
ZERO-ONE GENERATION LAWS FOR FINITE SIMPLE GROUPS

ROBERT M. GURALNICK, MARTIN W. LIEBECK, FRANK LÜBECK, AND ANER SHALEV

Abstract. Let G be a simple algebraic group over the algebraic closure of Fp (p prime), and let

G(q) denote a corresponding finite group of Lie type over Fq , where q is a power of p. Let X be

an irreducible subvariety of Gr for some r ≥ 2. We prove a zero-one law for the probability that
G(q) is generated by a random r-tuple in X(q) = X ∩ G(q)r: the limit of this probability as q

increases (through values of q for which X is stable under the Frobenius morphism defining G(q))

is either 1 or 0. Indeed, to ensure that this limit is 1, one only needs G(q) to be generated by an
r-tuple in X(q) for two sufficiently large values of q. We also prove a version of this result where

the underlying characteristic is allowed to vary.

In our main application, we apply these results to the case where r = 2 and the irreducible
subvariety X = C ×D, a product of two conjugacy classes of elements of finite order in G. This

leads to new results on random (2, 3)-generation of finite simple groups G(q) of exceptional Lie

type: provided G(q) is not a Suzuki group, we show that the probability that a random involution
and a random element of order 3 generate G(q) tends to 1 as q →∞. Combining this with previous

results for classical groups, this shows that finite simple groups (apart from Suzuki groups and
PSp4(q)) are randomly (2, 3)-generated.

Our tools include algebraic geometry, representation theory of algebraic groups, and character

theory of finite groups of Lie type.

1. Introduction

Let p be a prime, let k be the algebraic closure of the prime field Fp, and let G be a simple,
simply connected algebraic group over k. For a power q = pa, denote by G(q) a corresponding finite
group of Lie type (twisted or untwisted). For a positive integer r, write Gr for the direct product
of r copies of G. In this paper we prove a zero-one generation law for irreducible subvarieties X of
Gr. Let X(q) = X ∩G(q)r, let Q be the set of values of q for which X is stable under the Frobenius
morphism defining G(q), and denote by PG(q)(X(q)) the probability that an r-tuple chosen uniformly
at random from X(q) generates G(q). Theorem 1 below shows that the limit limq∈QPG(q)(X(q))
must be either 1 or 0. Moreover, it is 1 provided that X(q) generates G(q) for at least two values
of q, one of which is greater than a specified constant.

In order to study these limiting generation probabilities, one needs similar results for groups of
fixed Lie type in varying characteristics. Theorem 2 below is such a result. Here G is taken to be
a Chevalley group scheme (defined over Z) and X to be an irreducible subscheme defined over a
ring of the form O[ 1n ], where O is the ring of integers of an algebraic number field, and a similar
zero-one law is obtained, providing finitely many characteristics are excluded.

Let T be a finite non-abelian simple group. A non-empty subset of T is called normal if it is closed
under conjugation by elements of T (in other words, it is a union of conjugacy classes). Let C,D
be two normal subsets of T . Let PT (C,D) denote the probability that a random pair of elements
in C ×D generates T (that is, the proportion of generating pairs among all pairs in C ×D).
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If C is the set of elements in T of order r and D is the set of elements of order s, then we define
Pr,s(T ) = PT (C,D). This has been studied extensively in recent years. Previous results include:

(1) [11, 18] PT (T, T )→ 1 for simple groups T , as |T | → ∞;
(2) [19] P2,3(T ) → 1 as |T | → ∞ for classical groups T not of type PSp4, and for alternating

groups;
(3) [20] Let r, s be primes with (r, s) 6= (2, 2). Then Pr,s(T )→ 1 as |T | → ∞ for classical groups

T of large Lie rank (depending upon (r, s)), and for alternating groups;
(4) [1, 8] In every simple group T there exists a conjugacy class C such that for any non-empty

normal subset D ⊂ T \ {1}, we have PT (C,D) ≥ 13
42 .

Most of the work in proving such results involves the analysis of the simple groups of Lie type.
This typically splits into two cases — the first when the rank of the group goes to infinity and the
second when the rank is fixed and the field size q goes to infinity. The methods are usually quite
different. In the first case, one can avoid exceptional groups.

For example, by (3) above Pr,s(T )→ 1 as the rank of the classical group T goes to infinity. But
if the rank is fixed, and is not large enough (given r, s) this may fail: first of all, elements of orders
r, s need not exist, since r and s may not divide |T |. But it may even fail with this divisibility
assumption. For example, P2,3(PSp4(q)) → 1

2 if (q, 6) = 1 and q → ∞, and P2,3(PSp4(q)) = 0 if
(q, 6) 6= 1 (see [19]).

In the case of fixed rank, we shall use Theorems 1 and 2 to show that if G(q) is a finite group of
fixed Lie type over Fq, and C,D are conjugacy classes of the corresponding simple algebraic group,

then PG(q)(C(q), D(q)) is either 0 or is at least 1−O(q−
1
2 ) (so in particular goes to 1 as q →∞) –

see Corollaries 5, 6. Note that there are several very well-known zero-one laws in probability, such
as those of Borel-Cantelli, Kolmogorov and Levy.

As another application, we show in Corollary 3 that PG(q)(G(q), G(q))→ 1 as q →∞ – that is,
G(q) is generated by a random pair of elements with probability tending to 1. This was originally
proved in [11] for G(q) of classical type and in [18] for G(q) of exceptional type, using completely
different methods.

