
Efficient Streaming Classification Methods

Niall M. Adams1, Nicos G. Pavlidis2, Christoforos
Anagnostopoulos3, Dimitris K. Tasoulis1

1Department of Mathematics
2Institute for Mathematical Sciences

Imperial College London

3Statistical Laboratory
University of Cambridge

July 2010

1/44

Contents

I Streaming data and classification

I Our approach: incorporate self-tuning forgetting factors

I Illustrations and examples
I Issues (current work in progress)

I free parameters
I non-linearity, regularisation, over-fitting
I label timing

I Conclusion

Research support by the EPSRC/BAe funded ALADDIN project:
www.aladdinproject.org

2/44

Streaming Data I

A data stream consists of a sequence of data items arriving at high
frequency, generated by a process that is subject to unknown
changes (generically called drift).

Many examples, often financial, include:

I credit card transaction data (6000/s for Barclaycard Europe)

I stock market tick data

I computer network traffic

The character of streaming data calls for algorithms that are

I efficient, one-pass - to handle frequency

I adaptive - to handle unknown change

3/44

Streaming Data II

A simple formulation of streaming data is a sequence of
p-dimensional vectors, arriving at regular intervals

. . . , xt−2, xt−1, xt

where xi ∈ Rp.
In a real application, with credit card transactions, the variables
include: transaction value and time, location, card response codes.

Since we are concerned with K -class classification, need to
accommodate a class label. Thus, at time t we can conceptualise
the label-augmented streaming vector yt = (Ct , xt)′, where
Ct ∈ {c1, c2, . . . , ck}.

However, in real applications Ct arrives at some time s > t, and
the streaming classification problem is concerned with predicting
Ct on the basis of xt in an efficient and adaptive manner.

4/44

Streaming Data and Classification

Implicit assumption: single vector arrives at any time.

Assumption common in literature, which we use, is that the data
stream is structured as

. . . , (Ct3 , xt2), (Ct2 , xt1), (Ct1 , xt),

That is, the class-label arrives at the next tick.

We will treat the streaming classification problem as: predict the
class of xt , and adaptively (and efficiently) update the model at
time xt+1, when Ct arrives.

This is naive, but the problem is challenging even formulated thus.
Will return to label timing later.

5/44

Streaming Data and Classification

Can use the usual formulation for classification

P(Ct |xt) =
p(xt |Ct)P(Ct)

p(xt)
(1)

and construct either

I Sampling paradigm classifiers, focusing on class conditional
densities

I Diagnostic paradigm classifiers, directly seeking the posterior
probabilities of class membership

Note the we will usually restrict attention to the K = 2 class
problem.

Eq.1 also illustrates where changes can happen: the prior, P(Ct),
the class conditionals, p(xt |Ct), or both.

6/44

Notional drift types

1. Jump

0 200 400 600 800

10
15

20
25

(in mean)

2. Gradual change

0 200 400 600 800

12
14

16
18

20
22

(in mean and variance) Trend,

seasonality etc.

7/44

Drift: Real Examples

Consumer credit classification (conditionals)

8/44

Consumer credit classification (prior)

9/44

Methods

A variety of approaches for streaming classification have been
proposed, including

I Data selection approaches with standard classifiers. Most
commonly, use of a fixed or variable size window of most
recent data. But how to determine size in either case?

I Ensemble methods. One example is the adaptive weighting of
ensemble members changing over time. This category also
includes learning with expert feedback.

Example: Window method happens in consumer credit scoring -
not for efficiency, but because the populations have changed.

10/44

Forgetting-factor methods

We are interested in modifying standard classifiers to incorporate
forgetting factors - parameters that control the contribution of old
data to parameter estimation.

We adapt ideas from adaptive filter theory, to tune the forgetting
factor automatically.

Simplest to illustrate with an example: consider computing the
mean vector and covariance matrix of a sequence of n multivariate
vectors. Standard recursion

mt = mt−1 + xt , µ̂t = mt/t, m0 = 0

St = St−1 + (xt − µ̂t)(xt − µ̂t)T , Σ̂t = St/t, S0 = 0

11/44

For vectors coming from a non-stationary system, simple averaging
of this type is biased.

Knowing precise dynamics of the system gives chance to construct
optimal filter. However, not possible with streaming data (though
interesting links between adaptive and optimal filtering).

