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Abstract

We prove that the number of conjugacy classes of maximal sub-
groups of bounded order in a finite group of Lie type of bounded rank
is bounded. For exceptional groups this solves a longstanding open
problem. The proof uses, among other tools, some methods from Ge-
ometric Invariant Theory.
Using this result we provide a sharp bound for the total num-

ber of conjugacy classes of maximal subgroups of Lie type groups of
fixed rank, drawing conclusions regarding the behaviour of the corre-
sponding ‘zeta function’ ζG(s) =

∑
M maxG |G : M |

−s, which appears
in many probabilistic applications. More specifically, we are able to
show that for simple groups G and for any fixed real number s > 1,
ζG(s)→ 0 as |G| → ∞. This confirms a conjecture made in [27].
We also apply these results to prove the conjecture made in [29]

that the symmetric group Sn has n
o(1) conjugacy classes of primitive

maximal subgroups.

2000 Mathematics Classification Numbers: 20E28, 20G15, 20D06.
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1 Introduction

For a finite group G and a real number s, define

ζG(s) =
∑

M max G

|G :M |−s.

This ‘zeta function’ was introduced and studied in the case where G is simple
in [27], following earlier investigation in [13]. Theorem 2.1 of [27] states that
for G a classical or alternating simple group and s > 1, we have ζG(s)→ 0
as |G| → ∞, and it is conjectured there that this conclusion holds for all
simple groups. In this paper we complete the proof of this conjecture.

Theorem 1.1 If G is a finite simple group, and s > 1, then

ζG(s)→ 0 as |G| → ∞.

Let mn(G) denote the number of maximal subgroups of index n in G.
Then ζG(s) =

∑
n>1mn(G)n

−s. It therefore follows from our theorem that
for any ε > 0 there exists a positive integer N = N(ε) such that for all
n > N and for all finite simple groups G we have

mn(G) < n
1+ε.

This confirms a conjecture posed in [33].

Theorem 1.1 has several applications, mainly concerning questions of
probabilistic generation. For example, since the probability of generating
G with k randomly chosen elements is at least 1 − ζG(k), Theorem 1.1
provides a rather quick proof of Dixon’s conjecture, originally established in
[9, 13, 26], that two randomly chosen elements of a simple group G generate
G with probability tending to 1 as |G| → ∞. Some further applications of
the theorem are discussed in Section 5.

A key new ingredient in the proof of Theorem 1.1 is the following result,
which is the main result of this paper, showing that the number of classes of
maximal subgroups of bounded order in a group of Lie type of bounded rank
is bounded. This is known for classical groups, but is a longstanding open
problem for exceptional groups of Lie type. Indeed, there has been much
work on finite subgroups of exceptional groups (see for example [10, 24]);
while such subgroups are essentially known up to isomorphism, their conju-
gacy is far from understood, although there has been some recent progress
in this direction, such as [31].

Theorem 1.2 Let N,R be positive integers, and let G be an almost simple
group whose socle is a finite simple group of Lie type of rank at most R. Then
the number of conjugacy classes of maximal subgroups of order at most N
in G is bounded by a function f(N,R) of N and R only.
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Our proof of this result does not use the classification of finite simple
groups (CFSG). The proof is given in Section 2, and involves three main
tools. The first is a recent result of the second author [34] (see Proposi-
tion 2.1) which shows that the number of conjugacy classes of embeddings
of a finite group of order N as a ‘strongly reductive’ subgroup of a simple
algebraic group of rank R over an algebraically closed field is bounded by a
function of N and R; this generalizes to arbitrary characteristic a result of
Weil (see [39]) proving the conclusion when the field has characteristic zero.

The second tool consists of various results and arguments from Geometric
Invariant Theory [14], which we use to prove the key result of the proof,
Proposition 2.2. This states that a finite subgroup of a simple algebraic
group Ḡ which is invariant under a group S of automorphisms of Ḡ is either
strongly reductive, or lies in a proper S-invariant parabolic subgroup of Ḡ.

Thirdly, we make use of a number of results from the literature on max-
imal subgroups of finite and algebraic groups of Lie type [8, 21, 23].

Using further recent work on maximal subgroups of exceptional groups
from [25], we shall also deduce the following. For a finite group G, denote
byM(G) the set of conjugacy classes of maximal subgroups of G.

Theorem 1.3 There is a function c(r) and an absolute constant d such that
if G is a finite almost simple group with socle of Lie type of rank r over Fq,
then

|M(G)| < c(r) + dr log log q.