Now let r, s be positive integers, and consider elements of orders r, s in G(q). Since there are
only finitely many conjugacy classes of such elements in the corresponding simple algebraic group,
it follows from the above result that the limit points as q → ∞ for Pr,s(G(q)) form a finite set of
rational numbers between 0 and 1. Usually, this set is expected to be {1}, but there are exceptions
– for example, as mentioned above, for G(q) = PSp4(q) and (r, s) = (2, 3) it is {0, 12 , 1}.

There is particular interest in the case where (r, s) = (2, 3), one reason being that the (2, 3)-
generated groups are precisely the images of the modular group PSL2(Z). For alternating and
classical groups G, the limiting behaviour of P2,3(G) was determined in [19]. Here we shall use the
results discussed above to complete the picture for exceptional groups in Theorem 8.

We now state our main results. As above, let G be a fixed type of simply connected simple
algebraic group over k, the algebraic closure of Fp. For q a power of p, let Fq be a Frobenius
endomorphism of G(k) such that the fixed point group GFq = G(q) is a finite group of Lie type over
Fq. Here G(q) may be of twisted or untwisted type, but we adopt the assumption in the statements
of the results below that as q varies,

either all G(q) are of untwisted type, or all are of a fixed twisted type.

For Suzuki and Ree groups 2B2(q), 2G2(q), 2F4(q), our notation for q denotes the relevant odd power
of 2 or 3, rather than its square root.

For a positive integer r, denote by Gr the direct product of r copies of G. If Y is a subset of
G(q)r for some r ≥ 2, we write PG(q)(Y ) for the probability that a random r-tuple in Y generates
G(q). Also for an r-tuple y = (y1, . . . , yr) ∈ Y , we write 〈y〉 to denote the subgroup 〈y1, . . . , yr〉.
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Our first two theorems are rather general results about probabilistic generation by r-tuples in an
irreducible subvariety X of Gr. In the first result, the characteristic of the underlying field is fixed.
In the second, the characteristic is allowed to vary, hence the requirement that X is defined over a
suitable ring in characteristic zero.

In the statement below, we refer to an explicit positive integer M (depending only on the rank of
G) which is defined in Remark 2.3 in Section 2. Also, for a prime power q, we write X(q) = X∩G(q)r,
and extend the action of the Frobenius morphism Fq to Gr, acting in the same way on each factor.
In order to avoid some technical complications in the proof when G(q) is of Suzuki or Ree type,
we make the extra assumption that X is G-invariant in this case (i.e. (x1, . . . , xr) ∈ X, g ∈ G ⇒
(xg1, . . . , x

g
r) ∈ X).

Theorem 1. Let p be a prime, let k be the algebraic closure of the prime field Fp, and let G be
a simple, simply connected algebraic group over k. Suppose X is an irreducible subvariety of Gr

(r ≥ 2), and let Q be the set of powers q = pa such that X is Fq-stable, where Fq is the Frobenius
morphism defining G(q) as above. If G(q) is of Suzuki or Ree type, assume further that X is
G-invariant. Then the following are equivalent:

(i) limq∈Q, q→∞PG(q)(X(q)) = 1;
(ii) there exist q1, q2 ∈ Q, with q2 > M , and r-tuples xi ∈ X(qi) such that 〈xi〉 = G(qi) for

i = 1, 2.

Remarks (1) Of course if condition (ii) does not hold, then the limiting probability referred to in
(i) is 0. Hence this theorem is a rather strong form of zero-one law for random generation in a fixed
characteristic.

(2) As indicated above, in the statement of the theorem the groups G(q) are taken to be either
all of untwisted type, or all of a fixed twisted type. Thus for example when G = E6, Theorem 1
comprises two assertions, one for the family E6(q) and the other for the family 2E6(q). To make it
absolutely clear, for the latter family, the assertion is that the statements

(i) limq∈Q, q→∞P 2E6(q)(X(q)) = 1;

(ii) there exist q1, q2 ∈ Q, with q2 > M , and r-tuples xi ∈ X(qi) such that 〈xi〉 = 2E6(qi) for
i = 1, 2

are equivalent. This observation applies to all the results stated below.

(3) The set Q defined in the statement of Theorem 1 can be described as follows. Let q0 be minimal
such that X is Fq0 -stable. If the groups G(q) are untwisted (so that the Fq are field endomorphisms),
then Q = {qa0 : a ∈ N}, the set of powers of q0. If G(q) is of Suzuki or Ree type, Q consists of all
odd powers of q0. And for the other twisted types, Q consists of either all powers of q0, or all powers
qa0 with a coprime to 2 (for types 2An,

2Dn,
2E6) or coprime to 3 (for type 3D4); the first possibility

(all powers) occurs if X is fixed by a graph automorphism of G, the second if not.

(4) If the irreducibility condition on X is dropped, then application of the theorem to the irreducible
components of highest dimension shows that the probability defined in (i) is a rational number.