Incorporating a forgetting factor, λ ∈ (0, 1], in the previous
recursion

nt = λnt−1 + 1, n0 = 0

mt = λmt−1 + xt , µ̂t = mt/nt

St = λSt−1 + (xt − µ̂t)(xt − µ̂t)T , Σ̂t = St/nt

λ down-weights old information more smoothly than a window.
Denote these forgetting estimates as µ̂λt , Σ̂λ

t , etc.

nt is the effective sample size or memory. λ = 1 gives offline
solutions, and nt = t. For fixed λ < 1 memory size tends to
1/(1− λ) from below.

12/44

Setting λ

Two choices for λ, fixed value, or variable forgetting, λt . Fixed
forgetting: set by trial and error, change detection, etc (cf.
window).

Variable forgetting: ideas from adaptive filter theory suggest
tuning λt according to a local stochastic gradient descent rule

λt = λt−1 − α
∂ξ2

t

∂λ
, ξt : residual error at time t, α small (2)

Efficient updating rules can implemented via results from
numerical linear algebra (O(p2)).

Performance very sensitive to α. Very careful implementation
required, including bracket on λt and selection of learning rate α.

Framework provides an adaptive means for balancing old and new
data. Note slight hack in terms of interpretation of λt .

13/44

Tracking illustrations

Does fixed forgetting respond to an abrupt change?
5D Gaussian, two choices of λ, change in σ23: gradient

14/44

Tracking mean vector and covariance matrix in 2D.

15/44

Adaptive-Forgetting Classifiers

Our recent work involves incorporating these self-tuning forgetting
factors in

I Parametric
I Covariance-matrix based
I Logistic regression

I non-parametric
I Multi-layer perceptron

(sampling paradigm) (diagnostic paradigm)

We call these AF (adaptive-forgetting) classifiers.

16/44

Streaming Quadratic Discriminant Analysis

QDA can be motivated by reasoning about relationship of between
and within group covariances, or assuming class conditional
densities are Gaussian.

For static data, latter assumption yields discriminant function for
jth class

gj(x) = log(P(Cj))− 1

2
log(|Σj |)−

1

2
(x − µj)

T Σ−1
j (x − µi) (3)

where µj and Σj are mean vector and covariance matrix,
respectively, for class j .

Frequently, plug-in ML estimates for unknown parameters: µj , Σj ,
P(Cj).

Idea here is to plug-in the AF estimates, µ̂λt etc.

17/44

Results in CA’s thesis show that the AF framework above can be
generalised, using likelihood arguments, to the whole exponential
family. Thus, the priors, P(Ct) can also be handled.

The approach is then:

I Forgetting factor for prior (binomial/multinomial)

I Forgetting factor for each class

The class of xt is predicted when it arrives. Immediately thereafter,
the class-label arrives, and the true class parameters are updated.

This will be problematic for large K or very imbalanced classes:
few updates complicates the interpretation of the update equation
for λt (Eq. 2).

18/44

Streaming LDA

The discriminant function in Eq.3 reduces to a linear classifier
under various constraints on the covariance matrices (or mean
vectors).

We consider the case of a common covariance matrix:
Σ1 = Σ2 = . . . = ΣK = Σ. Again, we will substitute streaming
estimates µλj , Σλ.

Have a couple of implementations options. One approach is

I Forgetting factor for prior

I Forgetting factor for each class

I Compute pooled covariance matrix, using streaming prior

19/44

Streaming logistic regression

Diagnostic methods do not have to handle prior probabilities
separately, easing interpretation issues with updating λ.

In two class problems, logistic regression models the log-odds ratio
as a linear function

log

(
p(x |C1)

p(x |C2)

)
= βT x

yielding simple forms for the posterior probabilities.

With static data, under mixture sampling, the likelihood function is
simple, but requires non-linear optimisation.

The idea will be as before, to incorporate a forgetting factor in the
opimisation criterion, and tune it according to the gradient.

20/44

Thus, we incorporate the (exponential) forgetting factor into the
log-likelihood

l(βt |y1...t) =
t∑

i=1

λt−i l(βt |yt) = l(βt |yt) + λl(βt |y1...(t−1))

As before, λ ∈ (0, 1].

