KL(𝑞 ∥ 𝜋) or (b) KL(𝜋 ∥ 𝑞).

5.5.3.1. Evidence lower bound

With 𝜋(𝜃) ∝ 𝑝(𝒙, 𝜃) = 𝑝(𝒙 ∣ 𝜃)𝑝(𝜃), minimising the KL-divergence (5.25) is equivalent to
maximising the so-called evidence lower bound.

Definition 5.5.1: Evidence lower bound
For fixed 𝒙 and a probability density 𝑞(𝜃) satisfying 𝑞(𝜃) > 0 ⟹ 𝑝(𝒙, 𝜃) > 0, the
evidence lower bound (ELBO) is defined by

ELBO(𝑞) ∶= E𝑞 log𝑝(𝒙, 𝜃) − E𝑞 log 𝑞(𝜃). (5.26)

Exercise 5.11 ELBO equivalence. Show that

KL(𝑞(𝜃) ∥ 𝜋(𝜃)) = −ELBO(𝑞) + log𝑝(𝒙), (5.27)

and hence minimising KL(𝑞(𝜃) ∥ 𝜋(𝜃)) is equivalent to maximising ELBO(𝑞).

Later in Section 7.1 which considers model uncertainty, the marginal likelihood 𝑝(𝑥) will
be referred to as the evidence in favour of that particular probability model. This provides the
reasoning behind the name of evidence lower bound: by (5.27),

log𝑝(𝒙) = ELBO(𝑞) + KL(𝑞(𝜃) ∥ 𝜋(𝜃))
≥ ELBO(𝑞)

57

since KL-divergence is non-negative (cf. Exercise 1.9). Note the lower bound becomes an
equality if 𝑞 = 𝜋, corresponding to the approximation matching the target distribution.

Exercise 5.12 ELBO identity. Show that ELBO(𝑞) = E𝑞 log𝑝(𝒙 ∣ 𝜃) − KL(𝑞(𝜃) ∥ 𝑝(𝜃)).

The specification of a variational inference method is completed by deciding upon the
variational family over which (5.26) should be maximised. The approximating density (5.25)
for 𝜋 is then

𝑞∗(𝜃) = argmax𝑞∈ ELBO(𝑞). (5.28)

The computational difficulty of performing the optimisation (5.28) depends upon the complex-
ity of the variational family. For tractable inference, the most common choice for is the
so-called mean-field variational family.

Remark. To see the implicit trade-off implied by optimising the ELBO criterion, notice (5.26) is the
sum of the expected log value, with respect to 𝑞, of the joint target density, 𝜋(𝒙, 𝜃), plus a quantity
referred to in information theory as the entropy of the approximating density, −E𝑞 log 𝑞(𝜃).
Without the entropy term, the maximisation would (in the limit) assign probability 1 to the
posterior mode for 𝜃; however, that approximating density would have minimum entropy, and so
instead the optimal 𝑞 will distribute mass more widely around Θ, but still in areas where 𝜋(𝜃) is
high.

5.5.3.2. Mean-field variational inference

Definition 5.5.2: Mean-field variational family
A mean-field variational family on Θ comprises probability density functions 𝑞 with
independent factors,

𝑞(𝜃) =
𝑘

∏
𝑗=1
𝑞𝑗(𝜃𝑗). (5.29)

Each factor 𝑞𝑗 in (5.29) can assume a different parametric form, which might be necessary
when some components of 𝜃 are unconstrained and continuous and others are possibly discrete.
The assumption of independence implicit in (5.29) makes mean-field variational inference
well-suited to optimisation using a technique called coordinate ascent. Once optimised, the
mean-field variational estimate will take the same form,

𝑞∗(𝜃) =
𝑘

∏
𝑗=1
𝑞∗𝑗 (𝜃𝑗),

where 𝑞∗𝑗 (𝜃𝑗) provides a local variational approximation of the marginal target density 𝜋(𝜃𝑗).

Remark. An unwanted consequence of the independence assumption of mean-field approxima-
tions is that component variances of 𝜋(𝜃) will typically be underestimated, as the main body of
elongated, ellipsoidal covariance contours get approximated by smaller circles (cf. Fig. 5.2(a)).

58

5.5.3.3. Coordinate ascent variational inference

Coordinate ascent algorithms discover local maxima of objective functions by sequentially op-
timising with respect to one parameter component whilst keeping the other components fixed.
Coordinate ascent variational inference (CAVI) assumes a current mean-field approximation
𝑞(𝜃) (5.29), and then updates the 𝑗th component 𝑞𝑗(𝜃𝑗) to a locally optimal solution

𝑞𝑗(𝜃𝑗) ∝ exp{E𝑞−𝑗 log𝜋(𝜃𝑗 ∣ 𝜃−𝑗)} ∝ exp{E𝑞−𝑗 log𝑝(𝒙, 𝜃)},

where 𝑞−𝑗 is the marginal density for 𝜃−𝑗 (4.8) of the current mean-field approximation,

𝑞−𝑗(𝜃−𝑗) = ∏
𝓁≠𝑗
𝑞𝓁(𝜃𝓁).

Exercise 5.13 CAVI derivation. In coordinate ascent variational inference, show that

argmax𝑞𝑗 ELBO(𝑞) ∝ exp{E𝑞−𝑗 log𝜋(𝜃𝑗 ∣ 𝜃−𝑗)}.

The CAVI method is summarised in Algorithm 4. Each step of the algorithm maintains or
increases the objective function ELBO(𝑞), and since ELBO(𝑞) is bounded above by log𝑝(𝒙),
eventual convergence at a chosen tolerance threshold is guaranteed.

Algorithm 4: Coordinate ascent variational inference
Result: A mean-field variational estimate 𝑞(𝜃) = ∏𝑗 𝑞𝑗(𝜃𝑗) for 𝜋(𝜃)

1 Initialisation: Choose initial distributions 𝑞𝑗(𝜃𝑗), 𝑗 = 1,… , 𝑘, calculate ELBO(∏𝑗 𝑞𝑗)
using (5.26);

2 while ELBO(∏𝑗 𝑞𝑗) has not converged do
3 for 𝑗 ← 1 to 𝑘 do
4 Set 𝑞𝑗 ∝ exp{E𝑞−𝑗 log𝑝(𝒙, 𝜃)};
5 end
6 Calculate ELBO(∏𝑗 𝑞𝑗) using (5.26)
7 end

59

§ Exercise 5.14 CAVI Gaussian approximation. Suppose 𝜋(𝜃) = Normal2(𝜃 ∣ 𝜇,Σ) with
𝜇 ∈ R2 and Σ ∈ R2×2 positive-definite, and let 𝑗 = {Normal(𝜃𝑗 ∣ 𝑚, 𝑠2) ∣ 𝑚 ∈ R, 𝑠 > 0} be
the variational family for component 𝑗 ∈ {1, 2} (cf. Fig. 5.2).

(i) Show that the CAVI algorithm local approximation for component 𝑗 is 𝑞𝑗(𝜃𝑗) =
Normal(𝜃𝑗 ∣ 𝑚𝑗 , 𝑠2𝑗), where

𝑚𝑗 = 𝜇𝑗 +
Σ𝑗𝑗
Σ𝑗𝑗

(𝑚𝑗 − 𝜇𝑗), 𝑠2𝑗 = Σ𝑗𝑗 −
Σ2
𝑗𝑗

Σ𝑗𝑗

and 𝑗 = 3 − 𝑗 is the other component.

(ii) When will the algorithm converge?

(iii) Implement 200 iterations of the CAVI algorithm with target distribution mean
𝜇 = (0, 0), unit variances and correlation coefficient .95. Use starting values 𝑚1 =
2, 𝑚2 = 3, 𝑠1 = .1, 𝑠2 = 9. Make a contour plot of the target density and the mean-
field variational approximation.

5.6. Further topics
This chapter has provided an introduction to some of the fundamental computational meth-
ods for performing Bayesian inference. Much of the ongoing research activity in Bayesian
statistics is focused in this area, with a broad range of sophisticated methods being developed.
Further advanced topics include reversible jump Markov Monte Carlo, for transdimensional
sampling from variable-dimension target distributions (Amaral Turkman et al., 2019, Chap-
ter 7); sequential Monte Carlo sampling from a sequence of target distributions (Doucet et al.,
2001); automatic differentiation for variational inference (Kucukelbir et al., 2017).

Such advanced techniques are well beyond the scope of this text, but the key principles in-
troduced in this chapter provide the foundations for understanding the purpose behind these
more advanced methods. The next chapter will illustrate computational packages which are
openly available for users wishing to carry out different kinds of Bayesian analysis without
addressing these research-level difficulties, where the complex sampling issues are kept “un-
der the hood”. Nonetheless, in diagnosing the performance of these (unavoidably imperfect)
software tools it is important to possess this basic level of understanding of how their internal
inferential processes operate.

60

CHAPTER

6

BAYESIAN SOFTWARE PACKAGES

The research-level complexity of performing Bayesian inference with the statistical models
typically encountered in practical decision problems can provide a barrier to these methods
being widely deployed. To alleviate this problem, a number of probabilistic programming
languages have been developed specifically to automate Bayesian inference. This text will
focus on the language Stan1, due to its widespread adoption and the depth of tutorial resources
available. Brief details will also be given for two alternative libraries, PyMC2 and Edward3.
All three can be accessed through the general-purpose, interpreted programming language
Python4.
To illustrate the use of computer software packages in performing Bayesian inference, the

following hypothetical statistical model will be used to provide a working example.

6.1. Illustrative statistical model
Consider an example which further develops the graphical model structure presented in Exam-
ple 3.3.2 and Fig. 3.8, which envisaged two layers of exchangeability for a hypothetical class of
𝑛 students obtaining grades from 𝑝 tests. Consider the following parametric model, consistent

1 https://mc-stan.org 2 https://docs.pymc.io 3 http://edwardlib.org 4 https://www.python.org

61

with Fig. 3.8, which assumes some exponential family distributions mentioned in Chapter 4:

𝜇 ∼ Normal(0, 𝜎2/4)
𝜎−2 ∼ Gamma(1, 1/2)
𝑧𝑖 ∼ Normal(𝜇, 𝜎2), 𝑖 = 1,… , 𝑛
𝜃𝑖 = 1/{1 + 𝑒−𝑧𝑖}, 𝑖 = 1,… , 𝑛
𝑋𝑖𝑗 ∼ Binomial(100, 𝜃𝑖), 𝑖 = 1,… , 𝑛; 𝑗 = 1,… , 𝑝. (6.1)

Briefly, this model assumes a matrix, 𝑋 , of student grades measured as integer percentage
scores ranging between 0 and 100, such that the 𝑖th row corresponds to the 𝑖th student in a
class. Each student grade 𝑋𝑖𝑗 is modelled by a binomial distribution with a student-specific
probability parameter which is assumed to be the same for each test. This parameter is derived
through a logistic transformation of an unobserved (latent), real-valued aptitude level 𝑧𝑖 which
is assumed to be normally distributed with unknown mean and variance which are assigned
conjugate priors (cf. Section 4.2).
Below is some example Python code for simulating from this model, by default assuming

thirty students sitting five tests.

#! /usr/bin/env python
student_grade_simulation.py

import numpy as np

def sample_student_grades(n=30,p=5,seed=0): #n students, p tests
gen = np.random.default_rng(seed=seed)
mu,sigma=sample_student_grade_parameters(gen)
z=gen.normal(mu,sigma,size=n)
X=[gen.binomial(100,1/(1.0+np.exp(-z_i)),size=p) for z_i in z]
return X, mu, sigma

def sample_student_grade_parameters(gen,a=1,b=.5,m=0,tau=.5):
sigma=1.0/np.sqrt(gen.gamma(a,1.0/b))
mu=gen.normal(m,tau*sigma)
return mu, sigma

#print(np.array(sample_student_grades()))

6.2. Stan
Stan, named after the Polish mathematician Stanislaw Ulam, is a probabilistic programming
language written in C++ which uses sophisticated Monte Carlo and variational inference algo-
rithms (see Chapter 5) for performing automated Bayesian inference. In particular, the default
inferential method uses the No-U-Turn Sampler of Hoffman and Gelman (2014), which is an
extension of Hamiltonian Monte Carlo (see Section 5.4). The derivatives required for perform-
ing HMC and other related inferential methods are calculated within Stan using automatic
differentiation. The user simply has to declare the statistical model, import any data and then
call a sampling routine.

62

Remark. Stan does not support sampling of discrete parameters, due to the reliance of the software
on Hamiltonian Monte Carlo sampling methods. For problems involving discrete parameters, the
Stan documentation recommends marginalising any discrete parameters where possible.

The following code (student_grade_model.stan) is written in the Stan language,
declaring the statistical model (6.1) for student test grades from Section 6.1.

// student_grade_model.stan

data {
int<lower=0> n; // number of students
int<lower=0> p; // number of tests
array[n, p] int<lower=0, upper=100> X; // student test grades
real<lower=0> tau;
real<lower=0> a;
real<lower=0> b;

}
parameters {

array[n] real z;
real mu;
real<lower=0> sigma_sq;

}
transformed parameters {

array[n] real<lower=0, upper=1> theta;
real sigma;
theta = inv_logit(z);
sigma = sqrt(sigma_sq);

}
model {

sigma_sq ~ inv_gamma(a,b);
mu ~ normal(0, sigma * tau);
z ~ normal(mu, sigma);
for (i in 1:n)

X[i] ~ binomial(100,theta[i]);
}

The data{} code block contains the quantities which are considered to be known. The
quantities 𝑛 (the number of students) and 𝑝 (the number of tests) are declared as positive
integers, and the student test scores (𝑋𝑖𝑗) are declared to be an 𝑛 × 𝑝 integer matrix taking
values between 0 and 100. In the remainder of this block, the remaining required model hyper-
parameters and their constraints are listed.
The parameters{} code block declares the unknown quantities in (6.1): the 𝑛-vector

of real number student aptitude values 𝑧𝑖, and the unknown mean and variance parameters
(𝜇, 𝜎2) of the normal distribution for the 𝑧𝑖 values.

Thetransformed parameters{} code block contains any parameter transformations
which are helpful for stating the prior and likelihood models in the final model{} block. In
this case, the aptitude parameters 𝑧𝑖 are converted to binomial parameters 𝜃𝑖 using the inverse
logit function 𝜃𝑖 = 1/{1+𝑒−𝑧𝑖} as in (6.1), and also the aptitude standard deviation 𝜎 is obtained
as the square root of the variance.
The model{} code block states the probability distributional assumptions from (6.1): An

inverse-gamma distribution for 𝜎2; normal distributions for 𝜇 and the latent parameters 𝑧𝑖; and

63

a binomial distribution for each individual percentage test score, using the student-specific
transformed parameter 𝜃𝑖.

6.2.1. PyStan
Stan can be accessed from a range of computing environments. In this text, it will be ac-
cessed using the Python interface, PyStan5. The following PyStan 3 code (student_grade_
inference_stan.py) uses the Python simulation code and Stan model declaration code
from above to simulate student test score data and then fit the underlying model to the data.

#! /usr/bin/env python
student_grade_inference_stan.py

import stan
import numpy as np
import matplotlib.pyplot as plt

Simulate data
from student_grade_simulation import sample_student_grades
n, p = 30, 5
X, mu, sigma = sample_student_grades(n, p)
sm_data = {'n':n, 'p':p, 'tau':0.5, 'a':1, 'b':0.5, 'X':X}

Initialise stan object
with open('student_grade_model.stan','r',newline='') as f:

sm = stan.build(f.read(),sm_data,random_seed=1)

Select the number of MCMC chains and iterations, then sample
chains, samples, burn = 4, 10000, 1000
fit=sm.sample(num_chains=chains, num_samples=samples,

num_warmup=burn, save_warmup=False)↪

def plot_samples(fit,par,name,true_val=None):
fig,axs=plt.subplots(2,2,figsize=(10,4),constrained_layout=True)
fig.canvas.manager.set_window_title('Posterior for '+par)
for i,j in [(i,j) for i in range(2) for j in range(2)]:

axs[i,j].autoscale(enable=True, axis='x', tight=True)
axs[0,0].set_title('Trace plot of log posterior density')
axs[0,1].set_title('Trace plot of posterior samples of '+name)
axs[1,0].set_title('Convergence of chain averages for '+name)
axs[1,1].set_title('Approximate posterior density of '+name)
par_mx=fit[par].reshape(samples,chains)
lp_mx=fit['lp__'].reshape(samples,chains)
for i in range(chains):

x=i*samples+np.arange(samples)
axs[0,0].plot(x,lp_mx[:,i])
axs[0,1].plot(x,par_mx[:,i])
axs[1,0].plot(x,np.cumsum(par_mx[:,i])/range(1,samples+1))

axs[1,1].hist(par_mx.flatten(),200, density=True);
if true_val is not None:

axs[1,1].axvline(true_val, color='c', lw=2, linestyle='--')
plt.show()

5 https://pystan.readthedocs.io

64

plot_samples(fit,'mu',r'μ',true_val=mu)

After importing the necessary packages, the code first simulates student grade data for
𝑛 = 30 students taking 𝑝 = 5 tests. Second, the code loads in the Stan probability model from
student_grade_model.stan. The third block determines that four separate parallel
Hamiltonian MCMC chains are to be run, each requesting 10,000 samples after discarding the
first 1000; the call to stan.model.sample() then obtains the posterior samples.

The final code block creates plots from the posterior samples. The top two cells show trace
plots of the log posterior density of the sampled parameters and the values of the parameter
𝜇 from (6.1). The chains demonstrate stability and good mixing. The bottom row contains a
diagnostic plot for the four chains showing the convergence of the sample mean for estimating
the posterior expectation of 𝜇, and finally a histogram of the sampled values of 𝜇, pooled across
the four chains, for estimating the marginal density 𝜋(𝜇). The true value of 𝜇 used to simulate
the test scores is indicated with a dashed line; note the relatively small sample size (of students
and test scores) means this true value is not yet well estimated by 𝜋(𝜇).

6.3. Other software libraries

6.3.1. PyMC
PyMC is a probabilistic programming package for Pythonwhich focuses on simplifying Bayesian
inference, primarily through Markov chain Monte Carlo and variational methods. PyMC3 has
the Python library Theano as a computational backend. PyMC offers similar functionality
to Stan, also using the No-U-Turn Sampler (Hoffman and Gelman, 2014) Hamiltonian Monte
Carlo algorithm as the default inference tool for continuous parameters. Some users prefer
PyMC to Stan for its native Python implementation, whilst others prefer Stan for its enhanced
computation speed (through implementation in C++) and extensive documentation.

6.3.2. Edward
Edward is a Python library for probabilistic modelling and inference, named after the statisti-
cian George Edward Pelham Box who pioneered iterative approaches to statistical modelling.

65

Edward was developed using TensorFlow as a back end. TensorFlow is designed for developing
and training so-called machine learning models, and Edward builds upon this to offer mod-
elling using neural networks (including popular deep learning techniques) but also supports
graphical models (cf. Chapter 3) and Bayesian nonparametrics (cf. Chapter 9).
Bayesian inference can be performed using variational methods and Hamiltonian Monte

Carlo, along with some other advanced techniques. Another strength of Edward is model
criticism, using posterior predictive checks which assess how well data generated from the
model under the posterior distribution agree with the realised data.

66

CHAPTER

7

CRITICISM AND MODEL CHOICE

In subjective probability, there are no right or wrong systems of beliefs, provided they are
coherently specified; I have my own individual measures of uncertainty concerning any quan-
tities that I am unsure of, and it is fully admissible that these could be arbitrarily different from
the probability beliefs held by others.
However, it was noted in the introductions to Chapters 1 and 2 that mathematically speci-

fying probability distributions which accurately represent systems of beliefs is a non-trivial
exercise, and arguably always carries some degree of imprecision. The use of probability mod-
els, for example incorporating assumptions of exchangeability and making the choice of the
prior measure 𝑄 in de Finetti’s representation theorem (Section 2.2), provides tractable ap-
proximations of underlying beliefs which at least possess the necessary coherence properties
for rational decision-making.

Furthermore, there is no philosophical requirement for subjective probability distributions
to endure. They need only apply to the specific decision problem being addressed. Indeed,
Bayes’ theorem provides the coherent procedure for updating beliefs with new information
with respect to a previously stated belief system. But for the next decision, there are other
alternatives. In particular, I might want to review my previous decisions and the consequent
outcomes, and call into question whether I should adopt a different perspective. Such consid-
erations can be referred to as model criticism and model selection.
In this chapter, it is supposed that the decision-maker may be considering a range of mod-

elling strategies for representing probabilistic beliefs about a random variable 𝑋 for an un-
certain outcome 𝜔, where for sufficient generality 𝑋 ∶ Ω → R𝑛 could represent a sequence
of 𝑛 ≥ 1 real-valued observations. After observing the realised value 𝑥 = 𝑋(𝜔), the decision-
maker may want to re-evaluate which modelling strategy might have been most appropriate
for capturing the true underlying dynamics which gave rise to 𝑥 .

67

7.1. Model uncertainty
Let denote a set of models under consideration. Each proposed model𝑀 ∈ corresponds
to a probability distribution P(𝑥 ∣ 𝑀) for the random outcome 𝑋(𝜔). Given an observed value
of 𝑥 , the quantity P(𝑥 ∣ 𝑀) is known as the evidence for model 𝑀 .

If𝑀 is a parametric model (4.1) with corresponding unknown parameter 𝜃𝑀 , then the model
evidence P(𝑥 ∣ 𝑀) can be regarded as a marginal likelihood under model 𝑀 ,

P(𝑥 ∣ 𝑀) = ∫
Θ𝑀

P𝑀(𝑥 ∣ 𝜃𝑀) 𝑝𝑀(𝜃𝑀) d𝜃𝑀 , (7.1)

averaging the parametric likelihood 𝑝𝑀(𝑥 ∣ 𝜃𝑀) for model𝑀 with respect to the corresponding
prior parameter density 𝑝𝑀(𝜃𝑀) for model 𝑀 . Individual parametric models may therefore
correspond to differences in one or more of the following:

• Underlying parameterisations, Θ𝑀 ;

• Likelihood model, P𝑀(𝑥 ∣ 𝜃𝑀);

• Prior distribution, 𝑝𝑀(𝜃𝑀).

Furthermore, it should be noted that not all rival models need be parametric, assume exchange-
ability, or presume any other structural similarities.
Two contrasting viewpoints can be adopted for handling Bayesian model uncertainty; the

first allows all models in to be considered simultaneously, known asmodel averaging, whilst
the second,model selection, proposes a single chosen model from for use in further analyses.

7.2. Model averaging
To coherently consider all models in simultaneously, the decision-maker must assert a
subjective probability distribution 𝑄 over . Combining the probability distributions for the
random variable 𝑋 implied by the individual models, weighted according to these prior model
probabilities, yields a marginal probability for 𝑋 ,

P(𝑥) = ∫

P(𝑥 ∣ 𝑀) d𝑄(𝑀). (7.2)

The expression (7.2) can be also be viewed as a marginal likelihood, averaging individual
model marginal likelihoods (7.1) with respect to prior model uncertainty. In this sense, (7.2)
is an example of using a mixture prior distribution (cf. Section 2.3.4). The averaging over a
mixture of probability models (7.2) is known as Bayesian model averaging.

If the decision-maker is comfortable assigning probabilities across , the set of candidate
models, and prepared to carry the extra computational burden of averaging across models
to obtain marginal probability distributions (7.2), then this model-averaging approach is the
correct method for managing model uncertainty under the Bayesian paradigm; the model
uncertainty is simply one component of a mixture prior formulation.

68

7.3. Model selection
Once the outcome variable 𝑥 is observed, then if prior probabilities over have been specified,
the updated posterior model probabilities can be obtained via Bayes’ theorem,

d𝑄(𝑀 ∣ 𝑥) ∝ d𝑄(𝑀) P(𝑥 ∣ 𝑀).

In particular, if = {𝑀1,… , 𝑀𝑘} is a finite collection of 𝑘 candidate models with prior prob-
abilities P(𝑀1),… ,P(𝑀𝑘), then the posterior probability for the 𝑖th model can be expressed
as

P(𝑀𝑖 ∣ 𝑥) =
P(𝑀𝑖) P(𝑥 ∣ 𝑀𝑖)

∑𝑘
𝑖′=1 P(𝑀𝑖′) P(𝑥 ∣ 𝑀𝑖′)

, (7.3)

where the denominator is the model-averaged marginal likelihood (7.2).

7.3.1. Selecting from a set of models
If the decision problem is to determine which model was the underlying generative process
which gave rise to 𝑥 , then the decision-maker should proceed in the manner described in
Chapter 1: specifying a utility or loss function which evaluates the consequences of estimating
the model correctly or incorrectly and reporting the model which maximises expected utility
with respect to the model posterior distribution (7.3).
Example 7.3.1. If choosing a model 𝑚 from a finite set of models using a zero-one utility
function (cf. Exercise 1.8) with the following utility if the true model were 𝑀 ,

𝑢(𝑚,𝑀) =

{
1 if 𝑚 = 𝑀
0 if 𝑚 ≠ 𝑀

(7.4)

then the posterior expected utility of choosing model 𝑚 is

�̄�(𝑚) = ∑
𝑀∈

𝑢(𝑚,𝑀) P(𝑀 ∣ 𝑥) = P(𝑚 ∣ 𝑥)

and the optimal Bayesian decision would be to report the posterior mode,

argmax𝑀∈ P(𝑀 ∣ 𝑥).

7.3.2. Pairwise comparisons: Bayes factors
Suppose the decision-makerwishes to compare the relative suitability of two particularmodels,
𝑀𝑖 and𝑀𝑗 ; in this case, the comparison can be suitably encapsulated by the ratio of the posterior
probabilities attributed to the two models.

Definition 7.3.1: Posterior odds ratio
The posterior odds ratio of model 𝑀𝑖 over model 𝑀𝑗 is

P(𝑀𝑖 ∣ 𝑥)
P(𝑀𝑗 ∣ 𝑥)

=
P(𝑀𝑖)
P(𝑀𝑗)

×
P(𝑥 ∣ 𝑀𝑖)
P(𝑥 ∣ 𝑀𝑗)

(7.5)

69

Remark. The first term on the right hand side of (7.5) is known as the prior odds ratio, and the
second term is known as the Bayes Factor.

Definition 7.3.2: Bayes factor
The Bayes factor in favour of model 𝑀𝑖 over model 𝑀𝑗 is

𝐵𝑖𝑗(𝑥) ∶=
P(𝑥 ∣ 𝑀𝑖)
P(𝑥 ∣ 𝑀𝑗)

=
P(𝑀𝑖 ∣ 𝑥)
P(𝑀𝑗 ∣ 𝑥)/

P(𝑀𝑖)
P(𝑀𝑗)

.

Remark. The Bayes factor represents the evidence provided by the data 𝑥 in favour of model 𝑀𝑖
over𝑀𝑗 , measured by the multiplicative change observed in the odds ratio of the two models upon
observing 𝑥 .

If 𝐵𝑖𝑗 > 1, this suggests 𝑀𝑖 has become more plausible relative to 𝑀𝑗 after observing 𝑥 ,
whereas 𝐵𝑖𝑗 < 1 suggests the opposite. Bayes factors are non-negative but have no upper
bound, and although a larger Bayes factor presents stronger evidence in favour of 𝑀𝑖, there is
no objective interpretation for any non-degenerate value. To provide interpretability, Jeffreys
(1961) provided some subjective categorisations, which were later refined by Kass and Raftery
(1995); the latter are shown in Table 7.1.

Bayes factor 𝐵𝑖𝑗 Evidence in favour of 𝑀𝑖

1 to 3 Not worth more than a bare mention
3 to 20 Positive
20 to 150 Strong
> 150 Very strong

Table 7.1.: Bayes factor interpretations according to Kass and Raftery (1995).

7.3.2.1. Bayesian hypothesis testing

If one model 𝑀0 is a special case of an alternative model 𝑀1 (for example, 𝑀0 assigns all
probability mass to certain values of one or more free parameters in𝑀1), then the selection of
a model is analogous to the frequentist statistical paradigm of hypothesis testing. The Bayes
factor corresponds to the uniformly most powerful likelihood ratio test statistic.

Consider the zero-one utility function (7.4), for which the Bayes optimal decision is to report
the most probable model. In hypothesis testing language, this implies the null model𝑀0 being
rejected in favour of 𝑀1 if and only if

P(𝑀1 ∣ 𝑥) > P(𝑀0 ∣ 𝑥) ⟺ 𝐵10(𝑥) >
P(𝑀0)
P(𝑀1)

. (7.6)

The test procedure in (7.6) implies rejection of the null model 𝑀0 in favour of 𝑀1 if the Bayes
factor 𝐵10(𝑥) exceeds the prior ratio in favour of the null model. In this way, the prior ratio

70

can be seen to determine the desired significance level of the test. A threshold value could be
chosen by referring to the Bayes factor interpretations from Table 7.1.

Exercise 7.1 Bayes factors for Gaussian distributions. Consider the following model for
two exchangeable groups of random samples 𝒙 = (𝑥1,… , 𝑥𝑛), 𝒚 = (𝑦1,… , 𝑦𝑛):

𝑥𝑖 ∼ N(𝜃𝑋 , 1), 𝑖 = 1,… , 𝑛,
𝑦𝑖 ∼ N(𝜃𝑌 , 1), 𝑖 = 1,… , 𝑛,

𝜃𝑋 , 𝜃𝑌 ∼ N(0, 𝜎2). (7.7)

The samples 𝑥1,… , 𝑥𝑛 and 𝑦1,… , 𝑦𝑛 are all assumed to be conditionally independent given
𝜃𝑋 and 𝜃𝑌 , and the model specification is completed by specifying the dependency be-
tween 𝜃𝑋 and 𝜃𝑌 in one of two ways:

𝑀0 ∶ 𝜃𝑋 = 𝜃𝑌 ;
𝑀1 ∶ 𝜃𝑋 ⟂⟂ 𝜃𝑌 . (7.8)

(i) Derive an equation for the Bayes factor 𝐵01(𝒙, 𝒚) in favour of 𝑀0 over 𝑀1.

(ii) For fixed observed samples 𝒙 and 𝒚, show that 𝐵01(𝒙, 𝒚) → ∞ as the assumed
variance for the mean parameters 𝜃𝑋 and 𝜃𝑌 , 𝜎2, tends to infinity. Comment.

Remark. The phenomenon mentioned in Exercise 7.1 Item (ii) is known as Lindley’s paradox,
named after the Bayesian decision theorist Dennis V. Lindley (1923–2013), and is further discussed
in Proposition 8.3 of Chapter 8. For Bayesian hypothesis testing, there is no useful concept of a
totally uninformative prior for model selection. If beliefs about unknown parameters are made
arbitrarily vague, then the simpler model will always be preferred, regardless of the data.

7.3.3. Bayesian information criterion

One issue with using posterior probabilities and Bayes factors for choosing amongst models
is that these quantities rely upon calculation of the marginal likelihoods of observed data for
each model. It was noted in Section 4.1 that the marginal likelihood will not be analytically
calculable for most models; and although Section 5.2.4.1 proposed numerical importance sam-
pling methods for estimating marginal likelihoods, reliable low variance estimates may not be
available.
Suppose 𝑥 = (𝑥1,… , 𝑥𝑛). When the number of samples 𝑛 is large, Schwarz (1978) showed

that for exponential family (cf. Section 4.3) models with a 𝑘-dimensional parameter 𝜃,

log𝑝(𝑥) ≈ log𝑝(𝑥 ∣ �̂�) −
𝑘
2
log 𝑛,

where �̂� is the maximum likelihood estimate of 𝜃 maximising 𝑝(𝑥 ∣ 𝜃).
On this basis, a popular method for comparing rival models (even outside of exponential

families) is the so-called Bayesian information criterion.

71

Definition 7.3.3
The Bayesian information criterion for model selection is defined to be

BIC ∶= −2 log𝑝(𝑥 ∣ �̂�) + 𝑘 log 𝑛 (7.9)

where 𝑘 is the dimension of 𝜃 and �̂� maximises 𝑝(𝑥 ∣ 𝜃). Low BIC values correspond to
good model fit.

Remark. For a given likelihood model, the BIC (7.9) is twice the negative logarithm of an asymp-
totic approximation of a corresponding Bayesian marginal likelihood for 𝑛 samples as 𝑛 → ∞;
this asymptotic marginal likelihood does not depend on the choice of prior 𝑝(𝜃), besides requiring
appropriate support for the maximum likelihood estimate. The BIC is therefore only suitable for
comparing different formulations of the likelihood component of a parametric model, and not for
comparing prior distributions.

Proposition 7.1. BIC approximated Bayes factors. If BIC𝑖 and BIC𝑗 denote the Bayesian infor-
mation criterion for two models𝑀𝑖 and𝑀𝑗 , an approximate Bayes factor in favour of model 𝑖 over
model 𝑗 is

B𝑖𝑗 ≈ exp
{
−
1
2
(BIC𝑖 − BIC𝑗)

}
. (7.10)

Exercise 7.2 BIC for Gaussian distributions. Consider the sampling model (7.7) for two
groups of random samples 𝒙 = (𝑥1,… , 𝑥𝑛), 𝒚 = (𝑦1,… , 𝑦𝑛) presented in Exercise 7.1, and
the two alternative models 𝑀0 and 𝑀1 from (7.8) for the respective mean parameters 𝜃𝑋
and 𝜃𝑌 .

(i) Derive equations for the Bayesian information criterion values BIC0 and BIC1 for
the two models 𝑀0 over 𝑀1.

(ii) Use these BIC values to give an approximate expression for the corresponding
Bayes factor 𝐵01.

7.4. Posterior predictive checking
Posterior probabilities and Bayes factors are useful for assessing the relative merits of rival
models. However, it can also be desirable to assess the quality of a single model in absolute
terms, without reference to any proposed alternatives which may not yet have been identified.
Posterior predictive checking (PPC) methods aim to quantify how well a proposed model
structure fits the observed data, using the following logic: if the model is a good approximation
to the generating mechanism for the observed data, then the posterior distribution of the model
parameters should assign high probability to parameter values which in turn would generate
further data similar to the observed data with high probability if the sampling process was
repeated.

72

Consider a single parametric model with model parameter 𝜃 ∈ Θ, prior density 𝑝(𝜃) and
likelihood density 𝑝(𝑥 ∣ 𝜃) for the observed data 𝑥 ∈ . Let𝜋(𝜃) be the corresponding posterior
density (4.3).

Definition 7.4.1: Posterior predictive distribution
The posterior predictive distribution is the marginal distribution of a second draw 𝑥rep ∈
from the likelihood model with the same (unknown) parameter, implying a density

𝜋(𝑥rep) ∶= ∫
Θ
𝑝(𝑥rep ∣ 𝜃) 𝜋(𝜃) d𝜃 (7.11)

∝ ∫
Θ
𝑝(𝑥rep ∣ 𝜃) 𝑝(𝑥 ∣ 𝜃) 𝑝(𝜃) d𝜃.

Using techniques from frequentist statistical hypothesis testing, posterior predictive check-
ing is concerned with establishing whether the observed data 𝑥 could be regarded as being
somehow extreme with respect to the posterior predictive density (7.11).

7.4.1. Posterior predictive 𝑝-values
For full generality, let 𝑇 (𝑥, 𝜃) be a test statistic for measuring discrepancy between a data-
generating parameter 𝜃 and observing data 𝑥 .

Definition 7.4.2: Posterior predictive 𝑝-value
A posterior predictive 𝑝-value for 𝑇 (𝑥, 𝜃) is the upper tail probability

𝑝 ∶= ∫
Θ
∫

1[𝑇 (𝑥,𝜃),∞){𝑇 (𝑥rep, 𝜃)} 𝜋(𝜃) 𝑝(𝑥rep ∣ 𝜃) d𝑥rep d𝜃. (7.12)

Remark. If the test statistic is simply a function of the data,𝑇 (𝑥, 𝜃) ≡ 𝑇 (𝑥), then (7.12) simplifies
to

𝑝 = ∫

1[𝑇 (𝑥),∞){𝑇 (𝑥rep)} 𝜋(𝑥rep) d𝑥rep,

which is the familiar one-sided 𝑝-value for an observed statistic 𝑇 (𝑥), calculated with respect to
the posterior predictive distribution (7.11).

Remark. More generally, the posterior predictive 𝑝-value (7.12) measures how a joint sample of
parameter and new data from the posterior would compare with sampling a parameter from the
posterior and pairing this with the observed data.