Note that the log log q term comes from the subfield subgroups of the
form G(q1/s), where s is a prime divisor of logp q, and hence this bound
is essentially best possible for groups of fixed rank. For classical groups,
Theorem 1.3 is an improvement of [11, Theorem 2.7], which gives |M(G)| <
c(r) ∙ (log q)log r. For exceptional groups it is new, apart from large char-
acteristics, and also a few families of rank 1 or 2 for which the maximal
subgroups are completely known.

Again our proof of Theorem 1.3 does not use CFSG (although it does use
the Larsen-Pink theorem [19] at one point as a ‘substitute’ for the classifica-
tion). If one does use the classification, our proof shows that the conclusion
of Theorem 1.3 holds with the function c(r) of the order of rr, and it should
certainly be possible to improve on this.

As a final comment on our use of the classification, Theorem 1.1 for
groups G of Lie type of bounded rank follows immediately from 1.3 (see
Section 4), hence is not dependent on CFSG; however, for groups of un-
bounded rank we cannot improve on the proof given in [27, 2.1], which does
use CFSG.

The layout of the paper is as follows. In Sections 2 and 3 we prove
Theorems 1.2 and 1.3 respectively, and Section 4 contains the very quick
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deduction of Theorem 1.1 from these. In the final Section 5 we discuss the
impact of Theorem 1.1 in probabilistic group theory, and prove a conjecture
made in [29] regarding maximal subgroups of symmetric groups.

2 Proof of Theorem 1.2

Let p be a prime and let Ḡ be a simple adjoint algebraic group over F̄p, the
algebraic closure of Fp. The proof will be based on two results (Proposi-
tions 2.1 and 2.2 below) concerning strongly reductive subgroups of Ḡ: fol-
lowing Richardson [36], we define a closed subgroup H of Ḡ to be strongly
reductive in Ḡ if H is not contained in any proper parabolic subgroup of
CḠ(T ), where T is a maximal torus of CḠ(H).

Proposition 2.1 Let N be a positive integer, and let R = rank(Ḡ). The
number of conjugacy classes of strongly reductive subgroups of Ḡ of order at
most N is bounded above by a function g(N,R) of N and R alone.

Proof By [34, Theorem 1.2], the number of classes of strongly reductive
subgroups of order n in Ḡ(F̄p) is finite; call it g(n, Ḡ, p). For p coprime to
n, this number is constant, equal to the corresponding number g(n, Ḡ, 0) of
classes in Ḡ(C), by a result of Larsen [18, Theorem A.12]. Setting

g(N,R) =
∑

n≤N, rank(Ḡ)≤R

maxp|n(g(n, Ḡ, p), g(n, Ḡ, 0)),

we have the conclusion.

Now define Aut+(Ḡ) to be the group generated by inner automorphisms
of Ḡ, together with pi-power field morphisms (i ≥ 1), and also graph auto-
morphisms when Ḡ is of type Ar, Dr or E6.

The next result lies at the heart of the proof of Theorem 1.2, and is
really the key result of the paper.

Proposition 2.2 Let F be a finite subgroup of Ḡ, and suppose F is invari-
ant under a subgroup S of Aut+(Ḡ). Then one of the following holds:

(i) F is strongly reductive in Ḡ;

(ii) F is contained in a proper S-invariant parabolic subgroup of Ḡ.

Notice that it is immediate from the definition that if F is not strongly
reductive then it lies in a proper parabolic subgroup; it is the S-invariance
of this parabolic that is the point of the proposition.

In the proof of Proposition 2.2 we shall use the theory of optimal desta-
bilising one-parameter subgroups and their associated parabolic subgroups,
developed by Kempf [14].
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We recall the parts of Kempf’s theory that we need. A length function on
the space of one-parameter subgroups Y (Ḡ) of Ḡ is a conjugation-invariant
function || ∙ || from Y (Ḡ) to the non-negative real numbers with the following
property: for every maximal torus T of Ḡ, there exists a positive definite
W -invariant Z-valued bilinear form 〈∙, ∙〉 on Y (T ) such that ||λ|| =

√
〈λ, λ〉

for all λ ∈ Y (T ), where W denotes the Weyl group NḠ(T )/T . Our first
task is to construct a length function that is invariant under Aut+(Ḡ) in an
appropriate sense.

Fix a maximal torus T of Ḡ. A description of the automorphisms of Ḡ
can be found in [42, Section 10]. From this it follows that we may choose a
p-power field morphism Fp of Ḡ which acts on T as t → tp, and a group Γ
of graph automorphisms of Ḡ which fixes T and commutes with Fp, where
Γ = C2 if Ḡ = Ar, E6 or Dr (r 6= 4), Γ = S3 if Ḡ = D4 and Γ = 1 otherwise.
Write Δ for the cyclic group generated by Fp, and let φp: F̄p → F̄p be the
operation of raising to the pth power. Then Aut+(Ḡ) is generated by inner
automorphisms of Ḡ, together with Γ and Δ.