We update the parameter vector sequentially with

βt+1 = βt − α∇β l(βt |y1...t)

where∇β l(βt |y1...t) is the gradient of the likelihood w.r.t. β, and α
is another learning rate, as before.

An online version of backpropagation with momentum.

Calculations in Pavlidis et al (2010b) show that this computation,
and the corresponding sequential optimisation of the forgetting
factor, analogous to Eq. 2, can be made efficiently online via
incremental update.

21/44

Streaming Multilayer perceptrons

We have extended the AF approach further, noting that the
multilayer perceptron (MLP) can be regarded as a generalisation of
logistic regression. This allows the opportunity for much more
flexible models.

This introduces a large number of tunable parameters, and a
model parameter - the number of hidden nodes.

NPs work shows that the same modification to the optimisation
criterion can yield an efficient updating mechanism. Can avoid
explicit computation and storage of Hessian.

Extensive experimental analysis suggests that recursive
computation of the derivative of the optimisation criterion w.r.t. λ
becomes unstable. We thus prefer to approximate this gradient
using a finite difference approach.

22/44

The forgetting factor, introduced through the optimisation
criterion as with logistic regression, can be adapted as before.

A regularisation term, with parameter γ, can also be incorporated,
yielding an optimisation criterion like

t∑
i=1

λt−i l(w |yi) + γ||w ||q

This raises the question of the relationship between forgetting and
model complexity, which can (in principle) be tuned. More on this
later.

We restrict attention to an MLP with a single hidden layer. Initial
experiments make us favour q = 1 (analogous to the LASSO), over
q = 2 (analogous to ridge regression/weight decay)

23/44

Illustrations

Logistic regression, gradient of forgetting factor, static environment

24/44

Logistic regression, forgetting factor, jump + drift environment.
Evidence of monitoring capacity of AF?

25/44

Logistic regression: before change point

26/44

Logistic regression: at change point

27/44

Logistic regression: after change point

28/44

MLP- decision boundary implied by hidden nodes, drifting scenario

29/44

MLP- decision boundary implied by hidden nodes, drifting scenario

30/44

AF-QDA - 2D drifting problem

31/44

Performance assessment

Assessing the performance of streaming classifiers is complicated,
due to the changing nature of data streams. For simulated
assessment (which is crucial), we proceed as follows

I The data stream can have jumps, drift, or both.

I Data generation from an appropriate (usually simple)
stochastic mechanism (Gaussian, mixture)

I Generate extra points, at each tick, to facilitate comparison
with ground truth

Then compute performance measures, such as error rate, at each
tick. For comparison between classifiers, can summarise average
across time also.

Real data more difficult - usually rely on time-averaged pointwise
error rate

32/44

Simulation Conclusions

We have conducted extensive simulation experiments (and PD and
real data!), exploring and comparing these AF methods with
comparable approaches in the literature.

I GENERAL: AF methods
I handle drift/jumps/both automatically
I are competitive with comparable methods (PA,PA-II, OLDA,

PERC), but more general
I generally recover better from change
I exhibit performance degradation with speed of drift, and

dimension (as do other methods).

I QDA:
I Can suffer from problem of many parameters
I but more responsive to change

33/44

Some general comments

So, we have a collection of different classifiers for handling the
simple streaming classification problem.

The methods are efficient (typically O(p2)) per tick. While this is
slow for information retrieval, it is appropriate for learning.

Testing algorithms is difficult. We much prefer the simulation
approach above, than the use of PD data sets such as STAGGER,
which are not particularly challenging or interesting.

34/44

Issues

At least three interesting things to explore

I optimisation parameters (learning rates, bracket limits)

I Complexity and forgetting in streams

I timing issues

35/44

Optimisation parameters

Let us revisit the updating mechanism for λ

λt = λt−1 − α
∂ξ2

t

∂λ

This is normally implemented with a bracket, to constrain the
movement of λ

λt = λt−1 − α
∂ξ2

t

∂λ

∣∣∣λmax

λmin

Brackets issues is open, but critical to good performance.

36/44

Learning rates and bracket values interact

Error rates, logistic, gradual drift - (learning rate=0.01,0.1,0.5)

Seems clear brackets should not be fixed.

We have had some success with using the RPROP algorithm to
control the movement of λ.