7.4.2. Monte Carlo estimation
Given (possibly approximate) samples 𝜃(1),… , 𝜃(𝑚) obtained from the posterior density 𝜋, a
Monte Carlo estimate (cf. Section 5.2) of the posterior predictive 𝑝-value (7.12) can be obtained
relatively easily provided it is also possible to sample from the likelihood distribution 𝑝(𝑥 ∣ 𝜃):

73

For each parameter value 𝜃(𝑖) sampled from the posterior density 𝜋, randomly draw new data
𝑥(𝑖)rep from the generative likelihood model with that parameter,

𝑥(𝑖)rep ∼ 𝑝(𝑥
(𝑖)
rep ∣ 𝜃

(𝑖));

then the Monte Carlo estimated posterior predictive 𝑝-value is

�̂� ∶=
1
𝑚

𝑚

∑
𝑖=1

1[𝑇 (𝑥,𝜃(𝑖)),∞){𝑇 (𝑥(𝑖)rep, 𝜃
(𝑖))}. (7.13)

7.4.3. PPC with Stan
When fitting Bayesian models numerically in Stan (cf. Section 6.2), it is relatively simple to
carry out posterior predictive checking using a generated quantities{} code block.
This will be illustrated for the student grades example in Section 6.2, by considering two
possible test statistics: The first test statistic uses the negative log likelihood as a measure of
discrepancy,

𝑇 (𝑥, 𝜃) = − log 𝑝(𝑥 ∣ 𝜃). (7.14)
The second statistic does not depend on the model parameters, simply obtaining the average
score for each student,

�̄�𝑖 =
1
𝑝

𝑝

∑
𝑗=1
𝑥𝑖𝑗 ,

and then calculating the variance of these scores

𝑇 (𝑥) =
𝑛∑𝑛

𝑖=1 �̄�2𝑖 − (∑𝑛
𝑖=1 �̄�𝑖)2

𝑛(𝑛 − 1)
. (7.15)

The following Stan programming code (student_grade_model_ppc.stan) extends
the example from Section 6.2 with the inclusion of a generated quantities{} code
block to facilitate posterior predictive checks using the test statistics (7.14) and (7.15).

1 // student_grade_model_ppc.stan
2

3 data {
4 int<lower=0> n; // number of students
5 int<lower=0> p; // number of tests
6 array[n, p] int<lower=0, upper=100> X; // student test grades
7 real<lower=0> tau;
8 real<lower=0> a;
9 real<lower=0> b;
10 }
11 parameters {
12 array[n] real z;
13 real mu;
14 real<lower=0> sigma_sq;
15 }
16 transformed parameters {
17 array[n] real<lower=0, upper=1> theta;

74

18 real sigma;
19 theta = inv_logit(z);
20 sigma = sqrt(sigma_sq);
21 }
22 model {
23 sigma_sq ~ inv_gamma(a,b);
24 mu ~ normal(0, sigma * tau);
25 z ~ normal(mu, sigma);
26 for (i in 1:n)
27 X[i] ~ binomial(100,theta[i]);
28 }
29 generated quantities{
30 array[n, p] int<lower=0, upper=100> X_rep;
31 real log_lhd = 0;
32 real log_lhd_rep = 0;
33 real ppp;
34 for (i in 1:n){
35 for (j in 1:p){
36 log_lhd += binomial_lpmf(X[i][j] | 100,theta[i]);
37 X_rep[i][j] = binomial_rng(100,theta[i]);
38 log_lhd_rep += binomial_lpmf(X_rep[i][j] | 100,theta[i]);
39 }
40 }
41 ppp = log_lhd >= log_lhd_rep ? 1 : 0;
42 }

Line number 37 of student_grade_model_ppc.stan generates a replicate data ma-
trix𝑋rep from the binomial model with the current sampled parameter vector 𝜃; this is required
for both test statistics (7.14) and (7.15). To calculate the test statistic (7.14) within Stan, lines
36 and 38 calculate the likelihood function for the original and replicated data matrices, re-
spectively, and these are compared on line 41, yielding an indicator to contribute towards the
estimated posterior predictive 𝑝-value (7.13).
The following PyStan code (student_grade_inference_stan_ppc.py) uses the

Stan model code from above to fit the model and perform posterior predictive checking.

1 #! /usr/bin/env python
2 ## student_grade_inference_stan_ppc.py
3

4 import stan
5 import numpy as np
6 import matplotlib.pyplot as plt
7

8 # Simulate data
9 from student_grade_simulation import sample_student_grades
10 n, p = 30, 5
11 X, mu, sigma = sample_student_grades(n, p)
12 sm_data = {'n':n, 'p':p, 'tau':0.5, 'a':1, 'b':0.5, 'X':X}
13

14 # Initialise stan object
15 with open('student_grade_model_ppc.stan','r',newline='') as f:
16 sm = stan.build(f.read(),sm_data,random_seed=1)
17

18 # Select the number of MCMC chains and iterations, then sample

75

19 chains, samples, burn = 4, 10000, 1000
20 fit=sm.sample(num_chains=chains, num_samples=samples,

num_warmup=burn, save_warmup=False)↪

21

22 def T(x): #Variance of student average scores
23 return np.var(np.mean(x,axis=1))
24

25 t_obs = T(X) #Value of test statistic for observed data
26 x_rep = fit['X_rep'].reshape(n,p,samples,chains)
27 t_rep = [[T(x_rep[:,:,i,j]) for i in range(samples)] for j in

range(chains)]↪

28

29 # Plot posterior predictive distributions of T from each chain
30 def posterior_predictive_plots(t_rep,true_val):
31 nc = np.matrix(t_rep).shape[0]
32

fig,axs=plt.subplots(1,nc,figsize=(10,3),constrained_layout=True)↪

33 fig.canvas.manager.set_window_title('Posterior predictive')
34 for j in range(nc):
35 axs[j].autoscale(enable=True, axis='x', tight=True)
36 axs[j].set_title('Chain '+str(j+1))
37 axs[j].hist(np.array(t_rep[j]),200, density=True)
38 axs[j].axvline(true_val, color='c', lw=2, linestyle='--')
39 plt.show()
40

41 posterior_predictive_plots(t_rep,t_obs)
42

43 # Calculate and print posterior predictive p-values for T
44 print("Posterior predictive p-values from variance of means:")
45 print([np.mean(t_rep[j] >= t_obs) for j in range(chains)])
46

47 # Print posterior predictive p-values for lhd calculated in Stan
48 print("Posterior predictive p-values from likelihood:")
49 print(np.mean(fit['ppp'].reshape(samples,chains),axis=0))

Line numbers 22–23 of student_grade_inference_stan_ppc.py define the stu-
dent variance test statistic (7.15); this is evaluated for the observed data matrix at line 25, and
for each of the data matrix replicates sampled from the posterior predictive distribution at line
27. At line 41 the estimated posterior predictive distribution of the variance for a new student
cohort is plotted for each MCMC chain, and compared with the observed value. Finally, lines
45 and 49 print the estimated posterior predictive 𝑝-values for each of the two test statistics,
obtained from each of the four MCMC chains.

The following outputs from the code were obtained:

76

Posterior predictive p-values from variance of means:
[0.4907, 0.4948, 0.4854, 0.4914]
Posterior predictive p-values from likelihood:
[0.1573 0.158 0.1615 0.1538]

The 𝑝-values suggest no statistical significance for either test statistic, suggesting a good
model fit; indeed, the data have been generated from the assumed probability model.

77

CHAPTER

8

LINEAR MODELS

Infinite exchangeability of a sequence of random variables, here denoted 𝑦1, 𝑦2,…, is a useful
simplifying assumption for illustrating many of the fundamental ideas presented in the preced-
ing chapters. However, in many practical situations, this would be too limiting as a modelling
assumption; often there will be additional available information 𝑥𝑖 pertaining to each random
quantity 𝑦𝑖 which affects probabilistic beliefs about the value which 𝑦𝑖 is likely to take.

In the language of statistical regression modelling, the random variables of interest 𝑦1, 𝑦2,…
are referred to as response variables; they are believed to have a statistical dependence on the
corresponding element of the sequence of so-called covariates or predictors 𝑥1, 𝑥2,…which have
either been determined or observed. Regressionmodelling is concernedwith building statistical
models for the conditional distribution of each 𝑦𝑖 given 𝑥𝑖, primarily through specifying the
mean value for 𝑦𝑖 having some functional relationship to 𝑥𝑖 (referred to as the regression
function).
The simplest functional relationship is the linear model. With assumed Gaussian errors

in the response variable, the elegant least squares estimation equations from non-Bayesian
statistical linear models extend naturally to the Bayesian case. Despite the apparent rigidity
of a linearity assumption, consideration of different transformations of either the covariates
or the response variable can provide a surprisingly flexible modelling framework.

8.1. Parametric regression

Let 𝒚 = (𝑦1,… , 𝑦𝑛) be an 𝑛-vector of real-valued response variables. For each response variable
𝑦𝑖 ∈ R, suppose there is a corresponding 𝑝-vector of covariates 𝑥𝑖 = (𝑥𝑖1,… , 𝑥𝑖𝑝) ∈ R𝑝, 𝑝 ≥ 1,
which are thought to provide information about the probability distribution of 𝑦𝑖. Let𝑋 = (𝑥𝑖𝑗)
be an 𝑛 × 𝑝 matrix with 𝑖th row 𝑥𝑖 corresponding to the 𝑖th response.

79

In parametric regression modelling, it is common to assume a relaxation of exchangeability
called regression exchangeability.

Definition 8.1.1: Regression exchangeability
Regression exchangeability assumes that the joint density for 𝒚 conditional on 𝑋 has a
representation

𝑝(𝒚 ∣ 𝑋) = ∫
Θ

𝑛

∏
𝑖=1
𝑝(𝑦𝑖 ∣ 𝜃, 𝑥𝑖) d𝑄(𝜃) (8.1)

for a prior distribution 𝑄 on some parameter space Θ.

The regression function relating the response to the covariates is specified through the like-
lihood density 𝑝(𝑦𝑖 ∣ 𝜃, 𝑥𝑖) in (8.1). Fig. 8.1 shows a belief network representation of regression
exchangeability.

𝜃

𝑦1 𝑦2 𝑦… 𝑦𝑛

𝑥1 𝑥2 𝑥… 𝑥𝑛

Figure 8.1.: A belief network representation of regression exchangeability for responses
𝑦1,… , 𝑦𝑛 given covariates 𝑥1,… , 𝑥𝑛.

8.2. Bayes linear model
The linear model is a special case of (8.1), where the parameter is a pair 𝜃 = (𝛽, 𝜎), with 𝛽 ∈ R𝑝

and 𝜎 > 0, and the likelihood density 𝑝(𝑦𝑖 ∣ 𝜃, 𝑥𝑖) is specified by

𝑦𝑖 ∣ 𝜃, 𝑥𝑖 ∼ Normal(𝑥𝑖 ⋅ 𝛽, 𝜎2). (8.2)

The parameter 𝜎 is the standard deviation of each response variable, and 𝛽 is a 𝑝-vector of
regression coefficients such that

E(𝑦𝑖 ∣ 𝑥𝑖, 𝛽) = 𝑥𝑖 ⋅ 𝛽. (8.3)

The model (8.2) is often written in an equivalent regression form:

𝑦𝑖 = 𝑓 (𝑥𝑖) + 𝜖𝑖,
𝜖𝑖 ∼ Normal(0, 𝜎2),

80

where
𝑓 (𝑥) = 𝑥 ⋅ 𝛽 (8.4)

is the regression function and 𝜖 = (𝜖1,… , 𝜖𝑛) are referred to as independent error variables.
Finally, a third way of expressing the same model, which can be particularly convenient for

mathematical manipulation, is in matrix form

𝒚 ∼ Normal𝑛(𝑋𝛽, 𝜎2𝐼𝑛), (8.5)

where the conditional independence of the response variables in (8.1) is represented by the
diagonal covariance matrix in (8.5).
For a Bayesian parametric regression model (8.1), the specification of the linear model is

completed by a prior distribution for the parameters (𝛽, 𝜎). Two choices of prior are commonly
considered, which are presented in the next two subsections.

8.2.1. Conjugate prior
Since (8.5) is an exponential family distribution (cf. Section 4.3), it follows from Proposition 4.2
that there is a conjugate prior for (𝛽, 𝜎). This takes a canonical form

𝛽 ∣ 𝜎 ∼ Normal𝑝(0, 𝜎2𝑉),
𝜎−2 ∼ Gamma(𝑎, 𝑏), (8.6)

where 𝑉 is a symmetric, positive semidefinite 𝑝 × 𝑝 covariance matrix and 𝑎, 𝑏 > 0.

Exercise 8.1 Marginal density for regression coefficients. Suppose the conjugate prior
distribution (8.6) for the normal linear model.

(i) Show that, marginally,

𝑝(𝛽) =
Γ(𝑎 + 𝑝

2)
(2𝜋𝑏)

𝑝
2 |𝑉 | 12 Γ(𝑎) (

1 +
𝛽⊺𝑉 −1𝛽

2𝑏)

−(𝑎+ 𝑝
2)

,

corresponding to the density of the multivariate 𝑡-distribution, 𝛽 ∼ St𝑝(2𝑎, 0, 𝑏𝑎 𝑉).

(ii) If 𝑉 = 𝐼𝑝, show that the prior density function for 𝛽 depends only on the Euclidean
norm ‖𝛽‖ =

√
𝛽 ⋅ 𝛽 of the regression coefficients and that

√
2𝑎 + 𝑝 − 1

2𝑏
‖𝛽‖ ∼ |𝑡2𝑎+𝑝−1|, (8.7)

known as a half-Student’s 𝑡-distribution with 2𝑎 + 𝑝 − 1 degrees of freedom.

Typically the regression coefficients will be assumed to be independent and identically
distributed, which corresponds to assuming

𝑉 = 𝜆−1 𝐼𝑝 (8.8)

81

for a scalar precision parameter 𝜆 > 0. This implies a joint prior probability density function

𝑝(𝛽, 𝜎−2) =
𝑏𝑎 𝜆

𝑝
2 exp

{
−𝜎−2 (2𝑏 + 𝜆𝛽⊺ ⋅ 𝛽) /2

}

(2𝜋)
𝑝
2 Γ(𝑎) 𝜎2(𝑎−1)+𝑝

. (8.9)

Proposition 8.1. For the linear model (8.5) with conjugate prior (8.6), the posterior distribution
for (𝛽, 𝜎) after observing responses 𝒚 = (𝑦1,… , 𝑦𝑛) corresponds to

𝛽 ∣ 𝜎, 𝑋, 𝒚 ∼ Normal𝑝(𝑚𝑛, 𝜎2𝑉𝑛),
𝜎−2 ∣ 𝑋, 𝒚 ∼ Gamma(𝑎𝑛, 𝑏𝑛),

where

𝑉𝑛 = (𝑉 −1 + 𝑋⊺𝑋)−1, 𝑚𝑛 = 𝑉𝑛 𝑋⊺𝒚,

𝑎𝑛 = 𝑎 +
𝑛
2
, 𝑏𝑛 = 𝑏 +

1
2
(𝒚⊺𝒚 − 𝒚⊺𝑋𝑚𝑛). (8.10)

Proof.

𝑝(𝛽 ∣ 𝜎, 𝑋, 𝒚) ∝ 𝑝(𝛽 ∣ 𝜎) 𝑝(𝒚 ∣ 𝛽, 𝜎, 𝑋)

∝ exp
{
−

1
2𝜎2𝛽

⊺𝑉 −1𝛽 −
1
2𝜎2 (𝒚 − 𝑋𝛽)⊺(𝒚 − 𝑋𝛽)

}

∝ exp [−
1
2𝜎2 {𝛽

⊺(𝑉 −1 + 𝑋⊺𝑋)𝛽 − 𝒚⊺𝑋𝛽 − 𝛽⊺𝑋⊺𝒚}]

= exp [−
1
2𝜎2 {𝛽

⊺𝑉 −1
𝑛 𝛽 − 𝑚

⊺
𝑛𝑉

−1
𝑛 𝛽 − 𝛽

⊺𝑉 −1
𝑛 𝑚𝑛}] ,

according to (8.10) since 𝑉 −1
𝑛 𝑚𝑛 = 𝑋⊺𝒚. Completing the square,

𝑝(𝛽 ∣ 𝜎, 𝑋, 𝒚) ∝ exp
{
−

1
2𝜎2 (𝛽 − 𝑚𝑛)

⊺𝑉 −1
𝑛 (𝛽 − 𝑚𝑛)

}

⟹ 𝛽 ∣ 𝜎, 𝑋, 𝒚 ∼ Normal𝑝(𝑚𝑛, 𝜎2𝑉𝑛).

It remains to derive the posterior distribution of 𝜎. The regression coefficients 𝛽 can be
marginalised,

𝛽 ∣ 𝜎 ∼ Normal𝑝(0, 𝜎2𝑉)
⟹ 𝑋𝛽 ∣ 𝜎, 𝑋 ∼ Normal𝑛(0, 𝜎2𝑋𝑉𝑋⊺)
⟹ 𝒚 ∣ 𝜎, 𝑋 ∼ Normal𝑛(0, 𝜎2(𝑋𝑉𝑋⊺ + 𝐼𝑛)), (8.11)

where the last step follows from standard rules for summing Gaussian random variables. Then
by the matrix inversion lemma,

(𝑋𝑉𝑋⊺ + 𝐼𝑛)−1 = 𝐼𝑛 − 𝑋(𝑉 −1 + 𝑋⊺𝑋)−1𝑋⊺ = 𝐼𝑛 − 𝑋𝑉𝑛𝑋⊺

⟹ 𝒚 ∣ 𝜎, 𝑋 ∼ Normal𝑛(0, 𝜎2(𝐼𝑛 − 𝑋𝑉𝑛𝑋⊺)−1).

82

By Bayes’ theorem,

𝑝(𝜎−2 ∣ 𝑋, 𝒚) ∝ 𝑝(𝜎−2) 𝑝(𝒚 ∣ 𝜎, 𝑋)

∝ 𝜎−2(𝑎−1) exp(−𝑏𝜎−2) 𝜎−𝑛 exp
{
−
𝜎−2

2
𝒚⊺(𝐼𝑛 − 𝑋𝑉𝑛𝑋⊺)𝒚

}

= 𝜎−2(𝑎+ 𝑛
2−1) exp [−𝜎

−2
{
𝑏 +

1
2
𝒚⊺(𝐼𝑛 − 𝑋𝑉𝑛𝑋⊺)𝒚

}

]
⟹ 𝜎−2 ∣ 𝑋, 𝒚 ∼ Gamma(𝑎𝑛, 𝑏𝑛).

Exercise 8.2 Linear model matrix inverse. The matrix inversion lemma states that for an
𝑛 × 𝑛 matrix 𝐴, a 𝑘 × 𝑘 matrix 𝑉 and 𝑛 × 𝑘 matrices 𝑈,𝑊 ,

(𝐴 + 𝑈𝑉𝑊 ⊺)−1 = 𝐴−1 − 𝐴−1𝑈 (𝑉 −1 +𝑊 ⊺𝐴−1𝑈)−1𝑊 ⊺𝐴−1.

Using this result, show that (𝑋𝑉𝑋⊺ + 𝐼𝑛)−1 = 𝐼𝑛 − 𝑋𝑉𝑛𝑋⊺ where 𝑉𝑛 = (𝑉 −1 + 𝑋⊺𝑋)−1.

From Proposition 4.1, it follows that the Bayes linear model with conjugate prior has a
closed-form marginal likelihood.

Proposition 8.2. Suppose the Bayes linear model (8.5) with 𝒚 ∈ R𝑛, 𝑋 ∈ R𝑛×𝑝 and conjugate
prior (8.6). The marginal likelihood for 𝒚 ∣ 𝑋 is

𝑝(𝒚 ∣ 𝑋) =
Γ(𝑎𝑛) |𝑉𝑛|

1
2 𝑏𝑎

(2𝜋) 𝑛2 Γ(𝑎) |𝑉 | 12 𝑏𝑛𝑎𝑛
. (8.12)

Equivalently,
𝒚 ∣ 𝑋 ∼ St𝑛(2𝑎, 0, 𝑏(𝑋𝑉𝑋⊺ + 𝐼𝑛)/𝑎),

where St𝑛(𝜈, 𝜇,Σ) is an 𝑛-dimensional Student’s 𝑡-distribution with 𝜈 degrees of freedom, mean
𝜇 and covariance Σ.

Proof. From the proof of Proposition 8.1,

𝒚 ∣ 𝜎, 𝑋 ∼ Normal𝑛(0, 𝜎2(𝐼𝑛 − 𝑋𝑉𝑛𝑋⊺)−1)

⟹ 𝑝(𝒚 ∣ 𝜎, 𝑋) =
exp{− 1

2𝜎2𝒚⊺𝒚 + 1
2𝜎2𝒚⊺𝑋(𝑉 −1 + 𝑋⊺𝑋)−1𝑋⊺𝒚}

(2𝜋) 𝑛2 𝜎𝑛 |𝑉 | 12 |𝑉 −1 + 𝑋⊺𝑋 | 12
. (8.13)

The denominator uses the identity |𝑋𝑉𝑋⊺ + 𝐼𝑛| = |𝑉 ||𝑉 −1 + 𝑋⊺𝑋 |, which follows from the
matrix determinant lemma (Exercise 8.3).

Marginalising (8.13) over the inverse-gamma prior for 𝜎2,

𝑝(𝒚 ∣ 𝑋) =
𝑏𝑎

Γ(𝑎) ∫
∞

0
𝜎−2(𝑎−1)exp{−𝑏𝜎−2} 𝑝(𝒚 ∣ 𝜎, 𝑋) d𝜎−2

=
Γ(𝑎 + 𝑛/2) |𝑉𝑛|

1
2 𝑏𝑎

(2𝜋) 𝑛2 Γ(𝑎) |𝑉 | 12 (𝑏 + 1
2𝒚⊺𝒚 − 1

2𝒚⊺𝑋𝑚𝑛)𝑎+
𝑛
2
,

83

by comparison of the integrandwith the Gamma(𝑎+𝑛/2, 𝑏+ 1
2𝒚

⊺𝒚− 1
2𝒚

⊺𝑋𝑚𝑛) density function.

Exercise 8.3 Linear model matrix determinant. The matrix determinant lemma states
that for an 𝑛 × 𝑛 matrix 𝐴, a 𝑘 × 𝑘 matrix 𝑉 and 𝑛 × 𝑘 matrices 𝑈,𝑊 , |𝐴 + 𝑈𝑉𝑊 ⊺| =
|𝑉 −1 +𝑊 ⊺𝑈 ||𝑉 ||𝐴|. Using this result, show that |𝑋𝑉𝑋⊺ + 𝐼𝑛| = |𝑉 ||𝑉 −1 + 𝑋⊺𝑋 |.

Proposition 8.3. Lindley’s paradox. For the linear model under the conjugate prior (8.6) and
assuming (8.8), as 𝜆 → 0 the marginal likelihood (8.12) 𝑝(𝒚 ∣ 𝑋) → 0.

Proof. As 𝜆 → 0, |𝑉 | → ∞ whilst |𝑉𝑛| → 1/|𝑋⊺𝑋 |. Hence 𝑝(𝒚 ∣ 𝑋) → 0.

Remark. Lindley’s paradox in Proposition 8.3 (cf. Exercise 7.1) states that making prior beliefs
increasingly diffuse will eventually lead to diminishingly small predictive probability density for
any possible observation 𝒚. Consequently, when comparing against any fixed alternative model,
the Bayes factor in favour of the alternative model will become arbitrarily large.

§ Exercise 8.4 Linear model code. Write computer code (using a language such as
Python) to calculate the marginal likelihood under the linear model. For a matrix of
covariates 𝑋 and a vector of responses 𝒚, write a single function which returns both the
marginal likelihood and the posterior mean for the regression coefficients.

Exercise 8.5 Orthogonal covariate matrix marginal likelihood. Suppose the columns of the
matrix 𝑋 are orthonormal. Then under model (8.9) where the regression coefficients are
assumed to be independent, derive a simplified expression for the linear model marginal
likelihood 𝑝(𝒚 ∣ 𝑋). Comment on why this expression should be easier to evaluate than
the general expression (8.12).

Exercise 8.6 Zellner’s g-prior. Suppose the 𝑛 × 𝑝 covariate matrix 𝑋 has rank 𝑝, with
𝑛 > 𝑝, and the matrix 𝑉 in (8.6) satisfies 𝑉 = 𝑔 ⋅ (𝑋⊺𝑋)−1 for some constant 𝑔 > 0; this
formulation is known as Zellner’s g-prior (Zellner, 1986). Derive a simplified expression
for the linear model marginal likelihood 𝑝(𝒚 ∣ 𝑋) under this prior distribution.

8.2.2. Reference prior
A commonly used alternative prior distribution is the uninformative reference prior (cf. Sec-
tion 2.3.2),

𝑝(𝛽, 𝜎2) ∝
1
𝜎2 , (8.14)

corresponding to “uniform” prior beliefs for log𝜎2 and each component of the coefficient
vector 𝛽.

84

Remark. The prior density (8.14) is said to be improper since it does not have a finite integral over
the parameter space. It can therefore only be meaningfully considered as the limiting argument
of a sequence of increasingly diffuse, proper prior densities.

The reference prior can be viewed as a limiting case of the conjugate prior (8.9) as the
hyperparameters 𝑎, 𝑏, 𝜆 → 0. Consequently, the posterior distribution result from Section 8.2.1
carries across as follows.

Proposition 8.4. For the linear model (8.5) with reference prior (8.14), if 𝑛 > 𝑝 and 𝑋 has rank
𝑝, then the posterior distribution for (𝛽, 𝜎) is

𝛽 ∣ 𝜎, 𝑋, 𝒚 ∼ Normal𝑝((𝑋⊺𝑋)−1𝑋⊺𝒚, 𝜎2(𝑋⊺𝑋)−1),
𝜎−2 ∣ 𝑋, 𝒚 ∼ Gamma(𝑎 + 𝑛/2, 𝑏 + (𝒚⊺𝒚 − 𝒚⊺𝑋(𝑋⊺𝑋)−1𝑋⊺𝒚)/2). (8.15)

Remark. The reference posterior (8.15) is only proper when 𝑛 > 𝑝 and the rank of 𝑋 is equal to
𝑝, so that 𝑋 has full rank.

Remark. As a direct consequence of Lindley’s paradox in Proposition 8.3, the marginal likelihood
is not well defined under the improper reference prior (8.14); the corresponding equation takes
value 0 for all values of 𝒚. Consequently, reference priors cannot be used when performing model
choice using Bayes factors (cf. Section 7.3.2).

Remark. Bayesian inference for the linear model under the reference prior corresponds to the
standard estimation procedures from classical statistics. For example, the posterior mean for 𝛽 in
(8.15) is the usual least squares or maximum likelihood estimate.

8.3. Generalisation of the linear model
Aside from the reference prior analysis in Section 8.2.2, the theory of the Bayes linear model
with conjugate prior required no assumptions about the nature of the covariates 𝑥𝑖 = (𝑥𝑖1,… , 𝑥𝑖𝑝) ∈
R𝑝 which make up the rows of the matrix 𝑋 . This observation allows the following abstraction
of the so-called design matrix 𝑋 , which provides a valuable generalisation in the use of the
linear model.

8.3.1. General basis functions
Most generally, suppose that for each response variable 𝑦𝑖 there is an observed 𝑝′-vector of
related measurements 𝑧𝑖 ∈ R𝑝

′ , for 𝑝′ ≥ 1. Setting 𝑝 = 𝑝′ and 𝑥𝑖 = 𝑧𝑖 returns the standard
linear model (8.5), which is linear in both 𝛽 and the measurements 𝑧𝑖.
More generally, suppose a list of 𝑝 functions 𝜓 = (𝜓1,… , 𝜓𝑝),

𝜓𝑗 ∶ R𝑝
′
→ R, 𝑗 = 1,… , 𝑝,

such that each function specifies a covariate for the linear model, leading to the 𝑝-vector
covariate

𝑥𝑖 = 𝜓(𝑧𝑖) = (𝜓1(𝑧𝑖),… , 𝜓𝑝(𝑧𝑖)).

85

The functions 𝜓 are referred to as basis functions, since the regression function (8.4) is
constructed by linear combinations of the components of 𝜓,

𝑓 (𝑥) =
𝑝

∑
𝑗=1
𝛽𝑗𝜓𝑗(𝑧).

Each basis function 𝜓𝑗 corresponds to a column of the resulting covariate matrix 𝑋 . Given
the flexibility available in the choice of the columns of 𝑋 , the matrix 𝑋 is often referred to as
the design matrix for a regression model.

Remark. The linear model (8.5) with design matrix 𝑋 specified by

𝑋𝑖𝑗 = 𝜓𝑗(𝑧𝑖)

is still a linear model with respect to the regression coefficients 𝛽, and so all of the preceding theory
for conjugate posterior distributions and closed-form marginal likelihoods still applies.

8.3.1.1. Polynomial regression

Suppose a single observable measurement 𝑧 ∈ R and basis functions

𝜓𝑗(𝑧) = 𝑧𝑗−1, 𝑗 = 1,… , 𝑝,

implying a covariate vector
𝑥 = (1, 𝑧,… , 𝑧𝑝−1).

This construction implies a degree 𝑝 − 1 polynomial regression function,

𝑓 (𝑥) =
𝑝

∑
𝑗=1
𝛽𝑗 𝑧𝑗−1,

as a special case of the Bayes linear model.

8.3.1.2. Linear spline regression

Let the notation (⋅)+ denote the positive part of a real number,

(𝑡)+ = max{0, 𝑡}.

Again suppose a single observable measurement 𝑧 ∈ R and now consider the basis functions

𝜓𝑗(𝑧) = (𝑧 − 𝜏𝑗)+, 𝑗 = 1,… , 𝑝, (8.16)

for a sequence of 𝑝 real values 𝜏1 < 𝜏2 < … < 𝜏𝑝, referred to as knot points. Basis functions
of the type (8.16) are known as linear splines, since 𝜓𝑗(𝑧) is zero up until the value 𝜏𝑗 , and a
linear function of 𝑧 − 𝜏𝑗 thereafter.
Taking a linear combination of linear spline basis functions gives a regression function

which is piecewise linear, with changes in gradient occurring at each of the knot points but
no discontinuities. Spline regression models are explored in more detail in Section 10.3.

86

8.4. Generalised linear models
The Bayes linear model presented in Sections 8.2 and 8.3 is mathematically very convenient,
but is only suitable for cases where the response variables can be assumed to be normally
distributed and where the linear regression function 𝑥𝑖 ⋅𝛽 corresponds directly to the expected
value of the response variable 𝑦𝑖 (8.3).

Generalised linear models extend the linear model to other exponential family distributions
for the response variable through the introduction of an invertible function 𝑔 called the link
function, such that

𝑔 {E(𝑦𝑖 ∣ 𝑥𝑖, 𝛽)} = 𝑥𝑖 ⋅ 𝛽,
or, equivalently,

E(𝑦𝑖 ∣ 𝑥𝑖, 𝛽) = 𝑔−1(𝑥𝑖 ⋅ 𝛽). (8.17)

Remark. The link function generalises the standard linear regression expectation (8.3), which is
clearly a special case of (8.17) with the identity link function.

Remark. One advantage of using a link function is to guarantee the expected value of the
response (8.17) lies in the correct domain, without requiring any constraints on the possible values
which the covariates 𝑥𝑖 or the regression coefficients might take.

Two examples of generalised linear models are now briefly presented, where the response
variable is either a non-negative integer count or a binary indicator. In both cases, a zero-mean
normal distribution prior (8.6) with 𝑉 = 𝐼𝑝 is assumed for the regression coefficients, which
was shown in (8.7) to imply a 𝑡-distribution on the Euclidean norm of the coefficients.

8.4.1. Poisson regression
Suppose each response 𝑦𝑖 ∈ N = {0, 1, 2,…} is a non-negative integer count. Further assume
each count follows a Poisson distribution, with an expected value which is believed to be
linearly dependent on 𝑝 ≥ 1 covariates 𝑥𝑖 ∈ R𝑝 through the link function log(⋅). These as-
sumptions imply

log E(𝑦𝑖 ∣ 𝑥𝑖, 𝛽) = 𝑥𝑖 ⋅ 𝛽,
for some 𝛽 ∈ R𝑝 and

𝑦𝑖 ∣ 𝑥𝑖, 𝛽 ∼ Poisson(exp(𝑥𝑖 ⋅ 𝛽)) (8.18)

⟹ 𝑝(𝑦𝑖 ∣ 𝑥𝑖, 𝛽) =
exp{𝑦𝑖 (𝑥𝑖 ⋅ 𝛽) − exp(𝑥𝑖 ⋅ 𝛽)}

𝑦𝑖!
.

8.4.1.1. Stan implementation

The Stan implementation of Poisson regression extends the model (8.18) slightly by assuming
the presence of a variable intercept term in the linear model,

𝑦𝑖 ∣ 𝑥𝑖, 𝛼, 𝛽 ∼ Poisson(exp(𝛼𝑖 + 𝑥𝑖 ⋅ 𝛽)),

for𝛼 = (𝛼1,… , 𝛼𝑛) ∈ R𝑛. However, these parameters can be fixed at zero to recover the standard
representation (8.18).

87

Remark. In some non-Bayesian statistical texts, the intercept parameters 𝛼𝑖 would be referred
to as random effects, since they differ between individual response variables, whilst the slope
parameters 𝛽 would be referred to as fixed effects.

The following Stan code (poisson_regression.stan) implements a Poisson regres-
sion model with 𝑝 covariates and no intercept.

// poisson_regression.stan

data {
int<lower=0> n; // number of observations
int<lower=0> p; // number of covariates
int<lower=0> m; // number of grid points
array[n] int<lower=0> y; // response variables
matrix[n,p] X; // matrix of covariates
matrix[m,p] grid; // matrix of grid points
real<lower=0> a;
real<lower=0> b;

}
parameters {

vector[p] beta;
}
model {

target += -(a+.5*p)*log(2*b+dot_self(beta));//prior density for
beta↪

target += poisson_log_glm_lpmf(y | X, 0, beta);
}
generated quantities {

vector[m] fn_vals;
for (i in 1:m)

fn_vals[i] = exp(dot_product(beta,grid[i]));
}

The generated quantities{} block declares a vector of values for evaluating the
regression function pointwise over a vector of grid points which are inputs in the data{}
block.
The following PyStan code (poisson_regression_stan.py) simulates data from a

Poisson regression model with a single covariate and then seeks to infer posterior beliefs about
the value of the regression coefficient using poisson_regression.stan. Both here and
in Section 8.4.2.1, the plots show the sampled data and the posterior mean regression function
obtained from pointwise evaluation during posterior sampling, and then the posterior density
of the single coefficient 𝛽.

#! /usr/bin/env python
poisson_regression_stan.py

import stan
import numpy as np
import matplotlib.pyplot as plt

Simulate data

88

gen = np.random.default_rng(seed=0)
n = 25
m = 50
T = 10
x = np.linspace(start=0, stop=T, num=n)
grid = np.linspace(start=0, stop=T, num=m)
beta = .5#gen.normal()
y = [gen.poisson(np.exp(x_i*beta)) for x_i in x]
sm_data = {'n':n, 'p':1, 'a':1, 'b':0.5, 'X':x.reshape((n,1)), 'y':y,

'm':m, 'grid':grid.reshape((m,1))}↪

Initialise stan object
with open('poisson_regression.stan','r',newline='') as f:

sm = stan.build(f.read(),sm_data,random_seed=1)

Select the number of MCMC chains and iterations, then sample
chains, samples, burn = 2, 10000, 1000
fit=sm.sample(num_chains=chains, num_samples=samples,

num_warmup=burn, save_warmup=False)↪

Plot regression function and posterior for beta
fig,axs=plt.subplots(1,2,figsize=(10,4),constrained_layout=True)
fig.canvas.manager.set_window_title('Poisson regression posterior')
f = np.mean(fit['fn_vals'],axis=1)
true_f = [np.exp(beta*x_i) for x_i in grid]
b = fit['beta'][0]
axs[0].plot(grid,f)
axs[0].plot(grid,true_f, color='c', lw=2, linestyle='--')
axs[0].scatter(x,y, color='black')
axs[0].set_title('Posterior mean regression function')
axs[0].set_xlabel(r'x')
axs[1].hist(b,200, density=True);
axs[1].axvline(beta, color='c', lw=2, linestyle='--')
axs[1].set_title('Approximate posterior density of '+r'β')
axs[1].set_xlabel(r'β')
plt.show()

89

8.4.2. Logistic regression
Suppose each response 𝑦𝑖 ∈ {0, 1} is a Bernoulli indicator variable with a “success” probability
(or equivalently, expected value) which is believed to be linearly dependent on 𝑝 ≥ 1 covariates
𝑥𝑖 ∈ R𝑝 through a logistic link function log{⋅ /(1 − ⋅)}. These assumptions imply

log
{

E(𝑦𝑖 ∣ 𝑥𝑖, 𝛽)
1 − E(𝑦𝑖 ∣ 𝑥𝑖, 𝛽)

}
= 𝑥𝑖 ⋅ 𝛽,

for some 𝛽 ∈ R𝑝 and

𝑦𝑖 ∣ 𝑥𝑖, 𝛽 ∼ Bernoulli({1 + exp(−𝑥𝑖 ⋅ 𝛽)}−1)
⟹ 𝑝(𝑦𝑖 ∣ 𝑥𝑖, 𝛽) = {1 + exp((−1)𝑦𝑖 𝑥𝑖 ⋅ 𝛽)}−1.

8.4.2.1. Stan implementation

The following Stan code (logistic_regression.stan) and PyStan code (logistic_
regression_stan.py) implement the logistic regression model in a directly analogous
way to Poisson regression in Section 8.4.1.1.