In the next result the characteristic is allowed to vary, and in order to state it we require some
notation. Let R be a ring of the form O[ 1n ], where n is a positive integer, and O is the ring of integers
of an algebraic number field. Suppose G is a simply connected Chevalley group scheme (defined over
Z), and let X be an irreducible subscheme of Gr defined over R, for some r ≥ 2. For each prime
p, we have the simply connected simple algebraic group G(F̄p), and Frobenius endomorphisms Fq
(q = pa) with fixed point groups G(q) as above (again assuming either all G(q) are of untwisted
type, or all are of a fixed twisted type). As before, extend the action of Fq to G(F̄p)r, acting in the
same way on each factor. For p coprime to n, let qi(p) (1 ≤ i ≤ kp) denote the sizes of the residue
fields of R in characteristic p, and for a finite set S of primes such that S contains all the prime
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divisors of n, define

QR(S) =
⋃
p 6∈S

⋃
i

{qi(p)a : X(F̄p) is Fqi(p)a -stable}.

For q ∈ QR(S), set X(q) = G(q) ∩X(F̄p).

Theorem 2. Let G and X be as above. Then there is a finite set S of primes (containing the prime
divisors of n) such that the following are equivalent:

(i) limq∈QR(S),q→∞PG(q)(X(q)) = 1;
(ii) there exist a prime p 6∈ S, two powers q, q′ of p lying in QR(S), with q′ > M , and r-tuples

x ∈ X(q), x′ ∈ X(q′), such that 〈x〉 = G(q), 〈x′〉 = G(q′).

Remarks (1) If in Theorems 1 and 2 we also assume that dimX > dimG, then in both results,
condition (ii) can be replaced by the existence of just one r-tuple x′ ∈ X(q′) (rather than two) such
that 〈x′〉 = G(q′) and q′ > M . This remark is justified at the end of the proof of Theorem 2 in
Section 3.2.

(2) In our main applications of Theorem 2, namely Corollaries 3 and 6 below, X is defined over
a ring R whose field of fractions is a cyclotomic extension of Q, and so all the residue fields of R in
a given characteristic have the same size (i.e. kp = 1 for all p in the above notation).

There are many interesting subvarieties of Gr to which we can attempt to apply Theorems 1
and 2 – for example Gr itself, or the Cartesian product C1 × · · · × Cr of conjugacy classes Ci, or
a representation variety Hom(Γ, G) of a finitely presented group Γ on r generators. We shall apply
the above results to several such subvarieties.

First, we take r = 2 and X = G2, which is of course irreducible. Applying Theorems 1 and 2, we
can quickly deduce the following consequence, giving random generation of simple groups of fixed
Lie type by pairs of elements. This was first proved for classical types in [11] and for exceptional
types in [18], using completely different methods.

Corollary 3. Let G be a fixed simply connected, simple Lie type. Then

limq→∞PG(q)(G(q), G(q)) = 1.

More generally, for X = C×G, where C is an irreducible subvariety of G, we prove the following;
we state it in fixed characteristic, but as for Theorem 2 there is a version for varying characteristics,
provided we asume that C is a subscheme defined over a suitable ring. We write C(q) = C ∩G(q).

Corollary 4. Let G be a simple, simply connected algebraic group over F̄p, let C be an irreducible
subvariety of G, and let Q be the set of powers q of p such that C is Fq-stable. If G(q) is of Suzuki
or Ree type, assume further that C is G-invariant. Then limq∈Q, q→∞PG(q)(C(q), G(q)) = 1.

In the next two corollaries, we take r = 2 and X = C×D, the Cartesian product of two conjugacy
classes. In the first, the characteristic is fixed, and the classes can contain elements of arbitrary
(finite) order; while in the second,the characteristic of the underlying field is allowed to vary, but
the classes must consist of semisimple elements. Write C(q) = C ∩G(q), D(q) = D ∩G(q).

Corollary 5. Let p be a prime and k = F̄p, and let G a simple, simply connected algebraic group
over k. Let C and D be conjugacy classes in G consisting of elements of finite order, and denote by
Q the set of powers q = pa such that C(q) 6= ∅ and D(q) 6= ∅. Then the following are equivalent:

(i) limq∈Q,q→∞PG(q)(C(q), D(q)) = 1;
(ii) there exists q > M and (c, d) ∈ C(q)×D(q), such that 〈c, d〉 = G(q).

Notice that in (ii), we only require the condition for one value of q (rather then the two required
in (ii) of Theorem 1). This is justified by Remark (1) after Theorem 2, together with Lemma 2.5
which shows that condition (ii) implies that dimC + dimD > dimG.
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To state the second corollary, we need some notation for semisimple classes. For a positive integer
r, the conjugacy classes of semisimple elements of order r in G(k) are parametrized by the orbits of
the Weyl group W (G) on the set of elements of order r in a maximal torus. This parametrization
is independent of the characteristic p (coprime to r). For such an orbit ∆r of the Weyl group, write
C(∆r, k) for the corresponding semisimple class of elements of order r in G(k).

Corollary 6. Let G be a fixed type of simple, simply connected algebraic group. Let r, s be positive
integers, and ∆r,∆s orbits of the Weyl group, as above. For any algebraically closed field k of
characteristic coprime to rs, let C = C(∆r, k) and D = C(∆s, k) be the corresponding classes of
semisimple elements of orders r, s in G(k). Denote by Q the set of prime powers q (in varying such
characteristics) such that C(q) 6= ∅ and D(q) 6= ∅. Then the following are equivalent:

(i) limq∈Q,q→∞PG(q)(C(q), D(q)) = 1;
(ii) for any prime p - rs, there is a power q = pa > M and a pair (c, d) ∈ C(q) × D(q), such

that 〈c, d〉 = G(q).

In fact, condition (ii) is only required to hold in finitely many characteristics in order to imply
(i).