We define an action of Aut+(Ḡ) on Y (Ḡ) as follows. For γ ∈ Γ, g ∈ Ḡ,
m ∈ Z, λ ∈ Y (Ḡ) and x ∈ F̄p, we set

(γ.λ)(x) = γ(λ(x)),
(g.λ)(x) = gλ(x)g−1,
(Fmp .λ)(x) = F

m
p (λ(φ

−m
p (x)))

(compare [14, Section 4]). It is readily checked that this does indeed define
an action of Aut+(Ḡ).

Let C be the finite group NḠΓ(T )/T
∼= WΓ. Pick a positive definite

Z-valued bilinear form 〈∙, ∙〉 on Y (T ). By summing over C, we obtain a
C-invariant positive definite Z-valued bilinear form 〈∙, ∙〉1 on Y (T ). Since
〈∙, ∙〉1 is W -invariant, we can now define a length function as follows (see
[14, Lemma 2.1]): for λ ∈ Y (Ḡ), set ||λ||1 =

√
〈g.λ, g.λ〉1, for any g ∈ Ḡ such

that g.λ ∈ Y (T ).

We claim that the length function || ∙ ||1 is invariant under the action of
Aut+(Ḡ). Invariance under the Ḡ-action is part of the definition of length
function, and invariance under the action of Γ follows from the construction.
Since Δ acts trivially on Y (T ), invariance under the Δ-action also follows
easily, proving the claim.

Now suppose that Ḡ acts on an affine variety V . Given v ∈ V and
λ ∈ Y (Ḡ), we say that limx→0 λ(x).v exists and equals w if there exists a
morphismMλ: F̄p → V (necessarily unique) such that for all x 6= 0,Mλ(x) =
λ(x).v and Mλ(0) = w. In the important special case that V = Ḡ and Ḡ
acts by conjugation, the subset Pλ := {g ∈ Ḡ | limx→0 λ(x).g exists} is a
parabolic subgroup of Ḡ, and all parabolic subgroups arise in this way. If
g ∈ Pλ then limx→0 λ(x).g belongs to the subgroup Lλ := CḠ(λ(k

∗)) of Pλ;
Lλ is a Levi subgroup of Pλ. The unipotent radical Ru(Pλ) equals the set
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{g ∈ G | limx→0 λ(x).g = 1}. The Hilbert-Mumford Theorem states that if
w belongs to the closure of the orbit Ḡ.v then g.w = limx→0 λ(x).v for some
λ and some g ∈ Ḡ. Kempf’s main theorem (see Theorem 2.3 below) states
that λ can be chosen in a more or less canonical way.

For any closed Ḡ-stable subset D of V , we denote by |V, v|D the set of
indivisible one-parameter subgroups λ such that limx→0 λ(x).v exists and
belongs to D. If v 6∈ D then, given λ ∈ |V, v|D, M

−1
λ (D) is a divisor

supported inside the set x = 0; we define αD,v(λ) to be the degree of this
divisor.

Theorem 2.3 ([14, Theorem 3.4]) Fix a length function || ∙ || on Y (Ḡ). Let
v, V,D be as above, and assume that v 6∈ D and that |V, v|D is nonempty.
Then the function λ 7→ αD,v(λ)/||λ|| defined on |V, v|D − {0} attains a max-
imum value, and for any two elements λ, μ ∈ |V, v|D − {0} such that this
maximum value is attained, we have Pλ = Pμ.

We will write PD,v for the parabolic subgroup of the theorem. Note that
if λ ∈ |V, v|D then λ cannot be central, and it follows that PD,v is proper
(see [40, 8.4.5]).

Proof of Proposition 2.2

Fix N ∈ N. We consider the special case of the above theory where
V = ḠN and Ḡ acts by simultaneous conjugation, and work with the length
function ||∙||1 constructed above. The symmetric group SN acts on ḠN in the
obvious way, and this action commutes with the Ḡ-action. The connection
with strongly reductive subgroups of Ḡ is given by the following result of
Richardson [36, 16.4]: for g = (g1, . . . , gN ) ∈ ḠN , the closed subgroup
generated by g1, . . . , gN is a strongly reductive subgroup of Ḡ if and only if
the orbit Ḡ.g is closed.