// logistic_regression.stan

data {
int<lower=0> n; // number of observations
int<lower=0> p; // number of covariates
int<lower=0> m; // number of grid points
array[n] int<lower=0,upper=1> y; // response variables
matrix[n,p] X; // matrix of covariates
matrix[m,p] grid; // matrix of grid points
real<lower=0> a;
real<lower=0> b;

}
parameters {

vector[p] beta;
}
model {

target += -(a+.5*p)*log(2*b+dot_self(beta));//prior density for
beta↪

y ~ bernoulli_logit(X * beta);
}
generated quantities {

vector[m] fn_vals;
for (i in 1:m)

fn_vals[i] = inv_logit(dot_product(beta,grid[i]));
}

#! /usr/bin/env python
logistic_regression_stan.py

import stan
import numpy as np

90

import matplotlib.pyplot as plt

Simulate data
gen = np.random.default_rng(seed=0)
n = 25
m = 50
T = 5
x = np.linspace(start=-T, stop=T, num=n)
grid = np.linspace(start=-T, stop=T, num=m)
beta = .5#gen.normal()
y = [gen.binomial(1,1/(1+np.exp(-x_i*beta))) for x_i in x]
sm_data = {'n':n, 'p':1, 'a':1, 'b':0.5, 'X':x.reshape((n,1)), 'y':y,

'm':m, 'grid':grid.reshape((m,1))}↪

Initialise stan object
with open('logistic_regression.stan','r',newline='') as f:

sm = stan.build(f.read(),sm_data,random_seed=1)

Select the number of MCMC chains and iterations, then sample
chains, samples, burn = 2, 10000, 1000
fit=sm.sample(num_chains=chains, num_samples=samples,

num_warmup=burn, save_warmup=False)↪

Plot regression function and posterior for beta
fig,axs=plt.subplots(1,2,figsize=(10,4),constrained_layout=True)
fig.canvas.manager.set_window_title('Logistic regression posterior')
f = np.mean(fit['fn_vals'],axis=1)
true_f = [1.0/(1+np.exp(-beta*x_i)) for x_i in grid]
b = fit['beta'][0]
axs[0].plot(grid,f)
axs[0].plot(grid,true_f, color='c', lw=2, linestyle='--')
axs[0].scatter(x,y, color='black')
axs[0].set_title('Posterior mean regression function')
axs[0].set_xlabel(r'x')
axs[1].hist(b,200, density=True);
axs[1].axvline(beta, color='c', lw=2, linestyle='--')
axs[1].set_title('Approximate posterior density of '+r'β')
axs[1].set_xlabel(r'β')
plt.show()

91

CHAPTER

9

NONPARAMETRIC MODELS

Parametric probability models provide convenient mathematical structures for approximating
an individual’s uncertain beliefs. For example, simple probability distributions with a small
number of parameters for modelling exchangeable random quantities (Chapter 4) or a linear
model for regression-exchangeable observations of a response variable (Chapter 8). The ap-
pealing simplicity of parametric models also carries a severe limitation: having assumed a
parametric model, no amount of observed data can undermine the assumed certainty that the
probability distribution or regression function takes that parametric form with probability
one. For small sample size problems, this limitation can often seem acceptable, but for larger
sample sizes the opportunity for learning potentially more complex underlying relationships
grows and parametric models can become prohibitively restrictive.
More flexible modelling paradigms with the capacity to increase in complexity with in-

creasing sample size are often referred to as nonparametric methods. This name can appear
somewhat misleading, as these methods typically allow access to a potentially infinite num-
ber of parameters to provide this growth in complexity. However, the term is used to imply
modelling freedom away from assuming a fixed, finite-dimensional parametric form.

The contrast between the two modelling paradigms is stark. Parametric models place proba-
bility one on a particular parametric functional form being true. Nonparametric models assume
no such fixed relationship, but instead seek to spread probability mass across a much larger
region of appropriate function space, such that positive mass will be assigned to arbitrarily
small neighbourhoods surrounding any unknown true underlying function belonging to a
much broader function class.
The higher complexity of nonparametric models can lead to a loss of analytic tractabil-

ity or an increase in computational burden when performing Bayesian inference. However,
there are some notable exceptions, and the next two chapters provide an overview of some
popular nonparametric formulations which can be readily deployed in practical applications,

93

either for modelling probability distributions in the present chapter, or regression functions
in Chapter 10.

9.1. Random probability measures
Recall back in Chapter 2 the generalisation of De Finetti’s representation theorem given in
Theorem 2.2 for an infinitely exchangeable sequence 𝑋1, 𝑋2,… taking values in a space .
Necessarily,

P𝑋1,…,𝑋𝑛(𝑥1,… , 𝑥𝑛) = ∫
𝐹

𝑛

∏
𝑖=1
𝐹(𝑥𝑖) d𝑄(𝐹) (9.1)

for some probability measure 𝑄 on probability distributions 𝐹 on .
Section 2.2 immediately proceeded to consider a parametric interpretation, with 𝐹 = 𝐹(⋅ ; 𝜃)

and𝑄 = 𝑄(𝜃) for some finite-dimensional parameter. However, a nonparametric interpretation
is also possible, with 𝑄 interpreted as a probability measure over a wider class of probability
distribution functions 𝐹 .

The following Bayesian nonparametric models for random measures provide different spec-
ifications for the prior measure 𝑄 in (9.1), each placing mass on probability distributions with
a potentially infinite number of parameters. In each case, Bayesian inference will be examined
for an exchangeable sample 𝑥1,… , 𝑥𝑛 drawn from the unknown distribution 𝐹 on the space .

9.2. Dirichlet processes
The Dirichlet process (Ferguson, 1973) is a conjugate prior for Bayesian inference about an
unknown probability distribution function 𝐹 .

Definition 9.2.1: Dirichlet process
Let 𝛼 > 0 and let P0 be a probability measure on (with distribution function 𝐹0). A
random probability measure P (with distribution function 𝐹) is said to be a Dirichlet
process with base measure 𝛼 ⋅ P0, written P ∼ DP(𝛼 ⋅ P0), if for every (measurable) finite
partition 𝐵1,… , 𝐵𝑘 of ,

(P(𝐵1),… ,P(𝐵𝑘)) ∼ Dirichlet𝑘(𝛼 P0(𝐵1),… , 𝛼 P0(𝐵𝑘)). (9.2)

Remark. The base measure P0 of the Dirichlet process is also the mean, such that for every
(measurable) subset 𝐵 ⊆ ,

E{P(𝐵)} = P0(𝐵).

The concentration parameter 𝛼 determines the variance

V{P(𝐵)} =
P0(𝐵){1 − P0(𝐵)}

𝛼 + 1
. (9.3)

Remark. A draw from any Dirichlet process is a discrete distribution with probability 1, even if
the base measure is continuous.

94

1

1 − 𝛾1 𝛾1
𝜋1

(1 − 𝛾1)(1 − 𝛾2) 𝛾2(1 − 𝛾1)

𝜋2

(1 − 𝛾1)(1 − 𝛾2)(1 − 𝛾3) 𝛾3(1 − 𝛾1)(1 − 𝛾2)

𝜋3

Figure 9.1.: Illustration of first three iterations of the stick-breaking process.

Since all sampled probability distributions from DP(𝛼 ⋅P0) are discrete, it is possible to equiv-
alently state the conditions for a Dirichlet process as a generative model for random probability
mass functions. This generating process uses a so-called stick-breaking construction.

Definition 9.2.2: Stick-breaking process
Let 𝜋 = (𝜋1, 𝜋2,…) be an infinite random sequence of probabilities such that ∑∞

𝑗=1 𝜋𝑗 = 1.
Then 𝜋 is defined as a stick-breaking process if

𝜋𝑗 = 𝛾𝑗
𝑗−1

∏
𝑘=1

(1 − 𝛾𝑘), (9.4)

where 𝛾1, 𝛾2,… are an infinite sequence of independent random variables in [0, 1].

Definition 9.2.3: Griffiths-Engen-McCloskey distribution
A stick-breaking process 𝜋 (9.4) follows a Griffiths-Engen-McCloskey distribution with
parameter 𝛼 > 0, written 𝜋 ∼ GEM(𝛼), if 𝛾𝑘 ∼ Beta(1, 𝛼) for all 𝑘.

Remark. The stick-breaking analogy for Definition 9.2.2 envisages successively breaking into
pieces a stick of unit length, each time snapping off and laying down a section and then continuing
to break the remaining piece of stick. For a GEM(𝛼) distribution in Definition 9.2.3, at each
break point the proportion of remaining stick broken off and placed down follows a Beta(1, 𝛼)
distribution. The procedure is illustrated in Fig. 9.1.

Proposition 9.1. If P ∼ DP(𝛼 ⋅ P0), then the corresponding mass function satisfies

p(𝑥) =
∞

∑
𝑗=1
𝑤𝑗 1{𝜃𝑗 }(𝑥), (9.5)

95

where the atoms of mass are independently drawn from the base measure,

𝜃1, 𝜃2,… ∼ P0,

and the masses 𝑤𝑗 are obtained from a stick-breaking process with a Griffiths-Engen-McCloskey
distribution,

(𝑤1, 𝑤2,…) ∼ GEM(𝛼). (9.6)

Proof. See Sethuraman (1994).

It was noted above that the Dirichlet process is a conjugate prior for an unknown probability
distribution. This is now demonstrated in the following proposition.

Proposition 9.2. Conjugacy of Dirichlet process. Suppose 𝒙 = (𝑥1,… , 𝑥𝑛) are 𝑛 independent
samples from P and P ∼ DP(𝛼 ⋅ P0). For (P0-measurable) 𝐵 ⊆ , let

P̂𝑛(𝐵) =
1
𝑛

𝑛

∑
𝑖=1

1𝐵(𝑥𝑖)

be the empirical measure of the samples 𝒙, and let 𝛼∗
𝑛 = 𝛼 + 𝑛, 𝜋∗

𝑛 = 𝛼/𝛼∗
𝑛 and

P∗
𝑛(𝐵) = 𝜋

∗
𝑛 P0(𝐵) + (1 − 𝜋∗

𝑛)P̂𝑛(𝐵). (9.7)

Then
P ∣ 𝒙 ∼ DP(𝛼∗

𝑛 ⋅ P
∗
𝑛).

Proof. For a finite partition of (measurable) subsets 𝐵1,… , 𝐵𝑘, the Dirichlet distribution prior
(9.2) has density function

𝑝(P(𝐵1),… ,P(𝐵𝑘)) =
Γ(𝛼)

∏𝑘
𝑗=1 Γ{𝛼 P0(𝐵𝑗)}

𝑘

∏
𝑗=1

P(𝐵𝑗)𝛼 P0(𝐵𝑗)−1.

Let 𝑛𝑗 = ∑𝑛
𝑖=1 1𝐵𝑗 (𝑥𝑖) be the number of samples falling inside 𝐵𝑗 . Then the joint density of 𝒙 is

𝑝(𝒙 ∣ P) =
𝑘

∏
𝑗=1

P(𝐵𝑗)𝑛𝑗

and hence the posterior density is

𝑝(P(𝐵1),… ,P(𝐵𝑘) ∣ 𝒙) ∝ 𝑝(P(𝐵1),… ,P(𝐵𝑘)) 𝑝(𝒙 ∣ P)

∝
𝑘

∏
𝑗=1

P(𝐵𝑗)𝛼 P0(𝐵𝑗)+𝑛𝑗−1,

corresponding to the Dirichlet𝑘(𝛼∗
𝑛 P∗

𝑛(𝐵1),… , 𝛼∗
𝑛 P∗

𝑛(𝐵𝑘)) distribution.

Remark. In Proposition 9.2, as 𝑛 → ∞ then 𝛼∗
𝑛 → ∞, meaning the variance (9.3) of the Dirichlet

process posterior shrinks to zero. Furthermore, the weight 𝜋∗
𝑛 → 0 and hence the posterior mean

(9.7) converges to the empirical measure, P∗
𝑛 → P̂𝑛.

96

9.2.1. Discrete base measure
It follows from Proposition 4.1 that independent observations from an unknown distribution
function have a closed-form marginal likelihood under a Dirichlet process prior. The form of
the marginal likelihood is most straightforward when the base measure P0 is discrete, with
corresponding probability mass function p0.

Exercise 9.1 Dirichlet process marginal likelihood. Suppose 𝒙 = (𝑥1,… , 𝑥𝑛) are 𝑛 inde-
pendent samples from P and P ∼ DP(𝛼 ⋅ P0). If P0 is discrete, show that 𝒙 has marginal
probability mass function

𝑝(𝒙) =
Γ(𝛼)

Γ(𝛼 + 𝑛)

𝑛

∏
𝑖=1

{

𝛼 p0(𝑥𝑖) +∑
𝑗<𝑖

1{𝑥𝑖}(𝑥𝑗)

}

. (9.8)

Perhaps the most revealing formulation of the Dirichlet process arises from considering the
predictive distribution of a further random sample.

Corollary 9.1. The predictive distribution for a new observation 𝑥𝑛+1 drawn from the same
unknown distribution is

𝑝(𝑥𝑛+1 ∣ 𝒙) =
𝛼 p0(𝑥𝑛+1) +∑𝑛

𝑖=1 1{𝑥𝑛+1}(𝑥𝑖)
𝛼 + 𝑛

. (9.9)

Proof. This follows immediately by expressing the predictive distribution as the ratio of the
respective joint distributions (9.8) for (𝒙, 𝑥𝑛+1) and 𝒙.

Remark. The form of the predictive distribution (9.9) has a clear interpretation that a further
sample 𝑥𝑛+1 can be viewed as a draw from the following mixture distribution: with probability
𝛼/(𝛼 + 𝑛), a new value is sampled from the base distribution P0, and with the remaining proba-
bility a repeated value is sampled from the empirical distribution of values observed so far. The
concentration parameter can therefore be interpreted as a notional prior sample size reflecting the
base measure.

Remark. Following the sequential sampling procedure (9.9), the number of samples from the
base distribution P0 follows a so-called Chinese restaurant table distribution. After 𝑛 samples,
from Teh (2010) for example, this distribution is known to have expected value

𝛼{𝜓0(𝛼 + 𝑛) − 𝜓0(𝛼)} ≈ 𝛼 log(1 + 𝑛/𝛼),

where 𝜓0(⋅) denotes the digamma function, defined to be the gradient of log Γ(⋅).

§ Exercise 9.2 Dirichlet process sampling.Write computer code (using a language such
as Python) to sample a random probability mass function from a Dirichlet process using
a geometric distribution base measure with parameter 0.1. Plot three sampled probability
mass functions obtained from setting 𝛼 = 10, 1000, 100000 respectively.

97

9.3. Pólya trees
Pólya trees (Mauldin et al., 1992) are a more general class of nonparametric models for ran-
dom measures which can support both continuous and discrete distributions. For real-valued
random variables, Pólya trees are defined on an infinite sequence of recursive partitions of a
subset of the real line 𝐵 ⊆ R.

Definition 9.3.1: Binary sequences
Let 𝐸0 = ∅ and for 𝑚 ≥ 1, define

𝐸𝑚 ∶= {0, 1}𝑚,
𝐸 ∶= ∪∞

𝑚=0 𝐸𝑚,

such that 𝐸𝑚 is the set of all length-𝑚 binary sequences and 𝐸 is the set of all finite-length
binary sequences.

Definition 9.3.2: Binary tree of partitions
A set Π = {𝜋0, 𝜋1,…} of nested partitions of 𝐵 is said to be a binary tree of partitions if
𝜋0 = {𝐵}, |𝜋𝑚| = 2𝑚, and the sets in each partition 𝜋𝑚 can be indexed by elements of 𝐸𝑚
in such a way that, for all 𝑒 ∈ 𝐸𝑚−1,

𝐵𝑒 = 𝐵𝑒0 ∪ 𝐵𝑒1

for the set 𝐵𝑒 ∈ 𝜋𝑚−1 and the two sets 𝐵𝑒0, 𝐵𝑒1 ∈ 𝜋𝑚.

Remark. A natural binary tree of partitions of the unit interval 𝐵 = [0, 1] is 𝜋0 = {[0, 1]} and

𝜋𝑚 = {(∑
𝑚

𝑗=1
𝑒𝑗/2𝑗 , 1/2𝑚 +∑

𝑚

𝑗=1
𝑒𝑗/2𝑗] ∣ (𝑒1,… , 𝑒𝑚) ∈ 𝐸𝑚}, 𝑚 > 0,

illustrated in Fig. 9.2.

Remark. If 𝐵 = R and 𝐹0 a continuous distribution function, corresponding partitions of the real
line can be obtained by applying an inverse transformation to partitions of the unit interval:

𝜋𝑚 = {(𝐹−10 (∑
𝑚

𝑗=1
𝑒𝑗/2𝑗), 𝐹−10 (1/2𝑚 +∑

𝑚

𝑗=1
𝑒𝑗/2𝑗)] ∣ (𝑒1,… , 𝑒𝑚) ∈ 𝐸𝑚}, 𝑚 > 0. (9.10)

Given a binary partition {𝜋0, 𝜋1,…} of 𝐵 and an element 𝑥 ∈ 𝐵, for each partition level 𝑚
define 𝜖𝑚(𝑥) to be the unique length-𝑚 binary sequence 𝑒 ∈ 𝐸𝑚 such that 𝑥 ∈ 𝐵𝑒 ∈ 𝜋𝑚.

§ Exercise 9.3 Binary partition index. Suppose an 𝐹0-centred sequence of partitions
(9.10) with 𝐹0(𝑥) = Φ(𝑥), the standard normal cumulative distribution function. Evaluate
𝜖6(1.5).

98

𝐵𝜋0:

𝐵0 𝐵1𝜋1:

𝐵00 𝐵01 𝐵10 𝐵11𝜋2:

𝐵000 𝐵001 𝐵010 𝐵011 𝐵100 𝐵101 𝐵110 𝐵111𝜋3:

𝐵0000 𝐵0001 𝐵0010 𝐵0011 𝐵0100 𝐵0101 𝐵0110 𝐵0111 𝐵1000 𝐵1001 𝐵1010 𝐵1011 𝐵1100 𝐵1101 𝐵1110 𝐵1111𝜋4:

Figure 9.2.: The first five layers of an infinite sequence of recursive partitions. The shaded
regions show the path through the preceding layers to an example set 𝐵0110 in 𝜋4.

Definition 9.3.3: Splitting probabilities
Suppose P is a probability measure on 𝐵, and Π a binary tree of partitions of 𝐵. Let
𝑒 = (𝑒1,… , 𝑒𝑚) ∈ 𝐸𝑚 and 𝐵𝑒 ∈ 𝜋𝑚 ∈ Π. Then since 𝐵𝑒1…𝑒𝑗 ⊆ 𝐵𝑒1…𝑒𝑗−1 for all 𝑗 ≤ 𝑚, the
probability P(𝐵𝑒) can be factorised as

P(𝐵𝑒) =
𝑚

∏
𝑗=1

P(𝐵𝑒1…𝑒𝑗 ∣ 𝐵𝑒1…𝑒𝑗−1). (9.11)

The conditional probabilities in (9.11) are known as splitting probabilities.

Definition 9.3.4: Pólya tree
Let Π be a binary tree of partitions and suppose = {𝛼𝑒 ∣ 𝑒 ∈ 𝐸} is a corresponding set
of positive constants 𝛼𝑒 > 0 defined for all partition layers in Π. For a random probability
measure P, if for all 𝑚 > 0 and (𝑒1,… , 𝑒𝑚) ∈ 𝐸𝑚 the splitting probabilities satisfy

P(𝐵𝑒1…𝑒𝑚 ∣ 𝐵𝑒1…𝑒𝑚−1) ∼ Beta(𝛼𝑒1…𝑒𝑚−1𝑒𝑚 , 𝛼𝑒1…𝑒𝑚−1(1−𝑒𝑚)),

then P is said to have a Pólya tree distribution, written P ∼ PT(Π,).

Remark. The Dirichlet process from Section 9.2 is a special case of the Pólya tree satisfying
𝛼𝑒0 + 𝛼𝑒1 = 𝛼𝑒 for all 𝑒 ∈ 𝐸.

Remark. Pólya tree probabilities can be interpreted as products of conditional probabilities
determining the path of a particle cascading down the layers of partitions, with 𝐵 ⊇ 𝐵𝑒1 ⊇ 𝐵𝑒1𝑒2 ⊇
…. For example, in Fig. 9.2, the probability of the highlighted set 𝐵0110 is obtained through a
product,

P(𝐵0110) = P(𝐵0)P(𝐵01 ∣ 𝐵0)P(𝐵011 ∣ 𝐵01)P(𝐵0110 ∣ 𝐵011),

where each term (splitting probability) has an independent Beta distribution with parameters
corresponding to that path.

99

The specification of a binary tree of partitions according to a base probability measure (9.10)
allows the Pólya tree distribution to be easily centred around that distribution.

Proposition 9.3. For a chosen a probability measure P0 with distribution function 𝐹0, suppose
P ∼ PT(Π,) where each 𝜋𝑚 ∈ Π satisfies (9.10). If the positive constants are chosen to be
symmetric such that for all 𝑒 ∈ 𝐸, 𝛼𝑒0 = 𝛼𝑒1 then E(P) = P0.

Proof. If, for all 𝑒, 𝛼𝑒0 = 𝛼𝑒1 then by symmetry, for all 𝑚 > 0 and 𝑒 ∈ 𝐸𝑚, E{P(𝐵𝑒)} = 1/2𝑚. The
result follows from the usual inversion rule for continuous distribution functions.

The conjugacy of the Pólya tree prior follows immediately from the conjugacy of the beta
distribution for Bernoulli observations noted in Table 4.1 of Section 4.2.

Proposition 9.4. Conjugacy of Pólya tree. Suppose 𝒙 = (𝑥1,… , 𝑥𝑛) are 𝑛 independent samples
from P and P ∼ PT(Π,). For 𝑒 ∈ 𝐸, let

𝑛𝑒 =
𝑛

∑
𝑖=1

1𝐵𝑒(𝑥𝑖)

be the number of samples which fall inside the set 𝐵𝑒, and let∗
𝑛 = {𝛼𝑒 + 𝑛𝑒 ∣ 𝑒 ∈ 𝐸}. Then

P ∣ 𝒙 ∼ PT(Π,∗
𝑛).

Proof. For each sample 𝑥𝑖 and each non-trivial partition level 𝑚 > 0, recall 𝜖𝑚−1(𝑥𝑖) as the
unique binary sequence of length 𝑚 − 1 such that 𝑥𝑖 ∈ 𝐵𝜖𝑚−1(𝑥𝑖). Conditional on 𝜖𝑚−1(𝑥𝑖), 𝑥𝑖
must fall in either 𝐵𝜖𝑚−1(𝑥𝑖)0 or 𝐵𝜖𝑚−1(𝑥𝑖)1; from these two possibilities, 𝑥𝑖 falls in 𝐵𝜖𝑚−1(𝑥𝑖)𝑒𝑚 with
an unknown, Beta(𝛼𝜖𝑚−1(𝑥𝑖)𝑒𝑚 , 𝛼𝜖𝑚−1(𝑥𝑖)(1−𝑒𝑚)) distributed probability. Denoting this probability 𝜃,

𝑝(𝜃 ∣ 𝑥𝑖 ∈ 𝐵𝜖𝑚−1(𝑥𝑖)𝑒𝑚) ∝ 𝑝(𝑥𝑖 ∈ 𝐵𝜖𝑚−1(𝑥𝑖)𝑒𝑚 ∣ 𝜃) × 𝑝(𝜃)
∝ 𝜃 × 𝜃𝛼𝜖𝑚−1(𝑥𝑖)𝑒𝑚−1 (1 − 𝜃)𝛼𝜖𝑚−1(𝑥𝑖)(1−𝑒𝑚)−1

= 𝜃𝜖𝑚−1(𝑥𝑖)𝑒𝑚 (1 − 𝜃)𝛼𝜖𝑚−1(𝑥𝑖)(1−𝑒𝑚)−1,

which is proportional to the density of Beta(𝛼𝜖𝑚−1(𝑥𝑖)𝑒𝑚 +1, 𝛼𝜖𝑚−1(𝑥𝑖)(1−𝑒𝑚)). The result follows.

9.3.1. Continuous random measures

As noted above, Pólya trees can be constructed to give probability one to either discrete or
continuous distributions. The special case of the Dirichlet process obtainedwhen 𝛼𝑒0+𝛼𝑒1 = 𝛼𝑒
for all 𝑒 exemplifies the discrete case. For guaranteeing continuous probability distributions,
Lavine (1992) showed that “as long as the 𝛼𝑒’s do not decrease too rapidly with 𝑚”, P will be
continuous; a commonly used choice is 𝛼𝑒1…𝑒𝑚 = 𝛼𝑚2 for some single parameter 𝛼 > 0.

As with the Dirichlet process, it follows from Proposition 4.1 that independent observations
from an unknown distribution function have a closed-form marginal likelihood under a Pólya
tree prior; in this case, this marginal likelihood is most straightforward when the base measure
P0 is continuous.

100

Proposition 9.5. Pólya tree marginal likelihood. Suppose 𝒙 = (𝑥1,… , 𝑥𝑛) are 𝑛 independent
samples from P and P ∼ PT(Π,). If P0 = E(P) is continuous with corresponding probability
density function p0, then 𝒙 has marginal probability density function

𝑝(𝒙) =
𝑛

∏
𝑖=1

p0(𝑥𝑖)
𝑛

∏
𝑗=2

𝑚∗(𝒙,𝑗)

∏
𝑚=1

(𝛼𝜖𝑚(𝑥𝑗) + 𝑛𝜖𝑚(𝑥),𝑗)(𝛼𝜖𝑚−1(𝑥𝑗)0 + 𝛼𝜖𝑚−1(𝑥𝑗)1)
𝛼𝜖𝑚(𝑥𝑗)(𝛼𝜖𝑚−1(𝑥𝑗)0 + 𝛼𝜖𝑚−1(𝑥𝑗)1 + 𝑛𝜖𝑚−1(𝑥),𝑗)

,

where 𝑛𝑒,𝑗 = ∑𝑖<𝑗 1𝐵𝑒(𝑥𝑖) and 𝑚∗(𝒙, 𝑗) = min{𝑚 > 0 ∣ 𝜖𝑚(𝑥𝑖) ≠ 𝜖𝑚(𝑥𝑗), 𝑖 < 𝑗} is the highest
partition level for which none of the first (𝑗 − 1) samples in 𝒙 lie within the same set as 𝑥𝑗 .

Proof. See Berger and Guglielmi (2001).

§ Exercise 9.4 Pólya tree sampling. Write computer code (using a language such as
Python) to sample a random probability density function from a Pólya tree model with
𝛼𝑒1…𝑒𝑚 = 𝛼𝑚2 and a binary tree of partitionsΠ centred on 𝐹0(𝑥) = Φ(𝑥). Plot three sampled
densities obtained from setting 𝛼 = 1, 100, 10000, respectively.

9.4. Partition models

A Pólya tree defines a random probability measure P on a fixed collection of nested partitions
of a space 𝐵, specifying consistent probabilities at each layer. Partition models are somewhat
simpler, specifying P on a single, unknown partition 𝜋.

For each 𝐵-subset of the partition 𝜋, a relatively simple statistical model is typically assumed.
The nonparametric flexibility of a partition model comes from allowing uncertainty about the
partition to extend to the dimension |𝜋 |; by not assuming an upper bound for the size of
the partition, P can assume a potentially infinite number of parameters. A simple analogy is
approximating an arbitrarily complex function with a step function with an unlimited number
of steps.

9.4.1. Partition models: Bayesian histograms

For simplicity of exposition assume 𝐵 = [𝑎, 𝑏] ⊂ R is an interval on the real line, and that P is
an unknown continuous probability measure on [𝑎, 𝑏] with density p. A histogram on [𝑎, 𝑏]
can be viewed as a partition model: the interval [𝑎, 𝑏] is divided into bins by a sequence of
𝑚 ≥ 0 cut points 𝜏, where 𝜏 = ∅ when 𝑚 = 0 and otherwise 𝜏 = (𝜏1,… , 𝜏𝑚) with 𝑎 ≡ 𝜏0 <
𝜏1 < … < 𝜏𝑚 < 𝜏𝑚+1 ≡ 𝑏 . The cut points define a corresponding partition 𝜋𝜏 = {𝐵1,… , 𝐵𝑚+1}
where 𝐵𝑗 = [𝜏𝑗−1, 𝜏𝑗) is the 𝑗th bin of the histogram.

A histogram assumes constant density within each bin, leading to an overall piecewise-
constant density on [𝑎, 𝑏] with 𝑚 steps. Leonard (1973) and Gelman et al. (2013, p. 545) pre-
sented the following Bayesian model for such a density.

101

Definition 9.4.1: Bayesian histogram
Let 𝛼 > 0 and let P0 be a probability measure on [𝑎, 𝑏]. Let 𝜏 be an increasing sequence
of 𝑚 cut points partitioning [𝑎, 𝑏] into (𝑚 + 1) segments, with corresponding segment
probabilities 𝜃 = (𝜃1,… , 𝜃𝑚+1) satisfying∑𝑚+1

𝑗=1 𝜃𝑗 = 1. A Bayesian histogram model for a
random probability measure P assumes the following representation for the density p:

p(𝑥 ∣ 𝑚, 𝜏, 𝜃) =
𝑚+1

∑
𝑗=1

1[𝜏𝑗−1,𝜏𝑗)(𝑥)
𝜃𝑗

𝜏𝑗 − 𝜏𝑗−1
,

𝜃 ∣ 𝑚, 𝜏 ∼ Dirichlet𝑚+1{𝛼 P0([𝜏0, 𝜏1)),… , 𝛼 P0([𝜏𝑚, 𝜏𝑚+1))}. (9.12)

Remark. The base probability measure P0 from Definition 9.4.1 is the prior expectation for P in
the limit as 𝑚 → ∞. That is, for (P0-measurable) 𝐴 ⊆ [𝑎, 𝑏], if 𝐴 can be expressed as a union of
elements of 𝜋𝜏 then E{P(𝐴)} = P0(𝐴).

Given samples 𝑥1,… , 𝑥𝑛 from an unknown continuous probability distributionP, the Bayesian
histogram model (9.12) provides another conjugate model for P with closed-form marginal
likelihood.

Proposition 9.6. Bayesian histogram marginal likelihood. Suppose 𝒙 = (𝑥1,… , 𝑥𝑛) are 𝑛 in-
dependent samples from an unknown continuous distribution P with density defined by (9.12).
Conditional on 𝑚 and 𝜏, the posterior distribution of 𝜃 given 𝒙 is

𝜃 ∣ 𝑚, 𝜏,𝒙 ∼ Dirichlet𝑚+1{𝛼 P0([𝜏0, 𝜏1)) + 𝑛1,… , 𝛼 P0([𝜏𝑚, 𝜏𝑚+1)) + 𝑛𝑚+1} (9.13)

and 𝒙 has marginal probability density function

𝑝(𝒙 ∣ 𝑚, 𝜏) =
Γ(𝛼)

Γ(𝛼 + 𝑛)

𝑚+1

∏
𝑗=1

Γ{𝛼 P0([𝜏𝑗−1, 𝜏𝑗)) + 𝑛𝑗 }
Γ{𝛼 P0([𝜏𝑗−1, 𝜏𝑗))}(𝜏𝑗 − 𝜏𝑗−1)𝑛𝑗

, (9.14)

where 𝑛𝑗 = ∑𝑛
𝑖=1 1[𝜏𝑗−1,𝜏𝑗)(𝑥𝑖) is the number of samples lying in the segment [𝜏𝑗−1, 𝜏𝑗).

Proof. The likelihood function for (9.12) is

𝑝(𝒙 ∣ 𝑚, 𝜏, 𝜃) =
𝑚+1

∏
𝑗=1

(
𝜃𝑗

𝜏𝑗 − 𝜏𝑗−1)

𝑛𝑗

and the results simply follow from the conjugacy of the multinomial and Dirichlet distributions
(cf. Table 4.1).

Remark. Assuming 𝛼 to be relatively small, the marginal likelihood (9.14) is highest when the
bin counts {𝑛𝑗 } are each either very large or very small. Therefore equal bin counts would not
correspond to a good partition; these would be better modelled with a single bin.

To complete the nonparametric formulation of the Bayesian histogram, a prior distribution
must be assigned to the number and location of the cut points, (𝑚, 𝜏). The canonical choice

102

for this assignment is a Poisson process on [𝑎, 𝑏] with rate 𝜈 > 0 for the arrivals of cut points,
leading to a joint prior density

𝑝(𝑚, 𝜏) = 𝜈𝑚 exp{−𝜈(𝑏 − 𝑎)}. (9.15)

For any choice of prior density 𝑝(𝑚, 𝜏), the corresponding posterior density for the number
of cut points is given up to proportionality by

𝑝(𝑚, 𝜏 ∣ 𝒙) ∝ 𝑝(𝑚, 𝜏)
Γ(𝛼)

Γ(𝛼 + 𝑛)

𝑚+1

∏
𝑗=1

Γ{𝛼 P0([𝜏𝑗−1, 𝜏𝑗)) + 𝑛𝑗 }
Γ{𝛼 P0([𝜏𝑗−1, 𝜏𝑗))}(𝜏𝑗 − 𝜏𝑗−1)𝑛𝑗

. (9.16)

Estimation of posterior expectations taken with respect to (9.16) can straightforwardly proceed
using (reversible jump) Markov chain Monte Carlo sampling (Green, 1995) (cf. Chapter 5).

9.4.2. Bayesian histograms with equal bin widths
Now consider three simplifications of the histogram model (9.12). First, for simplicity of pre-
sentation andwithout loss of generality, suppose that the interval of interest is the unit interval
𝐵 = [0, 1].

Second, suppose the base measure P0 in Definition 9.4.1 is the natural default choice for the
unit interval, Lebesgue measure, such that P0([𝜏𝑗−1, 𝜏𝑗)) = 𝜏𝑗 − 𝜏𝑗−1.
Third, suppose the unknown distribution P is characterised by a partition model with an

unknown number of equally spaced cut points on [0, 1]. To simplify subsequent notation, let
𝑚 now denote the number of equally sized segments rather than the number of cut points.
Making this assumption is then equivalent to specifying 𝑝(𝑚, 𝜏) through a non-degenerate
probability model 𝑝(𝑚) for the unknown number of segments, whilst for𝑚 > 1 the conditional
distribution 𝑝(𝜏 ∣ 𝑚) assigns probability one to the vector 𝜏∗ with 𝑗th element

𝜏∗𝑗 =
𝑗
𝑚
, 𝑗 = 1,… , 𝑚 − 1.

With these three conditions, the posterior density (9.16) simplifies to

𝑝(𝑚 ∣ 𝒙) ∝ 𝑝(𝒙, 𝑚) =
𝑝(𝑚) 𝑚𝑛 Γ(𝛼)

Γ(𝛼 + 𝑛) Γ(𝛼/𝑚)𝑚
𝑚

∏
𝑗=1

Γ
{𝛼
𝑚

+ 𝑛(𝑚)𝑗

}
, (9.17)

where 𝑛(𝑚)𝑗 is the number of samples lying between 𝑗−1
𝑚 and 𝑗

𝑚 .
Also, under this simplified model it follows from (9.13) that after marginalising 𝜃, the pos-

terior predictive density conditional on 𝑚 satisfies

p(𝑥 ∣ 𝑚,𝒙) =
𝑚

∑
𝑗=1

1[𝑗−1,𝑗)(𝑚 𝑥)
𝛼 + 𝑚 𝑛(𝑚)𝑗

𝛼 + 𝑛
. (9.18)

Model averaging (9.18) with respect to the posterior distribution for 𝑚 obtains the marginal
predictive density,

p(𝑥 ∣ 𝒙) =
∞

∑
𝑚=1

𝑝(𝑚 ∣ 𝒙)
𝑚

∑
𝑗=1

1[𝑗−1,𝑗)(𝑚 𝑥)
𝛼 + 𝑚 𝑛(𝑚)𝑗

𝛼 + 𝑛
. (9.19)

The predictive density (9.19) could be estimated by a finite approximation of the outer sum.

103

Remark. Relaxing the first two assumptions of this section and returning to a general base
measure P0 on [𝑎, 𝑏] with corresponding distribution function 𝐹0, the same principle of equal
bin-width histogram modelling could equally be applied on the 𝐹0-scale, such that segment 𝑗 is the
interval [𝜏∗𝑗−1, 𝜏∗𝑗) where 𝜏∗𝑗 = 𝐹−10 (𝑗/𝑚). This is somewhat analogous to the Pólya tree partition
of (9.10). Then, for example,

𝑝(𝑚 ∣ 𝒙) ∝
𝑝(𝑚) Γ(𝛼)

Γ(𝛼 + 𝑛) Γ(𝛼/𝑚)𝑚
𝑚

∏
𝑗=1

(𝜏∗𝑗 − 𝜏
∗
𝑗−1)

𝑛(𝑚)𝑗 Γ
{𝛼
𝑚

+ 𝑛(𝑚)𝑗

}
.