We now turn to some applications. For positive integers r, s let Vr,s be the set of values Pr,s(T ) as
T ranges over all finite simple groups. Let Lr,s denote the set of limit points of Vr,s. The following
result is an easy consequence of Corollaries 5 and 6, together with [20].

Corollary 7. Fix primes r, s. Then Lr,s is a finite set of rational numbers.

We conjecture that for {r, s} 6⊆ {2, 3}, we have Lr,s = {0, 1}. More specifically, we conjecture
that if Gi is a sequence of finite simple groups such that |Gi| → ∞ with r and s both dividing |Gi|,
then Pr,s(Gi)→ 1. When the ranks of all the groups Gi are greater then some function f(r, s), this
has been proved in [20]; and it has been proved for all ranks when the Gi are of type Ar or 2Ar, in
[7, Cor. 1.3].

In the next result we apply Corollaries 5 and 6 to the study of probabilistic (2, 3)-generation,
completing the work in [19]. The proof makes essential use of the result of Lübeck and Malle [22]
that, apart from Suzuki groups, all exceptional groups of Lie type are (2, 3)-generated.

Theorem 8. Let Gi be a sequence of finite simple exceptional groups of Lie type with |Gi| → ∞.
Assume that none of the Gi are Suzuki groups. Then P2,3(Gi)→ 1 as i→∞.

Note that, while in [19], (2, 3)-generation of classical groups is deduced from random (2, 3)-
generation established for these groups, the deduction here is in the reverse direction: we need
to know that exceptional groups are (2, 3)-generated in order to prove that they are randomly
(2, 3)-generated.

Combining Theorem 8 with [19] (for alternating and classical groups), we obtain the following.

Corollary 9. For T simple, as |T | → ∞,

P2,3(T )→

 0, T = 2B2(2a), PSp4(2a), PSp4(3a)
1
2 , T = PSp4(pa), p 6= 2, 3, p prime
1, otherwise.

These random (2, 3)-generation results have interesting applications to residual properties of the
modular group (see [21]).

The paper comprises three further sections. Section 2 contains various preliminary results on
modules and trace maps that are needed for our proofs of the main results. In Section 3, we
prove Theorems 1, 2 and Corollaries 3–6. The final Section 4 contains proofs of our results on
(2, 3)-generation.



6 ROBERT M. GURALNICK, MARTIN W. LIEBECK, FRANK LÜBECK, AND ANER SHALEV

2. Preliminary results on modules and traces

2.1. Modules. We begin with an elementary lemma.

Lemma 2.1. Let k be an algebraically closed field and n a positive integer. The set of pairs (A,B)
in GLn(k)×GLn(k) that generate an irreducible subgroup of GLn(k) is a Zariski dense open subset
of GLn(k)×GLn(k).

Proof. First observe that by the Artin-Wedderburn theorem, 〈A,B〉 is an irreducible subgroup of
GLn(k) if and only if the algebra generated by A and B is the full matrix algebra Mn(k). If we
write Si for the set of words in A,B of length at most i, and kSi for the linear span of Si, then

k = kS0 ⊆ kS1 ⊆ · · · kSi ⊆ kSi+1 ⊆ · · · .

This chain must stabilize at some point – that is, kSi = kSi+1 = · · · for some i, and clearly i ≤ n2.
Thus 〈A,B〉 is irreducible if and only if the linear span of the set of words in A,B of length at
most n2 is equal to Mn(k). This is an open condition, so the set of pairs generating an irreducible
subgroup is open. Finally, it is non-empty, since Mn(k) can be generated by 2 elements – for
example, it is generated by a diagonal matrix with distinct eigenvalues, together with a matrix of
the form λI + J , where J is the all 1’s matrix and λ is a scalar. �

In the next result, recall that for a simple algebraic group G over a field k of characteristic p,
and a Frobenius endomorphism Fq (q a power of p), we write GFq = G(q), a group of Lie type over
Fq which can be of untwisted or twisted type.

Lemma 2.2. Let G be a fixed simply connected, simple Lie type of rank r, and let k be an alge-
braically closed field of positive characteristic p. There is a finite set NG of integers, and an absolute
constant K such that the following hold.

(i) There exists a finite collection S of finite-dimensional irreducible G(k)-modules such that the
set of proper closed subgroups of G(k) that act irreducibly on every member of S is conjugate
to a group in {G(q) : q 6∈ NG} (where the groups G(q) can be of untwisted or twisted type).
Moreover, max{n : n ∈ NG} < f(r), a function of the rank only.

(ii) For p > K, all the modules in S are restricted modules, and the set consisting of their
highest weights is independent of p.

Proof. This follows from results in [9] and [16], as follows. Define K to be the maximum order of
a group that appears either in [16, Table 1.1] or collection E1 of [9, Theorem 2.9]; so in fact, K is
equal to the order of the Monster sporadic group.

For p ≤ K we take S to consist of the single irreducible module provided by [9, Theorem 11.7].
That result asserts that any proper closed subgroup that is irreducible on this module must be a
subgroup of the form G(q).

For p > K and G = Cl(V ) of classical type with dimV ≥ 5, we take S to consist of the set of
modules given in [9, Theorem 2.9] – that is, the composition factors of V ⊗ V ∗, V ⊗4 and S3(V )
– together with the irreducible of highest weight Kω1. Theorem 2.9 of [9] states that any proper
closed subgroup that is irreducible on all these modules is either a subgroup G(q), or a member
of the collection E1 mentioned above; but members of this collection cannot be irreducible on the
last module V (Kω1), since this has dimension larger than the order of any of the groups in the
collection, by the definition of K. For G = Cl(V ) with dimV ≤ 4 (i.e. G of type A1, A2, A3 or C2,
still with p > K), it is straightforward to define a suitable collection S, and we leave this to the
reader.