Let D′(g) denote the unique closed orbit in the closure of Ḡ.g. Set
D(g) =

⋃
π∈SN

π.D′(g). Suppose that Ḡ.g is not closed. Then g 6∈ D′(g) but
D′(g) meets the closure of Ḡ.g. Clearly D(g) is a finite union of closed Ḡ-
orbits, so g 6∈ D(g). Thus g andD(g) satisfy the hypotheses of Theorem 2.3,
so there exists λ ∈ Y (Ḡ) such that limx→0 λ(x).g exists and Pλ = PD(g),g.
Since limx→0 λ(x).g exists, limx→0 λ(x).gi exists for each i, whence gi ∈ Pλ
for each i. This implies that the closed group generated by g1, . . . , gN is
contained in the proper parabolic subgroup PD(g),g. Since D(g) is SN -
invariant, equation (4) of [35, p.672] gives

PD(g),g = PD(g),π.g (1)

for any π ∈ SN .

Define an action of Aut+(Ḡ) on ḠN by β.(g1, . . . , gN ) = (β(g1), . . . , β(gN ))
for β ∈ Aut+(Ḡ). This action permutes Ḡ-orbits in ḠN . Since Aut+(Ḡ)
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acts on ḠN by homeomorphisms and commutes with the SN -action, we have
β.D(g) = D(β.g) for every β ∈ Aut+(Ḡ) and every g ∈ ḠN .

Now let F be a finite subgroup of Ḡ, invariant under a subgroup S of
Aut+(Ḡ) as in the hypothesis of the proposition. Assume that F is not
strongly reductive. Label the elements of F as f1, . . . , fN , and set f =
(f1, . . . , fN ). We have F ≤ PD(f),f . We shall show that the parabolic PD(f),f
is S-invariant, proving the proposition.

If β ∈ S then β permutes f1, . . . , fN , so β.f = π.f for some π ∈ SN ,
whence

PD(β.f),β.f = PD(π.f),π.f = PD(f),f , (2)

where the last equality follows from (1).

We next claim that for every β ∈ Aut+(Ḡ) and every g ∈ ḠN such that
Ḡ.g is not closed, we have

β.PD(g),g = Pβ.D(g),β.g. (3)

For β inner, this follows from [14, Corollary 3.5(a)] and for β ∈ Δ it follows
from the rationality argument of [14, Lemma 4.1] (note that ḠN and the Ḡ-
action are defined over the field Fp). Now suppose that β ∈ Γ. Since β is an
automorphism of algebraic groups, we have β. |ḠN,g|D(g) = |Ḡ

N, β.g|β.D(g)
and moreover, for any λ ∈ |ḠN ,g|D(g),Mβ.λ = β◦Mλ and αβ.D(g),β.g(β.λ) =
αD(g),g(λ). The claim (3) now follows from the Γ-invariance of || ∙ ||1 and the
uniqueness of Pβ.D(g),β.g.

By (3) and (2), we have β.PD(f),f = PD(f),f for all β ∈ S. Hence the
parabolic subgroup PD(f),f is S-invariant and contains F . This completes
the proof of the proposition.

Note that in case (ii) of Proposition 2.2, F is not contained in any Levi
subgroup of P = PD(f),f . For we can write PD(f),f = Pλ, where the Ḡ-orbit
of limx→0 λ(x).f is closed. Assume that F is contained in a Levi subgroup
of Pλ. Then u.f ∈ LNλ for some u ∈ Ru(Pλ). If g ∈ Pλ with ugu

−1 in Lλ
then λ(k∗) centralises ugu−1, so

ugu−1 = limx→0 λ(x)ugu
−1λ(x)−1

= limx→0 λ(x)uλ(x)
−1λ(x)gλ(x)−1λ(x)u−1λ(x)−1

= (limx→0 λ(x)uλ(x)
−1)(limx→0 λ(x)gλ(x)

−1)(limx→0 λ(x)u
−1λ(x)−1)

= limx→0 λ(x)gλ(x)
−1.

It follows that limx→0 λ(x).f = u.f , which is impossible because Ḡ.f is not
closed.

Remark 2.4 Proposition 2.2 can be extended to include the case where
Ḡ = B2 (p = 2), F4 (p = 2) or G2 (p = 3) and Aut

+(Ḡ) is replaced by
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〈Aut+(Ḡ), φ〉, where φ is a graph morphism of Ḡ (i.e. a morphism sending
xr(t)→ xρ(r)(t

λ(r)), where ρ is an involutory symmetry of the root system,
and λ(r) is 1 if r is a long root, and is p is r is short - see [6, 12.3, 12.4] for
example). To see this we argue as follows. Let F be a finite subgroup of Ḡ,
invariant under a subgroup S of 〈Aut+(Ḡ), φ〉. Note that φ2 is a p-power field
morphism of Ḡ, and φ normalizes Aut+(Ḡ). Write S0 = S∩Aut+(Ḡ). Then
S = 〈S0, σ〉, where σ2 ∈ S0. Assume F is not strongly reductive in Ḡ. Then
by Proposition 2.2, F lies in a proper S0-invariant parabolic subgroup P of
Ḡ. The intersection P ∩P σ contains F and is S-invariant. If Ru(P ∩P σ) 6= 1
then [5] implies that F lies in an S-stable parabolic, as required. So assume
Ru(P ∩P σ) = 1. Then [7, 2.8.7] implies that P ∩P σ = L, a Levi subgroup of
Ḡ. However this conflicts with the assertion noted just before this remark.