9.4.2.1. Approximate inference

The simplicity of inference for the Bayesian histogram with equal bin widths (and using
Lebesgue measure as the base measure) was illustrated by the joint density 𝑝(𝒙, 𝑚) (9.17).
With just a single unknown parameter 𝑚, it is feasible to take a finite sum approximation of
the marginal likelihood,

𝑝(𝒙) =
∞

∑
𝑚=1

𝑝(𝒙, 𝑚), (9.20)

by terminating the summation at a suitably large value of𝑚. A useful approximation of𝑝(𝑚 ∣ 𝒙)
is thereby obtained from the ratio of (9.17) and (9.20). Access to the discrete posterior distribu-
tion for 𝑚 allows direct posterior inference without resorting to computational methods (cf.
Chapter 5). For example, it is straightforward to calculate posterior expectations for functions
of interest as simple weighted sums.

Assuming a relatively uninformative geometric prior distribution for𝑚, the following Python
code (bayesian_histogram.py) obtains the maximum a posteriori value of𝑚 in this set-
ting, and more importantly illustrates model averaging (cf. Section 7.2), marginalising over 𝑚
to obtain the posterior expectation of the unknown density function.

bayesian_histogram.py

import numpy as np
from scipy.special import gammaln
from collections import Counter

def log_prior(m,theta=.01):
return np.log(theta)+(m-1)*np.log(1-theta)

def log_likelihood(x,m,a=0.0,b=1.0,alpha=10):
c = Counter([int(x_i*m/(b-a)) for x_i in x-a]) #bin counts n_j
ml = len(x)*np.log(m/(b-a)) - len(c)*gammaln(alpha/m)
ml += sum([gammaln(alpha/m + c[i]) for i in c])
return ml c

def density(t,a,b,m,c,n,alpha):
width = (b-a)/m
ind = min(int((t-a)/(b-a)*m),m-1)
return (alpha*width + c[ind])/(alpha*(b-a) + n)/width

def model_average(x,max_m=100,grid=100,a=0.0,b=1.0,alpha=10):
n = len(x)

104

max_post = -float('inf')
sum_probs = 0
ave_density = np.zeros(grid)
probs = np.zeros(max_m+1)
grd = a+(b-a)*np.arange(grid)/(grid-1.0)
for m in range(1,max_m+1):

log_lhd,ctr = log_likelihood(x,m,a,b,alpha)
log_post= log_lhd + log_prior(m)
if log_post > max_post:

renormalise = np.exp(max_post-log_post)
sum_probs *= renormalise
probs[:m] *= renormalise
ave_density *= renormalise
max_post = log_post
max_m = m
max_m_ctr = ctr

probs[m] = np.exp(log_post-max_post)
sum_probs += probs[m]
densities = [density(g_i,a,b,m,ctr,n,alpha) for g_i in grd]
ave_density += probs[m] * np.array(densities)

ave_density /= sum_probs;
return ave_density, max_m, max_m_ctr, probs/sum_probs

Inference under thismodel is illustrated by the following Python code (bayes_histogram_
simulate.py), where 10,000 observations are simulated from a mixture of two beta distri-
butions. The three plots generated by the code show the true mixture density (dashed line)
and the model-averaged posterior expected density (solid line), the approximated posterior
distribution for 𝑚, and the histogram density which contributed most to the model-averaged
density function, corresponding to the maximum a posteriori value of 𝑚 which was equal to
27.

#! /usr/bin/env python
bayes_histogram_simulate.py
from bayesian_histogram import *
import matplotlib.pyplot as plt
from scipy.stats import beta
gen = np.random.default_rng(seed=0)

def simulate_beta_mixture(n, beta_pars, probs):
z=gen.choice(len(probs), n, p=probs)
return np.array([gen.beta(*(beta_pars[z_i])) for z_i in z])

def mixture_density(x, beta_pars, probs):
return sum([probs[i]*beta.pdf(x,*beta_pars[i]) for i in

range(len(probs))])↪

n = 10000
beta_pars=[[20,10],[2,3]]
probs=[0.3,0.7]
x = simulate_beta_mixture(n, beta_pars, probs)
ave_density, m, ctr, pm = model_average(x,40)
m_density = [(ctr[i]*m + 1)/(1 + n) for i in range(m)]

105

fig,axs=plt.subplots(1,3,figsize=(12,4),constrained_layout=True)
fig.canvas.manager.set_window_title('Bayes histogram posterior')
grid = np.linspace(start=0, stop=1, num=len(ave_density))
true_f = [mixture_density(t, beta_pars, probs) for t in grid]
axs[0].plot(grid,ave_density)
axs[0].plot(grid,true_f, color='c', lw=2, linestyle='--')
axs[1].bar(range(len(pm)),pm)
axs[1].set_xlabel(r'm')
axs[1].set_title('Posterior '+r'$p(m\vert x,y)$')
axs[0].set_title('Averaged posterior mean density function')
axs[2].autoscale(enable=True, axis='x', tight=True)
axs[2].step(np.linspace(start=0, stop=1,

num=m),m_density,where='post')↪

axs[2].set_title('Posterior mean density for '+r'$m=$'+str(m))
for plt_ind in [0,2]:

axs[plt_ind].autoscale(enable=True, axis='x', tight=True)
axs[plt_ind].set_xlabel(r'x')
axs[plt_ind].set_ylim(bottom=0)

plt.show()

106

CHAPTER

10

NONPARAMETRIC REGRESSION

Chapter 9 introduced the concept of nonparametricmodelling,with a focus on infinite-dimensional
parameter representations for unknown probability measures. In this chapter, attention turns
to regression modelling, introduced in Chapter 8 with the linear model.

10.1. Nonparametric regression modelling
Recall from Chapter 8 the regression problem of expressing probabilistic beliefs about real-
valued response variables 𝑦1, 𝑦2,… which are thought to statistically depend on corresponding
known 𝑝-dimensional covariates 𝑥1, 𝑥2,…. Regression exchangeability (Definition 8.1.1) of the
response-covariate pairs (𝑦𝑖, 𝑥𝑖) was noted to be the natural extension of standard exchange-
ability in this setting, which simplifies the regression task to learning a common parametric
form for the conditional distribution of 𝑦𝑖 ∣ 𝑥𝑖.

The linear model was shown in Chapter 8 to be a highly flexible parametric likelihoodmodel
in the regression-exchangeable framework. The models presented in this chapter provide
further flexibility through infinite-dimensional representations of regression functions 𝑓 ∶
𝑥 ↦ E(𝑦 ∣ 𝑥); these will include natural extensions of the linear model which have unbounded
dimension.

As with nonparametric probability models, nonparametric regression models should allow
arbitrarily close representations of functions 𝑓 from a wider class of regression functions
than fixed parametric forms allow. The first such example considered is the Gaussian process,
popularised for its analytical tractability and its close relationship with the linear model.

107

10.2. Gaussian processes

Consider the standard regression problem of making inference about an unknown function
𝑓 ∶ → R defined on a space ⊆ R𝑝 for some 𝑝 ≥ 1. A Gaussian process prior distribution for
𝑓 assumes a multivariate normal distribution for the function values 𝑓 (𝒙) = (𝑓 (𝑥1),… , 𝑓 (𝑥𝑛))
at any finite collection of points 𝒙 = (𝑥1,… , 𝑥𝑛) in , according to the following specification.

Definition 10.2.1: Kernel function
A symmetric function 𝑘 ∶ × → R is a positive semidefinite kernel if, for all 𝑥1,… , 𝑥𝑛 ∈ ,
and 𝑐1,… , 𝑐𝑛 ∈ R,

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1
𝑐𝑖 𝑐𝑗 𝑘(𝑥𝑖, 𝑥𝑗) ≥ 0.

If 𝑘(𝑥, 𝑥′) is a function of 𝑥 − 𝑥′ then the kernel is said to be stationary; if 𝑘(𝑥, 𝑥′) is a
function of |𝑥 − 𝑥′| then the kernel is isotropic.

Example 10.2.1. Example kernel functions. The following examples satisfy the positive semidef-
inite requirement of Definition 10.2.1 for 𝛼, 𝜌 > 0.

• Dot product/linear:
𝑘(𝑥, 𝑥′) = 𝛼2 (𝑥 ⋅ 𝑥′).

• Squared exponential/radial basis function:

𝑘(𝑥, 𝑥′) = 𝛼2 exp(−.5 ‖𝑥 − 𝑥′‖2/𝜌2). (10.1)

• Exponential:
𝑘(𝑥, 𝑥′) = 𝛼2 exp(−‖𝑥 − 𝑥′‖/𝜌). (10.2)

Definition 10.2.2: Gaussian process
Let 𝑚 ∶ → R be any function and 𝑘 ∶ × → R be a positive semidefinite kernel.
Then {𝑓 (𝑥) ∣ 𝑥 ∈ } is a Gaussian process with mean function 𝑚 and covariance function
𝑘, written 𝑓 ∼ GP(𝑚, 𝑘) if for any 𝒙 = (𝑥1,… , 𝑥𝑛),

𝑓 (𝒙) ∼ Normal𝑛 (𝑚(𝒙), 𝐾(𝒙,𝒙)) ,

where

𝐾(𝒙,𝒙) =

⎡
⎢
⎢
⎢
⎢
⎣

𝑘(𝑥1, 𝑥1) 𝑘(𝑥1, 𝑥2) … 𝑘(𝑥1, 𝑥𝑛)
𝑘(𝑥2, 𝑥1) 𝑘(𝑥2, 𝑥2) … 𝑘(𝑥2, 𝑥𝑛)

⋮ ⋮ ⋱ ⋮
𝑘(𝑥𝑛, 𝑥1) 𝑘(𝑥𝑛, 𝑥2) … 𝑘(𝑥𝑛, 𝑥𝑛)

⎤
⎥
⎥
⎥
⎥
⎦

. (10.3)

108

Remark. The squared exponential kernel (10.1) is the most commonly used kernel in Gaussian
process modelling; samples from processes with this kernel are infinitely differentiable (Rasmussen
and Williams, 2005, p. 83). For the exponential kernel (10.2), samples are continuous but not
differentiable (Rasmussen and Williams, 2005, p. 86).

Exercise 10.1 Gaussian process closure. Suppose 𝑓 ∼ GP(𝑚, 𝑘) and𝑚 ∼ GP(𝑚0, 𝑘0),where
𝑚0 is any function and 𝑘 and 𝑘0 are positive semidefinite kernels. Show that marginally,

𝑓 ∼ GP(𝑚0, 𝑘 + 𝑘0). (10.4)

10.2.1. Normal errors

Available information about the function is commonly assumed to be limited to a finite number
of pointwise, typically noisy, real-valued observations 𝒚 = (𝑦1,… , 𝑦𝑛) of the function values
at domain points 𝒙 = (𝑥1,… , 𝑥𝑛) in . If those observations can be assumed to satisfy

𝑦𝑖 = 𝑓 (𝑥𝑖) + 𝜀𝑖, (10.5)

where the observation errors (𝜀1,… , 𝜀𝑛) are independent Normal(0, 𝜎2) variables, then the
Gaussian process is a conjugate prior for 𝑓 .

Proposition 10.1. Conjugacy of Gaussian process. If independently 𝑦𝑖 ∼ Normal(𝑓 (𝑥𝑖), 𝜎2),
𝑖 = 1,… , 𝑛 and 𝑓 ∼ GP(𝑚, 𝑘), then the posterior distribution for 𝑓 is again a Gaussian process

𝑓 ∣ 𝒙, 𝒚, 𝑘, 𝑚, 𝜎 ∼ GP(𝑚∗, 𝑘∗),

where

𝑚∗(𝑥) = 𝑚(𝑥) + 𝑘(𝑥,𝒙){𝐾(𝒙,𝒙) + 𝜎2𝐼𝑛}−1(𝒚 − 𝑚(𝒙)), (10.6)
𝑘∗(𝑥, 𝑥′) = 𝑘(𝑥, 𝑥′) − 𝑘(𝑥,𝒙){𝐾(𝒙,𝒙) + 𝜎2𝐼𝑛}−1𝑘(𝒙, 𝑥′).

Proof. The result follows from the conjugacy of normal-normalmixtures exploited in Chapter 8.

It follows from Proposition 4.1 that observations of an unknown function with independent
Gaussian errors have a closed-form marginal likelihood under a Gaussian process prior.

Proposition 10.2. Gaussian process marginal likelihood. If 𝑓 ∼ GP(𝑚, 𝑘) and independently
𝑦𝑖 ∼ Normal(𝑓 (𝑥𝑖), 𝜎2), 𝑖 = 1,… , 𝑛, then 𝒚 ∣ 𝒙 has a marginal likelihood satisfying

𝑝(𝒚 ∣ 𝒙, 𝑘, 𝑚, 𝜎) =
exp [−(𝒚 − 𝑚(𝒙))⊺{𝐾(𝒙,𝒙) + 𝜎2𝐼𝑛}−1(𝒚 − 𝑚(𝒙))/2]

|𝐾(𝒙,𝒙) + 𝜎2𝐼𝑛|
1
2 (2𝜋) 𝑛2

. (10.7)

Proof. As noted in Rasmussen and Williams (2005, p. 19), the likelihood (10.7) is obtained
directly from observing that 𝒚 ∣ 𝒙 ∼ Normal𝑛(𝑚(𝒙), 𝐾(𝒙,𝒙) + 𝜎2𝐼𝑛).

109

In a further duality with the linear model, the inverse-gamma distribution can provide
a conjugate prior distribution for the error variance 𝜎2 if the kernel 𝑘 can be satisfactorily
factorised as 𝑘(𝑥, 𝑥′) = 𝜎2𝑘′(𝑥, 𝑥′) for a kernel 𝑘′, such that beliefs about the parameters of 𝑘′
do not depend on 𝜎.
Corollary 10.1. Under the conditions of Proposition 10.2, suppose 𝑘(𝑥, 𝑥′) = 𝜎2𝑘′(𝑥, 𝑥′) and
correspondingly the matrix 𝐾(𝒙,𝒙) = 𝜎2𝐾 ′(𝒙,𝒙). Assuming the conjugate prior,

𝜎−2 ∼ Gamma(𝑎, 𝑏),

a further marginalisation of the likelihood (10.7) is

𝑝(𝒚 ∣ 𝒙, 𝑘′, 𝑚) =
1

(2𝜋) 𝑛2 |𝐾 ′(𝒙,𝒙) + 𝐼𝑛|
1
2
⋅
Γ(𝑎𝑛) 𝑏𝑎

Γ(𝑎) 𝑏𝑎𝑛𝑛
, (10.8)

where

𝑎𝑛 = 𝑎 + 𝑛/2,
𝑏𝑛 = 𝑏 + (𝒚 − 𝑚(𝒙))⊺{𝐾 ′(𝒙,𝒙) + 𝐼𝑛}−1(𝒚 − 𝑚(𝒙))/2.

Hence (cf. Proposition 8.2),

𝒚 ∣ 𝒙, 𝑘′, 𝑚 ∼ St𝑛(2𝑎, 𝑚(𝒙), 𝑏(𝐾 ′(𝒙,𝒙) + 𝐼𝑛)/𝑎).

Exercise 10.2 Linear model as a Gaussian process. Conditional on 𝜎, express the Bayes
linear model with simplified conjugate prior (Section 8.2.1),

𝑦 ∼ Normal𝑛(𝑋𝛽, 𝜎2𝐼𝑛),
𝛽 ∼ Normal𝑝(0, 𝜎2𝜆−1𝐼𝑝),

as normal error observations (10.5) of a Gaussian process.

10.2.2. Inference
Withnormally distributed observation errors leading to closed-form expressions for themarginal
likelihood in Proposition 10.2 and Corollary 10.1, inferential attention is often primarily fo-
cused on the selection of the covariance kernel and the associated parameters, and secondarily
on the mean function (which is often simply assumed to be zero everywhere).
Remark. There are two related reasons why a zero mean might safely be assumed, without
significant loss of generality, for Gaussian process modelling of an unknown function 𝑓 .
First, if a non-zero mean function 𝑚(𝑥) is assumed to be known, then attention can switch to

quantifying uncertainty about the deviation (𝑓 − 𝑚) ∼ GP(0, 𝑘); inference about 𝑓 − 𝑚 is then
based on correspondingly detrended observations (𝑥𝑖, 𝑦′𝑖) where 𝑦′𝑖 = 𝑦𝑖 − 𝑚(𝑥𝑖), 𝑖 = 1,… , 𝑛.
Second, if the mean function 𝑚(𝑥) is unknown but can be assumed to also have a Gaussian

process prior with known mean function 𝑚0(𝑥), then by Exercise 10.1 the marginal distribution
for 𝑓 is again a Gaussian process with mean 𝑚0(𝑥) and an additively modified covariance kernel
(10.4). The known mean function 𝑚0(𝑥) could be subtracted from the observation process and
inference about 𝑓 −𝑚0 could again proceed with the assumption of a zero-mean Gaussian process.

110

For inference on covariance kernel parameters, there are no further analytical results and
computational inferential methods are required, such as Markov chain Monte Carlo (Sec-
tion 5.3). Fortunately, implementation in the probabilistic programming language Stan (Sec-
tion 6.2) is straightforward, as demonstrated by the following synthetic regression data exam-
ple.

Example 10.2.2. Consider the normal error model from Corollary 10.1 which assumes an inverse-
gamma prior for 𝜎2, and suppose the assumed covariance function is the popular squared expo-
nential covariance kernel (10.1). For simplicity of presentation, the following Stan code (gp_
regression.stan) assumes a univariate unknown function following a Gaussian process
with zero mean function and uninformative, improper priors for the amplitude parameter 𝛼 and
the length-scale parameter 𝜌 which determine the squared exponential kernel.

// gp_regression.stan

functions {
real mean_fn(array[] real t, array[] real x, vector ky, real a,

real r){↪

return dot_product(gp_exp_quad_cov(t, x, a, r)[1],ky);
}

}
data {

int<lower=0> n; // number of observations
int<lower=0> m; // number of grid points
vector[n] y; // response variables
array[n] real x; // vector of covariates
real<lower=0> a;
real<lower=0> b;

}
transformed data {

vector[n] mu = rep_vector(0, n);
array[m] real grid; // vector of grid points
for (i in 1:m)

grid[i] = min(x)+(max(x)-min(x))*(i-1)/(m-1);
}
parameters {

real<lower=0> alpha; //kernel amplitude
real<lower=0> rho; //kernel lengthscale

}
transformed parameters {

matrix[n,n] Sigma = gp_exp_quad_cov(x, alpha, rho);
for (i in 1:n)

Sigma[i,i] += 1;
}
model {

y ~ multi_student_t(2*a, mu, b/a * Sigma);
}
generated quantities {

vector[n] Ky = inverse_spd(Sigma) * y;
vector[m] fn_vals;
for (i in 1:m)

fn_vals[i] = mean_fn(segment(grid,i,1),x,Ky,alpha,rho);
}

111

Notably, Stan has an in-built squared exponential covariance function, gp_exp_quad_cov ,
which is used twice in the code: first within the functions{} block for placing user-defined
functions, where the covariance function is required for obtaining the posterior mean regression
function (10.6); and second within the transformed parameters{} block for calculating
the covariance matrix factor (𝐾 ′(𝒙,𝒙) + 𝐼𝑛) needed for evaluating the likelihood (10.8). For the
latter use case, the observation in Corollary 10.1 that 𝑦 is marginally multivariate Student’s
𝑡-distributed is utilised to obtain a very simple statement for the model{} block.
The following PyStan code (gp_regression_stan.py) simulates univariate functional

data with independent standard normal errors, where the true underlying function is

𝑓 (𝑥) = 10 + 5 sin(𝑥) +
𝑥2

5
, 0 ≤ 𝑥 ≤ 10. (10.9)

The code then calls gp_regression.stan in order to make posterior inference about the
two parameters of the squared exponential kernel. Two inferential summary plots are provided
for illustration: First, the posterior mean regression function, evaluated at 50 equally spaced grid
points; second, the posterior distribution of the most interesting length-scale parameter 𝜌, which
determines the smoothness of the regression function by controlling the rate at which covariance
decreases with increasing distance between input points.

#! /usr/bin/env python
gp_regression_stan.py

import stan
import numpy as np
import matplotlib.pyplot as plt

def reg_fn(t): return 10+5*np.sin(t)+t**2/5.0

Simulate data
gen = np.random.default_rng(seed=0)
n = 40
m = 50
T = 10
x = np.linspace(start=0, stop=T, num=n)
y = [gen.normal(loc=reg_fn(x_i)) for x_i in x]
sm_data = {'n':n, 'x':x, 'y':y, 'a':1, 'b':0.5, 'm':m}

Initialise stan object
with open('gp_regression.stan','r',newline='') as f:

sm = stan.build(f.read(),sm_data,random_seed=1)

Select the number of MCMC chains and iterations, then sample
chains, samples, burn = 1, 10000, 1000
fit=sm.sample(num_chains=chains, num_samples=samples,

num_warmup=burn, save_warmup=False)↪

Plot regression function and posterior for rho
fig,axs=plt.subplots(1,2,figsize=(10,4),constrained_layout=True)
fig.canvas.manager.set_window_title('GP regression posterior')
f = np.mean(fit['fn_vals'], axis=1)
grid = np.linspace(start=0, stop=T, num=m)

112

true_f = [reg_fn(x_i) for x_i in grid]
r = fit['rho'][0]
axs[0].plot(grid,f)
axs[0].plot(grid,true_f, color='c', lw=2, linestyle='--')
axs[0].scatter(x,y, color='black')
axs[0].set_title('Posterior mean regression function')
axs[0].set_xlabel(r'x')
axs[1].hist(r,200, density=True);
axs[1].set_title('Approximate posterior density of '+r'ρ')
axs[1].set_xlabel(r'ρ')
plt.show()

10.3. Spline models
Linear spline regression models were introduced in Section 8.3.1.2 as an interesting special case
of the normal linear model. For an increasing sequence of 𝑚 ≥ 0 knot points 𝜏 = (𝜏1,… , 𝜏𝑚),
the linear spline basis functions (8.16) together with some intercept terms give the following
piecewise linear regression model:

𝑓 (𝑥) = 𝛼0 + 𝛼1𝑥 +
𝑚

∑
𝑗=1
𝛽𝑗(𝑥 − 𝜏𝑗)+, (10.10)

for 𝛼𝑗 , 𝛽𝑗 ∈ R. The regression function (10.10) is a continuous function made up of (𝑚+1) linear
segments, and can be generalised straightforwardly to continuous piecewise polynomials of
degree 𝑑 ≥ 1 with (𝑑 − 1) continuous derivatives:

𝑓 (𝑥) =
𝑑

∑
𝑗=0
𝛼𝑗𝑥 𝑗 +

𝑚

∑
𝑗=1
𝛽𝑗(𝑥 − 𝜏𝑗)𝑑+. (10.11)

The special case of the regression function (10.11) where 𝑑 = 3, corresponding to cubic splines,
is known to present an optimal trade-off between smoothness (squared second derivative) and
fidelity to fitted data points (squared residuals) (see, for example Green and Silverman, 1994,
p. 11).

113

The general spline regression function (10.11) is a linearmodel with respect to the regression
coefficients (cf. Section 8.3.1), and the closed-form marginal likelihood (8.12) still applies. With
𝑉 now denoting the covariance matrix of the parameter vector (𝛼0,… , 𝛼𝑑 , 𝛽1,… , 𝛽𝑚) under the
conjugate prior (cf. Section 8.2.1), here the same likelihood equation is written

𝑝(𝒚 ∣ 𝒙, 𝑚, 𝜏) =
Γ(𝑎𝑛) |𝑉𝑛|

1
2 𝑏𝑎

(2𝜋) 𝑛2 Γ(𝑎) |𝑉 | 12 𝑏𝑛𝑎𝑛
,

with the left-hand side emphasising the dependency of the design matrix𝑋 of this linear model
on the 𝑚-vector of knot points 𝜏. The quantities 𝑎𝑛, 𝑏𝑛, 𝑉𝑛 were defined in (8.10).
Continuing on from an earlier remark in Section 10.2, a consequence of spline regression

being a linear model is that it must therefore be a (degenerate) special case of a Gaussian
process. However, for fixed 𝑚, spline regression is not a nonparametric model. To endow
spline regression with the properties of a nonparametric model, the number of knots must be
allowed to increase without upper bound.

Following the same construction as the Bayesian histogrammodel in Section 9.4.1, a suitable
prior distribution 𝑝(𝑚, 𝜏) is required for the number and location of the knot points, with the
Poisson process prior (9.15) being a default choice. Inference from the posterior density for
the knot locations,

𝑝(𝑚, 𝜏 ∣ 𝒚,𝒙) ∝ 𝑝(𝑚, 𝜏)
|𝑉𝑛|

1
2

|𝑉 | 12𝑏𝑛𝑎𝑛
,

can be achieved using (reversible jump) Markov chain Monte Carlo sampling (Green, 1995)
(cf. Chapter 5). Further, in-depth coverage of inference for nonparametric spline models is
provided within Denison et al. (2002).

Exercise 10.3 Spline regression as a Gaussian process. Suppose the spline regression
function 𝑓 from (10.11) with coefficients (𝛼0,… , 𝛼𝑑 , 𝛽1,… , 𝛽𝑚) ∼ Normal𝑚+𝑑+1(0, 𝑣 𝐼𝑚+𝑑+1).
Express 𝑓 as a Gaussian process.

10.3.1. Spline regression with equally spaced knots
Analogous to the equal bin-size histogram from Section 9.4.2, the spline regression inference
problem can be further simplified through an assumption of equally spaced knot points on an
observation interval, say [0, 𝑇]. Writing 𝑝(𝑚) for the prior probability mass function for the
number of knots 𝑚, the conditional distribution 𝑝(𝜏 ∣ 𝑚) then assigns probability one to the
𝑚-vector 𝜏∗ with 𝑗th element

𝜏∗𝑗 = 𝑗
𝑇

𝑚 + 1
, 𝑗 = 1,… , 𝑚. (10.12)

Posterior inference then concentrates on the single, unknown parameter 𝑚,

𝑝(𝑚 ∣ 𝒚,𝒙) ∝ 𝑝(𝑚)
|𝑉𝑛|

1
2

|𝑉 | 12𝑏𝑛𝑎𝑛
. (10.13)

As in Section 9.4.2, posterior expectations with respect to (10.13) can then be calculated directly
by taking a finite sum approximation over a sufficiently large range of values for 𝑚.

114

Example 10.3.1. Consider a spline regression function with equally spaced knot points, parti-
tioning [0, 𝑇] into an unknown, geometrically distributed number of segments,

𝑓 (𝑥) =
𝑑

∑
𝑗=0
𝛼𝑗𝑥 𝑗 +

𝑚

∑
𝑗=1
𝛽𝑗 (𝑥 −

𝑗
𝑚 + 1

𝑇)

𝑑

+
,

𝑝(𝑚) = (1 − 𝜆)𝜆𝑚,

where 0 ≤ 𝜆 ≤ 1. The following Python code (spline_regression.py) demonstrates
Bayesian model averaging over the number of knot points to estimate the posteriormean regression
function under the conjugate prior. The code builds upon the code linear_regression.py
(see page 162), presented as a solution to Exercise 8.4 which required a marginal likelihood function
(named lm_log_likelihood()) for the conjugate Bayes linear model.

For each number of knot points, spline_design_matrix() obtains the implied linear
model designmatrix, in order to obtain the marginal likelihood and posteriormean regression func-
tion. Following (8.8), the prior covariancematrix for the regression coefficients (𝛼0,… , 𝛼𝑑 , 𝛽1,… , 𝛽𝑚)
is assumed to take the simplified form 𝑉 = 𝜆−1 𝐼𝑝 for some scalar value 𝜆 > 0, where 𝑝 = 𝑚+𝑑+1
is the number of regression coefficients.

spline_regression.py

import numpy as np
from linear_regression import lm_log_likelihood

def log_prior(m,theta=.01):
return np.log(theta)+m*np.log(1-theta)

def spline_design_matrix(x,tau=[],d=1):
X = np.zeros([len(x),d+1+len(tau)])
X[:,0] = np.ones(len(x))
for j in range(1,d+1):

X[:,j] = [x_i**j for x_i in x]
for j in range(len(tau)):

for i in range(len(x)):
if x[i] > tau[j]:

X[i,d+1+j] = (x[i]-tau[j])**d
return X

def model_average(x,y,max_m=100,grid=50,T=1,d=1,a=.1,b=1,lam=.01):
max_post = -float('inf')
sum_probs = 0
ave_f = np.zeros(grid)
probs = np.empty(max_m+1)
x_grid = np.linspace(start=0, stop=T, num=grid)
for m in range(max_m+1):

tau = np.arange(1,m+1)/float(m+1)*T
X = spline_design_matrix(x,tau,d)
log_lhd,m_n = lm_log_likelihood(y,X,a,b,lam)
log_post= log_lhd + log_prior(m)
if log_post > max_post:

renormalise = np.exp(max_post-log_post)
sum_probs *= renormalise

115

probs[:m] *= renormalise
ave_f *= renormalise
max_post = log_post
max_m,max_m_n,max_tau = m,m_n,tau

probs[m] = np.exp(log_post-max_post)
sum_probs += probs[m]
f = np.dot(spline_design_matrix(x_grid,tau,d),m_n)
ave_f += probs[m] * f

return ave_f/sum_probs, max_m, max_m_n, max_tau, probs/sum_probs

Next, the Python code (spline_regression_simulate.py) provides a simulated ex-
ample, sampling ten noisy observations from the function (10.9) used in Section 10.2.2. Cubic
spline regression is determined by choosing 𝑑 = 3. Three plots are generated by the code: the
true regression function (dashed line) compared against the model-averaged posterior expectation
(solid line), evaluated at 50 equally spaced grid points; the approximated posterior distribution
for 𝑚; the fitted spline function for the maximum a posteriori value of 𝑚, which is seen from the
middle plot to be 𝑚 = 3.

#! /usr/bin/env python
spline_regression_simulate.py
from spline_regression import model_average
import numpy as np
import matplotlib.pyplot as plt
import sys

def reg_fn(t): return 10+5*np.sin(t)+t**2/5.0

def spline_fn(t,tau,beta,d=1):
val = beta[0] + np.dot(beta[1:(d+1)],[t**j for j in

range(1,d+1)])↪

for j in range(len(tau)):
val += beta[j+d+1]*(t-tau[j])**d if t > tau[j] else 0

return val

gen = np.random.default_rng(seed=0)
n = 10 # number of observations
d = 3 if len(sys.argv)<2 else int(sys.argv[1]) # degree of splines
T = 10 # size of function domain
x = np.linspace(start=0, stop=T, num=n)
y = [gen.normal(loc=reg_fn(x_i)) for x_i in x]
grid = np.linspace(start=0, stop=T, num=50)

ave_f,max_m,max_mn,max_tau,pm=model_average(x,y,40,len(grid),T,d)
fig,axs=plt.subplots(1,3,figsize=(12,4),constrained_layout=True)
fig.canvas.manager.set_window_title('Spline regression posterior')
true_f = [reg_fn(x_i) for x_i in grid]
for plt_ind in [0,2]:

axs[plt_ind].plot(grid,true_f, color='c', lw=2, linestyle='--')
axs[plt_ind].scatter(x,y, color='black')
axs[plt_ind].set_xlabel(r'x')

axs[0].plot(grid,ave_f)
axs[0].set_title('Posterior mean regression function')
axs[1].bar(range(len(pm)),pm)

116

axs[1].set_xlabel(r'm')
axs[1].set_title('Posterior '+r'$p(m\vert x,y)$')
axs[2].plot(grid,[spline_fn(t_i,max_tau,max_mn,d) for t_i in grid])
axs[2].set_title('Mean regression function for '+r'$m=$'+str(max_m))
plt.show()

10.4. Partition regression models

Partition models were introduced in Section 9.4.1 for estimating probability distributions,
demonstrating a fundamental idea that an arbitrarily complex global model can be arrived
upon by adaptively partitioning the model space and assuming relatively simple statistical
models within each region of the partition. This idea extends very naturally to the regression
setting, suggesting an adaptive partition of the covariate space whilst assuming straightfor-
ward parametric regression models for each region of the partition. Excellent expositions of
this principle are given by Holmes et al. (2005) and Denison et al. (2002, chapter 7), the latter
noting that partition models build on a premise that “points nearby in predictor space come
from the same local model”. Again, by assuming no upper bound to the size of the partition,
partition models qualify as nonparametric models with the flexibility to approximate a broad
class of regression functions.
Formally, let 𝜋 = {𝐵1, 𝐵2,…} be a partition of . The same parametric regression model

𝑝(𝑦 ∣ 𝑥, 𝜃𝑗) can be independently applied to each -subset 𝐵𝑗 of the partition 𝜋, with subset-
specific parameters 𝜃𝑗 . A simple partitionmodel for𝒚 ∣ 𝒙 thereby assumes a likelihood function
of the form

𝑝(𝒚 ∣ 𝒙, 𝜋) = ∏
𝑗

∫
Θ
𝑝(𝒚𝑗 ∣ 𝒙𝑗 , 𝜃𝑗) d𝑄(𝜃𝑗), (10.14)

where 𝒙𝑗 denotes the predictor values from 𝒙 which lie inside 𝐵𝑗 , and 𝒚𝑗 denotes the corre-
sponding responses. More generally, a partition regression model may incorporate additional
global parameters 𝜓, suggesting a more general likelihood function

𝑝(𝒚 ∣ 𝒙, 𝜋) = ∫
Ψ
d𝑄(𝜓)∏

𝑗
∫
Θ
𝑝(𝒚𝑗 ∣ 𝒙𝑗 , 𝜃𝑗 , 𝜓) d𝑄(𝜃𝑗 ∣ 𝜓). (10.15)

117

Two illustrative examples of this modelling paradigm are presented in this section: univari-
ate changepoint models and multivariate classification and regression trees.

10.4.1. Changepoint models

Partition models in one dimension, such that ⊆ R, are also known as changepoint models. The
covariate space can be divided into intervals 𝐵𝑗 = [𝜏𝑗−1, 𝜏𝑗) implied by an𝑚-vector of ordered
changepoints 𝜏 = (𝜏1,… , 𝜏𝑚) (cf. Section 9.4.1, Section 10.3). Describing a model specification
as a changepoint model is often suggestive of some discontinuity between segments in the
global regression function. In contrast, the local models within each segment will often assume
exchangeability of responses, such that 𝑝(𝑦 ∣ 𝑥, 𝜃) = 𝑝(𝑦 ∣ 𝜃). In such cases, (10.14), for
example, implies

𝑝(𝒚 ∣ 𝒙, 𝜋) = 𝑝(𝒚 ∣ 𝒙, 𝑚, 𝜏) = ∏
𝑗
𝑝(𝒚𝑗).

If a conjugate regression model is assumed for each segment, (10.14) and (10.15) can each
provide closed-form expressions for the corresponding changepoint likelihood function 𝑝(𝒚 ∣
𝒙, 𝑚, 𝜏,). In such cases, assuming a suitable prior distribution 𝑝(𝑚, 𝜏) for the number and loca-
tion of the changepoints such as the Poisson process prior (9.15), inference from the posterior
density for the changepoints,

𝑝(𝑚, 𝜏 ∣ 𝒚,𝒙) ∝ 𝑝(𝑚, 𝜏) 𝑝(𝒚 ∣ 𝒙, 𝑚, 𝜏),

can be achieved via (reversible jump) Markov chain Monte Carlo sampling (Green, 1995).
Python code implementingMCMC inference for some standard cases of the segment regression
model 𝑝(𝑦 ∣ 𝑥, 𝜃𝑗 , 𝜓) can be found in Heard (2025); this software also considers an extended
modelling paradigm of changepoint regimes, allowing an additional complexity that regression
parameters 𝜃𝑗 might be shared between several changepoint segments.

Exercise 10.4 Normal changepoint model as a Gaussian process. Suppose 𝑚 > 0 known
changepoints 𝜏 = (𝜏1,… , 𝜏𝑚) ∈ (0, 𝑇)𝑚 in a piecewise constant regression function,

𝑓 (𝑥) =
𝑚

∑
𝑗=0

1[𝜏𝑗 ,𝜏𝑗+1)(𝑥) ⋅ 𝜇𝑗 ,

where 𝜏0 ≡ 0, 𝜏𝑚+1 ≡ 𝑇 and independently 𝜇1,… , 𝜇𝑚+1 ∼ Normal(0, 𝑣). Conditional on 𝜏,
express this changepoint model for 𝑓 as a Gaussian process.

10.4.1.1. Changepoint regression with equally spaced changepoints

Analogously to Sections 9.4.2 and 10.3.1, inference about an unknown number of unknown
changepoint locations can be largely simplified (although possibly over-simplified) by assum-
ing the changepoints are equally spaced on a given interval, say [0, 𝑇], meaning that only
the number of changepoints 𝑚 is considered unknown. Writing the prior probability mass
function for 𝑚 as 𝑝(𝑚), and again denoting the equally spaced changepoints as 𝜏∗ (10.12), this

118

leads to a univariate posterior mass function

𝑝(𝑚 ∣ 𝒚,𝒙) ∝ 𝑝(𝑚) 𝑝(𝒚 ∣ 𝒙, 𝑚, 𝜏∗). (10.16)

Posterior inference with (10.16) can typically be well approximated analytically by taking a
finite sum with a suitably large number of terms, as noted in the aforementioned sections.