Finally, for p > K and G of exceptional type, we take S to consist of the adjoint module together
with a further restricted module of dimension greater than K (for example V (Kω1) again), and the
conclusion follows from [16, Theorem 1]. �
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Remark 2.3. Let NG be as defined in the lemma, and let M = MG = max{n : n ∈ NG} (the
maximum taken over all characteristics). Then for q > M , the group G(q) acts irreducibly on all
the modules in the collection S.

Continue to let G be a simply connected Lie type, and define S, NG, K as in the previous result.
For a prime p, and k = F̄p, and r ≥ 2, define

(1) W ′r(k) = {x ∈ G(k)r | 〈x〉 acts reducibly on some module in S}.

Let Wr(k) denote the complement of W ′r(k) in G(k)r.

We also need to define similar subsets in varying characteristics. To do this, now take G to be a
Chevalley group scheme, and denote by s the product of all the primes less than K. Then Lemma
2.2(ii) shows that there is a subscheme W ′r of Gr defined over Z[ 1s ], such that for each k = F̄p
(p > K), W ′r(k) is as defined in (1). Let Wr be the complement of W ′r.

Lemma 2.4. Let p be a prime, and k = F̄p.

(i) Then Wr(k) = {x ∈ G(k)r | G(q)g ≤ 〈x〉 for some g ∈ G(k), q 6∈ NG}.
(ii) Wr(k) is a dense open subset of G(k)r.

(iii) Wr(k) is defined over Fp.

Proof. Part (i) follows from Lemma 2.2. For (ii), observe that Wr(k) is open by Lemma 2.1, and
it is non-empty since any group G(q) can be generated by 2 elements (by [26]). Finally, (iii) holds
since in fixed characteristic p, irreducible G-modules are defined over Fp. �

Lemma 2.5. Let k = F̄p, and suppose that C,D are conjugacy classes of G(k) such that (C×D)∩
W2(k) is non-empty. Then dimC + dimD > dimG.

Proof. Let A = Lie(G), the Lie algebra of G = G(k). By assumption, we can choose (x, y) ∈ C ×D
such that 〈x, y〉 contains G(q) for some q > M , hence has the same set of invariant subspaces on A
as G does. Let r = rank(G).

Set z = xy. Now applying Scott’s Lemma [25], we have

dim[x,A] + dim[y,A] + dim[z,A] ≥ dimA+ dim[G,A]− dimAG.

For g ∈ G(k) we have dim[g,A] = dimA − dimAg ≤ dimG − dimCG(g). The last term is the
dimension of the conjugacy class of g, and so we have dim[x,A] ≤ dimC and dim[y,A] ≤ dimD.
Also, the dimension of the conjugacy class of z is at most dimG− r, whence dim[z,A] ≤ dimG− r.
Combining the above inequalities we obtain the inequality

(2) dimC + dimD ≥ dim[G,A]− dimAG + r.

We claim that A = [G,A]. To see this, observe that [G,A] is an ideal of A = Lie(G) and G acts
trivially on the quotient. Since G is simply connected, inspection of [10, Table 1] shows that there are
no such proper ideals of A, which proves the claim. It follows that dim[G,A]−dimAG = dimG− δ,
where δ is at most the number of trivial composition factors of G on A. This number is at most
1 unless p = 2 and G = Br, Cr or Dr, all with r even, in which case it is 2 (see [15, Prop. 1.10]).
Now (2) gives dimC + dimD ≥ dimG+ r − δ, and the conclusion follows unless either G = A1 or
(G, p) = (C2, 2).

Suppose G = A1. Then every nontrivial conjugacy class has dimension at least 2, whence
dimC + dimD > dimG, as required.

Finally, consider (G, p) = (C2, 2). Here G has two conjugacy classes of dimension 4, namely the
classes of long and short root elements, and the other classes have dimension at least 6. Assume
that dimC+dimD ≤ dimG = 10. Then adjusting C,D by a graph automorphism of G if necessary,
we may take one of the classes, say C, to contain a long root element x = uα. Then x has fixed
point space of dimension 3 on the natural 4-dimensional module V for G = Sp4. Now dimD ≤ 6,
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and it is easy to see that an element y in such a class must have an eigenspace on V of dimension
at least 2. This eigenspace intersects the fixed space of x nontrivially, so x, y cannot generate an
irreducible subgroup of G, which is a contradiction. Hence dimC + dimD > dimG, completing the
proof. �

If k = F̄p and C,D are conjugacy classes of G = G(k) such that dimC + dimD ≤ dimG, the
next lemma shows there are severe limitations on the possiblilities for the subgroup 〈c, d〉, where
(c, d) ∈ X = C ×D.

Lemma 2.6. Let X be an irreducible subvariety of Gr (r ≥ 2), and suppose that X is invariant
under conjugation by G.

(i) If dimX < dimG, then every r-tuple in X generates a subgroup of a proper parabolic
subgroup.

(ii) If dimX = dimG, then one of the following holds:
(a) G has a dense open orbit on X, and every r-tuple in the orbit generates a conjugate

of a fixed finite group H such that CG(H) is finite; the other r-tuples in X generate a
subgroup of order at most |H| of a parabolic subgroup;

(b) every r-tuple in X generates a subgroup of a parabolic subgroup.