We shall also need the following technical result concerning maximal
subgroups of finite groups of Lie type.

Let σ be a Frobenius morphism of Ḡ such that G0 = (Ḡσ)
′ is a finite

simple group of Lie type, and let G be an almost simple group with socle G0.
Note that by [42], every automorphism of G0 extends to an endomorphism
of Ḡ, so we may regard Aut(G0) as a subgroup of Aut

+(Ḡ) (of 〈Aut+(Ḡ), φ〉
in the exceptional cases considered in Remark 2.4).

Proposition 2.5 IfM is a maximal subgroup of G as above, thenM∩G0 6=
1, and one of the following holds:

(i) M normalizes a proper nontrivial connected σ-stable subgroup M̄ of
Ḡ;

(ii) CḠ(M ∩G0) = 1.

Proof The fact the M ∩ G0 6= 1 is elementary and well known, and
appears for example in [2]. For completeness we give a brief proof. Suppose
M ∩G0 = 1. Then M ∼= G0M/G0 ≤ Out(G0), which is solvable. Let Q be a
minimal normal subgroup of M , so Q is an elementary abelian r-group for
some prime r. AsM normalizes CG0(Q) and is maximal in G, we must have
CG0(Q) = 1, and hence r does not divide |G0|. It follows that Q normalizes
a unique Sylow 2-subgroup S of G0. Then M = NG(Q) ≤ NG(S), so
M < MS < G, contradicting the maximality of M .

Thus M ∩ G0 6= 1, the first assertion of the proposition. Write M0 =
M ∩G0.

Now assume that conclusion (i) does not hold - that is, that M normal-
izes no proper nontrivial connected σ-stable subgroup of Ḡ. Suppose for a
contradiction that CḠ(M0) = C 6= 1. Then by the above assumption we
have C0 = 1 - that is, CḠ(M0) is finite. For the same reason, so is CḠ(C).

Consider first the case where Ḡ and also G0 are of classical type. Let
V be the natural module for Ḡ (in other words, Ḡ = PSL(V ), PSp(V ) or
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PSO(V )). If either Ḡ = PSL(V ), or G < PΓL(V ), then the conclusion
follows from [23, Theorem 1′]. So assume that neither of these holds, in
which case we have G0 = D4(q) or B2(q) (q even), and G contains a triality
or graph automorphism of G0.

We claim thatM0 must be a 2-group. For if not, pick an element x ∈M0
of odd prime order, say s. If x is semisimple, then CḠ(x) is connected and has
a nontrivial central torus (see [41, II,4.4]), so Z(CḠ(x)) is infinite. However
this group lies in CḠ(C), so this is a contradiction. Hence s = p and x is
unipotent. As Ḡ is classical and p is odd, p is a good prime for Ḡ. Now the
argument given in the third paragraph of the proof of [21, 1.2] shows that
again Z(CḠ(x)) is infinite, a contradiction.

Thus M0 is a 2-group, as claimed. Using [5] we see that p 6= 2, so
we are in the case where G0 = D4(q). The maximality of M implies that
M0 is self-normalizing in G0, and hence must be a Sylow 2-subgroup of
G0. However an elementary argument given in [15, 4.1.1(ii)] shows that in
this case NG(M0) cannot be maximal in G, which is a contradiction. This
completes the proof for G0 classical.

Now suppose G0 is of exceptional Lie type. If M is not almost simple,
then the conclusion holds by [21, Theorem 2], so assumeM is almost simple.
Clearly F ∗(M) ≤M0.

Since CḠ(CḠ(F
∗(M))) ≤ CḠ(C), and these groups are finite by assump-

tion, [21, 1.3] implies that

Ḡ = E8, p > 3, F
∗(M) = Alt5 or Alt6.

As M is almost simple, we have CG0(M0) = 1. Hence if Cσ 6= 1 then Cσ is
isomorphic to a subgroup of Ḡσ/G0, hence has order 2 or 3. But then CḠ(Cσ)
has positive dimension and is normalized by M and σ, a contradiction.
Consequently Cσ = 1.