Example 10.4.1. Piecewise constant normal changepoint regression. Consider the equally spaced
changepoint model (10.16), with exchangeable, normally distributed observations 𝒚𝑗 within each
segment 𝑗 . Suppose the normal distribution mean parameters 𝜇𝑗 vary between segments, but a
single, global error variance parameter 𝜎2 is shared by all the segments.

Assuming conjugate priors for all unknowns implies a piecewise constant regression with closed-
form marginal likelihood of the form (10.15), where 𝜎 corresponds to the nuisance parameter
𝜓. This particular changepoint model is actually equivalent to the spline regression model in
Example 10.3.1 when the degree 𝑑 = 0, corresponding to a piecewise constant regression function.

Repeating the simulated data analysis from Example 10.3.1 with the same Python code (spline_
regression_simulate.py) but setting 𝑑 = 0 gives the following output plots for change-
point inference.

Even though the assumed regression function has 𝑚 discontinuities for each value of 𝑚, the
model-averaged posterior mean regression function is continuous. Conversely, because the number
of observations is small (𝑛 = 10) the posterior mode for the number of changepoints is found at
𝑚 = 2, despite the underlying regression function begin a smooth, non-constant function.

10.4.2. Classification and regression trees
Binary trees provide an interpretable class of models for recursively partitioning a multivariate
predictor space ⊂ R𝑝 with 𝑝 ≥ 2. Intuitively, they are a natural multivariate extension of
univariate changepoint models. Fig. 10.1 shows an illustrative tree; within each of the square
terminal nodes, a separate regression model could be fit to the response data falling within
that category, combining for an overall likelihood model (10.14).

Denison et al. (1998) parameterise a tree 𝑇 as a set of triples of the form

(splitting node label, variable index, splitting value). (10.17)

119

Any descendant splitting node label 𝑠 is uniquely defined given its parent’s label 𝑠′, setting
𝑠 = 2𝑠′ if the node acts on data for which the query at the parent node is true, and 𝑠 = 2𝑠′ + 1
otherwise.

𝑥2 ≤ 𝑎

𝑥1 ≤ 𝑏 𝑥3 ≤ 𝑐

𝑥1 ≤ 𝑑

Y

Y N

N

Y

Y N

N

Figure 10.1.: An example of a classification and regression tree model on three variables.

Exercise 10.5 CART notation and partition. Consider the tree in Fig. 10.1.

(i) Express the tree as a set of triples (10.17) according to the notation of Denison et al.
(1998).

(ii) State the partition of R3 implied by the tree.

Bayesian implementations of partition modelling with trees for classification and regression
problems (CART) are described in Chipman et al. (1998) andDenison et al. (1998); each proposes
a different prior distribution 𝑝(𝑇) for the partitioning tree 𝑇 , and uses Markov chain Monte
Carlomethods to sample from the posterior distribution of the tree. Both articles openly discuss
how MCMC sampling of the trees is fraught with difficulties, due to the nested structure of
the partitions. Perhaps more significantly, Chipman et al. (2010) presents a Bayesian additive
regression tree (BART) model which provides further flexibility and better MCMC mixing;
some Python implementations of BART can be found online.

120

CHAPTER

11

CLUSTERING AND LATENT FACTOR
MODELS

Hierarchical models were previously discussed in Section 3.3. This chapter gives further details
of practical Bayesian modelling with hierarchies. In some application contexts, the hierarchies
are understood to be known during the data collection process. For example, in the student-
grade example of Section 6.1, the hierarchical model structure recognised that each row of the
data matrix 𝑋 corresponded to test grades from the same student.

In other contexts, the hierarchies may be a subjective construct with associated uncertainty.
These hierarchies are characterised by additional unknown parameters, sometimes formulated
as discrete clusters and otherwise as continuous latent factors. This chapter considers some
more advanced modelling techniques commonly applied in such cases.

11.1. Mixture models
Suppose 𝒙 = (𝑥1,… , 𝑥𝑛) are 𝑛 sampled continuous random variables which are assumed to be
exchangeable. By De Finetti’s representation theorem (Theorem 2.2), necessarily

𝑝(𝒙) = ∫
𝑛

∏
𝑖=1

p(𝑥𝑖) d𝑄(p),

where the integral is taken over some suitable space of density functions for the unknown
density p.
A flexible class of density functions can be obtained by considering families of mixture

distributions. As with the partition models considered in Section 9.4, each component density
might be a relatively standard parametric model and yet still give rise to a mixture which is

121

very adaptable to different underlying density shapes. The following sections present finite
and infinite mixture representations, although the difference between the two can be fairly
limited in practice.

Remark. Mixture distributions can be regarded as clustering models (Fraley and Raftery, 2002),
implicitly partitioning the 𝑛 variables according to the mixture component from which they
were drawn. Estimating this underlying cluster structure can sometimes be a primary inferential
objective, requiring specification of a suitable loss function (Section 1.5.2) as exemplified by Lau
and Green (2007).

11.1.1. Finite mixture models

Suppose the assumed density p is a mixture of 𝑚 component densities from the same para-
metric family, with a general formulation

p(𝑥) =
𝑚

∑
𝑗=1
𝑤𝑗 𝑓 (𝑥 ∣ 𝜃𝑗 , 𝜓), (11.1)

where 𝜃 = (𝜃1,… , 𝜃𝑚) are unknown parameters specific to each mixture component. In con-
trast, 𝜓 is a global unknown parameter shared across all components, which in some settings
will be redundant. The mixture weights 𝑤 = (𝑤1,… , 𝑤𝑚) are non-negative and sum to one.

Let 𝒛 = (𝑧1,… , 𝑧𝑛) ∈ {1,… , 𝑚}𝑛 denote latent variables representing the mixture components
from which each sample is drawn. Formally, 𝑥𝑖 ∼ p can be equivalently expressed as

𝑧𝑖 ∼ Categorical𝑚(𝑤), (11.2)
𝑥𝑖 ∼ 𝑓 (⋅ ∣ 𝜃𝑧𝑖 , 𝜓),

such that 𝑧𝑖 takes value 𝑗 ∈ {1,… , 𝑚} with probability 𝑝(𝑧𝑖 = 𝑗) = 𝑤𝑗 , and then 𝑥𝑖 is sampled
from the 𝑧𝑖th-component density.
Inferring the latent variables 𝒛 equates to clustering the observed variables 𝒙 into at most

𝑚 non-empty groups, where only samples within the same cluster are assumed to be drawn
from the same population. The conditional likelihood function for 𝒙 given the latent cluster
allocations 𝒛 is simply

𝑝(𝒙 ∣ 𝒛, 𝜃, 𝜓) =
𝑛

∏
𝑖=1
𝑓 (𝑥𝑖 ∣ 𝜃𝑧𝑖 , 𝜓). (11.3)

Marginalising the unknown parameters 𝜃, 𝜓 from (11.3) with respect to assumed prior distri-
butions yields

𝑝(𝒙 ∣ 𝒛) = ∫
Ψ

𝑚

∏
𝑗=1

{

∫
Θ
∏
𝑖∶𝑧𝑖=𝑗

𝑓 (𝑥𝑖 ∣ 𝜃𝑗 , 𝜓) d𝑄(𝜃𝑗 ∣ 𝜓)

}

d𝑄(𝜓). (11.4)

This calculation will be straightforward when assuming conjugate parametric models (cf.
Section 4.2).

122

11.1.1.1. Dirichlet prior for mixture weights

The conjugate prior for the mixture weights 𝑤 is a Dirichlet distribution,

𝑤 ∼ Dirichlet𝑚(𝛼1,… , 𝛼𝑚), (11.5)

for non-negative hyperparameters 𝛼1,… , 𝛼𝑚, chosen such that 𝛼 = ∑𝑚
𝑗=1 𝛼𝑗 represents a no-

tional prior sample size (cf. Section 9.2.1). To obtain symmetry, the Dirichlet hyperparameters
𝛼𝑗 are typically assumed to be identical with each 𝛼𝑗 = 𝛼/𝑚 for a chosen value of 𝛼 > 0.

For a given vector of cluster allocations 𝒛 and for each 𝑗 ∈ {1,… , 𝑚}, let

𝑛𝑗 =
𝑛

∑
𝑖=1

1{𝑗}(𝑧𝑖) (11.6)

be the number of samples attributed to the 𝑗th cluster. Under the categorical model (11.2),

𝑝(𝒛 ∣ 𝑤) =
𝑚

∏
𝑗=1
𝑤𝑛𝑗
𝑗 . (11.7)

Marginalising (11.7) with respect to the Dirichlet prior (11.5) for the unknown mixture weights
yields a marginal distribution for the cluster allocations,

𝑝(𝒛) =
Γ(𝛼)

Γ(𝛼 + 𝑛)

𝑚

∏
𝑗=1

Γ(𝛼𝑗 + 𝑛𝑗)
Γ(𝛼𝑗)

. (11.8)

Remark. The probability distribution (11.8) is known as the multinomial-Dirichlet distribution.

Under the Dirichlet prior, the joint conditional distribution for 𝒙 and 𝒛 can be conveniently
written up to proportionality as

𝑝(𝒙, 𝒛 ∣ 𝜃, 𝜓) ∝
𝑚

∏
𝑗=1

{

Γ(𝛼𝑗 + 𝑛𝑗) ∏
𝑖∶𝑧𝑖=𝑗

𝑓 (𝑥𝑖 ∣ 𝜃𝑗 , 𝜓)

}

.

Alternatively, by first marginalising the unknown parameters (𝜃, 𝜓), the expression (11.8) can
be combined with (11.4) to yield

𝑝(𝒙, 𝒛) = 𝑝(𝒛)𝑝(𝒙 ∣ 𝒛) ∝ ∫
Ψ

𝑚

∏
𝑗=1

{

Γ(𝛼𝑗 + 𝑛𝑗)∫
Θ
∏
𝑖∶𝑧𝑖=𝑗

𝑓 (𝑥𝑖 ∣ 𝜃𝑗 , 𝜓) d𝑄(𝜃𝑗 ∣ 𝜓)

}

d𝑄(𝜓).

(11.9)

11.1.1.2. Mixture of Gaussians

For densities which require support over the whole real line, 𝑓 in (11.1) is commonly assumed
to be the density of a normal distribution with parameter pair 𝜃𝑗 = (𝜇𝑗 , 𝜎𝑗) denoting the mean
and standard deviation, respectively, for the 𝑗th mixture component, implying

p(𝑥) =
𝑚

∑
𝑗=1
𝑤𝑗 𝜙{(𝑥 − 𝜇𝑗)/𝜎𝑗 }/𝜎𝑗 ,

123

where 𝜙 is the standard normal density.
Assuming conjugate normal and inverse-gamma priors for {(𝜇𝑗 , 𝜎𝑗) ∣ 𝑗 = 1,… , 𝑚},

𝜇𝑗 ∣ 𝜎𝑗 ∼ Normal𝑝(0, 𝜎2
𝑗 𝜆

−1),
𝜎−2
𝑗 ∼ Gamma(𝑎, 𝑏),

with 𝑎, 𝑏, 𝜆 > 0, the parameters 𝜇𝑗 and 𝜎2
𝑗 can be integrated out according to (11.9) to obtain

the joint distribution (11.9) of 𝒙 and 𝒛,

𝑝(𝒙, 𝒛) =
Γ(𝛼)

Γ(𝛼 + 𝑛)(2𝜋) 𝑛2

𝑚

∏
𝑗=1

Γ(𝛼𝑗 + 𝑛𝑗)Γ(𝑎 + 𝑛𝑗/2) 𝜆
1
2 𝑏𝑎

Γ(𝛼𝑗)Γ(𝑎)(𝜆 + 𝑛𝑗)
1
2 [𝑏 + 1

2 {�̈�𝑗 − �̇�
2
𝑗 /(𝜆 + 𝑛𝑗)}]

𝑎+
𝑛𝑗
2
, (11.10)

where �̇�𝑗 = ∑𝑖∶𝑧𝑖=𝑗 𝑥𝑖 and �̈�𝑗 = ∑𝑖∶𝑧𝑖=𝑗 𝑥
2
𝑖 .

A simpler but less flexible implementation of themixture of Gaussiansmodel can be obtained
by assuming a single variance parameter which is common to eachmixture component density,
such that 𝜃𝑗 = 𝜇𝑗 and 𝜓 = 𝜎. The corresponding joint distribution for 𝒙 and 𝒛 is

𝑝(𝒙, 𝒛) =
Γ(𝛼)Γ(𝑎 + 𝑛/2) 𝜆 1

2 𝑏𝑎

Γ(𝛼 + 𝑛)Γ(𝑎)(2𝜋) 𝑛2 (𝜆 + 𝑛) 1
2 [𝑏 + 1

2

{
�̈� −∑𝑚

𝑗=1 �̇�2𝑗 /(𝜆 + 𝑛𝑗)
}
]
𝑎+ 𝑛

2

𝑚

∏
𝑗=1

Γ(𝛼𝑗 + 𝑛𝑗)
Γ(𝛼𝑗)

,

where �̈� = ∑𝑛
𝑖=1 𝑥2𝑖 .

11.1.1.3. Inferring the clustering and number of clusters

For a fixed number of mixture components 𝑚, the posterior distribution of the cluster alloca-
tions 𝒛 ∈ {1,… , 𝑚}𝑛 can be obtained up to proportionality from the joint distribution (11.9),

𝑝(𝒛 ∣ 𝒙) ∝ 𝑝(𝒙, 𝒛). (11.11)

The posterior distribution (11.11) can be explored using straightforward Markov chain Monte
Carlo simulation techniques, such as Gibbs sampling, introduced in Section 5.3.

Exercise 11.1 Mixture of normals full conditionals. For the finite mixture of normal density
model (11.10) with component-specific mean and variance parameters assuming conju-
gate priors, state an equation, up to proportionality, for the full conditional distribution
𝑝(𝑧𝑖 ∣ 𝒛−𝑖,𝒙) for 𝑖 ∈ {1,… , 𝑛}.

§ Exercise 11.2 Gibbs sampling mixture of normals. Write code to implement Gibbs
sampling on the finite mixture of normal density model (11.10) with component-specific
mean and variance parameters assuming conjugate priors. Initialise the Markov chain by
ordering the samples and dividing them into 𝑚 equal-sized groups.
Run the code with 10,000 sampled data points generated from the mixture of two

beta distributions simulated in Section 9.4.2.1, assuming 𝑚 = 2. After𝑀 = 100 iterations,
show the proportion of data points assigned to each cluster and the corresponding sample
means.

124

More commonly the number of mixture components 𝑚 will be considered unknown, re-
quiring specification of an additional prior distribution component 𝑝(𝑚); the corresponding
posterior distribution of interest extends to

𝑝(𝑚, 𝒛 ∣ 𝒙) ∝ 𝑝(𝑚) 𝑝(𝒙, 𝒛).

In particular, if 𝑝(𝑚) is assumed to have unbounded support on the natural numbers (for exam-
ple, assuming 𝑚 ∼ Poisson(𝜆) for 𝜆 > 0), the finite mixture model (11.1) becomes a potentially
infinite mixture model, and can therefore be regarded as another nonparametric inferential
model akin to those considered in Chapter 9. Richardson and Green (1997) demonstrated in-
ference for mixture distributions, such as mixtures of Gaussians, with an unknown number of
components using reversible jump Markov chain Monte Carlo.

Remark. As with other nonparametric models, admitting an unbounded number of mixture
components allows the finite mixture model (11.1) to fit increasingly complex density functions
as the number of samples 𝑛 increases.

11.1.2. Dirichlet process mixture models
A natural evolution from the potentially infinite mixture model considered in the previous
section is to consider infinite mixture models. In contrast to (11.1), suppose

p(𝑥) =
∞

∑
𝑗=1
𝑤𝑗 𝑓 (𝑥 ∣ 𝜃𝑗 , 𝜓) (11.12)

for an infinite sequence of positive-valued mixture weights 𝑤1, 𝑤2,… summing to 1, and cor-
responding mixture component density parameters 𝜃1, 𝜃2,…. A convenient nonparametric
model for obtaining infinite mixtures of type (11.12) is the Dirichlet process, introduced in
Section 9.2.

Definition 11.1.1: Dirichlet process mixture
The Dirichlet process mixture (DPM) model for 𝒙 = (𝑥1,… , 𝑥𝑛) assumes a sampling proce-
dure where each sample 𝑥𝑖 is drawn independently from the assumed parametric model
𝑓 with a sample-specific parameter 𝜃𝑖. Furthermore, each parameter 𝜃𝑖 is drawn indepen-
dently from an unknown discrete distribution with Dirichlet process prior:

𝑥𝑖 ∣ 𝜃𝑖 ∼ 𝑓 (⋅ ∣ 𝜃𝑖, 𝜓), 𝑖 = 1,… , 𝑛,
𝜃𝑖 ∼ 𝐺, 𝑖 = 1,… , 𝑛,
𝐺 ∼ DP(𝛼 ⋅ P0),

for 𝛼 > 0 and some base probability distribution P0. More formally,

𝑝(𝒙) = ∫
Ψ
∫
𝐺

𝑛

∏
𝑖=1

{

∫
Θ
𝑓 (𝑥𝑖 ∣, 𝜃𝑖, 𝜓) d𝐺(𝜃𝑖)

}
d𝑄(𝐺) d𝑄(𝜓), (11.13)

where 𝑄(𝐺) is a Dirichlet process.

125

Remark. To ease inference, the base probability distribution P0 is typically assumed to be con-
tinuous and conjugate to the parametric density 𝑓 .

Proposition 11.1. Samples 𝒙 = (𝑥1,… , 𝑥𝑛) drawn from a DPM are exchangeable.

Proof. This property propagates automatically from the exchangeability of 𝜃1, 𝜃2,… from a
distribution following a Dirichlet process (see Exercise 9.1).

Remark. It was noted in Section 9.2 that distributions sampled from a Dirichlet process are
discrete with probability 1, and it is this discreteness which makes (11.13) a clustering model: the
parameter 𝜃𝑖 for a sample value 𝑥𝑖 has positive probability of matching the parameter of other
samples in 𝒙, and consequently clusters of 𝒙 can be defined by equivalence classes of samples with
the same parameter value. Similarly, because samples from a Dirichlet process with continuous
base measure have countably infinite support, the model implies an infinite number of clusters.

The representation of (11.13) as a countably infinite mixture model (11.12) can be directly
obtained using the stick-breaking interpretation of the Dirichlet process, presented in Proposi-
tion 9.1. Immediately from (9.5), the DPM model (11.13) implies a random probability density
function of the form (11.12) where the atoms 𝜃1, 𝜃2,… are draws from P0 and the mixture
weights are determined by (9.6).

11.1.2.1. Inferring clusters

For the infinite mixture model (11.12), the latent cluster allocation variables 𝒛 = (𝑧1,… , 𝑧𝑛)
could naturally assume an infinite range of values {1, 2,…}with no upper bound. However, the
labels assigned to clusters are arbitrary and at most 𝑛 clusters can be non-empty. Instead, 𝒛
can be more usefully defined by revealing the samples sequentially according to the predictive
distribution (9.9). Let 𝑧1 = 1 and

𝑧𝑖 ∈ {1,… , 𝑚𝑖−1, 𝑚𝑖−1 + 1}, 𝑖 > 1,

where𝑚𝑖 = max{𝑧1,… , 𝑧𝑖}; setting 𝑧𝑖 = 𝑚𝑖−1+1 corresponds to forming a new cluster, drawing
a new parameter 𝜃𝑧𝑖 from the base measure P0; otherwise, setting 𝑧𝑖 = 𝑗 for 𝑗 ∈ {1,… , 𝑚𝑖−1}
corresponds to reuse of an already drawn parameter 𝜃𝑗 . Further, let

𝑝(𝑧𝑖 = 𝑗) =

{
𝛼
𝛼+𝑖 if 𝑗 = 𝑚𝑖−1 + 1,
𝑛𝑗 ,𝑖
𝛼+𝑖 if 1 ≤ 𝑗 ≤ 𝑧𝑖−1,

(11.14)

where 𝑛𝑗 ,𝑖 = ∑𝑖−1
𝓁=1 1{𝑗}(𝑧𝓁) is the number of samples allocated to cluster 𝑗 prior to sample 𝑖. As-

suming (11.14) corresponds exactly to Dirichlet process sampling (see (9.9) and the subsequent
remark).

At the end of the sequence, let 𝑛𝑗 be the number of samples allocated to cluster 𝑗 (11.6), and

𝑚(𝒛) =
∞

∑
𝑗=1

1(𝑛𝑗 > 0)

126

denote the number of non-empty clusters formed. Combining the terms from (11.14), the DPM
induces a marginal prior distribution for 𝒛,

𝑝(𝒛) =
Γ(𝛼)

Γ(𝛼 + 𝑛)

𝑚(𝒛)

∏
𝑗=1
𝛼Γ(𝑛𝑗). (11.15)

Remark. The sequential consideration of the samples used to derive (11.15) does not contradict
the exchangeability property from Proposition 11.1, since (11.15) is symmetric in the indices of 𝒛.

Remark. The Dirichlet process mixturemarginal distribution for 𝒛 (11.15) is actually very similar
to the multinomial-Dirichlet prior (11.8). Although assuming an infinite number of clusters is
mathematically elegant, there is little practical difference between assuming infinitely many
clusters and assuming an unbounded but finite number of clusters; since when inferring cluster
assignments 𝒛, the former specification simply guarantees an infinite number of empty clusters.

Inference for the DPM is analogous to that for the multinomial Dirichlet model. The joint
distribution for (𝒙, 𝒛) can be obtained analogously to (11.9),

𝑝(𝒙, 𝒛) = 𝑝(𝒛)𝑝(𝒙 ∣ 𝒛) ∝ ∫
Ψ

𝑚(𝒛)

∏
𝑗=1

{

𝛼Γ(𝑛𝑗)∫
Θ
∏
𝑖∶𝑧𝑖=𝑗

𝑓 (𝑥𝑖 ∣ 𝜃𝑗 , 𝜓) d𝑄(𝜃𝑗)

}

d𝑄(𝜓),

which has closed-form expression for conjugate parametric models. Posterior inference for
the distribution 𝑝(𝒛 ∣ 𝒙) ∝ 𝑝(𝒙, 𝒛) again requires Markov chain Monte Carlo simulation
techniques.

11.2. Mixed-membership models
Consider a hierarchical random sample with two assumed layers of exchangeability, as previ-
ously considered in Example 3.3.2. For full generality here, first suppose 𝒙 = (𝑥1,… , 𝑥𝑛) is a vec-
tor of exchangeable random variables, each of varying dimension such that 𝑥𝑖 = (𝑥𝑖,1,… , 𝑥𝑖,𝑝𝑖),
𝑝𝑖 ≥ 1. Second, conditional on 𝑝𝑖, suppose the 𝑖th sample values 𝑥𝑖,1,… , 𝑥𝑖,𝑝𝑖 are also exchange-
able. In this multivariate setting,mixed-membership clustering models can extend the mixture
modelling frameworks from Section 11.1, by assuming a fixed but unknown distribution over
mixture components for each sample 𝑥𝑖.
Formally, for a finite mixed-membership model formulation, 𝒙 has an assumed random

density function

p(𝒙 ∣ 𝑝1,… , 𝑝𝑛) =
𝑛

∏
𝑖=1

𝑝𝑖

∏
𝓁=1

p𝑖(𝑥𝑖,𝓁),

p𝑖(𝑥𝑖,𝓁) =
𝑚

∑
𝑗=1
𝑤𝑖,𝑗 𝑓 (𝑥𝑖,𝓁 ∣ 𝜃𝑗 , 𝜓), (11.16)

where𝑊 = (𝑤𝑖,𝑗) is an 𝑛 × 𝑚 non-negative matrix with row sums equal to 1,

𝑊 ⋅ 𝟏𝑚 = 𝟏𝑛.

127

Remark. There are two points to note about the mixed-membership model (11.16).

1. The mixture component densities 𝑓 (⋅ ∣ 𝜃𝑗 , 𝜓), 𝑗 = 1,… , 𝑚 are common to each of the
samples.

2. Each sample 𝑥𝑖 has specific mixture weights 𝑤𝑖 = (𝑤𝑖,1,… , 𝑤𝑖,𝑚) for the distribution of its
components 𝑥𝑖𝓁, 1 ≤ 𝓁 ≤ 𝑝𝑖.

Item 1 allows the learning of shared underlying populations between the samples 𝑥1,… , 𝑥𝑛, whilst
Item 2 allows for different population representations in each sample.

The mixed-membership model (11.16) is illustrated schematically as a belief network in
Fig. 11.1.

𝜃, 𝜓

𝑋1 𝑋2 𝑋… 𝑋𝑛

𝑤1 𝑤2 𝑤… 𝑤𝑛

Figure 11.1.: Belief network for a mixed-membership model.

Fig. 11.1 is structurally identical to the belief network diagram for regression modelling in
Fig. 3.7. The key difference is that the shaded nodes for the mixture weights𝑤1,… , 𝑤𝑛 indicate
that these quantities are unknown, in contrast to the measurable covariates (or factors) in a
standard regression model; the mixture weights can therefore be regarded as latent factors.

11.2.1. Latent Dirichlet allocation

Mixed-membership models are frequently encountered in statistical analyses of textual data
for determining similarity amongst a collection documents. There, each sample 𝑥𝑖 corresponds
to a particular document of length 𝑝𝑖, such that (𝑥𝑖,1,… , 𝑥𝑖,𝑝𝑖) ∈ 𝑉 𝑝𝑖 is the sequence of words in
that document, which are drawn from an overall vocabulary 𝑉 . (Without loss of generality, it
is convenient to abstract the language of the documents by setting 𝑉 = {1,… , |𝑉 |}.)

Themost popularmixed-membershipmodel for text analysis is the latentDirichlet allocation
model for categorical data, proposed by Blei et al. (2003). This finite mixture model assumes a
latent allocation variable 𝒛 of the same dimensions as 𝒙, such that 𝑧𝑖,𝓁 ∈ {1,… , 𝑚} attributes a
mixture component to word 𝓁 in document 𝑖, 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝓁 ≤ 𝑝𝑖.

128

Definition 11.2.1: Latent Dirichlet allocation
The Latent Dirichlet allocation (LDA) model assumes the following𝑚-component mixture
model sampling procedure:

𝑝𝑖 ∼ Poisson(𝜁),
𝑥𝑖,𝓁 ∣ 𝑧𝑖,𝓁, 𝜃 ∼ Categorical|𝑉 |(𝜃𝑧𝑖,𝓁),
𝑧𝑖,𝓁 ∣ 𝑤𝑖 ∼ Categorical𝑚(𝑤𝑖),

𝜃𝑗 ∼ Dirichlet|𝑉 |(𝛼),
𝑤𝑖 ∼ Dirichlet𝑚(𝛾),

for 1 ≤ 𝑗 ≤ 𝑚,1 ≤ 𝑖 ≤ 𝑛,1 ≤ 𝓁 ≤ 𝑝𝑖, and positive-valued parameters 𝜁 , 𝛼 = (𝛼1,… , 𝛼|𝑉 |), 𝛾 =
(𝛾1,… , 𝛾𝑚).

Remark. LDA can be regarded as a latent linear model for factorising a matrix of multinomial
probabilities. Suppose𝐴 = (𝑎𝑖,𝑣) is an 𝑛×|𝑉 |matrix such that 𝑎𝑖,𝑣 is the probability that a randomly
selected, exchangeable element (word) of 𝑥𝑖 is equal to 𝑣 ∈ 𝑉 ; each row 𝑖 of the matrix 𝐴 therefore
corresponds to a vector of multinomial word probabilities for sample 𝑖. Taking 𝑊 as the 𝑛 × 𝑚
matrix of weights𝑊 = (𝑤𝑖,𝑗) defined above and writing 𝜃 = (𝜃𝑗 ,𝑣) as an (𝑚 × |𝑉 |) matrix, then
under the LDA model of Definition 11.2.1,

𝐴 = 𝑊 ⋅ 𝜃,

where the rows of both𝑊 and 𝜃 are all Dirichlet-distributed random vectors.

11.2.1.1. Topic modelling

The LDA model in Definition 11.2.1 is often referred to as topic modelling. Under this interpre-
tation, the 𝑚 components of the mixture distribution (11.16) represent latent topics. Each of
the 𝑚 topics is characterised by a specific probability distribution on the vocabulary of words,
parameterised by 𝜃𝑗 for topic 𝑗 .

Similarly, each document is characterised by a specific mixture of the topics, parameterised
by the weights 𝑤𝑖. The model assumes two levels of exchangeability: first amongst documents
and second amongst words within a document. The latter assumption is often referred to as a
bag-of-words model, as the ordering of words within a document is deemed unimportant by
the model.

11.2.1.2. Inference

The following Stan code (lda.stan) is based on the example formaking inference on the LDA
model provided in the User’s Guide of the Stan documentation1, adapted to the notation of this
text. Stan does not support ragged array data formats, and so the documents are concatenated
into a single vector x; consequently, an additional variable doc is used to store the starting
index of each document within x. The two probability vectors 𝑤𝑖 and 𝜃𝑗 use the convenient
simplex variable constraint.
1 https://mc-stan.org/users/documentation

129

https://mc-stan.org/users/documentation

// lda.stan

data {
int<lower=2> m;
int<lower=2> V;
int<lower=1> n;
int<lower=1> pdot; // sum of p_i
array[pdot] int<lower=1,upper=V> x;
array[pdot] int<lower=1,upper=n> doc; // doc ID for word l
vector<lower=0>[V] alpha;
vector<lower=0>[m] gamma;

}
parameters {

array[n] simplex[m] w; // topic dist for document i
array[m] simplex[V] theta; // word dist for topic j

}
model {

for (i in 1:n)
w[i] ~ dirichlet(gamma); // prior

for (j in 1:m)
theta[j] ~ dirichlet(alpha); // prior

for (l in 1:pdot) {
real A[m];
for (j in 1:m)

A[j] = log(w[doc[l], j]) + log(theta[j, x[l]]);
target += log_sum_exp(A); // likelihood;

}
}

11.2.2. Hierarchical Dirichlet processes

In Section 11.1, Dirichlet process mixture models (DPMs, Section 11.1.2) were presented as an
infinite-dimensional extension of finite mixture models (Section 11.1.1). Similarly, the finite
mixed-membership model (11.16) can also naturally extend to an infinite mixture using a
hierarchy of Dirichlet processes.

Definition 11.2.2: Hierarchical Dirichlet processes
Let P0 be a known probability measure and P1,… ,P𝑛 be an exchangeable sequence of
unknown probability measures. Then for concentration parameters 𝛼, 𝛾 > 0, a hierar-
chical Dirichlet process (Teh et al., 2006) model for P1,… ,P𝑛, here denoted HDP(𝛼, 𝛾 ,P0),
assumes

P𝑖 ∼ DP(𝛼 ⋅ P), 𝑖 = 1,… , 𝑛,
P ∼ DP(𝛾 ⋅ P0).

Remark. Under the hierarchical Dirichlet process, each unknown measure P𝑖 has expected value
P0.

130

Remark. The hierarchy introduces an additional unknown (latent) probability measure P which
encapsulates similarities between P1,… ,P𝑛. As 𝛾 → ∞, the HDP model approaches 𝑛 independent
DP(𝛼 ⋅P0) draws; as 𝛼 → ∞, the 𝑛 unknown probability models tend towards a single draw from
DP(𝛾 ⋅ P0).

Definition 11.2.3: Hierarchical Dirichlet processes mixture
A hierarchical Dirichlet processes mixture (HDPM) model assumes a sampling procedure
where each sample component 𝑥𝑖,𝓁 is drawn independently from a parametric model 𝑓
with sample-specific parameters 𝜃𝑖𝓁 drawn independently from unknown discrete distri-
butions:

𝑥𝑖,𝓁 ∣ 𝜃𝑖𝓁 ∼ 𝑓 (⋅ ∣ 𝜃𝑖𝓁 , 𝜓), 𝑖 = 1,… , 𝑛; 𝓁 = 1,… , 𝑝𝑖,
𝜃𝑖𝓁 ∼ 𝐺𝑖, 𝑖 = 1,… , 𝑛; 𝓁 = 1,… , 𝑝𝑖,

𝐺1,… , 𝐺𝑛 ∼ HDP(𝛼, 𝛾 ,P0),

for 𝛼, 𝛾 > 0 and some base probability distribution P0.

Proposition 11.2. The HDPM corresponds to an infinite mixed-membership model constructed
by stick-breaking process (9.4) representations for the probability density functions,

p𝑖(𝑥) =
∞

∑
𝑗=1
𝑤𝑖,𝑗 𝑓 (𝑥 ∣ 𝜃𝑗 , 𝜓), 𝑖 = 1,… , 𝑛, (11.17)

where 𝜃1, 𝜃2,… are draws from the base measure P0 and

𝑤𝑖,𝑗 = 𝑤′
𝑖,𝑗

𝑗−1

∏
𝓁=1

(1 − 𝑤′
𝑖,𝓁),

𝑤′
𝑖,𝑗 ∼ Beta(𝛾𝛽𝑗 , 𝛼), 𝑖 = 1,… , 𝑛; 𝑗 = 1, 2,… ,

𝛽1, 𝛽2,… ∼ GEM(𝛼).

Proof. See Teh et al. (2006).

11.2.2.1. Topic modelling

The hierarchical Dirichlet process (11.17) is a mixed-membership model with an infinite num-
ber of mixture components, in contrast to the finite mixture assumed in latent Dirichlet al-
location. The HDPM can be applied to topic modelling (cf. Section 11.2.1.1) on a vocabulary
𝑉 = {1,… , |𝑉 |} with the following model specification:

1. P0 should be a |𝑉 |-dimensional Dirichlet distribution, such that draws 𝜃1, 𝜃2,… from P0
are topics (probability distributions on the vocabulary); then the topic distribution 𝐺𝑖 for
each document 𝑖 has different atoms of mass (topic weights) located at the same infinite
list of candidate topics.

131

2. Word 𝓁 in document 𝑖 has a Categorical|𝑉 |(𝜃𝑖𝓁) distribution, where 𝜃𝑖𝓁 is an independent
draw from the topic distribution 𝐺𝑖 specific to document 𝑖. Following the stick-breaking
construction, in (11.17) this corresponds to

𝑓 (𝑥 ∣ 𝜃𝑗 , 𝜓) = 𝜃𝑗 ,𝑥 .

11.2.2.2. Inference

Inference for HDPM has added complexity over LDA due to the unlimited number of topics.
However, open-source software implementations are available, such as the Python package
Gensim2. This package uses online variational inference as described in Wang et al. (2011).

11.3. Latent factor models
Suppose 𝑋 = (𝑥𝑖𝑗) ∈ R𝑛×𝑝 is an (𝑛 × 𝑝) matrix of random variables, such that the rows of 𝑋 ,
denoted 𝑥1, 𝑥2,… , 𝑥𝑛, are assumed to be exchangeable 𝑝-vectors. On some occasions, partic-
ularly when the dimension 𝑝 > 1 may be large, it might be believed that the vectors 𝑥𝑖 lie
close to a lower dimensional subspace of R𝑝. In this case, probabilistic beliefs about 𝑋 may
be more easily characterised by specifying probability distributions in the lower dimensional
space. One approach for modelling in alternative dimensions is to deploy latent factor models.

The canonical example of latent factor modelling assumes the following latent linear model
(Bhattacharya and Dunson, 2011):

𝑥𝑖 = Λ ⋅ 𝜂𝑖 + 𝜖𝑖, 𝑖 = 1,… , 𝑛, (11.18)

where

𝜖𝑖 ∼ Normal𝑝(0,Σ),
𝜂𝑖 ∼ Normal𝑘(0, 𝐼𝑘). (11.19)

The elements of the vector 𝜂𝑖 ∈ R𝑘 are referred to as the latent factors for sample 𝑖. Typically,
in dimension-reduction applications, the latent dimension 𝑘 ≪ 𝑝. The global parameter Λ is a
(𝑝 × 𝑘) matrix of factor loadings which project the latent factors into the higher dimensional
space R𝑝. As 𝜂𝑖 varies overR𝑘,Λ ⋅𝜂𝑖 defines a linear subspace of R𝑝, but the observable variables
𝑥𝑖 lie just outside that subspace due to the observation error 𝜖𝑖.

Remark. For each sample, the latent factors 𝜂𝑖 ∈ R𝑘 can be interpreted as the unobserved mea-
surements of 𝑘 features which are believed to be linearly related to the expected value of the
response.

Since (11.18) is a linearmodel, assuming (11.19) implies the latent factors can bemarginalised
out similarly to (8.11), yielding

𝑥𝑖 ∣ Λ,Σ ∼ Normal𝑝(0,ΛΛ⊺ + Σ). (11.20)

2 https://radimrehurek.com/gensim/models/hdpmodel.html

132

https://radimrehurek.com/gensim/models/hdpmodel.html

Remark. The marginal distribution (11.20) gives insight into the latent factor model; the Gram
matrix ΛΛ⊺ of the rows of the latent factor loadings Λ provides a low-rank (𝑘 < 𝑝) additive
contribution to the covariance matrix for each exchangeable data row 𝑥𝑖.