37/44

Complexity and Forgetting

It is interesting to speculate about the relationship between
forgetting (discarding old data) and complexity control (managing
flexibility).

It is easy to conceive problems where a simple classifier has to
change, where a more complex classifier can simply learn
everything. Typically, these would be based on data in a bounded
region.
Example: continuous XOR

38/44

With the MLP, we have experimented with tuning γ (complexity)
the same way as λ (forgetting). Some interesting initial results.

Drift and jumps, continuous XOR variant: 4 network architectures,
complexity? 4 networks? correlation between tuned parameters

Methods exhibit good performance. Correlation appreciable only at
jumps. Forget everything, suppress complexity?

39/44

label timing

In real problems, the label is delayed in complicated ways.
Examples

I credit scoring: under standard definitions, good risk customers
cannot be so flagged until near the end of a loan term. In
contrast, bad risk customers are so labelled anytime during
the loan term.

I fraud detection: fraudulent transactions (that pass filters)
identified months after event. In contrast, legitimate
transactions are never explicitly flagged – status presumed
since not flagged as fraud

One approach is to use semi-supervised approaches. For example,
incorporate the unlabelled vector to the predicted class. Reject
option very important here, to prevent classes merging.

40/44

Another (of many) timing issue is that more than one vector can
arrive at a time (eg. fraud)

The QDA/LDA streaming models admit efficient batch block
updating, via rank k update. Thus, multiple vectors can be
incorporated at one time.

Experiments with credit application data suggested that this
approach works no better (in terms of error rate) than a random
ordering (within tick) and sequential updating.

Of course, this depends very much on the underlying dynamics of
the data.

41/44

Conclusion

I AF-classifier works well for streaming problems (and indeed
for large data sets).

I Varying forgetting factor does respond to change, and gives
something to monitor, though sequential monitoring difficult,
because gradient-like quantities very volatile.

I Interesting relationship between forgetting and complexity.

I Many of the assumptions are restrictive compared to real
problems.

42/44

Future Work

I THEORETICAL ANALYSIS - difficult, perhaps adapt ideas
from stochastic approximation

I BAYESIAN FORMULATION - based on the power-prior, can
alleviate (or at least shift) some difficulties with the bracket
on λ

I HYBRID MODELS - exploit links between optimal filters

I TIMING ISSUES - motivated by real problems.
Semi-supervised approach, change λ as function of time

43/44

References

I Adams, N.M., Tasoulis, D.K., Anagnostopoulos, C. and Hand, D.J. ’Temporally-adaptive linear
classification for handling population drift in credit scoring’, In Lechevallier, Y. And Saporta. (eds),
COMPSTAT2010, Proceedings of the 19th International Conference on Computational Statistics, 2010,
Springer, 167-176.

I Anagnostopoulos, C. ’A statistical framework for streaming data analysis’, PhD Thesis, Department of
Mathematics, Imperial College London, 2010.

I Anagnostopoulos, C., Tasoulis, D.K., Adams, N.M. and Hand, D.J., ’Streaming Gaussian classification
using recursive maximum likelihood with adaptive forgetting’, Machine Learning, (2010), under review.

I Anagnostopoulos, C., Tasoulis, D.K., Adams, N.M. and Hand, D.J. ’Temporally adaptive estimation of
logistic classifiers on data streams’. Adv. Data An. Classif.,3(3) (2009),243-261.

I Haykin, S. ’Adaptive filter theory’, 4th edition, Prentice Hall (1996).

I Kelly, M.G., Hand, D.J. and Adams, N.M., ’The impact of changing populations on classifier performance’
in ’KDD 99, Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining’, Chaudhuri, S. and Madigan, D. ed(AAAI), 1999, 367371.

I Pavlidis, N.G., Adams, N.M and Hand, D.J., ’Adaptive Online Logistic Regression’, Pattern Recogn.,
(2010) under review.

I Pavlidis, N.G., Tasoulis, D.K., Adams, N.M. and Hand, D.J. ’Adaptive consumer credit classification’,
Europ. J. Finance, (2010), under review.

I Weston, D.J., Anagnostopoulos, C., Tasoulis, D.K., Adams, N.M. and Hand, D.J. ’Handling missing
feature values for a streaming quadratic discriminant classifier’, Data Mining and Knowl. Disc., (2010),
under review.

44/44