Proof. (i) Suppose dimX < dimG. Then any x ∈ X has a positive-dimensional centralizer in G,
hence 〈x〉 is contained in a parabolic subgroup.

(ii) Now suppose dimX = dimG, and let x ∈ X. If the orbit xG has dimension less than dimG,
then 〈x〉 is contained in a parabolic subgroup, as in (i). Otherwise, xG is a dense orbit, and the
centralizer CG(x) is a finite group. Part (ii) follows. �

2.2. Traces.

Lemma 2.7. Let p be a prime and k = F̄p. Let S be a finite subset of GLd(k) that generates an
irreducible subgroup, and for m ≥ 1 let Sm denote the set of all words in S of length at most m.

Let E be the subfield of k generated by {tr(T ) : T ∈ S2d2}. Then the Fp-algebra generated by S is
GLd(k)-conjugate to Md(E), and 〈S〉 is conjugate to a subgroup of GLd(E).

Proof. By the Artin-Wedderburn theorem, the k-algebra generated by S is Md(k). Let Y =

{Y1, . . . , Yd2} ⊂ Sd
2

be a basis for Md(F ). Note that the map φ : Md(k) → kd
2

given by
A → (tr(AY1), . . . , tr(AYd2)) is a linear bijection, since the Yi form a basis and the trace form
is non-degenerate.

If B ∈ Y , then BY ⊂ S2d2 and so tr(BYi) ∈ E. Since the above map φ is a bijection, it follows

that BYi is in the E-span of Y . Thus, the Fp-algebra generated by S has cardinality qd
2

where
q = |E|. Since it acts absolutely irreducibly on kd, it is isomorphic to Md(E). It follows also that
〈S〉 is isomorphic to a subgroup of GLd(E). �

Corollary 2.8. Let k be the algebraic closure of Fp, let G be a simple algebraic group over k, and let
V be a nontrivial irreducible restricted d-dimensional rational kG-module. Let X be an irreducible
subvariety of Gr (r ≥ 2), and assume that some x ∈ X generates a subgroup acting irreducibly
on V . Suppose that for every word w in the free group on r generators of length at most 2d2, the
morphism tr(w(y)) is constant for y in an nonempty open subset of X. Then the following hold:

(i) there is a constant N such that the group generated by y for all y ∈ X has order at most N ;
(ii) dimX ≤ dimG.

Proof. (i) The condition that the group generated by y has order at most N is a closed condition,
so it suffices to prove the conclusion for y in the nonempty open subset of X consisting of r-tuples
generating an irreducible subgroup. By the previous lemma, it follows that the group generated by
any such y is conjugate to a subgroup of GLd(q), where Fq is the field generated by all traces of
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words of length at most 2d2 (the hypotheses imply this is a finite field). Part (i) follows, taking
N = |GLd(q)|.

(ii) Let H = GLd(q) be as above, and let φ : G × Hr → Gr be the morphism sending
(g, h1, . . . , hr) → (hg1, . . . , h

g
r) (g ∈ G, hi ∈ H). Then Im(φ) contains a nonempty open subset

of X. Hence dimX ≤ dimG. �

In the next result, R denotes a ring of the form O[ 1n ], where n is a positive integer, and O is the
ring of integers of an algebraic number field. As before, for a prime p coprime to n, we let qi(p)
(1 ≤ i ≤ kp) denote the sizes of the residue fields of R in characteristic p. Also define

QR =
⋃
p-n

⋃
i

{qi(p)a : a ∈ N}.

Lemma 2.9. Suppose that V is an irreducible reduced scheme of finite type of dimension s defined
over the ring R = O[ 1n ]. Let f be a non-constant regular function on V which is defined over R.
There exists a constant c such that for any q ∈ QR, the set of Fq-points in any fiber of f has size at
most cqs−1.

Proof. This is well-known – see for example [13, Lemma 2.2]. For completeness, here is a sketch of
an elementary proof. It suffices to assume that V is affine. Let A be an integral domain finitely
generated over R with fraction field K. Assume that K has transcendence degree s over R, and
that the result is known for varieties of dimension less than s.

Let f1 . . . ., fs be a transcendence base of K contained in A. Let g be any element in A not
algebraic over R. Then, reordering if necessary, g, f1 . . . , , fs−1 is a transcendence base (by the
exchange lemma). By generic freeness (see [5, Thm. 4.4]), for some b ∈ B = R[g, f1, . . . , fs−1], we
have that A[1/b] is free over B[1/b]. Let a1, . . . , am be a basis.

Every point of SpecA is either a point of SpecA/bA or a point of SpecA[1/b]. The former case is
covered by the induction hypothesis, so we consider the latter. Consider any finite field Fq (q ∈ QR)
and any homomorphism A[1/b] → Fq. If we fix first the image of g (i.e., which fiber we are on),
and then the images of f1, . . . , fs−1, then there are at most m possibilities for the homomorphism.
Thus, there are at most mqs−1 points over Fq in any g-fiber of SpecA[1/b]. �

Corollary 2.10. Let V and f be as in Lemma 2.9. Then there exists a constant c′ such that for
any q = qap ∈ QR,

|v ∈ V (q) : Fp[f(v)] 6= Fq| < c′q(s−1)/2.