For any semi-orthogonal matrix 𝑈 satisfying 𝑈𝑈 ⊺ = 𝐼𝑘, (Λ𝑈) ⋅ (Λ𝑈)⊺ = ΛΛ⊺, and so the
covariance factorisation in (11.20) is not unique. In determining a prior distribution for Λ, it is
therefore natural to choose a distribution which is invariant to these rotations and reflections,
satisfying

𝑝(Λ) = 𝑝(Λ𝑈)

for any semi-orthogonal matrix 𝑈 .

11.3.1. Stan implementation
The following Stan code (latent_factors.stan) implements the latent factor model
from (11.20). For simplicity, Σ is assumed to be a diagonal matrix of independent inverse-
gamma distributed random variables, and a reference prior is assumed for the factor loadings.

// latent_factors.stan

data {
int<lower=0> n; // number of observations
int<lower=1> p; // number of grid points
array[n] vector[p] X; // data matrix
int<lower=1> k; // number of latent factors
real<lower=0> a;
real<lower=0> b;

}
parameters {

vector<lower=0>[p] Sigma; // diagonal Sigma
matrix[p, k] Lambda; // factor loadings

}
transformed parameters{

matrix[p, p] Omega = Lambda * Lambda' + diag_matrix(Sigma);
}
model {

Sigma ~ inv_gamma(a,b);
X ~ multi_normal(rep_vector(0, p), Omega);

}

To illustrate inference for the latent factor model using latent_factors.stan, the
following PyStan code (latent_factors_stan.py) simulates a (50 × 8) data matrix 𝑋
from the model and performs posterior inference on Λ and Σ.

#! /usr/bin/env python
latent_factors_stan.py

import stan
import numpy as np
import matplotlib.pyplot as plt

133

from scipy.linalg import orthogonal_procrustes

Simulate data
gen = np.random.default_rng(seed=0)
n = 50
p = 8
k = 3
Lambda = 10 * np.reshape(gen.normal(size=p*k),[p,k])
Sigma = 1.0/gen.gamma(1,1,p)
Omega = Lambda.dot(Lambda.T) + np.diag(Sigma)
X = gen.multivariate_normal(np.zeros(p),Omega,size=n)
sm_data = {'n':n, 'p':p, 'X':X, 'k':k, 'a':1, 'b':1}

Initialise stan object
with open('latent_factors.stan','r',newline='') as f:

sm = stan.build(f.read(),sm_data,random_seed=1)

Select the number of MCMC chains and iterations, then sample
chains, samples, burn = 1, 10000, 1000
fit=sm.sample(num_chains=chains, num_samples=samples,

num_warmup=burn, save_warmup=False)↪

Perform Procrustes alignment of sampled Lambdas
lam_hat = fit['Lambda'][:,:,-1]
for i in range(samples-1):

l = fit['Lambda'][:,:,i]
R = orthogonal_procrustes(l,fit['Lambda'][:,:,-1])[0]
lam_hat += l.dot(R)

lam_hat /= samples
lam_hat = lam_hat.dot(orthogonal_procrustes(lam_hat,Lambda)[0])

lam_bar = np.mean(fit['Lambda'],axis=2)
lam_bar = lam_bar.dot(orthogonal_procrustes(lam_bar,Lambda)[0])

Plot estimate and true values for Lambda
fig,axs=plt.subplots(1,3,figsize=(7,4),constrained_layout=True)
fig.canvas.manager.set_window_title('Latent factor lambdas')
axs[0].imshow(lam_hat, cmap='Blues')
axs[0].set_title(r'$\hat{\Lambda}$')
axs[1].imshow(Lambda, cmap='Blues')
axs[1].set_title(r'Λ')
axs[2].imshow(lam_bar, cmap='Blues')
axs[2].set_title('Crude estimate '+r'$\bar{\Lambda}$')
out=plt.setp(plt.gcf().get_axes(), xticks=[], yticks=[]);
plt.show()

134

To see how well the underlying latent structure is recovered, the posterior distribution
for Λ is compared with the true value used to generate 𝑋 . This comparison is not completely
straightforward, since it was noted above that the model (11.20) is invariant to semi-orthogonal
transformations. This invariance to certain transformations, such as rotations of Λ, implies
taking a simple average of the posterior samples of Λ would not give a meaningful estimate.

To enable posterior averaging, the MCMC samples are first aligned using Procrustes align-
ment, as advocated in Oh and Raftery (2007). Each sample is transformed by a different semi-
orthogonal matrix optimised to be as close as possible to a fixed target, here chosen to be the
final MCMC sample; the aligned samples are then averaged to obtain a posterior mean value,
and finally this posterior mean is transformed in order to be aligned as closely as possible to
the true value Λ. The resulting estimate from this post-processing procedure is here denoted
Λ̂.

Heat map plots of Λ̂ and the true value are compared side by side in the plot generated by
the code. To demonstrate the value of this alignment procedure, the plots also show the crude
estimate, denoted Λ̄, obtained from directly averaging the posterior samples of Λ and then
finding the closest alignment to the true Λ. The estimate obtained from mutually aligning the
samples is much closer to the true matrix of factor loadings.

135

Exercise 11.3 Latent factor linear model. Let 𝑦 = (𝑦1,… , 𝑦𝑛) be an 𝑛-vector of real-
valued response variables, with an associated 𝑛 × 𝑝 matrix of covariates 𝑋 with rows
𝑥1,… , 𝑥𝑛 ∈ R𝑝. Consider the latent factor linear model,

𝑦𝑖 = 𝑥𝑖 ⋅ 𝛽 + 𝑧𝑖 ⋅ 𝛾 + 𝜖𝑖,

which presumes an 𝑛 × 𝑞 matrix 𝑍 of further, unobserved covariates 𝑧,… , 𝑧𝑛 ∈ R𝑞 with
corresponding regression coefficients 𝛾 ∈ R𝑞 . Suppose the following independent distri-
butions:

𝜖𝑖 ∼ Normal(0, 𝜎2),
𝛽 ∼ Normal𝑝(0, 𝜎2𝑉),
𝛾 ∼ Normal𝑞(0, 𝜎2𝑈),

for 𝜎 > 0 and symmetric, positive semidefinite 𝑝 × 𝑝 and 𝑞 × 𝑞 matrices 𝑉 and 𝑈 .

(i) State the conditional distribution [𝑦 ∣ 𝜎, 𝑋, 𝑍].

(ii) Suppose 𝜎−2 ∼ Gamma(𝑎, 𝑏) for 𝑎, 𝑏 > 0. State the conditional distribution [𝑦 ∣
𝑋, 𝑍].

§ Exercise 11.4 Latent factor linear model code. Write Stan code to fit the model from
Exercise 11.3 with 𝑉 = 𝑣 𝐼𝑝 and 𝑈 = 𝑢 𝐼𝑞 for known 𝑣, 𝑢 > 0. Assume a reference prior
for the latent factor matrix 𝑍 .

136

APPENDIX

A

CONJUGATE PARAMETRIC MODELS

For each probability model below, 𝒙 = (𝑥1,… , 𝑥𝑛) are 𝑛 independent samples from a likelihood
distribution 𝑝(𝑥 ∣ 𝜃, 𝜓), for which there exists a conjugate prior distribution 𝑝(𝜃) for 𝜃.
Each of the tables for discrete and continuous parametric models provides the following

details:
• Ranges for 𝑥 and 𝜃

• Likelihood distribution 𝑝(𝑥 ∣ 𝜃, 𝜓) and the conjugate prior density 𝑝(𝜃)

• Marginal likelihood 𝑝(𝒙) and the posterior density 𝑝(𝜃 ∣ 𝒙), denoted 𝜋(𝜃)

• Posterior predictive distribution 𝑝(𝑥 ∣ 𝒙) for a new observation 𝑥

A.1. Notation
Denote the sum, sum of squares, and product of factorial values in 𝒙 respectively by

�̇� =
𝑛

∑
𝑖=1
𝑥𝑖, �̈� =

𝑛

∑
𝑖=1
𝑥𝑖 ⋅ 𝑥⊺𝑖 , �̆� =

𝑛

∏
𝑖=1
𝑥𝑖!.

Let 𝑥(1) ≤ … ≤ 𝑥(𝑛) denote the order statistics of 𝒙. Finally, for discrete random variables on
{1,… , 𝑘}, let

𝑛𝑗 =
𝑛

∑
𝑖=1

1{𝑗}(𝑥𝑖)

be the number of samples for which 𝑥𝑖 = 𝑗 , and let 𝒏 = (𝑛1,… , 𝑛𝑘).
In all cases the hyperparameters 𝑎, 𝑏 represent positive real numbers unless otherwise

stated.

137

A.2. Discrete models

Uniform(𝑥 ∣ {1,… , 𝜃}) Zeta(𝜃 ∣ 𝑎, 𝑏)

𝑥 ∈ {1,… , 𝜃} 𝜃 ∈ {𝑏, 𝑏 + 1,…}, 𝑎 > 1, 𝑏 ∈ {1, 2,…}

𝑝(𝑥 ∣ 𝜃) =
1{1,…,𝜃}(𝑥)

𝜃
𝑝(𝜃) =

1{𝑏,𝑏+1,…}(𝜃)
𝜁 (𝑎, 𝑏)𝜃𝑎

𝑝(𝒙) =
𝜁 (𝑎 + 𝑛, 𝑏∗)
𝜁 (𝑎, 𝑏)

, 𝑏∗ = max{𝑏, 𝑥(𝑛)} 𝜋(𝜃) =
1{𝑏∗,𝑏∗+1,…}(𝜃)
𝜁 (𝑎 + 𝑛, 𝑏∗)𝜃𝑎+𝑛

≡ Zeta(𝜃 ∣ 𝑎 + 𝑛, 𝑏∗)𝑝(𝑥 ∣ 𝒙) =
𝜁 (𝑎 + 𝑛 + 1,max{𝑏∗, 𝑥})

𝜁 (𝑎 + 𝑛, 𝑏∗)

Bernoulli(𝑥 ∣ 𝜃) Beta(𝜃 ∣ 𝑎, 𝑏)

𝑥 ∈ {0, 1} 𝜃 ∈ [0, 1]

𝑝(𝑥 ∣ 𝜃) = 𝜃𝑥(1 − 𝜃)1−𝑥 𝑝(𝜃) =
Γ(𝑎 + 𝑏)
Γ(𝑎) Γ(𝑏)

𝜃𝑎−1(1 − 𝜃)𝑏−1

𝑝(𝒙) =
Γ(𝑎 + 𝑏) Γ(𝑎 + �̇�) Γ(𝑏 + 𝑛 − �̇�)

Γ(𝑎) Γ(𝑏) Γ(𝑎 + 𝑏 + 𝑛) 𝜋(𝜃) =
Γ(𝑎 + 𝑏 + 𝑛)𝜃𝑎+�̇�−1(1 − 𝜃)𝑏+𝑛−�̇�−1

Γ(𝑎 + �̇�) Γ(𝑏 + 𝑛 − �̇�)

≡ Beta(𝜃 ∣ 𝑎 + �̇�, 𝑏 + 𝑛 − �̇�)𝑝(𝑥 ∣ 𝒙) =
𝑎 + �̇�

𝑎 + 𝑏 + 𝑛 − �̇�

Geometric(𝑥 ∣ 𝜃) Beta(𝜃 ∣ 𝑎, 𝑏)

𝑥 ∈ {0, 1, 2,…} 𝜃 ∈ [0, 1]

𝑝(𝑥 ∣ 𝜃) = 𝜃(1 − 𝜃)𝑥 𝑝(𝜃) =
Γ(𝑎 + 𝑏)
Γ(𝑎)Γ(𝑏)

𝜃𝑎−1(1 − 𝜃)𝑏−1

𝑝(𝒙) =
Γ(𝑎 + 𝑏) Γ(𝑎 + 𝑛) Γ(𝑏 + �̇�)
Γ(𝑎) Γ(𝑏) Γ(𝑎 + 𝑏 + 𝑛 + �̇�) 𝜋(𝜃) =

Γ(𝑎 + 𝑏 + 𝑛 + �̇�) 𝜃𝑎+𝑛−1(1 − 𝜃)𝑏+�̇�−1

Γ(𝑎 + 𝑛) Γ(𝑏 + �̇�)

≡ Beta(𝜃 ∣ 𝑎 + 𝑛, 𝑏 + �̇�)𝑝(𝑥 |𝒙) =
(𝑎 + 𝑛) Γ(𝑏 + �̇� + 𝑥) Γ(𝑎 + 𝑏 + 𝑛 + �̇�)
Γ(𝑏 + �̇�) Γ(𝑎 + 𝑏 + 𝑛 + 1 + �̇� + 𝑥)

• 𝜁 (𝑎, 𝑏) =
∞

∑
𝑥=0

1
(𝑥 + 𝑏)𝑎

is the Hurwitz zeta function.

138

Poisson(𝑥 ∣ 𝜃) Gamma(𝜃 ∣ 𝑎, 𝑏)

𝑥 ∈ {0, 1, 2,…} 𝜃 ∈ [0,∞)

𝑝(𝑥 ∣ 𝜃) =
𝜃𝑥𝑒−𝜃

𝑥!
𝑝(𝜃) =

𝑏𝑎

Γ(𝑎)
𝜃𝑎−1𝑒−𝑏𝜃

𝑝(𝒙) =
Γ(𝑎 + �̇�) 𝑏𝑎

�̆� Γ(𝑎) (𝑏 + 𝑛)𝑎+�̇� 𝜋(𝜃) =
(𝑏 + 𝑛)𝑎+�̇�

Γ(𝑎 + �̇�)
𝜃𝑎+�̇�−1𝑒−(𝑏+𝑛)𝜃

≡ Gamma(𝜃 ∣ 𝑎 + �̇�, 𝑏 + 𝑛)𝑝(𝑥 ∣ 𝒙) =
Γ(𝑎 + �̇� + 𝑥) (𝑏 + 𝑛)𝑎+�̇�

𝑥! Γ(𝑎 + �̇�) (𝑏 + 𝑛 + 1)𝑎+�̇�+𝑥

Multinomial𝑘(𝑥 ∣ 1, 𝜃) Dirichlet𝑘(𝜃 ∣ 𝛼)

𝑥 ∈ {(1, 0,… , 0),… , (0,… , 0, 1)} 𝜃 ∈ Δ(𝑘)

𝑝(𝑥 ∣ 𝜃) = 𝜃𝑥 𝑝(𝜃) =
Γ(∑𝑘

𝑗=1 𝛼𝑗)
∏𝑘

𝑗=1 Γ(𝛼𝑗)

𝑘

∏
𝑗=1
𝜃𝛼𝑗−1𝑗

𝑝(𝒙) =
Γ(∑𝑘

𝑗=1 𝛼𝑗)
Γ(∑𝑘

𝑗=1 𝛼𝑗 + 𝑛)

𝑘

∏
𝑗=1

Γ(𝛼𝑗 + 𝑛𝑗)
Γ(𝛼𝑗) 𝜋(𝜃) =

Γ(∑𝑘
𝑗=1 𝛼𝑗 + 𝑛)

∏𝑘
𝑗=1 Γ(𝛼𝑗 + 𝑛𝑗)

𝑘

∏
𝑗=1
𝜃𝛼𝑗+𝑛𝑗−1𝑗

≡ Dirichlet𝑘(𝜃 ∣ 𝛼 + 𝒏)
𝑝(𝑥 ∣ 𝒙) =

𝛼𝑗 + 𝑛𝑗
∑𝑘
𝑗=1 𝛼𝑗 + 𝑛

• Δ(𝑘) denotes the standard (or probability) simplex {𝑢 ∈ R𝑘 ∶ 𝑢𝑖 ≥ 0,∑𝑘
𝑖=1 𝑢𝑖 = 1}.

• For the Dirichlet distribution, 𝛼 ∈ {𝑢 ∈ R𝑘 ∶ 𝑢𝑖 ≥ 0,∑𝑘
𝑖=1 𝑢𝑖 > 0}.

139

A.3. Continuous models

Uniform(𝑥 ∣ 0, 𝜃) Pareto(𝜃 ∣ 𝑎, 𝑏)

𝑥 ∈ [0,∞) 𝜃 ∈ (0,∞)

𝑝(𝑥 ∣ 𝜃) =
1[0,𝜃](𝑥)
𝜃

𝑝(𝜃) =
𝑎𝑏𝑎 1[𝑏,∞)(𝜃)

𝜃𝑎+1

𝑝(𝒙) =
𝑎𝑏𝑎

(𝑎 + 𝑛)𝑏∗𝑎+𝑛
, 𝑏∗ = max{𝑏, 𝑥(𝑛)} 𝜋(𝜃) =

(𝑎 + 𝑛)𝑏𝑎+𝑛∗ 1[𝑏∗,∞)(𝜃)
𝜃𝑎+𝑛+1

≡ Pareto(𝜃 ∣ 𝑎 + 𝑛, 𝑏∗)𝑝(𝑥 ∣ 𝒙) =
(𝑎 + 𝑛)𝑏∗𝑎+𝑛

(𝑎 + 𝑛 + 1)max{𝑏∗, 𝑥}𝑎+𝑛+1

Exponential(𝑥 ∣ 𝜃) Gamma(𝜃 ∣ 𝑎, 𝑏)

𝑥 ∈ [0,∞) 𝜃 ∈ (0,∞)

𝑝(𝑥 ∣ 𝜃) = 𝜃𝑒−𝜃𝑥 𝑝(𝜃) =
𝑏𝑎

Γ(𝑎)
𝜃𝑎−1𝑒−𝑏𝜃

𝑝(𝒙) =
Γ(𝑎 + 𝑛) 𝑏𝑎

Γ(𝑎) (𝑏 + �̇�)𝑎+𝑛 𝜋(𝜃) =
(𝑏 + �̇�)𝑎+𝑛

Γ(𝑎 + 𝑛)
𝜃𝑎+𝑛−1 𝑒−(𝑏+�̇�)𝜃

≡ Gamma(𝜃 ∣ 𝑎 + 𝑛, 𝑏 + �̇�)𝑝(𝑥 ∣ 𝒙) =
(𝑎 + 𝑛)(𝑏 + �̇�)𝑎+𝑛

(𝑏 + �̇� + 𝑥)𝑎+𝑛+1

Gamma(𝑥 ∣ 𝜓, 𝜃) Gamma(𝜃 ∣ 𝑎, 𝑏)

𝑥 ∈ [0,∞) 𝜃 ∈ (0,∞)

𝑝(𝑥 ∣ 𝜃) =
𝜃𝜓

Γ(𝜓)
𝑥𝜓−1𝑒−𝜃𝑥 𝑝(𝜃) =

𝑏𝑎

Γ(𝑎)
𝜃𝑎−1𝑒−𝑏𝜃

𝑝(𝒙) =
Γ(𝑎 + 𝑛𝜓) 𝑏𝑎

Γ(𝑎) (𝑏 + �̇�)𝑎+𝑛𝜓 𝜋(𝜃) =
(𝑏 + �̇�)𝑎+𝑛𝜓

Γ(𝑎 + 𝑛𝜓)
𝜃𝑎+𝑛𝜓−1 𝑒−(𝑏+�̇�)𝜃

≡ Gamma(𝜃 ∣ 𝑎 + 𝑛𝜓, 𝑏 + �̇�)𝑝(𝑥 ∣ 𝒙) =
Γ(𝑎 + (𝑛 + 1)𝜓) (𝑏 + �̇�)𝑎+𝑛𝜓

Γ(𝑎 + 𝑛𝜓) (𝑏 + �̇� + 𝑥)𝑎+(𝑛+1)𝜓

140

Normal𝑘(𝑥 ∣ 𝜃, 𝜓) Normal𝑘(𝜃 ∣ 𝑚, 𝑉)

𝑥 ∈ R𝑘 𝜃 ∈ R𝑘

𝑝(𝑥 ∣ 𝜃) =
exp{− 1

2 ∑
𝑛
𝑖=1(𝑥𝑖 − 𝜃)⊺𝜓−1(𝑥𝑖 − 𝜃)}
(2𝜋) 𝑛𝑘2 |𝜓| 𝑛2

𝑝(𝜃) =
exp{− 1

2(𝜃 − 𝑚)
⊺𝑉 −1(𝜃 − 𝑚)}

(2𝜋) 𝑘2 |𝑉 | 12

𝑝(𝒙) =
|𝑉∗|

1
2 exp{− 1

2𝑚
⊺𝑉 −1𝑚 − 1

2 ∑
𝑛
𝑖=1 𝑥

⊺
𝑖 𝜓−1𝑥𝑖}

(2𝜋) 𝑛𝑘2 |𝜓| 𝑛2 |𝑉 | 12 exp{− 1
2𝑚

⊺
∗𝑉 −1

∗ 𝑚∗} 𝜋(𝜃) =
exp{− 1

2(𝜃 − 𝑚∗)⊺𝑉 −1
∗ (𝜃 − 𝑚∗)}

(2𝜋) 𝑘2 |𝑉∗|
1
2

≡ Normal𝑘(𝜃 ∣ 𝑚∗, 𝑉∗)
𝑚∗ = 𝑉∗(𝑉 −1𝑚 + 𝜓−1�̇�), 𝑉∗ = (𝑉 −1 + 𝑛𝜓−1)−1

𝑝(𝑥 ∣ 𝒙) = Normal(𝑥 ∣ 𝑚∗, 𝜓 + 𝑉∗)

Normal𝑘(𝑥 ∣ 0, 𝜃) Inverse Wishart𝑘(𝜃 ∣ 𝑎, 𝐵)

𝑥 ∈ R𝑘 𝜃 ∈ R𝑘×𝑘, positive definite

𝑝(𝑥 ∣ 𝜃) =
exp{− 1

2 ∑
𝑛
𝑖=1 𝑥

⊺
𝑖 𝜃−1𝑥𝑖}

(2𝜋) 𝑛𝑘2 |𝜃| 𝑛2
𝑝(𝜃) =

|𝐵| 𝑎2 exp{− 1
2 tr(𝐵𝜃

−1)}

2 𝑎𝑘
2 |𝜃| 𝑎+𝑘+12 𝜋

𝑘(𝑘−1)
4 ∏𝑘

𝓁=1 Γ(𝑎+1−𝓁2)

𝑝(𝒙) =
|𝐵| 𝑎2

|𝐵 + �̈� | 𝑎+𝑛2

𝑘

∏
𝓁=1

Γ(𝑎+1−𝓁2)
Γ(𝑎+𝑛+1−𝓁2) 𝜋(𝜃) =

|𝐵 + �̈� | 𝑎+𝑛2 exp{− 1
2 tr((𝐵 + �̈�)𝜃−1)}

2
(𝑎+𝑛)𝑘

2 |𝜃| 𝑎+𝑛+𝑘+12 𝜋
𝑘(𝑘−1)

4 ∏𝑘
𝓁=1 Γ(𝑎+𝑛+1−𝓁2)

≡ Inverse Wishart𝑘(𝜃 ∣ 𝑎 + 𝑛, 𝐵 + �̈�)𝑝(𝑥 |𝒙) =
|𝐵 + �̈� | 𝑎+𝑛2

|𝐵 + �̈� + 𝑥 ⋅ 𝑥⊺| 𝑎+𝑛+12

𝑘

∏
𝓁=1

Γ(𝑎+𝑛+1−𝓁2)
Γ(𝑎+𝑛+2−𝓁2)

• For the normal and inverse Wishart equations, 𝑚 ∈ R𝑘 and the matrices 𝑉 , 𝜓 and 𝐵 are
assumed positive definite.

141

SYMBOLS

P probability

E expectation

V variance

∶= definition

∝ proportional to

→ converges to

∼ distributed as

⟹ implies

⟺ equivalent to

⟂⟂ independent

⋅ dot product

R real numbers

N natural numbers, starting at zero

𝐴 set complement, {𝑥 |𝑥 ∉ 𝐴}

1𝐴(𝑥) indicator, 1 if 𝑥 ∈ 𝐴, 0 otherwise

𝐼𝑛 𝑛 × 𝑛 identity matrix

𝐵⊺ transpose of matrix 𝐵

143

|𝐵| Determinant of matrix 𝐵

‖𝑣‖ Euclidean norm of vector 𝑣

|𝑥 | Absolute value of real value 𝑥

144

SOLUTIONS TO EXERCISES

Solution 1.1 Linear transformations of utilities. Let 𝑢(⋅) be a utility function with correspond-
ing expected utility �̄�(⋅), and consider a linear transformation

𝑢′(𝑐) = 𝛼 + 𝛽 𝑢(𝑐)

where 𝛼, 𝛽 ∈ R. Under utility function 𝑢′(⋅), the corresponding expected utility for an action
𝑎 = {(𝐸1, 𝑐1), (𝐸2, 𝑐2),…} ∈ is

�̄�′(𝑎) = ∑
𝑖

P(𝐸𝑖) 𝑢′(𝑐𝑖) = 𝛼 + 𝛽∑
𝑖

P(𝐸𝑖) 𝑢(𝑐𝑖) = 𝛼 + 𝛽�̄�(𝑎).

If 𝛽 > 0, then for two actions 𝑎, 𝑎′ ∈ , �̄�′(𝑎) < �̄�′(𝑎′) ⟺ �̄�(𝑎) < �̄�(𝑎′).

Solution 1.2 Bounded utility. Let 𝑎 = {(Ω, 𝑐)} and 𝑎′ = {(Ω, 𝑐)} ∼ {(𝐸, 𝑐∗), (𝐸, 𝑐∗)}. Since
P(Ω) = 1, �̄�(𝑎) = 𝑢(𝑐). For the dichotomy 𝑎′, �̄�(𝑎′) = (1 − P(𝐸))𝑢(𝑐∗) + P(𝐸)𝑢(𝑐∗) = (1 −
𝑢(𝑐)).0 + 𝑢(𝑐).1 = 𝑢(𝑐). Hence �̄�(𝑎) = �̄�(𝑎′) and therefore 𝑎 ∼ 𝑎′.

Solution 1.3 Unbounded utility.

(i) If {Ω, 𝑐1)} ∼ {(𝐸, 𝑐), (𝐸, 𝑐2)}, then 0 = 𝑢(𝑐1) = (1 − P(𝐸)) 𝑢(𝑐) + P(𝐸) 𝑢(𝑐2) = (1 −
P(𝐸)) 𝑢(𝑐) + P(𝐸).1 ⟹ 𝑢(𝑐) = −P(𝐸)/(1 − P(𝐸)) < 0.

(ii) If {Ω, 𝑐2)} ∼ {(𝐸, 𝑐1), (𝐸, 𝑐)}, then 1 = 𝑢(𝑐2) = (1−P(𝐸)) 𝑢(𝑐1)+P(𝐸) 𝑢(𝑐) = (1−P(𝐸)).0+
P(𝐸) 𝑢(𝑐) ⟹ 𝑢(𝑐) = 1/P(𝐸) > 1.

Solution 1.4 Transitivity of preference. If 𝑎 ≤ 𝑎′ and 𝑎′ ≤ 𝑎′′, then 𝑢(𝑎) ≤ 𝑢(𝑎′) ≤ 𝑢(𝑎′′) ⟹
𝑎 ≤ 𝑎′′.

Solution 1.5 Coherence with probabilities. By Axiom 3, for any 𝑐1 < 𝑐2, ∃ 𝑥, 𝑥′ ∈ [0, 1]
such that {(𝐸, 𝑐1), (𝐸, 𝑐2)} ∼ {(𝑆𝑥 , 𝑐1), (𝑆𝑥 , 𝑐2)} and {(𝐹 , 𝑐1), (𝐹 , 𝑐2)} ∼ {(𝑆𝑥′ , 𝑐1), (𝑆𝑥′ , 𝑐2)}; namely,
𝑥 = P(𝐸), 𝑥′ = P(𝐹) and hence 𝑥 ≤ 𝑥′. Since 𝑥 ≤ 𝑥′, 𝑆𝑥 ⊆ 𝑆𝑥′ , and therefore by Axiom 2

145

{(𝑆𝑥′ , 𝑐1), (𝑆𝑥′ , 𝑐2)} ≤ {(𝑆𝑥 , 𝑐1), (𝑆𝑥 , 𝑐2)} and the result follows from the initial equivalences and
transitivity of preferences.

An alternative proof could have used the principle of maximising expected utility.

Solution 1.6 Absolute loss (also known as 𝐿1 loss). For a univariate, continuous-valued 𝜔 ∈ R,
the absolute loss function gives expected utility

�̄�(𝑑�̂�) = −∫
∞

−∞
|�̂� − 𝜔| 𝑓 (𝜔) d𝜔 = −∫

�̂�

−∞
(�̂� − 𝜔) 𝑓 (𝜔) d𝜔 + ∫

∞

�̂�
(�̂� − 𝜔) 𝑓 (𝜔) d𝜔.

Differentiating the right-hand side with respect to �̂� and setting equal to zero yields
{

∫
�̂�

−∞
𝑓 (𝜔) d𝜔 + �̂� 𝑓 (�̂�)

}
− �̂� 𝑓 (�̂�) =

{

∫
∞

�̂�
𝑓 (𝜔) d𝜔 − �̂� 𝑓 (�̂�)

}
+ �̂� 𝑓 (�̂�)

⟺ ∫
�̂�

−∞
𝑓 (𝜔) d𝜔 = ∫

∞

�̂�
𝑓 (𝜔) d𝜔

⟺ ∫
�̂�

−∞
𝑓 (𝜔) d𝜔 =

1
2
,

since necessarily ∫ ∞
−∞ 𝑓 (𝜔) d𝜔 = 1. Hence �̂� is the median.

Solution 1.7 Squared loss (also known as 𝐿2 loss). For a univariate, continuous-valued 𝜔 ∈ R,
the squared loss function gives expected utility

�̄�(𝑑�̂�) = −∫
∞

−∞
(�̂� − 𝜔)2 𝑓 (𝜔) d𝜔.

Differentiating with respect to �̂� and setting equal to zero yields

0 = −2∫ (�̂� − 𝜔) 𝑓 (𝜔) d𝜔 = −2{�̂� − E(𝜔)}

⟹ �̂� = E(𝜔).

Solution 1.8 Zero-one loss (also known as 𝐿∞ loss). For a univariate, continuous-valued 𝜔 ∈ R,
and for 𝜖 > 0 define the 𝜖-ball zero-one loss function

𝓁𝜖(�̂�, 𝜔) = 1 − 1𝐵𝜖(�̂�)(𝜔),

where 𝐵𝜖(𝜔) = (𝜔 − 𝜖, 𝜔 + 𝜖). This loss function implies an expected utility

�̄�𝜖(𝑑�̂�) = E[1𝐵𝜖(�̂�)(𝜔)] = P{𝐵𝜖(�̂�)}.

As 𝜖 → 0 to obtain the zero-one loss function, the right-hand side tends to 𝜖𝑓 (�̂�) which is
clearly maximised by the mode of 𝑓 .

146

Solution 1.9 KL-divergence non-negative. If 𝑝 = 𝑞 then KL(𝑝 ∥ 𝑞) = ∫ 𝑝(𝑥) log 1 d𝑥 = 0.
For 𝑝 ≠ 𝑞, the non-negativity of KL-divergence can be demonstrated using the logarithmic

inequality log(𝑎) ≥ 1 − 𝑎−1 for any 𝑎 > 0. This rule gives

log
𝑝(𝑥)
𝑞(𝑥)

≥ 1 −
𝑞(𝑥)
𝑝(𝑥)

,

⟹ KL(𝑝 ∥ 𝑞) = ∫ 𝑝(𝑥) log
𝑝(𝑥)
𝑞(𝑥)

d𝑥 ≥ ∫ 𝑝(𝑥)(1 −
𝑞(𝑥)
𝑝(𝑥))

d𝑥 = ∫ {𝑝(𝑥) − 𝑞(𝑥)} d𝑥 = 0.

Therefore, when KL-divergence is used as a loss function for prediction, the smallest expected
loss (zero) is incurred when reporting genuine beliefs.

Solution 2.1 Marginal distribution of exchangeable variables. If 𝑋1, 𝑋2,… are exchangeable
variables taking values in = 𝑋(Ω), then for any 𝑖 ≠ 𝑗 ,

P𝑋𝑖,𝑋𝑗 = P𝑋𝑗 ,𝑋𝑖 .

Then for an event 𝐸,

P(𝑋𝑖 ∈ 𝐸) = P𝑋𝑖,𝑋𝑗 (𝐸,) = P𝑋𝑗 ,𝑋𝑖(𝐸,) = P(𝑋𝑗 ∈ 𝐸).

Solution 2.2 Finitely exchangeable binary sequences. Suppose 𝑋1,… , 𝑋𝑛 are assumed to be
independent and identically distributed Bernoulli(12) random variables, and it is observed that
∑𝑋𝑖 = 𝑠. Conditional on this information, 𝑋1,… , 𝑋𝑛 are still exchangeable with constant
probability mass function

p𝑋1,…,𝑋𝑛 ∣∑𝑖 𝑋𝑖=𝑠(𝑥1,… , 𝑥𝑛) =
1{𝑠}(∑𝑖 𝑥𝑖)

(𝑛𝑠)
.

However, for 0 < 𝑠 < 𝑛, this constant mass function cannot be reconciled with a generative
process (2.1) where a probability parameter 𝜃 is sampled from a probability measure (𝑄),
followed by a sample of 𝑛 independent Bernoulli(𝜃) trials 𝑋1,… , 𝑋𝑛; a degenerate value of
𝜃 ∈ {0, 1} would not admit ∑𝑋𝑖 = 𝑠, whilst any non-degenerate value 0 < 𝜃 < 1 would admit
positive probability to∑𝑋𝑖 ≠ 𝑠.

Solution 2.3 Predictive distribution for exchangeable binary sequences. The result follows from
substituting Theorem 2.1 into the conditional probability identity

P𝑋𝑚+1,…,𝑋𝑛 ∣𝑥1,…,𝑥𝑚(𝑥𝑚+1,… , 𝑥𝑛) =
P𝑋1,…,𝑋𝑛(𝑥1,… , 𝑥𝑛)
P𝑋1,…,𝑋𝑚(𝑥1,… , 𝑥𝑚)

=
∫ 1
𝜃=0 ∏𝑛

𝑖=1 𝜃𝑥𝑖 (1 − 𝜃)1−𝑥𝑖 d𝑄(𝜃)

∫ 1
𝜃=0 ∏𝑚

𝑖=1 𝜃𝑥𝑖 (1 − 𝜃)1−𝑥𝑖 d𝑄(𝜃)

= ∫
1

𝜃=0

𝑛

∏
𝑖=𝑚+1

𝜃𝑥𝑖 (1 − 𝜃)1−𝑥𝑖
∏𝑚

𝑖=1 𝜃𝑥𝑖 (1 − 𝜃)1−𝑥𝑖 d𝑄(𝜃)
∫ 1
𝜃=0 ∏𝑚

𝑖=1 𝜃𝑥𝑖 (1 − 𝜃)1−𝑥𝑖 d𝑄(𝜃)
.

147

Solution 2.4 Variances under transformations. If𝜃 ∼ Gamma(𝑎, 𝑏), then 𝜃−1 ∼ Inverse-Gamma(𝑎, 𝑏).
The variances for these respective distributions are 𝑎/𝑏2 and 𝑏2/{(𝑎 − 1)2(𝑎 − 2)} for 𝑎 > 2.
Consequently, either large 𝑎 or small 𝑏 increase the variance of 𝜃, but reduce the variance of
1/𝜃.

Solution 2.5 Asymptotic normality. Let �̇� = ∑𝑛
𝑖=1 𝑥𝑖 and �̄� = �̇�/𝑛. Then

𝑛

∑
𝑖=1

log 𝐹(𝑥𝑖; 𝜃) = �̇� log 𝜃 + (𝑛 − �̇�) log(1 − 𝜃)

⟹
d
d𝜃

log 𝐹(𝑥𝑖; 𝜃) =
�̇�
𝜃
−
𝑛 − �̇�
1 − 𝜃

(1)

⟹ 𝐼𝑛(𝜃) = −
d2

d𝜃2
log 𝐹(𝑥𝑖; 𝜃) =

�̇�
𝜃2

+
𝑛 − �̇�
(1 − 𝜃)2

.