Suppose that the Fitting subgroup F (C) = 1. Then F ∗(C) =
∏k
i=1 Si,

a direct product of non-abelian simple groups, centralized by M0, and as
usual, CḠ(CḠ(F

∗(C))) is finite. Then [21, 1.2] implies that k = 1 and
F ∗(C) = Alt5 or Alt6. However neither of these possesses a fixed point free
automorphism, so this contradicts the fact that Cσ = 1.

We have now established that F (C) 6= 1. Pick a prime r such that
Or(C) 6= 1. If r = p then M normalizes a σ-stable parabolic subgroup of Ḡ
by [5], so r 6= p. Set

E = Ω1(Z(Or(C))),

an elementary abelian r-group normalized by M and by σ. As M and σ
normalize NḠ(E), the latter subgroup is also finite.

Pick elements t, u ∈M0 of order 2,3 respectively. Then CḠ(t) = D8 and
CḠ(u) = A8 or A2E6, by [21, 1.3]. If r > 2 then the elementary abelian r-
subgroup E ofD8 lies in a maximal torus ofD8 (by [41, II,5.8]), contradicting
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the fact that NḠ(E) is finite. Hence r = 2. Further, if CḠ(u) = A8 then E
lies in a maximal torus of A8, a contradiction, so CḠ(u) = A2E6.

At this point we have the elementary abelian 2-group E lying in A2E6.
Write E0 for the projection of E to the E6 factor. For 1 6= e ∈ E0 we
have CE6(e) = T1D5 or A1A5. In the first case T1 lies in Z(CḠ(e)), hence in
CḠ(E), which is finite, a contradiction. Hence CE6(e) = A1A5. If f is a non-
central involution in the A5 factor of CE6(e), then CA5(f) = A1A3T1, and
either e or ef lies in Z(A3). However, the E6-centralizer of such an involution
is T1D5: for the restriction of the 27-dimensional module V27 = VE6(λ1) to
A3 has composition factors 100

2, 0012, 010, 0005 (see [22, Table 8.7]), hence
the involution in Z(A3) acts on V27 as (−116, 111). Thus E0 cannot contain
f , and we deduce that E0 has rank at most 3. Since any two commuting
involutions in E6 lie in a maximal torus by [41, II,5.1], it follows that E0 has
rank 3. Write E0 = 〈e, a, b〉. Then 〈a, b〉 projects to a quaternion subgroup of
the A5 factor of CE6(e), acting homogeneously on the natural 6-dimensional
module, and hence CA5(a, b) contains a subgroup A2. Of course this lies in
CḠ(E), contradicting the finiteness of this group. This final contradiction
completes the proof.

Proof of Theorem 1.2

At this point we can complete the proof of Theorem 1.2. Fix positive
integers N,R, fix a type of Ḡ of rank at most R, and let G0 = (Ḡσ)

′ = G(q)
as above. Note that |Ḡσ : G0| ≤ R + 1. Choose q sufficiently large so that
|M̄σ| > N(R + 1) (hence also |M̄σ ∩G0| > N) for any nontrivial connected
σ-stable subgroup M̄ of Ḡ.

Define N to be the set of subgroups M0 of G0 satisfying the following:

(i) there is an almost simple group G with soc(G) = G0, and a maximal
subgroup M of G, such that M0 =M ∩G0, and

(ii) |M0| ≤ N .

Let M0 ∈ N , and let G,M be as in (i), with M0 = M ∩ G0. By Propo-
sition 2.5 we have M0 6= 1, and hence M = NG(M0) by the maximality
of M . Thus, given G with socle G0, the number of G-classes of maximal
subgroups of order at most N is bounded above by the number of G-classes
of subgroups in N .

If M normalizes a proper nontrivial connected σ-stable subgroup M̄ of
Ḡ, then by maximality, M contains M̄σ ∩G0, which has order greater than
N by our choice of q above. As |M0| ≤ N this cannot be the case. Hence
CḠ(M0) = 1 by Proposition 2.5. Moreover, M0 does not lie in an 〈M,σ〉-
invariant proper parabolic subgroup of Ḡ. Hence M0 is strongly reductive
in Ḡ by Proposition 2.2 and Remark 2.4.
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Given M0 ∈ N , the set

{Mg0 : g ∈ Ḡ, M
g
0 ≤ Ḡσ}

falls into at most NḠ(M0)/NḠ(M0)
0 classes under the action of Ḡσ, by

Lang’s theorem [41, I,2.7]. Since CḠ(M0) = 1, the group NḠ(M0) is finite,
of order bounded by |Aut(M0)|, hence by a function f(N) of N alone.

It now follows using Proposition 2.1 that the total number of Ḡσ-classes
of subgroups in N is bounded above by g(N,R) ∙ f(N). Since |Ḡσ : G0| ≤
R+1, it follows that the number of G0-classes in N is bounded by (R+1) ∙
g(N,R) ∙ f(N), and hence for any G with socle G0, the number of G-classes
of subgroups in N is also bounded by this number. This completes the proof
of Theorem 1.2.