Proof. For any finite field F = Fpf (p prime), the number of elements of F that lie in a proper

subfield is at most S :=
∑
` p
f/` where the sum is over all prime divisors ` of f . The number of

primes dividing f is at most log2(f) and so

S ≤ pf/2 + log log(pf )pf/3 < 2pf/2.

Now apply Lemma 2.9 to obtain the conclusion. �

We shall also need a version of this result for a fixed characteristic:

Lemma 2.11. Let p be a prime and k = F̄p. Suppose that V is an irreducible k-variety of dimension
s, defined over Fq0 (q0 = pa), and f : V → k is a non-constant morphism defined over Fq0 . Then
there exists a constant c′ such that for any power q of q0,

|v ∈ V (q) : Fp[f(v)] 6= Fq| < c′q(s−1)/2.

Proof. This is proved just as in Lemma 2.9 and Corollary 2.10, where in the proof of Lemma 2.9
we take A to be an integral domain over k. �



10 ROBERT M. GURALNICK, MARTIN W. LIEBECK, FRANK LÜBECK, AND ANER SHALEV

3. Proof of Theorems 1, 2 and corollaries

In this section we prove Theorems 1 and 2 and deduce Corollaries 3–7.

3.1. Proof of Theorem 1. Let p, k,G,X and Q be as in the statement of Theorem 1. Clearly
condition (i) implies (ii). So now assume condition (ii) holds – that is, there exist r-tuples xi ∈ X(qi)
(i = 1, 2) such that 〈xi〉 = G(qi) for i = 1, 2, and q2 > M , where M is as defined in Remark 2.3.

Assume first that G(q) is not a Suzuki or Ree group. We define an irreducible kG-module V as
follows. If G(q) is of untwisted type, let V = VG(λ1), the irreducible module for the first fundamental
dominant weight for G; and if G(q) is twisted, let V be a composition factor of the adjoint module
of largest dimension. Let χ : G → k be the character of this module. Then for a power pf of p,
the restriction V ↓ G(pf ) is realised over Fpf . Also, it is not realised over a proper subfield of Fpf ,

as the highest weight is not fixed by a field automorphism of G(pf ), so the trace values χ(G(pf ))
generate Fpf .

Now consider the irreducible subvariety X ⊆ Gr. Suppose the morphism χ ◦ w is constant
on X, for all words w ∈ Fr of length at most 2d2, where d = dimV . Then by Lemma 2.7, all
these constants are contained in the field Fq1 . But this cannot be the case, since by the previous
paragraph together with Lemma 2.7 again, there must be a word w of length at most 2d2 such that
χ(w(x2)) ∈ Fq2 \ Fq1 .

In the rest of the proof, ci (1 ≤ i ≤ 10) denote positive absolute constants. By the previous
paragraph, there exists a word w of length at most 2d2 such that χ ◦w is not constant on X. Then
by Lemma 2.11, for each q ∈ Q, the number of elements x ∈ X(q) such that Fp[χ(w(x)] 6= Fq is less

than c1q
(s−1)/2, where s = dimX.

Now define W = Wr(k) as in (1). Since q2 > M by assumption, we have x2 ∈ X∩W (see Remark
2.3), so X ∩W 6= ∅. By Lemma 2.4(iii), W is defined over Fp.

By the Lang-Weil theorem [12], there is a positive constant c2 such that for all sufficiently large
q ∈ Q, we have |X(q)| > c2q

s. Also, X is irreducible and W is open dense by Lemma 2.4, so X \W
is a proper closed subset of X. Hence another application of Lang-Weil gives |X(q) \W | < c3q

s−1

for some constant c3. It follows that

|X(q) ∩W | > c4q
s

for all sufficiently large q ∈ Q, where c4 is a positive constant. By the above, for all but at most
c5q

(s−1)/2 elements x ∈ X(q) ∩W , we have Fp[χ(w(x)] 6= Fq, hence 〈x〉 = G(q). It follows that
conclusion (i) of Theorem 1 holds.

Now suppose G(q) is a Suzuki or Ree group. Again we have X ∩W 6= ∅, and X \W is a proper
closed subset of X. In this case we cannot apply the Lang-Weil theorem as above, since it does not
apply for the Suzuki-Ree type Frobenius morphism Fq. Instead we use [14, Lemma 2.2] (which is

based on [27]) to deduce that there are positive constants ci such that c6q
s/2 < |X(q)| < c7q

s/2 and
|X(q) \W | < c8q

(s−1)/2.

At this point we cannot continue as before, since Lemma 2.11 does not apply. Instead we use a
counting method based on our hypothesis in Theorem 1 that in the Suzuki-Ree case, the subvariety
X is invariant under G-conjugation. By the above, we have |X(q) ∩W | > c9q

s/2 for some positive
constant c9. That is to say, for large q there are at least c9q

s/2 r-tuples in X(q) that generate G(q)-
conjugate of a subfield subgroupG(q0) ofG(q) for some Fq0 ⊆ Fq. Moreover, s = dimX > d = dimG
by Lemma 2.6.

Let q0 = q
1
k with k > 1, and let G(q0) be a fixed subfield subgroup of G(q) (so k is odd). Then

the number of r-tuples in X(q) that generate a G(q)-conjugate of G(q0) is at most∣∣∣∣∣∣
⋃

g∈G(q)

X(q0)g

∣∣∣∣∣∣ ≤ |X(q0)| |G(q) : G(q0)| ≤ c10qs/20 qd/2q
−d/2
0 = c10q

d
2+

s−d
2k ≤ c10q

s
2−

1
2+

1
2k .
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The number of possible values of k is at most log q, so we conclude that the total number of r-tuples
in X(q) that generate a proper subfield subgroup of G(q) is at most c10q

s
2−

1
3 log q. It follows that

PG(q)(X(q))→ 1 as q →∞, as required.