Setting the first derivative (1) equal to zero yields �̂�𝑛 = �̇�/𝑛 = �̄� . Similarly for 𝑄(𝜃) = Beta(𝜃 ∣
𝑎, 𝑏), the prior mode and 𝑚0 = (𝑎 − 1)/(𝑎 + 𝑏 − 2) and

𝐼0(𝜃) = −
d2

d𝜃2
log d𝑄(𝜃) =

𝑎 − 1
𝜃2

+
𝑏 − 1

(1 − 𝜃)2

⟹ 𝐻𝑛 = 𝐼0(𝑚0) + 𝐼𝑛(�̂�𝑛) =
(𝑎 + 𝑏 − 2)3

(𝑎 − 1)(𝑏 − 1)
+

𝑛
�̄�(1 − �̄�)

⟹ 𝐻−1
𝑛 =

(𝑎 − 1)(𝑏 − 1)�̄�(1 − �̄�)
(𝑎 + 𝑏 − 2)3�̄�(1 − �̄�) + (𝑎 − 1)(𝑏 − 1)𝑛

⟹ 𝑚𝑛 = 𝐻−1
𝑛 (𝐼0(𝑚0)𝑚0 + 𝐼𝑛(�̂�𝑛)�̂�𝑛) =

(𝑎 − 1)�̄�{(𝑎 + 𝑏 − 2)2(1 − �̄�) + (𝑏 − 1)𝑛}
(𝑎 + 𝑏 − 2)3�̄�(1 − �̄�) + (𝑎 − 1)(𝑏 − 1)𝑛

.

Asymptotically, as 𝑛 → ∞,

𝜃 ∣ 𝑥1,… , 𝑥𝑛 ∼̇ Normal (𝑚𝑛, 𝐻−1
𝑛) → Normal(�̄�,

�̄�(1 − �̄�)
𝑛) .

Alternatively, from Section A.2, 𝑄(𝜃 ∣ 𝑥1,… , 𝑥𝑛) = Beta(𝜃 ∣ 𝑎 + �̇�, 𝑏 + 𝑛 − �̇�). The beta
distribution is known to be approximately normal when both parameters grow large. Using
the moments of the beta distribution, approximately

𝜃 ∣ 𝑥1,… , 𝑥𝑛 ∼̇ Normal(
𝑎 + �̇�

𝑎 + 𝑏 + 𝑛
,

(𝑎 + �̇�)(𝑏 + 𝑛 − �̇�)
(𝑎 + 𝑏 + 𝑛)2(𝑎 + 𝑏 + 𝑛 + 1))

→ Normal(�̄�,
�̄�(1 − �̄�)

𝑛) .

Solution 3.1 Identifying parents and children.

parents(𝑋1) = ∅, children(𝑋1) = {𝑋2, 𝑋4};
parents(𝑋2) = {𝑋1}, children(𝑋2) = {𝑋4};
parents(𝑋3) = {𝑋4}, children(𝑋3) = ∅;
parents(𝑋4) = {𝑋1, 𝑋2}, children(𝑋4) = {𝑋3}.

148

Solution 3.2 Identifying neighbours. neighbours(𝑋1) = {𝑋2, 𝑋4}, neighbours(𝑋2) = {𝑋1, 𝑋4},
neighbours(𝑋3) = {𝑋4}, neighbours(𝑋4) = {𝑋1, 𝑋2, 𝑋3}.

Solution 3.3 Identifying cliques. {𝑋1, 𝑋2, 𝑋4} and {𝑋3, 𝑋4} are both maximal cliques.

Solution 3.4 Identifying separating sets. {𝑋4} separates {𝑋1, 𝑋2} from {𝑋3}; {𝑋1, 𝑋4} separates
{𝑋2} from {𝑋3}; {𝑋2, 𝑋4} separates {𝑋1} from {𝑋3}.

Solution 3.5 Belief network distribution.P(𝑋1, 𝑋2, 𝑋3, 𝑋4) = P(𝑋1)P(𝑋2 ∣ 𝑋1)P(𝑋4 ∣ 𝑋1, 𝑋2)P(𝑋3 ∣
𝑋4).

Solution 3.6 Identifying colliders. The paths in (a) and (b) have no colliders, but in path (c) the
node 𝑋2 is a collider.

Solution 3.7 Identifying 𝑑-separated and 𝑑-connected nodes. 𝑋1 and 𝑋3 are 𝑑-separated by 𝑋2
in (a) and (b) of Fig. 3.3, and 𝑑-connected by 𝑋2 in (c).

Solution 3.8 Identifying conditional independencies in a belief network.

(i) 𝑋1 ⟂̸⟂ 𝑋3 in (a) and (b), and 𝑋1 ⟂⟂ 𝑋3 in (c).

(ii) 𝑋1 ⟂⟂ 𝑋3 ∣ 𝑋2 in (a) and (b), and 𝑋1 ⟂̸⟂ 𝑋3 ∣ 𝑋2 in (c).

Solution 3.9 Markov network distribution. From the maximal cliques obtained in Exercise 3.3,

P(𝑋1, 𝑋2, 𝑋3, 𝑋4) = 𝜙1(𝑋1, 𝑋2, 𝑋4)𝜙2(𝑋3, 𝑋4).

Solution 3.10 Pairwise Markov network distribution.

P(𝑋1, 𝑋2, 𝑋3, 𝑋4) = 𝜙1,2(𝑋1, 𝑋2)𝜙1,4(𝑋1, 𝑋4)𝜙2,4(𝑋2, 𝑋4)𝜙3,4(𝑋3, 𝑋4).

Solution 3.11 Gaussian Markov random field. Suppose 𝑋 = (𝑋1,… , 𝑋𝑛) ∼ N𝑛(𝜇,Σ), and let
Λ = Σ−1. Without loss of generality, to simplify notation assume 𝜇 = 0.

For 𝑥 ∈ R𝑛, let 𝑥−𝓁 = (𝑥1,… , 𝑥𝓁−1, 𝑥𝓁+1,… , 𝑥𝑛) be the (𝑛−1)-vector with component 𝓁 removed.
From the density function of the multivariate normal distribution,

𝑓 (𝑥𝓁 ∣ 𝑥−𝓁) ∝ 𝑓 (𝑥1,… , 𝑥𝑛) ∝ 𝑒−
1
2 𝑥

⊺Λ𝑥 = 𝑒−
1
2 ∑

𝑛
𝑖=1 ∑

𝑛
𝑗=1 𝑥𝑖 Λ𝑖𝑗 𝑥𝑗 ∝ 𝑒−

1
2Λ𝓁𝓁 𝑥2𝓁 −∑𝑗≠𝓁 Λ𝓁𝑗 𝑥𝓁 𝑥𝑗

when considered as a function of 𝑥𝓁. The components 𝑥𝑗 which affect this density are those 𝑗
for which Λ𝓁𝑗 ≠ 0, which by construction are those 𝑗 for which (𝓁, 𝑗) ∈ 𝐸. Hence

𝑓 (𝑥𝓁 ∣ 𝑥−𝓁) = 𝑓 (𝑥𝓁 ∣ neighbours(𝑥𝓁)).

149

Solution 4.1 Conjugacy of Bernoulli and beta distributions. Under the Bernoulli likelihood
model,

𝑝(𝒙 ∣ 𝜃) = 𝜃�̇�(1 − 𝜃)𝑛−�̇� ,

where �̇� = ∑𝑛
𝑖=1 𝑥𝑖. If 𝜃 ∼ Beta(𝑎, 𝑏) then

𝑝(𝜃) ∝ 𝜃𝑎−1(1 − 𝜃)𝑏−1.

By (4.2),
𝜋(𝜃) ∝ 𝑝(𝒙 ∣ 𝜃) 𝑝(𝜃) ∝ 𝜃𝑎+�̇�−1(1 − 𝜃)𝑏+𝑛−�̇�−1,

which is proportional to the density of Beta(𝑎 + �̇�, 𝑏 + 𝑛 − �̇�).
Hence 𝜃 ∣ 𝒙 ∼ Beta(𝑎 + �̇�, 𝑏 + 𝑛 − �̇�).

Solution 4.2 Conjugacy of Poisson and gamma distributions. Under the Poisson likelihood
model,

𝑝(𝒙 ∣ 𝜃) ∝ 𝜃�̇�𝑒−𝑛𝜃,

where �̇� = ∑𝑛
𝑖=1 𝑥𝑖. If 𝜃 ∼ Gamma(𝑎, 𝑏) then

𝑝(𝜃) ∝ 𝜃𝑎−1𝑒−𝑏𝜃.

By (4.2),
𝜋(𝜃) ∝ 𝑝(𝒙 ∣ 𝜃) 𝑝(𝜃) ∝ 𝜃𝑎+�̇�−1𝑒−(𝑏+𝑛)𝜃,

which is proportional to the density of Gamma(𝑎 + �̇�, 𝑏 + 𝑛).
Hence 𝜃 ∣ 𝒙 ∼ Gamma(𝑎 + �̇�, 𝑏 + 𝑛).

Solution 4.3 Conjugacy of uniform and Pareto distributions. Under the uniform likelihood
model, for 𝑥1,… , 𝑥𝑛 > 0,

𝑝(𝒙 ∣ 𝜃) =
∏𝑛

𝑖=1 1[0,𝜃](𝑥𝑖)
𝜃𝑛

=
1[0,𝜃](𝑥(𝑛))

𝜃𝑛
=
1[𝑥(𝑛),∞)(𝜃)

𝜃𝑛
,

where 𝑥(𝑛) = max{𝑥1,… , 𝑥𝑛}. If 𝜃 ∼ Pareto(𝑎, 𝑏) then

𝑝(𝜃) ∝
1[𝑏,∞)(𝜃)
𝜃𝑎+1

.

By (4.2),

𝜋(𝜃) ∝ 𝑝(𝒙 ∣ 𝜃) 𝑝(𝜃) ∝
1[𝑏,∞)(𝜃)1[𝑥(𝑛),∞)(𝜃)

𝜃𝑎+𝑛+1
=
1[max{𝑏,𝑥(𝑛)},∞)(𝜃)

𝜃𝑎+𝑛+1
,

which is proportional to the density of Pareto(𝑎 + 𝑛,max{𝑏, 𝑥(𝑛)}).
Hence 𝜃 ∣ 𝒙 ∼ Pareto(𝑎 + 𝑛,max{𝑏, 𝑥(𝑛)}).

150

Solution 4.4 Conjugacy of exponential and gamma distributions. Under the exponential likeli-
hood model,

𝑝(𝒙 ∣ 𝜃) = 𝜃𝑛𝑒−𝜃�̇� ,
where �̇� = ∑𝑛

𝑖=1 𝑥𝑖. If 𝜃 ∼ Gamma(𝑎, 𝑏) then
𝑝(𝜃) ∝ 𝜃𝑎−1𝑒−𝑏𝜃.

By (4.2),
𝜋(𝜃) ∝ 𝑝(𝒙 ∣ 𝜃) 𝑝(𝜃) ∝ 𝜃𝑎+𝑛−1𝑒−(𝑏+�̇�)𝜃,

which is proportional to the density of Gamma(𝑎 + 𝑛, 𝑏 + �̇�).
Hence 𝜃 ∣ 𝒙 ∼ Gamma(𝑎 + 𝑛, 𝑏 + �̇�).

Solution 4.5 Conjugacy of normal and normal-inverse-gamma distributions.Writing the pos-
terior density up to proportionality,

𝜋(𝜃) ∝ 𝑝(𝒙 ∣ 𝜃) 𝑝(𝜃) ∝
1√
𝜃2 (

1
𝜃2)

𝑎+𝑛/2+1

exp
{
−
2𝑏 + 𝜆(𝜃1 − 𝜇)2 +∑𝑛

𝑖=1(𝑥𝑖 − 𝜃1)2

2𝜃2

}

=
1√
𝜃2 (

1
𝜃2)

𝑎+𝑛/2+1

exp
{
−
2𝑏 +∑𝑛

𝑖=1(𝑥𝑖 − �̄�)2 + 𝜆(𝜃1 − 𝜇)2 + 𝑛(𝜃1 − �̄�)2

2𝜃2

}

where �̄� = 1
𝑛 ∑

𝑛
𝑖=1 𝑥𝑖. Furthermore,

𝜆(𝜃1 − 𝜇)2 + 𝑛(𝜃1 − �̄�)2 = (𝜆 + 𝑛)𝜃21 − 2(𝜆𝜇 + 𝑛�̄�)𝜃1 + 𝜆𝜇2 + 𝑛�̄�2

= (𝜆 + 𝑛)
{
𝜃1 −

(𝜆𝜇 + 𝑛�̄�)
(𝜆 + 𝑛)

}2

+ 𝜆𝜇2 + 𝑛�̄�2 −
(𝜆𝜇 + 𝑛�̄�)2

(𝜆 + 𝑛)
giving

𝜋(𝜃) ∝
1√
𝜃2 (

1
𝜃2)

𝑎+𝑛/2+1

exp
{
−
2𝑏 +∑𝑛

𝑖=1(𝑥𝑖 − �̄�)2 + 𝜆𝜇2 + 𝑛�̄�2 − (𝜆𝜇 + 𝑛�̄�)2/(𝜆 + 𝑛)
2𝜃2

}

× exp
{
−
(𝜆 + 𝑛){𝜃1 − (𝜆𝜇 + 𝑛�̄�)/(𝜆 + 𝑛)}2

2𝜃2

}
.

Hence
𝜃 ∣ 𝒙 ∼ Normal-Inverse-Gamma(𝜇𝑛, 𝜆𝑛, 𝑎𝑛, 𝑏𝑛),

where

𝜇𝑛 =
𝜆𝜇 + 𝑛�̄�
𝜆 + 𝑛

,

𝜆𝑛 = 𝜆 + 𝑛,

𝑎𝑛 = 𝑎 +
𝑛
2
,

𝑏𝑛 = 𝑏 +
∑𝑛
𝑖=1(𝑥𝑖 − �̄�)2 + 𝜆𝜇2 + 𝑛�̄�2 − (𝜆𝜇 + 𝑛�̄�)2/(𝜆 + 𝑛)

2

= 𝑏 +
�̈� + 𝜆𝜇2 − (𝜆𝜇 + 𝑛�̄�)2/(𝜆 + 𝑛)

2
.

with �̈� = ∑𝑛
𝑖=1 𝑥2𝑖 .

151

Solution 4.6 Calculating a marginal distribution. For 𝜃1, 𝜃2 > 0,

𝜋(𝜃1) =
𝑏𝑎 𝜃𝑎1 𝑒−𝑏𝜃1

Γ(𝑎) ∫
∞

0
𝑒−𝜃1𝜃2 d𝜃2 =

𝑏𝑎 𝜃𝑎1 𝑒−𝑏𝜃1

Γ(𝑎)
−𝑒−𝜃1𝜃2

𝜃1

||||

∞

0
=
𝑏𝑎 𝜃𝑎−11 𝑒−𝑏𝜃1

Γ(𝑎)

and

𝜋(𝜃2) =
𝑏𝑎

Γ(𝑎) ∫
∞

0
𝜃𝑎1 𝑒

−(𝑏+𝜃2)𝜃1 d𝜃1 =
𝑏𝑎

Γ(𝑎)(𝑏 + 𝜃2)𝑎+1 ∫
∞

0
𝑥𝑎 𝑒−𝑥 d𝑥

=
Γ(𝑎 + 1)𝑏𝑎

Γ(𝑎)(𝑏 + 𝜃2)𝑎+1
=

𝑎 𝑏𝑎

(𝑏 + 𝜃2)𝑎+1
.

Solution 4.7 Credible interval for the exponential distribution.

∫
𝜃∗

−∞
𝜋(𝜃) d𝜃 = ∫

𝜃∗

0
𝜆𝑒−𝜆𝜃 d𝜃 = −𝑒−𝜆𝜃

||||

𝜃∗

0
= 1 − 𝑒−𝜆𝜃∗ .

Then 1 − 𝑒−𝜆𝜃∗ = (1 − 𝛼)/2 ⟺ 𝜃∗ = − log{(1 + 𝛼)/2}/𝜆. Similarly,

∫
∞

𝜃∗
𝜋(𝜃) d𝜃 = ∫

∞

𝜃∗
𝜆𝑒−𝜆𝜃 d𝜃 = −𝑒−𝜆𝜃

||||

∞

𝜃∗
= 𝑒−𝜆𝜃

∗

and 𝑒−𝜆𝜃∗ = (1 − 𝛼)/2 ⟺ 𝜃∗ = − log{(1 − 𝛼)/2}/𝜆.
Hence a 100𝛼% credible interval for 𝜃 is

[− log{(1 + 𝛼)/2}/𝜆,− log{(1 − 𝛼)/2}/𝜆].

Solution 5.1 Monte Carlo probabilities.The probability of𝜃 lying inside𝐴 ⊂ Θ can be expressed
as an expectation using the indicator function,

P𝜋(𝜃 ∈ 𝐴) = ∫
𝐴
𝜋(𝜃) d𝜃 = ∫

Θ
𝜋(𝜃) 1𝐴(𝜃) d𝜃 = E𝜋{1𝐴(𝜃)}.

Hence a Monte Carlo estimate for P𝜋(𝜃 ∈ 𝐴) can be obtained by

P̂𝜋(𝜃 ∈ 𝐴) =
1
𝑀

𝑀

∑
𝑖=1

1𝐴(𝜃(𝑖)).

Solution 5.2 Monte Carlo estimate of a conditional expectation. The conditional density satisi-
fies,

𝜋(𝜃 ∣ 𝜃 ∈ 𝐴) = 1𝐴(𝜃)𝜋(𝜃)/P𝜋(𝜃 ∈ 𝐴)

⟹ E𝜋 ∣𝐴(𝑔(𝜃) ∣ 𝜃 ∈ 𝐴) = ∫
Θ
𝑔(𝜃)𝜋(𝜃 ∣ 𝜃 ∈ 𝐴) d𝜃 = E𝜋{1𝐴(𝜃)𝑔(𝜃)}/E𝜋{1𝐴(𝜃)}.

152

It follows that conditional expectations can be approximated by

E𝜋 ∣𝐴(𝑔(𝜃) ∣ 𝜃 ∈ 𝐴) =
∑𝑀
𝑖=1 1𝐴(𝜃(𝑖))𝑔(𝜃(𝑖))
∑𝑀
𝑖=1 1𝐴(𝜃(𝑖))

provided ∑𝑀
𝑖=1 1𝐴(𝜃(𝑖)) > 0 (meaning there are samples lying in 𝐴).

Solution 5.3 Monte Carlo credible interval. From Exercise 5.1, it follows that

P̂𝜋(𝜃 ∈ [𝜃(𝑀(1−𝛼)/2), 𝜃(𝑀(1+𝛼)/2)]) = 𝛼

and therefore 𝑅𝛼 = [𝜃(𝑀(1−𝛼)/2), 𝜃(𝑀(1+𝛼)/2)] is a Monte Carlo approximated 100𝛼% credible
region for 𝜃.

Solution 5.4 Monte Carlo optimal decision estimation. The Monte Carlo estimate of the ex-
pected loss function is

Ê𝜋{𝓁(�̂�,𝜃)} = −
1
3

3

∑
𝑖=1

exp{−(�̂� − 𝜃(𝑖))2/10},

which is plotted below.

0 2 4 6 8 10 12

−0.5

−0.4

−0.3

�̂�

Ê
𝜋
{𝓁
(𝜃
,𝜃
)}

The following Python code then identifies the minimising value numerically using the
SciPy1 library function scipy.optimize.minimize.

#! /usr/bin/env python
gaussian_loss_example.py
import numpy as np
from scipy.optimize import minimize

def E_loss(y,z):
return sum([-np.exp(-.1*(y-v)**2) for v in z])

z = [2,5,11]
print(f'Minimiser = {minimize(E_loss,np.mean(z),z).x[0]:.5f}')

1 https://www.scipy.org

153

https://www.scipy.org

Minimiser = 3.53218

Hence, an approximate Bayesian estimate of 𝜃 under this loss function is �̂� ≈ 3.532. [This
estimate differs from the Monte Carlo estimate of the mean of 𝜋, Ê𝜋(𝜃) = (2 + 5 + 11)/3 = 6.]

Solution 5.5 Importance samplingMonte Carlo standard error.Using the identity (5.8), it follows
from (5.4) that

s.e.{Ê
IS
𝜋 {𝑔(𝜃)}} =

√

1
𝑀(𝑀 − 1)

𝑀

∑
𝑖=1

{

𝑤𝑖𝑔(𝜃(𝑖)) −
1
𝑚

𝑀

∑
𝑖=1
𝑤𝑖𝑔(𝜃(𝑖))

}2

.

Solution 5.6 Gibbs sampling.

(i) 𝜋(𝜃1, 𝜃2) =
1
2
𝜙(𝜃1 − 𝜇)𝜙(𝜃2 − 𝜇) +

1
2
𝜙(𝜃1 + 𝜇)𝜙(𝜃2 + 𝜇).

(ii)

𝜋(𝜃2) = ∫ 𝜋(𝜃1, 𝜃2) d𝜃1 =
1
2
𝜙(𝜃2 − 𝜇) +

1
2
𝜙(𝜃2 + 𝜇)

⟹ 𝜋(𝜃1 ∣ 𝜃2) =
𝜋(𝜃1, 𝜃2)
𝜋(𝜃2)

=
𝜙(𝜃1 − 𝜇)𝜙(𝜃2 − 𝜇) + 𝜙(𝜃1 + 𝜇)𝜙(𝜃2 + 𝜇)

𝜙(𝜃2 − 𝜇) + 𝜙(𝜃2 + 𝜇)
= 𝑤(𝜃2) 𝜙(𝜃1 − 𝜇) + {1 − 𝑤(𝜃2)} 𝜙(𝜃1 + 𝜇),

where

𝑤(𝜃𝑖) =
𝜙(𝜃𝑖 − 𝜇)

𝜙(𝜃𝑖 − 𝜇) + 𝜙(𝜃𝑖 + 𝜇)
= (1 + 𝑒−2𝜃𝑖𝜇)−1.

By symmetry,

𝜋(𝜃2 ∣ 𝜃1) = 𝑤(𝜃1) 𝜙(𝜃2 − 𝜇) + {1 − 𝑤(𝜃1)} 𝜙(𝜃2 + 𝜇).

(iii) As 𝜇 increases, the target density becomes bimodal and the mixture weight 𝑤(𝜃𝑖) → 0 if
𝜃𝑖 is negative, and 𝑤(𝜃𝑖) → 1 if 𝜃𝑖 is positive, and therefore 𝜃 becomes stuck near either
(−𝜇,−𝜇) or (𝜇, 𝜇).

Solution 5.7 Gibbs sampling implementation.

#! /usr/bin/env python
gibbs_sampling_2d.py
import numpy as np
import matplotlib.pyplot as plt

154

def full_conditional(y,mu,g):
z = g.binomial(1,1/(1+np.exp(-2*y*mu)))
return g.normal() + (mu if z else -mu)

def gibbs_sampling(M=100,seed=9,initial=[0,0],mu=1):
gen = np.random.default_rng(seed=seed)
xs = np.empty(shape=[M+1,2])
xs[0,] = x = list(initial)
for i in range(M):

for j in range(2):
x[j] = full_conditional(x[1-j],mu,gen)

xs[i+1,] = x
return xs

def trace_plots(z):
fig,axs=plt.subplots(1,len(z),figsize=(12,4),

constrained_layout=True)↪

for ind in range(len(z)):
x,y = z[ind][:,0],z[ind][:,1]
axs[ind].plot(x,y,'bx-',linewidth=.2,markersize=4)
axs[ind].set_xlabel(r'θ_1', fontsize=16)
axs[ind].set_ylabel(r'θ_2', fontsize=16)

plt.show()

trace_plots([gibbs_sampling(mu=mu) for mu in (1,3)])

Starting the chain from (0, 0), the left-hand plot shows good mixing when 𝜇 = 1, whereas
in right-hand plot when 𝜇 = 3 there is only one transition between the two modes during 100
iterations.

Solution 5.8 Detailed balance of Metropolis-Hastings algorithm. If 𝜃 = 𝜃′, then by symmetry
(5.12) trivially holds. If 𝜃 ≠ 𝜃′, then (5.16) simplifies to 𝑝(𝜃′ ∣ 𝜃) = 𝛼(𝜃, 𝜃′)𝑞(𝜃′ ∣ 𝜃) and it
remains to show

𝜋(𝜃)𝛼(𝜃, 𝜃′)𝑞(𝜃′ ∣ 𝜃) = 𝜋(𝜃′)𝛼(𝜃′, 𝜃)𝑞(𝜃 ∣ 𝜃′).

If 𝜋(𝜃′) = 0 then from (5.15), 𝛼(𝜃, 𝜃′) = 0 and the equality holds. So now suppose 𝜋(𝜃′) > 0,

155

𝜋(𝜃)𝑞(𝜃′ ∣ 𝜃)𝛼(𝜃, 𝜃′) = 𝜋(𝜃)𝑞(𝜃′ ∣ 𝜃)min
{
1,
𝜋(𝜃′)𝑞(𝜃 ∣ 𝜃′)
𝜋(𝜃)𝑞(𝜃′ ∣ 𝜃)

}

= min{𝜋(𝜃)𝑞(𝜃′ ∣ 𝜃), 𝜋(𝜃′)𝑞(𝜃 ∣ 𝜃′)}

= 𝜋(𝜃′)𝑞(𝜃 ∣ 𝜃′)min
{
1,
𝜋(𝜃)𝑞(𝜃′ ∣ 𝜃)
𝜋(𝜃′)𝑞(𝜃 ∣ 𝜃′)

}

= 𝜋(𝜃′)𝑞(𝜃 ∣ 𝜃′)𝛼(𝜃′, 𝜃).

Solution 5.9 Gibbs sampling as Metropolis-Hastings special case. The ratio of posterior densities
when 𝜃′−𝑗 = 𝜃−𝑗 is

𝜋(𝜃′)
𝜋(𝜃)

=
𝜋(𝜃𝑗 ∣ 𝜃−𝑗)𝜋(𝜃−𝑗)
𝜋(𝜃′𝑗 ∣ 𝜃−𝑗)𝜋(𝜃−𝑗)

=
𝜋(𝜃𝑗 ∣ 𝜃−𝑗)
𝜋(𝜃′𝑗 ∣ 𝜃−𝑗)

,

which cancels with the ratio of proposal densities in the Metropolis-Hastings acceptance
probability (5.15), and hence 𝛼(𝜃, 𝜃′) = 1 and all such Metropolis-Hastings proposals are
accepted with probability 1.

Solution 5.10 Metropolis-Hastings implementation.

#! /usr/bin/env python
mh_rw_sampling_2d.py
import numpy as np
import matplotlib.pyplot as plt

def bi_gauss(y,mu):
return np.exp(-.5*np.dot(y-mu,y-mu))

def target(y,mu):
return np.log(bi_gauss(y,mu)+bi_gauss(y,-mu))

def mh_sampling(M=100,seed=9,initial=[0,0],mu=1):
gen = np.random.default_rng(seed=seed)
xs = np.empty(shape=[M+1,2])
xs[0,] = x = np.array(initial)
p = target(x,mu)
acc = 0
for i in range(M):

x_ = x + 2*gen.normal(size=2)
p_ = target(x_,mu)
if p_ > p or -gen.exponential() < p_ - p:

x,p = x_,p_
acc +=1

xs[i+1,] = x
print(f'{mu=} acceptance rate: {acc/M*100}%')
return xs

def trace_plots(z):
fig,axs=plt.subplots(1,len(z),figsize=(12,4),

constrained_layout=True)↪

156

for ind in range(len(z)):
x,y = z[ind][:,0],z[ind][:,1]
axs[ind].plot(x,y,'bx-',linewidth=.2,markersize=4)
axs[ind].set_xlabel(r'θ_1', fontsize=16)
axs[ind].set_ylabel(r'θ_2', fontsize=16)

plt.show()

trace_plots([mh_sampling(mu=mu) for mu in (1,3)])

mu=1 acceptance rate: 32.0%
mu=3 acceptance rate: 33.0%

In comparison with Gibbs sampling, there are fewer than 100 unique samples in each case.

Solution 5.11 ELBO equivalence. Since log𝑝(𝒙, 𝜃) = log𝜋(𝜃) + log𝑝(𝒙),

KL(𝑞(𝜃) ∥ 𝜋(𝜃)) = ∫
Θ
𝑞(𝜃) log

𝑞(𝜃)
𝜋(𝜃)

d𝜃

= ∫
Θ
𝑞(𝜃) log 𝑞(𝜃) d𝜃 − ∫

Θ
𝑞(𝜃) log𝑝(𝒙, 𝜃) d𝜃 + ∫

Θ
𝑞(𝜃) log𝑝(𝒙) d𝜃

= E𝑞 log 𝑞(𝜃) − E𝑞 log𝑝(𝒙, 𝜃) + log𝑝(𝒙)
= −ELBO(𝑞) + log𝑝(𝒙).

The log𝑝(𝒙) term does not depend on the density 𝑞, and so minimising this expression corre-
sponds to maximising ELBO(𝑞).

Solution 5.12 ELBO identity. Since log𝑝(𝒙, 𝜃) = log𝑝(𝒙 ∣ 𝜃) + log𝑝(𝜃),

ELBO(𝑞) = E𝑞 log𝑝(𝒙, 𝜃) − E𝑞 log 𝑞(𝜃)
= E𝑞 log𝑝(𝒙 ∣ 𝜃) + E𝑞 log𝑝(𝜃) − E𝑞 log 𝑞(𝜃)

= E𝑞 log𝑝(𝒙 ∣ 𝜃) − E𝑞 log
𝑞(𝜃)
𝑝(𝜃)

= E𝑞 log𝑝(𝒙 ∣ 𝜃) − KL(𝑞(𝜃) ∥ 𝑝(𝜃)).

157

Solution 5.13 CAVI derivation. Using the identity 𝑝(𝒙, 𝜃) = 𝜋(𝜃)𝑝(𝒙),

ELBO(𝑞) = E𝑞 log𝑝(𝒙, 𝜃) − E𝑞 log 𝑞(𝜃)
= E𝑞 log𝜋(𝜃) + E𝑞 log𝑝(𝒙) − E𝑞 log 𝑞(𝜃).

Since 𝑝(𝒙) does not depend on 𝑞, maximising ELBO(𝑞) is equivalent to maximising

ẼLBO(𝑞) = E𝑞 log𝜋(𝜃) − E𝑞 log 𝑞(𝜃).

Writing 𝜋(𝜃) = 𝜋(𝜃−𝑗)𝜋(𝜃𝑗 ∣ 𝜃−𝑗) and 𝑞(𝜃) = 𝑞−𝑗(𝜃−𝑗)𝑞𝑗(𝜃𝑗),

ẼLBO(𝑞) = E𝑞−𝑗 log𝜋(𝜃−𝑗) + E𝑞𝑗 E𝑞−𝑗 log𝜋(𝜃𝑗 ∣ 𝜃−𝑗) − E𝑞−𝑗 log 𝑞−𝑗(𝜃−𝑗) − E𝑞𝑗 log 𝑞𝑗(𝜃𝑗).

Maximising ẼLBO(𝑞) with respect to 𝑞𝑗 is equivalent to maximising

E𝑞𝑗 E𝑞−𝑗 log𝜋(𝜃𝑗 ∣ 𝜃−𝑗) − E𝑞𝑗 log 𝑞𝑗(𝜃𝑗) = −KL[𝑞𝑗(𝜃𝑗) ∥ exp{E𝑞−𝑗 log𝜋(𝜃𝑗 ∣ 𝜃−𝑗)}].

This KL-divergence is minimised by setting 𝑞𝑗(𝜃𝑗) ∝ exp{E𝑞−𝑗 log𝜋(𝜃𝑗 ∣ 𝜃−𝑗)}.

Solution 5.14 CAVI Gaussian approximation.

(i) With just two components, 𝜃−𝑗 = 𝜃𝑗 . Taking the conditional distribution of a bivariate
normal,

𝜋(𝜃𝑗 ∣ 𝜃𝑗) = Normal
(
𝜇𝑗 +

Σ𝑗𝑗
Σ𝑗𝑗

(𝜃𝑗 − 𝜇𝑗), Σ𝑗𝑗 −
Σ2
𝑗𝑗

Σ𝑗𝑗)

⟹ 𝜋(𝜃𝑗 ∣ 𝜃𝑗) ∝ exp
{
−

1
2𝑠2𝑗 (

𝜃𝑗 − 𝜇𝑗 −
Σ𝑗𝑗
Σ𝑗𝑗

(𝜃𝑗 − 𝜇𝑗))

2}

⟹ log𝜋(𝜃𝑗 ∣ 𝜃𝑗) = −
1
2𝑠2𝑗 (

𝜃𝑗 − 𝜇𝑗 −
Σ𝑗𝑗
Σ𝑗𝑗

(𝜃𝑗 − 𝜇𝑗))

2

+ constant

⟹ E𝑞𝑗 log𝜋(𝜃𝑗 ∣ 𝜃𝑗) = −
1
2𝑠2𝑗

{
𝜃2𝑗 − 2𝜃𝑗 (𝜇𝑗 −

Σ𝑗𝑗
Σ𝑗𝑗

(𝑚𝑗 − 𝜇𝑗))

}
+ constant

= −
1
2𝑠2𝑗

(𝜃2𝑗 − 2𝜃𝑗𝑚𝑗) + constant

⟹ exp{E𝑞𝑗 log𝜋(𝜃𝑗 ∣ 𝜃𝑗)} ∝ exp
{
−

1
2𝑠2𝑗

(𝜃2𝑗 − 2𝜃𝑗𝑚𝑗)

}
∝ exp

{
−

1
2𝑠2𝑗

(𝜃𝑗 − 𝑚𝑗)
2
}
.

(ii) The variances of the component densities 𝑞𝑗 are fixed, and the algorithm will converge
when each mean value 𝑚𝑗 = 𝜇𝑗 .

(iii) The following Python code implements coordinate ascent variational inference for the
bivariate normal distribution with correlation .95. The printed output gives the fitted
mean and variance values. The contour plot mirrors Fig. 5.2(a).

158

#! /usr/bin/env python
cavi.py
import numpy as np
from scipy.stats import multivariate_normal
import matplotlib.pyplot as plt

#target distribution parameters
mu, Sigma = [0,0], [[1,.95], [.95,1]]

#initial approximation
m, s = [2,3], [.01,81]

for _ in range(200):
for j in range(2):

m[j]=mu[j]+Sigma[j][1-j]/Sigma[1-j][1-j]*(m[1-j]-mu[1-j])
s[j]=Sigma[j][j]-Sigma[j][1-j]**2/Sigma[1-j][1-j]

print(m,s)

x,y = np.mgrid[-2.5:2.5:.05, -2.5:2.5:.05]
xy = np.dstack((x,y))
N1 = multivariate_normal(mu,Sigma)
N2 = multivariate_normal(m,[[s[0],0],[0,s[1]]])
plt.rcParams["figure.figsize"] = (5,5)
plt.contour(x,y,N1.pdf(xy),10,colors='black')
plt.contour(x,y,N2.pdf(xy),10,colors='blue')
plt.xlabel(r'θ_1', fontsize=14)
plt.ylabel(r'θ_2', fontsize=14)
plt.gcf().canvas.manager.set_window_title('Density contours')
plt.show()

[3.880071824689807e-09, 3.6860682334553167e-09]
[0.09750000000000003, 0.09750000000000003]↪

Solution 7.1 Bayes factors for Gaussian distributions.

(i) Let �̈� = ∑𝑛
𝑖=1 𝑥2𝑖 , �̇� = ∑𝑛

𝑖=1 𝑥𝑖. From Section A.3, under model 𝑀1,

𝑝1(𝒙) =
exp[− 1

2 {�̈� − (𝜎−2 + 𝑛)−1�̇�2}]
(2𝜋) 𝑛2 (𝑛𝜎2 + 1) 1

2
.

159

Similarly,

𝑝1(𝒚) =
exp[− 1

2 {�̈� − (𝜎−2 + 𝑛)−1�̇�2}]
(2𝜋) 𝑛2 (𝑛𝜎2 + 1) 1

2
.

Under model 𝑀0

𝑝0(𝒙, 𝒚) =
exp[− 1

2 {�̈� + �̈� − (𝜎−2 + 2𝑛)−1(�̇� + �̇�)2}]
(2𝜋)𝑛(2𝑛𝜎2 + 1) 1

2
.

Consequently, the Bayes factor in favour of 𝑀0 is

𝐵01(𝒙, 𝒚) =
𝑝0(𝒙, 𝒚)
𝑝1(𝒙)𝑝1(𝒚)

=
(𝑛𝜎2 + 1)
(2𝑛𝜎2 + 1) 1

2
exp{− 1

2(𝜎
−2 + 𝑛)−1(�̇�2 + �̇�2) + 1

2(𝜎
−2 + 2𝑛)−1(�̇� + �̇�)2}.

(ii) From the previous expression,

𝐵01(𝒙, 𝒚) =

√

1 +
𝑛2𝜎4

2𝑛𝜎2 + 1
exp{− 1

2(𝜎
−2 + 𝑛)−1(�̇�2 + �̇�2) + 1

2(𝜎
−2 + 2𝑛)−1(�̇� + �̇�)2}.

For large 𝜎,

𝐵01(𝒙, 𝒚) ≈ 𝜎(𝑛2)
1
2 exp{− 1

2𝑛(�̇�
2 + �̇�2) + 1

4𝑛(�̇� + �̇�)
2}

= 𝜎(𝑛2)
1
2 exp{− 1

4𝑛(�̇� − �̇�)
2}.

Clearly 𝐵01(𝒙, 𝒚) → ∞ as 𝜎 → ∞. This means the simpler model, where 𝜃𝑋 = 𝜃𝑌 , will
always be preferred.

Solution 7.2 BIC for Gaussian distributions.