3 Proof of Theorem 1.3

Let G be a finite almost simple group with socle G0 of Lie type of rank
r over Fq, and denote by M(G) the set of conjugacy classes of maximal
subgroups of G. Observe that the maximal subgroups containing G0 corre-
spond to maximal subgroups of G/G0, and it is easily seen that the outer
automorphism group Out(G0) has at most dr log log q subgroups. Hence we
consider from now on only subgroups inM(G) not containing G0.

Lemma 3.1 Theorem 1.3 holds when G0 is of exceptional Lie type.

Proof In this case we use the following result, taken from [25, Corollary
4]: there are absolute constants c, d such that if M is a maximal subgroup
of G, then one of the following holds:

(i) M is a known subgroup, belonging to one of at most d log log q con-
jugacy classes,

(ii) M is almost simple, and |M | < c.

(Note that the proof of this result uses the classification of finite simple
groups only for the statement that a simple subgroup of GLn(F̄p) either lies
in Lie(p), or has order bounded by a function of n. This is proved in [19]
without using the classification.)

The conclusion of Theorem 1.3 follows from the above result, together
with Theorem 1.2.

Lemma 3.2 Theorem 1.3 holds when G0 is of classical type.

Proof Suppose G0 is a classical simple group with natural module V of
dimension n over Fq, where q = pc and p is prime. In this case Theorem 1.3
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is an improvement of [11, Theorem 2.7], and we use some of the methods of
the proof of that result.

First observe that if G0 = PΩ
+
8 (q) and G contains a triality automor-

phism of G0, then the conclusion follows from [15], where the maximal sub-
groups of G are completely determined (again, for Theorem 1.3 the use of
CFSG in this paper can be substituted by [19]). Exclude this case from
consideration from now on. Then a theorem of Aschbacher [1] classifies all
maximal subgroups of G into eight families Ci (1 ≤ i ≤ 8) of well understood
subgroups, together with a family S consisting of almost simple subgroups
M whose socle has (projective) representation on V which is absolutely ir-
reducible and is not realised over a proper subfield of Fq.

Denote by nC the number of G0-classes of subgroups in the union of the
families Ci. Then [11, Lemma 2.1] yields

nC ≤ c1(n) + dn log log q, (4)

where c1(n) is a function of n and d an absolute constant.

For S, define nS,p (respectively, nS,p′) to be the number of G0-classes of
subgroups in S whose socle is (respectively, is not) a group of Lie type in
characteristic p. Then [11, Lemma 2.3] gives

nS,p′ ≤ c2(n), (5)

where c2(n) is a function of n. (Once again, a classification-free proof of this
is given in [19].)

It remains to bound nS,p. Here we need to improve [11, Lemma 2.5]. For
convenience of notation, replace G0 by the corresponding classical group on
V (i.e. SL(V ), Sp(V ), etc.). Let M(s) (s = pa) be a quasisimple group
of Lie type over Fs in characteristic p. By [17, 2.10.4(iii)], the conjugacy
class of an absolutely irreducible subgroup in the full isometry group of V is
determined by its representation on V up to equivalence. Hence it suffices to
bound the number of pairs (M(s), ρ), where ρ :M(s)→ GL(V ) is absolutely
irreducible and realised over no proper subfield of Fq (recall that V = Vn(q)),
and NG(M(s)ρ) is maximal.

Suppose (M(s), ρ) is such a pair. We apply results from [37, 38]. First,
[37, Table 1B] provides a list of subgroups of classical groups, of the form
Cly(q

r) < Clyr(q), embedded via a twisted tensor product representation of

the form W ⊗W (q)⊗ ∙ ∙ ∙⊗W (q
r−1), where W = Vy(q

r). Then [38, Corollary
6] and its proof imply that either NG(M(s)ρ) is the normalizer of one of
these subgroups, or Fs is a subfield of Fq of index at most 3, and moreover,
the representation ρ⊗ F̄p is tensor indecomposable.

Since the representations of the above subgroups Cly(q
r) are determined,

they contribute at most c3(n) classes of maximal subgroups. For other max-
imal subgroups NG(M(s)ρ), the rank of M(s) is bounded by that of G0,
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hence is at most n−1, and s ∈ {q, q1/2, q1/3}, so there are c4(n) possibilities
for M(s). Moreover, the representation of M(s) on V is tensor indecom-
posable, hence restricted. So its high weight is a sum

∑
ciλi, where λi are

the fundamental dominant weights and the 0 ≤ ci < p. Since dimV = n,
restriction to subgroups SL2(s) of M(s) shows that ci < n for all i, so there
are at most nn possibilities for the high weight

∑
ciλi. It follows that

nS,p < c5(n). (6)

The conclusion of the lemma now follows from (4), (5) and (6).