(i) It is easily shown that the maximum likelihood estimates for the mean parameters 𝜃𝑋
and 𝜃𝑌 under the two models are the corresponding sample means:

𝑀0 ∶ �̂�𝑋 = �̂�𝑌 =
�̄� + �̄�
2

;

𝑀1 ∶ �̂�𝑋 = �̄�, �̂�𝑌 = �̄�,

where �̄� = 1
𝑛 ∑

𝑛
𝑖=1 𝑥𝑖, �̄� = 1

𝑛 ∑
𝑛
𝑖=1 𝑦𝑖. Then for model 𝑀1,

log𝑝1(𝒙, 𝒚 ∣ �̂�𝑋 , �̂�𝑌) = log𝑝1(𝒙 ∣ �̂�𝑋) + log𝑝1(𝒚 ∣ �̂�𝑌)

= −𝑛 log(2𝜋) −
1
2

𝑛

∑
𝑖=1

(𝑥𝑖 − �̄�)2 −
1
2

𝑛

∑
𝑖=1

(𝑦𝑖 − �̄�)2

⟹ BIC1 = 2𝑛 log(2𝜋) +
𝑛

∑
𝑖=1

(𝑥𝑖 − �̄�)2 +
𝑛

∑
𝑖=1

(𝑦𝑖 − �̄�)2 + 2 log(2𝑛).

160

Under model 𝑀0,

log𝑝0(𝒙, 𝒚 ∣ �̂�𝑋 = �̂�𝑌) = −𝑛 log(2𝜋) −
1
2

𝑛

∑
𝑖=1

{

(𝑥𝑖 −
�̄� + �̄�
2)

2

+(𝑦𝑖 −
�̄� + �̄�
2)

2}

⟹ BIC0 = 2𝑛 log(2𝜋) +
𝑛

∑
𝑖=1

{

(𝑥𝑖 −
�̄� + �̄�
2)

2

+(𝑦𝑖 −
�̄� + �̄�
2)

2}
+ log(2𝑛).

(ii) The Bayes factor can be approximated using (7.10).

BIC0 − BIC1 = −𝑛�̄�2 − 𝑛�̄�2 +
𝑛
2
(�̄� + �̄�)2 − log(2𝑛)

= −
𝑛
2
�̄�2 −

𝑛
2
�̄�2 + 𝑛�̄��̄� − log(2𝑛)

= −
𝑛
2
(�̄� − �̄�)2 − log(2𝑛)

⟹ B01 ≈ exp
{
−
1
2
(BIC0 − BIC1)

}
=
√
2𝑛 exp

{𝑛
4
(�̄� − �̄�)2

}
.

Solution 8.1 Marginal density for regression coefficients.

(i) Starting from the joint prior probability density function,

𝑝(𝛽, 𝜎−2) =
𝑏𝑎 exp

{
−𝜎−2 (𝑏 + 𝛽⊺𝑉 −1𝛽/2)

}

(2𝜋)
𝑝
2 |𝑉 | 12Γ(𝑎) 𝜎2(𝑎−1)+𝑝

⟹ 𝑝(𝛽) = ∫
∞

0
𝑝(𝛽, 𝜎−2) d𝜎−2 =

𝑏𝑎 Γ(𝑎 + 𝑝
2)

(2𝜋)
𝑝
2 |𝑉 | 12 Γ(𝑎) (𝑏 + 𝛽⊺𝑉 −1𝛽/2)𝑎+

𝑝
2
,

by comparison of the integrand as a function of 𝜎−2 with the probability density function
for a Gamma(𝑎 + 𝑝/2, 𝑏 + 𝛽⊺𝑉 −1𝛽/2) random variable.

(ii) If 𝑉 = 𝐼𝑝, then

𝑝(𝛽) =
Γ(𝑎 + 𝑝

2)
(2𝜋𝑏)

𝑝
2 Γ(𝑎) (

1 +
𝛽⊺𝛽
2𝑏)

−(𝑎+ 𝑝
2)

.

Regarded as a function of ‖𝛽‖, this density takes the same form (up to a constant of
proportionality) as the density function of St𝑝(2𝑎+𝑝−1, 0, 2𝑏

2𝑎+𝑝−1 𝐼𝑝), except that ‖𝛽‖ can
only take non-negative values.

Solution 8.2 Linearmodel matrix inverse. Setting𝐴 = 𝐼𝑛 and𝑈 = 𝑊 = 𝑋 , the matrix inversion
lemma gives (𝑋𝑉𝑋⊺ + 𝐼𝑛)−1 = 𝐼𝑛 − 𝑋(𝑉 −1 + 𝑋⊺𝑋)−1𝑋⊺ = 𝐼𝑛 − 𝑋𝑉𝑛𝑋⊺.

Solution 8.3 Linear model matrix determinant. Setting 𝐴 = 𝐼𝑛 and 𝑈 = 𝑊 = 𝑋 , the matrix
determinant lemma gives |𝐼𝑛 + 𝑋𝑉𝑋⊺| = |𝑉 −1 + 𝑋⊺𝑋 ||𝑉 |.

161

Solution 8.4 Linear model code. The function lm_log_likelihood is one possible Python
implementation, which makes the simplifying assumption that 𝑉 = 𝜆−1 𝐼𝑝:

linear_regression.py

import numpy as np
from scipy.special import gammaln

def lm_log_likelihood(y,X,a=0.1,b=0.1,lam=0.01):
n, p= X.shape
XtX = X.T @ X
Xty = X.T @ y
V_n = np.linalg.inv(XtX+lam*np.identity(p))
det_Vn= np.linalg.slogdet(V_n)[1]
m_n = V_n @ Xty
a_n = a+.5*n
b_n = b + .5*(np.dot(y,y) - Xty.T @ m_n)
ml = .5*det_Vn + .5*p*np.log(lam) - a_n*np.log(b_n) + a*np.log(b)

+ gammaln(a_n) -.5*n*np.log(2*np.pi) - gammaln(a)↪

return ml, m_n

Solution 8.5 Orthogonal covariate matrix marginal likelihood. If 𝑉 = 𝜆−1 𝐼𝑝 and 𝑋⊺𝑋 = 𝐼𝑝,
then

𝑝(𝒚 ∣ 𝑋) = (
𝜆

1 + 𝜆)

𝑝
2 Γ(𝑎 + 𝑛/2) 𝑏𝑎

(2𝜋) 𝑛2 Γ(𝑎) (𝑏 + 1
2𝒚⊺𝒚 − 1

2(1+𝜆)𝒚⊺𝑋𝑋⊺𝒚)𝑎+ 𝑛
2
.

This expression does not require a matrix inversion, unlike the evaluation of the matrix 𝑉𝑛
(8.10) required for the general case.

Solution 8.6 Zellner’s g-prior. If 𝑉 = 𝑔(𝑋⊺𝑋)−1, then

𝑝(𝒚 ∣ 𝑋) =
Γ(𝑎 + 𝑛/2) 𝑏𝑎

(2𝜋) 𝑛2 Γ(𝑎) (1 + 𝑔)
𝑝
2 (𝑏 + 1

2𝒚⊺𝒚 − 𝑔
2(1+𝑔)𝒚⊺𝑋(𝑋⊺𝑋)−1𝑋⊺𝒚)𝑎+ 𝑛

2
.

Solution 9.1 Dirichlet process marginal likelihood. Let 𝒙′ = (𝑥′1,… , 𝑥′𝑘) be the 𝑘 ≤ 𝑛 unique
values which occur in 𝒙, and let 𝑛𝑗 = ∑𝑛

𝑖=1 1{𝑥′𝑗 }(𝑥𝑖) be the number of occurrences of 𝑥′𝑗 . Also
for 𝑗 = 1,… , 𝑘 let 𝐵𝑗 = {𝑥′𝑗 } and 𝐵𝑘+1 = / ∪𝑗 𝐵𝑗 . Then

𝑝(𝒙 ∣ P) =
𝑘

∏
𝑗=1

p(𝑥′𝑗)
𝑛𝑗 =

𝑘

∏
𝑗=1

P(𝐵𝑗)𝑛𝑗

162

and under the Dirichlet process prior,

𝑝(P(𝐵1),… ,P(𝐵𝑘+1)) =
Γ(𝛼)

∏𝑘+1
𝑗=1 Γ{𝛼 P0(𝐵𝑗)}

𝑘+1

∏
𝑗=1

P(𝐵𝑗)𝛼 P0(𝐵𝑗)−1

=
Γ(𝛼)

Γ{𝛼 P0(𝐵𝑘+1)}∏𝑘
𝑗=1 Γ{𝛼 p0(𝑥′𝑗)}

P(𝐵𝑘+1)𝛼 P0(𝐵𝑘+1)−1
𝑘

∏
𝑗=1

P(𝐵𝑗)𝛼 p0(𝑥′𝑗)−1

⟹ 𝑝(𝒙,P(𝐵1),… ,P(𝐵𝑘+1)) =
Γ(𝛼)

Γ{𝛼 P0(𝐵𝑘+1)}∏𝑘
𝑗=1 Γ{𝛼 p0(𝑥′𝑗)}

P(𝐵𝑘+1)𝛼 P0(𝐵𝑘+1)−1
𝑘

∏
𝑗=1

P(𝐵𝑗)𝛼 p0(𝑥′𝑗)+𝑛𝑗−1.

Marginalising with respect to (P(𝐵1),… ,P(𝐵𝑘+1)),

⟹ 𝑝(𝒙) = ∫ 𝑝(𝒙,P(𝐵1),… ,P(𝐵𝑘+1)) d(P(𝐵1),… ,P(𝐵𝑘+1))

=
Γ(𝛼)

∏𝑘
𝑗=1 Γ{𝛼 p0(𝑥′𝑗)}

∏𝑘
𝑗=1 Γ{𝛼 p0(𝑥′𝑗) + 𝑛𝑗 }

Γ(𝛼 + 𝑛)
,

by comparison with the normalising constant of the corresponding Dirichlet distribution.

Solution 9.2 Dirichlet process sampling.The following functiondirichlet_process_sample
is one possible Python implementation.

#! /usr/bin/env python
dirichlet_process_sample.py

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import geom

def DP_sample(a,P_0=geom,th=.1,m=50,seed=0):
gen = np.random.default_rng(seed=seed)
p = [P_0.pmf(k,th) for k in range(1,m+1)]+[P_0.sf(m,th)]
return range(1,m+2), gen.dirichlet(a*np.array(p))

for a in [10,10**3,10**5]:
plt.scatter(*DP_sample(a),marker='x',label=r'$\alpha=$'+str(a))

plt.legend(loc="upper right")
plt.gcf().canvas.manager.set_window_title('Dirichlet process samples')
plt.show()

163

For larger values of 𝛼, the sampled mass functions more closely resemble the base geometric
distribution.

Solution 9.3 Binary partition index. For 𝑥 ∈ R, the index of 𝑥 at any level 𝑚 is obtained by
calculating the𝑚-digit binary representation of 𝐹0(𝑥). This is achieved by the following Python
code:

#! /usr/bin/env python
binary_partition_index.py

from scipy.stats import norm

def binary_parition_index(F_0,x,m):
b,y = [],F_0(x)
for _ in range(m):

b += [int(2*y)]
y = 2*y - b[-1]

print(''.join(map(str,b)), end='.\n')

binary_parition_index(norm.cdf,1.5,6)

111011.

Solution 9.4 Pólya tree sampling. The following function polya_tree_sample is one
possible Python implementation. For a user-chosen depth 𝑚, the code samples the bin proba-
bilities P(𝐵𝑒) for each set 𝐵𝑒 ∈ 𝜋𝑚, and then estimates the density at the mid point of the bin
to be equal to the average density of the bin.

#! /usr/bin/env python
polya_tree_sample.py

164

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm

def polya_tree_sample(a,F_0_inv=norm.ppf,m=9,seed=0):
gen = np.random.default_rng(seed=seed)
p = np.ones(2**m)
for j in range(m,0,-1):

a_j = a*j**2
i = 0
for k in range(2**(j-1)):

b = gen.beta(a_j,a_j)
for l in range(2**(m-j)):

p[i+l] *= b
p[i+l+2**(m-j)] *= 1-b

i += 2**(m-j+1)

x = np.array([F_0_inv((z+1.0)/2**m) for z in range(2**m-1)])
return (x[1:]+x[:-1])/2, p[1:-1]/np.diff(x)

for a in [10,10**3,10**5]:
plt.plot(*polya_tree_sample(a),label=r'$\alpha=$'+str(a))

plt.legend(loc="upper right")
plt.autoscale(enable=True, axis='x', tight=True)
plt.gcf().canvas.manager.set_window_title('Polya tree samples')
plt.show()

For larger values of 𝛼, the sampled densities more closely resemble the standard normal
base measure density.

Solution 10.1 Gaussian process closure. For any 𝒙 = (𝑥1,… , 𝑥𝑛), independently 𝑓 (𝒙) −𝑚(𝒙) ∼
Normal𝑛(0, 𝐾(𝒙,𝒙)) and 𝑚(𝒙) ∼ Normal𝑛(𝑚0(𝒙), 𝐾0(𝒙,𝒙)), where 𝐾0(𝒙,𝒙) is the correspond-
ing covariance matrix (10.3) for the kernel 𝑘0. Since the sum of two independent normal
distributions is again normal,

𝑓 (𝑥) ∼ Normal𝑛(𝑚0(𝒙), 𝐾0(𝒙,𝒙) + 𝐾(𝒙,𝒙))

165

and hence 𝑓 ∼ GP(𝑚0, 𝑘 + 𝑘0).

Solution 10.2 Linear model as a Gaussian process.

𝛽 ∼ Normal𝑝(0, 𝜎2𝜆−1𝐼𝑝) ⟹ 𝑋𝛽 ∼ Normal𝑛(0, 𝜎2𝜆−1𝑋𝑋⊺).

It therefore follows that this regression function can bewritten aGaussian process 𝑓 ∼ GP(0, 𝑘)
where the covariance kernel 𝑘 is the dot product

𝑘(𝑥, 𝑥′) = 𝜎2𝜆−1𝑥 ⋅ 𝑥′.

Solution 10.3 Spline regression as a Gaussian process. It follows from Exercise 10.2 that 𝑓 ∼
GP(0, 𝑣 ⋅ 𝑏(⋅ , ⋅)) where

𝑏(𝑥, 𝑥′) = 1 +
𝑑

∑
𝑗=1

(𝑥𝑥′)𝑗 +
𝑚

∑
𝑗=1

{(𝑥 − 𝜏𝑗)+(𝑥′ − 𝜏𝑗)+}𝑑 .

Solution 10.4 Normal changepoint model as a Gaussian process. The changepoint model is
equivalent to a zero-mean Gaussian process GP(0, 𝑣 ⋅ 𝑏(⋅ , ⋅)) where

𝑏(𝑥, 𝑥′) =
𝑚

∑
𝑗=0

1[𝜏𝑗 ,𝜏𝑗+1)(𝑥) ⋅ 1[𝜏𝑗 ,𝜏𝑗+1)(𝑥
′)

defines an indicator function determining whether 𝑥 and 𝑥′ lie in the same 𝜏-segment.

Solution 10.5 CART notation and partition.

(i) 𝑇 = {(1, 2, 𝑎), (2, 1, 𝑏), (3, 3, 𝑐), (6, 1, 𝑑)}.

(ii) 𝜋 = {𝐵1,… , 𝐵5} where

𝐵1 = (−∞, 𝑏] × (−∞, 𝑎] × R

𝐵2 = (𝑏,∞) × (−∞, 𝑎] × R

𝐵3 = (−∞, 𝑑] × (𝑎,∞) × (−∞, 𝑐]
𝐵4 = (𝑑,∞) × (𝑎,∞) × (−∞, 𝑐]
𝐵5 = R × (𝑎,∞) × (𝑐,∞).

166

Solution 11.1 Mixture of normals full conditionals. Let 𝑛𝑗 ,−𝑖 = ∑𝑖′≠𝑖 1{𝑗}(𝑧′𝑖) be the number of
data points aside from 𝑥𝑖 currently allocated to cluster 𝑗 . Similarly let �̇�𝑗 ,−𝑖 = ∑𝑖′≠𝑖;𝑧𝑖′=𝑗

𝑥𝑖′ and
�̈�𝑗 ,−𝑖 = ∑𝑖′≠𝑖;𝑧𝑖′=𝑗

𝑥2𝑖′ . Then for 𝑗 = 1,… , 𝑚,

𝑝(𝑧𝑖 = 𝑗 ∣ 𝒛−𝑖,𝒙) ∝
(𝛼𝑗 + 𝑛𝑗 ,−𝑖)Γ(𝑎 + (𝑛𝑗 ,−𝑖 + 1)/2) (𝜆 + 𝑛𝑗 ,−𝑖)

1
2

Γ(𝑎 + 𝑛𝑗 ,−𝑖/2) (𝜆 + 𝑛𝑗 ,−𝑖 + 1) 1
2

× [𝑏 + 1
2 {�̈�𝑗 ,−𝑖 − �̇�

2
𝑗 ,−𝑖/(𝜆 + 𝑛𝑗 ,−𝑖)}]

𝑎+
𝑛𝑗,−𝑖
2

[𝑏 + 1
2 {�̈�𝑗 ,−𝑖 + 𝑥

2
𝑖 − (�̇�𝑗 ,−𝑖 + 𝑥𝑖)2/(𝜆 + 𝑛𝑗 ,−𝑖 + 1)}]

𝑎+
𝑛𝑗,−𝑖+1

2

.

Solution 11.2 Gibbs sampling mixture of normals. The following code is one possible Python
implementation. The hyperparameters are chosen to be 𝛼 = 0.1, 𝑎 = 0.1, 𝑏 = 0.1, 𝜆 = 1.

#! /usr/bin/env python
gibbs_sampling_normal_mixture.py

import numpy as np
import matplotlib.pyplot as plt
from scipy.special import gammaln

def full_con_p(x,sx,sxx,n,al,a,b,la):
a_star = a+.5*n
lp = np.log(al+n) + gammaln(a_star+.5) - gammaln(a_star)
lp += .5*np.log(1-1/(la+n+1))
lp += a_star*np.log(b+.5*(sxx - sx**2/(la+n)))
lp -= (a_star+.5)*np.log(b+.5*(sxx+x**2 - (sx+x)**2/(la+n+1)))
return np.exp(lp)

def gibbs_sampling(x,m=2,mu=1,al=.1,a=.1,b=.1,la=1,M=100,seed=0):
gen = np.random.default_rng(seed=seed)
n = len(x)
ns = np.array([int(n/m) for _ in range(m-1)]+[n-(m-1)*int(n/m)])
z = np.repeat(range(m),ns)
sx = [sum([x[i] for i in range(n) if z[i]==j]) for j in

range(m)]↪

sxx = [sum([x[i]**2 for i in range(n) if z[i]==j]) for j in
range(m)]↪

pz = np.empty(m)
for _ in range(M):

for i in range(n): #loop through sample allocations
for j in range(m):

if z[i]==j:
ns[j] -= 1
sx[j] -= x[i]
sxx[j] -= x[i]**2

pz[j]=full_con_p(x[i],sx[j],sxx[j],ns[j],al,a,b,la)

z[i] = gen.choice(m,p=pz/sum(pz))
ns[z[i]] += 1
sx[z[i]] += x[i]
sxx[z[i]] += x[i]**2

167

print(", ".join(map(str,ns/n)))
print(", ".join(map(str,np.array(sx)/ns)))

def simulate_beta_mixture(n, beta_pars, probs):
gen = np.random.default_rng(seed=0)
z = gen.choice(len(probs), n, p=probs)
return np.array([gen.beta(*(beta_pars[z_i])) for z_i in z])

x = np.sort(simulate_beta_mixture(10000,[[20,10],[2,3]],[0.3,0.7]))
gibbs_sampling(x,2)

0.4869, 0.5131
0.3012809848370137, 0.6509450466163792

Solution 11.3 Latent factor linear model.

(i) 𝑦 ∣ 𝜎, 𝑋, 𝑍 ∼ Normal𝑛(0, 𝜎2(𝑋𝑉𝑋⊺ + 𝑍𝑈𝑍⊺ + 𝐼𝑛)).

(ii) 𝑦 ∣ 𝑋, 𝑍 ∼ St𝑛(2𝑎, 0, 𝑏(𝑋𝑉𝑋⊺ + 𝑍𝑈𝑍⊺ + 𝐼𝑛)/𝑎).

Solution 11.4 Latent factor linear model code. From Exercise 11.4 with with 𝑉 = 𝑣 𝐼𝑝 and
𝑈 = 𝑢 𝐼𝑞 ,

𝑦 ∣ 𝑋, 𝑍 ∼ St𝑛(2𝑎, 0, 𝑏(𝑣𝑋𝑋⊺ + 𝑢𝑍𝑍⊺ + 𝐼𝑛)/𝑎).

The following Stan code is one possible implementation.

// linear_model_latent_factors.stan

data {
int<lower=0> n; // number of observations
int<lower=1> p; // number of grid points
vector[n] y; // responses
matrix[n, p] X; // factor matrix
int<lower=1> q; // number of latent factors
real<lower=0> u;
real<lower=0> v;
real<lower=0> a;
real<lower=0> b;

}
transformed data {

matrix[n, n] vXXTI = v * X * X' + identity_matrix(n);
}
parameters {

matrix[n, q] Z; // latent factor matrix
}
model {

matrix[n, n] S = u * Z * Z' + vXXTI;
y ~ multi_student_t(2*a,rep_vector(0, n), b * S / a);

}

168

BIBLIOGRAPHY

M. A. Amaral Turkman, C. D. Paulino, and P. Müller. Computational Bayesian Statistics: An
Introduction. Institute of Mathematical Statistics Textbooks. Cambridge University Press,
2019.

D. Barber. Bayesian Reasoning and Machine Learning. Cambridge University Press, 2012.

J. O. Berger and A. Guglielmi. Bayesian and conditional frequentist testing of a parametric
model versus nonparametric alternatives. Journal of the American Statistical Association, 96
(453):174–184, 2001.

J. M. Bernardo and A. F. M. Smith. Bayesian Theory. Wiley Series in Probability & Statistics.
Wiley, 1994.

M. Betancourt. A conceptual introduction to Hamiltonian Monte Carlo. arXiv: Methodology,
2017.

A. Bhattacharya and D. B. Dunson. Sparse Bayesian infinite factor models. Biometrika, 98(2):
291–306, 2011.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet allocation. Journal of Machine Learning
Research, 3:993–1022, 2003.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for statisticians.
Journal of the American Statistical Association, 112(518):859–877, 2017.

H. A. Chipman, E. I. George, and R. E. McCulloch. Bayesian CART model search. Journal of
the American Statistical Association, 93(443):935–948, 1998.

169

H. A. Chipman, E. I. George, and R. E. McCulloch. Bart: Bayesian additive regression trees.
Ann. Appl. Stat., 4(1):266–298, 03 2010.

B. de Finetti. Theory of Probability: A critical introductory treatment. Wiley Series in Probability
and Statistics. Wiley, 2017.

D. G. T. Denison, B. K. Mallick, and A. F. M. Smith. A Bayesian CART algorithm. Biometrika,
85(2):363–377, 1998.

D. G. T. Denison,C. C. Holmes, B. K. Mallick, andA. F. M. Smith. BayesianMethods for Nonlinear
Classification and Regression. Wiley Series in Probability and Statistics. Wiley, 2002.

A. Doucet, N. de Freitas, and N. Gordon. An Introduction to Sequential Monte Carlo Methods,
pages 3–14. Springer New York, New York, NY, 2001.

T. S. Ferguson. A Bayesian analysis of some nonparametric problems. The Annals of Statistics,
1(2):209–230, 1973.

C. Fraley and A. E. Raftery. Model-based clustering, discriminant analysis, and density estima-
tion. Journal of the American Statistical Association, 97(458):611–631, 2002.

A. Gelman and C. Hennig. Beyond subjective and objective in statistics. Journal of the Royal
Statistical Society: Series A (Statistics in Society), 180(4):967–1033, 2017.

A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. Rubin. Bayesian Data Analysis,
Third Edition. Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis, 2013.

P. J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model
determination. Biometrika, 82(4):711–732, 12 1995. ISSN 0006-3444.

P. J. Green and B. W. Silverman. Nonparametric regression and generalized linear models: a
roughness penalty approach. Chapman and Hall, United Kingdom, 1994.

N. A. Heard. naheard/changepoints: Bayesian Changepoint modelling code, Feb. 2025. URL
https://doi.org/10.5281/zenodo.14809021.

M. D. Hoffman and A. Gelman. The No-U-Turn sampler: Adaptively setting path lengths in
Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(47):1593–1623, 2014.

C. C. Holmes, D. G. T. Denison, S. Ray, and B. K. Mallick. Bayesian prediction via partitioning.
Journal of Computational and Graphical Statistics, 14(4):811–830, 2005.

H. Jeffreys. Theory of Probability. Oxford, Oxford, England, third edition, 1961.

R. E. Kass and A. E. Raftery. Bayes factors. Journal of the American Statistical Association, 90
(430):773–795, 1995.

A. Kucukelbir, D. Tran, R. Ranganath, A. Gelman, and D. M. Blei. Automatic differentiation
variational inference. Journal of Machine Learning Research, 18(14):1–45, 2017.

170

https://doi.org/10.5281/zenodo.14809021

J. W. Lau and P. J. Green. Bayesian model-based clustering procedures. Journal of Computa-
tional and Graphical Statistics, 16(3):526–558, 2007.

M. Lavine. Some aspects of Polya tree distributions for statistical modelling. The Annals of
Statistics, 20(3):1222–1235, 1992.

T. Leonard. A Bayesian method for histograms. Biometrika, 60(2):297–308, 1973.

R. D. Mauldin, W. D. Sudderth, and S. C. Williams. Polya trees and random distributions. The
Annals of Statistics, 20(3):1203–1221, 1992.

T. P. Minka. Expectation propagation for approximate bayesian inference. In Proceedings of
the Seventeenth Conference on Uncertainty in Artificial Intelligence, UAI’01, page 362–369.
Morgan Kaufmann Publishers Inc., 2001.

R. M. Neal. Mcmc using hamiltonian dynamics. In Handbook of Markov chain Monte Carlo,
pages 113–162. Chapman and Hall/CRC, 2011.

M.-S. Oh and A. E. Raftery. Model-based clustering with dissimilarities: A Bayesian approach.
Journal of Computational and Graphical Statistics, 16(3):559–585, 2007.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning (Adaptive
Computation and Machine Learning). The MIT Press, 2005.

S. Richardson and P. J. Green. On Bayesian analysis of mixtures with an unknown number
of components (with discussion). Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 59(4):731–792, 1997.

G. O. Roberts and J. S. Rosenthal. General state space Markov chains and MCMC algorithms.
Probab. Surveys, 1:20–71, 2004.

G. O. Roberts, A. Gelman, and W. R. Gilks. Weak convergence and optimal scaling of random
walk Metropolis algorithms. Ann. Appl. Probab., 7(1):110–120, 1997.

H. Rue, S. Martino, and N. Chopin. Approximate Bayesian inference for latent Gaussian models
by using integrated nested Laplace approximations. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 71(2):319–392, 2009.

G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464, 1978.

J. Sethuraman. A constructive definition of Dirichlet priors. Statistica Sinica, 4(2):639–650,
1994.

Y. W. Teh. Dirichlet processes. In Encyclopedia of Machine Learning. Springer, 2010.

Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet processes. Journal of
the American Statistical Association, 101(476):1566–1581, 2006. ISSN 01621459.

L. Tierney and J. B. Kadane. Accurate approximations for posterior moments and marginal
densities. Journal of the American Statistical Association, 81(393):82–86, 1986.

171

C. Wang, J. Paisley, and D. Blei. Online variational inference for the hierarchical Dirichlet
process. In G. Gordon, D. Dunson, and M. Dudík, editors, Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, volume 15, pages 752–760.
JMLR Workshop and Conference Proceedings, 2011.

A. Zellner. On Assessing Prior Distributions and Bayesian Regression Analysis with g Prior
Distributions, pages 233–243. New York: Elsevier, 1986.

172

INDEX

action, 3
randomised, 10

adjacency matrix, 24
aperiodic, 47
asymptotic normality, 20, 54

bag-of-words, 129
base measure, 94
basis function, 85
Bayes factor, 70

interpretation, 70
Bayes’ theorem, 8
Bayesian additive regression tree, 120
Bayesian histogram, 101

marginal likelihood, 102
Bayesian information criterion, 71
belief network, 26, 80, 128
binary sequences, 98
binary tree, 98

changepoint model, 118
regimes, 118

Chinese restaurant table distribution, 97
classification and regression tree, 119
clique, 26
clustering, 122, 124, 126
coherence, 1, 10
collider node, 27

conditional probability, 7
conjugacy, 36, 122
conjugate prior, 36, 137
connected, 27

d-connected, 28
components, 27

consequence, 3
consistency, 20
continuous random measure, 100
coordinate ascent, 58

variational inference, 59
covariance function, 108
covariates, 79
credible region, 40

de Finetti
representation theorem, 16, 32, 35, 39, 67,

94, 121
decision problem, 3
decision space, 11
design matrix, 85, 86
detailed balance, 47
digamma function, 97
Dirichlet process, 94

conjugacy, 96
marginal likelihood, 97
mixture, 125

173

predictive distribution, 97

Edward, 65
entropy, 58
errors, 79, 109
estimation, 12
event, 2

standard, 5
evidence, 57, 70

lower bound, 57
model, 68

exchangeable, 15, 126
infinitely, 16
regression, 80, 107

expectation propagation, 56
exponential family, 38

factor graph, 31
Fisher information matrix, 21
frequentist probability, 7
full conditional distribution, 48
fundamental events, 3

g-prior, 84
Gaussian process, 108, 114

conjugacy, 109
inference, 110
marginal likelihood, 109

generalised linear models, 87
Gibbs sampling, 48
Gram matrix, 133
graph, 23

directed, 24
directed acyclic, 25
undirected, 24

Griffiths-Engen-McCloskey distribution, 95

hierarchical Dirichlet process, 130
mixture, 131

hierarchical model, 31, 121
hyperparameter, 19, 55
hyperprior, 19
hypothesis testing, 70

identifiability, 20
importance sampling

estimation, 44
standard error, 45

intractable integral, 41
irreducible, 46

kernel
exponential, 108
isotropic, 108
linear, 108
positive semidefinite, 108
squared exponential, 108
stationary, 108

KL-divergence, 13, 56
knot points, 113

Laplace approximation, 54
integrated nested, 55

Laplace method, 54
latent Dirichlet allocation, 128
latent factor models, 132
latent Gaussian model, 55
Lebesgue measure, 103
Lindley’s paradox, 71, 84
linear model, 79, 80

conjugate prior, 81
reference prior, 84

link function, 87
logistic regression, 90
loss, 12

absolute, 12
expected, 12
function, 12, 122
squared, 12, 41
zero-one, 12, 70

marginal likelihood, 38, 45, 68, 83, 97, 109
Markov chain Monte Carlo, 46

Hamiltonian, 52
reversible jump, 60, 103

Markov network, 28
pairwise, 29

Markov random field, 30
Gaussian, 30, 55

matrix inversion lemma, 82
mean-field variational

family, 58

174

inference, 58
Metropolis-Hastings algorithm, 49
mixed-membership model, 127
mixing, 51, 65
mixture model, 19, 121

finite, 122
infinite, 125

mixture of Gaussians, 123
model averaging, 68
model selection, 67, 69
model uncertainty, 68
Monte Carlo

estimation, 42, 73
Hamiltonian, 52
sequential, 60
standard error, 43

multinomial-Dirichlet distribution, 123

nonparametric, 93
regression, 107

normalising constant estimation, 45
nuisance parameter, 39

odds ratio
posterior, 69
prior, 70

outcome, 3

Pólya tree, 98, 99
conjugacy, 100
marginal likelihood, 101

parametric model, 35
parametric regression, 79
partition model, 101

regression, 117
Poisson regression, 87
polynomial regression, 86
posterior

distribution, 17, 18
information matrix, 21
matrix, 54
mode, 21, 54

posterior predictive
p-value, 73
checking, 66, 72
distribution, 73

prediction, 13
predictors, 79
preference, 3
prior

distribution, 15, 18
elicitation, 18
mixture, 19
non-informative, 18

Procrustes alignments, 135
PyMC, 65
Python, 61, 62, 64, 104, 115, 116, 119

random probability measure, 94
random walk, 51
regression, 79
response variable, 79
reversible, 47

semi-orthogonal matrix, 133
separated, 26

d-separated, 28
spline regression, 86, 113

marginal likelihood, 114
splitting probabilities, 99
Stan, 62, 74, 87, 90, 111, 129, 133

PyStan, 64, 75, 88, 90, 112, 133
standard events, 5
stationary distribution, 47
stick-breaking process, 95, 126, 131
student grades example, 61
subjective probability, 5
subjectivism, 1

topic modelling, 129, 131
transition density, 46
tree, 26

utility, 8
expected, 9, 12
function, 8

variational
family, 56
inference, 56, 60, 132

175

	Uncertainty and Decisions
	Subjective uncertainty and possibilities
	Subjectivism
	Subjective uncertainty
	Possible outcomes and events

	Decisions: Actions, outcomes, consequences
	Elements of a decision problem
	Preferences on actions

	Subjective probability
	Standard events
	Equivalent standard events
	Definition of subjective probability
	Contrast with frequentist probability
	Conditional probability
	Updating beliefs: Bayes Theorem

	Utility
	Principle of maximising expected utility
	Utilities for bounded decision problems
	Utilities for unbounded decision problems
	Randomised strategies
	Conditional probability as a consequence of coherence

	Estimation and prediction
	Continuous random variables and decision spaces
	Estimation and loss functions
	Prediction

	Prior and Likelihood Representation
	Exchangeability and infinite exchangeability
	De Finetti's representation theorem
	Prior, likelihood and posterior
	Prior elicitation
	Non-informative priors
	Hyperpriors
	Mixture priors
	Bayesian paradigm for prior to posterior reporting
	Asymptotic consistency
	Asymptotic normality

	Graphical Modelling and Hierarchical Models
	Graphs
	Specifying a graph
	Neighbourhoods of graph nodes
	Paths, cycles and directed acyclic graphs
	Cliques and separation

	Graphical models
	Belief networks
	Connectedness and direct separation
	Independence and conditional independence

	Markov networks
	Conditional independence
	Lattice models

	Factor graphs
	Conditional independence

	Hierarchical models

	Parametric Models
	Parametric modelling
	Conjugate models
	Exponential families
	Non-conjugate models
	Posterior summaries for parametric models
	Marginal distributions
	Credible regions

	Computational Inference
	Intractable integrals in Bayesian inference
	Monte Carlo estimation
	Standard error
	Estimation under a loss function
	Importance sampling
	Normalising constant estimation
	Marginal likelihood estimation in Bayesian inference

	Markov chain Monte Carlo
	Technical requirements of Markov chains in MCMC
	Gibbs sampling
	Metropolis-Hastings algorithm
	Random walk

	Hamiltonian Markov chain Monte Carlo
	Analytic approximations
	Normal Approximation
	Laplace Approximations
	Approximating marginal distributions
	Integrated nested Laplace approximation

	Variational inference
	Evidence lower bound
	Mean-field variational inference
	Coordinate ascent variational inference

	Further topics

	Bayesian Software Packages
	Illustrative statistical model
	Stan
	PyStan

	Other software libraries
	PyMC
	Edward

	Criticism and Model Choice
	Model uncertainty
	Model averaging
	Model selection
	Selecting from a set of models
	Pairwise comparisons: Bayes factors
	Bayesian hypothesis testing

	Bayesian information criterion

	Posterior predictive checking
	Posterior predictive p-values
	Monte Carlo estimation
	PPC with Stan

	Linear Models
	Parametric regression
	Bayes linear model
	Conjugate prior
	Reference prior

	Generalisation of the linear model
	General basis functions
	Polynomial regression
	Linear spline regression

	Generalised linear models
	Poisson regression
	Stan implementation

	Logistic regression
	Stan implementation

	Nonparametric Models
	Random probability measures
	Dirichlet processes
	Discrete base measure

	Pólya trees
	Continuous random measures

	Partition models
	Partition models: Bayesian histograms
	Bayesian histograms with equal bin widths
	Approximate inference

	Nonparametric Regression
	Nonparametric regression modelling
	Gaussian processes
	Normal errors
	Inference

	Spline models
	Spline regression with equally spaced knots

	Partition regression models
	Changepoint models
	Changepoint regression with equally spaced changepoints

	Classification and regression trees

	Clustering and Latent Factor Models
	Mixture models
	Finite mixture models
	Dirichlet prior for mixture weights
	Mixture of Gaussians
	Inferring the clustering and number of clusters

	Dirichlet process mixture models
	Inferring clusters

	Mixed-membership models
	Latent Dirichlet allocation
	Topic modelling
	Inference

	Hierarchical Dirichlet processes
	Topic modelling
	Inference

	Latent factor models
	Stan implementation

	Conjugate parametric models
	Notation
	Discrete models
	Continuous models

	Symbols
	Solutions to exercises
	Bibliography
	Index