This completes the proof of Theorem 1.3.

4 Deduction of Theorem 1.1

The theorem was proved in [27, 2.1] for G alternating or classical, so it
remains to prove it for exceptional groups G = G(q). For these groups the
rank r is of course bounded, and maximal subgroups have index at least q
(this holds for SL2(q) and

2B2(q), one of which is contained in G). Hence
by Theorem 1.3, for s > 1 we have

ζG(s) =
∑

M∈M(G)

|G :M |−(s−1) < (c(r) + dr log log q)) ∙ q−(s−1),

and hence ζG(s)→ 0 as q →∞. This completes the proof of Theorem 1.1.

5 Applications

The results of this paper, apart from their intrinsic interest, have an im-
pact on many questions concerning probabilistic generation of finite simple
groups. Proofs in this field are often harder for exceptional groups of Lie
type, and various ad hoc methods have had to be invented in order to com-
pensate for the lack of complete knowledge of their maximal subgroups; see
for instance the proofs in [26], [28], [12]. Using Theorem 1.1 one can greatly
simplify many of these proofs, and make various arguments used for clas-
sical groups of bounded rank applicable to exceptional groups as well. We
demonstrate this in Corollary 5.1 below.

Moreover, the theorems in this paper also give rise to new results; in
particular they enable us to settle a conjecture concerning symmetric groups
(see Theorem 5.2 below).

It was conjectured by Kantor and Lubotzky [13] that a randomly chosen
involution and a randomly chosen additional element of a finite simple group
G generate G with probability tending to 1 as |G| → ∞. This was proved in
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[27] for classical (and alternating) groups, and in [28] for exceptional groups
of Lie type. Focusing on exceptional groups and using Theorem 1.1, we can
now provide a very short proof of a more general result.

Corollary 5.1 Let k be a positive integer, and let G be an exceptional sim-
ple group of Lie type which has an element of order k. Let Pk,∗(G) be the
probability that a randomly chosen element of order k and a randomly chosen
additional element generate G. Then Pk,∗(G)→ 1 as |G| → ∞.

Proof Let ik(H) denote the number of elements of order k in a finite group
H. Then we easily see that

1− Pk,∗(G) ≤
∑

M maxG

ik(M)|M |
ik(G)|G|

.

Let G = G(q) and let C be a non-trivial conjugacy class of G. Then by
[20] we have |M ∩ C|/|C| ≤ c/q for all maximal subgroups M of G, where
c is some absolute constant. Summing over conjugacy classes of elements of
order k in G this implies

ik(M)/ik(G) ≤ c/q ≤ c|G :M |
−ε

for some fixed ε > 0 (ε = 1/248 will easily do).

Combining the above inequalities with Theorem 1.1 we conclude that

1− Pk,∗(G) ≤ cζG(1 + ε)→ 0 as |G| → ∞.

We note that the above Corollary can in fact be deduced from [12, The-
orem 2] (and can be further generalized); however the proof we have given
seems to us rather more natural and conceptual.

Theorem 1.1 is also a key tool in some new results on probabilistic gen-
eration which will appear in forthcoming work of the first and third authors.

Finally, let us mention that, although this paper deals with groups of Lie
type, it gives rise to new results concerning symmetric groups. In 1989 Babai
showed that Sn has at most n

c log3 n conjugacy classes of primitive maximal
subgroups [3, 2.5]. This was improved in [29], where it was shown that Sn
has at most n6/11+o(1) conjugacy classes of primitive maximal subgroups,
where o(1) is a quantity tending to 0 as n→∞. Here we improve it further,
confirming Conjecture 1 of [29].

Theorem 5.2 The symmetric group Sn has n
o(1) conjugacy classes of prim-

itive maximal subgroups.
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Proof The argument is similar to the proof of Theorem 4.4 in [29], except
that in parts (ii) and (iii) of Proposition 2.3 we apply Theorems 1.2 and
1.3 to obtain upper bounds of the form n1+o(1). This leads to the required
improvement.

Let d(n) denote the number of divisors of n. It is well known that
d(n) = no(1). Note that Sn has d(n) − 2 conjugacy classes of transitive
imprimitive maximal subgroups (of the form Sk oSn/k), and [n/2] conjugacy
classes of intransitive maximal subgroups (of the form Sk×Sn−k). Therefore
Theorem 5.2 gives rise to the following.

Corollary 5.3 The symmetric group Sn has [n/2]+n
o(1) conjugacy classes

of maximal subgroups.
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