This completes the proof of Theorem 1.

3.2. Proof of Theorem 2. Let G,X and R = O[ 1n ] be as in the statement of the theorem. Define
the subscheme W ′r and its complement W = Wr as in the preamble to Lemma 2.4, and the constants
M = MG and K as in Remark 2.3 and Lemma 2.2.

Suppose there exists a prime p - n, powers q, q′ of p with q′ > M , and r-tuples x ∈ X(q),
x′ ∈ X(q′) such that 〈x〉 = G(q), 〈x′〉 = G(q′) (if no such prime exists, then clearly neither (i) nor
(ii) of Theorem 2 can hold). Then as above, there is a word w of length at most 2d2 such that tr◦w
is non-constant on X(k), where k = F̄p, d = dimV with V as defined above, and traces are taken
on this module (over k). As the subscheme X is defined in characteristic zero over R = O[ 1n ], it

follows that there are only finitely many primes s for which tr ◦ w can be constant on X(F̄s). Let
S be this finite set of primes, together with the prime divisors of n. Then p 6∈ S, and condition (ii)
of Theorem 2 holds.

The subscheme X is defined over R = O[ 1n ], and by its definition the subscheme W is defined

over Z[ 1s ], where s is the product of all the primes less than K. Hence for primes l > K with

l 6∈ S, the number of components of the variety X(F̄l) \W (F̄l) does not depend on l, and so it is
bounded by a constant depending only on the type of G. At this point the above proof of Theorem
1 goes through (using Corollary 2.10 instead of Lemma 2.11) to show that condition (i) of Theorem
2 holds. This completes the proof of Theorem 2.

Finally, we justify Remark (1) stated after Theorem 2 in the Introduction. Suppose that dimX >
dimG, and there exists x′ ∈ X(q′) such that 〈x′〉 = G(q′) and q′ > M . Then Corollary 2.8 implies
that tr ◦ w is non-constant on X(k) for some word w of length at most 2d2, and now the proofs of
Theorems 1 and 2 go through as above.

3.3. Proof of Corollaries 3–6.

Corollary 3: We shall apply Theorems 1 and 2, taking r = 2 and X = G×G.

In a fixed characteristic p, X is irreducible, defined over Fp, and also for any q, there is a pair
in X(q) generating G(q) by [26]. Hence Theorem 1 gives the conclusion (note that X is of course
G-invariant, so Theorem 1 applies for the Suzuki and Ree types). In particular this handles the
Suzuki and Ree groups, as these are only defined in fixed characteristic (2 or 3).

When the characteristic is allowed to vary, we apply Theorem 2, noting that X = G×G is defined
over Z. This gives the conclusion of Corollary 3 in all but finitely many characteristics; and for the
remaining characteristics, the conclusion follows as before using Theorem 1.

Corollary 4: We apply Theorem 1, taking X = C×G. For any c ∈ C(q), there exists d ∈ G(q) such
that 〈c, d〉 = G(q), by [8, Corollary, p.745]. Also, for q ∈ Q sufficiently large, C(q) is non-empty.
Now Theorem 1 gives the conclusion.

Corollary 5: Now we prove Corollary 5. Let k,G,C,D,Q be as in the statement. Then X = C×D
is an irreducible subvariety of G×G. Note that if X(q) 6= ∅, then X is Fq-stable (hence q ∈ Q).

Assume condition (ii) of the statement – so there exist (c, d) ∈ C(q)×D(q) such that 〈c, d〉 = G(q)
and q > M . Then by Lemma 2.5, we have dimC + dimD > dimG. Hence Theorem 1, together
with Remark (1) after Theorem 2, implies that condition (i) of the Corollary holds.

Corollary 6: Again take X = C × D. Regarding G as a Chevalley group scheme, X is defined
over O[ 1

rs ], where O is the ring of integers of a number field whose field of fractions is a cyclcotomic
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extension of Q. Arguing as above, Theorem 2 (and the ensuing Remark (1)) gives the result for all
but finitely many characteristics, and Theorem 1 handles the remaining characteristics.

3.4. Proof of Corollary 7. Let r, s be primes, not both 2. First of all, the set of limit points of
Pr,s(T ) for finite simple groups T which are alternating or classical of large rank (exceeding f(r, s)
where f is a suitable function) is equal to {1}: this follows from [20] for classical groups, and from
[19, Thm. 5.1 and Lemma 2.4] for alternating groups.

Hence, to prove Corollary 7 it suffices to study the limit points of Pr,s(T ) where T is a simple
group of Lie type of bounded rank (at most f(r, s)). Since there are boundedly many types of such
groups, it suffices to restrict to a single type, coming from an algebraic group G.

Let R,S be the sets of elements of orders r, s in G, respectively. Since R and S are closed sets,
their product R × S has finitely many irreducible components, and we only need to consider the
components of maximal dimension. These have the form C ×D where C,D are conjugacy classes.
We now apply our previous results for these classes: if the characteristic is bounded we may apply
Corollary 5; otherwise we may assume the characteristic is larger than r, s and so C,D consist of
semisimple elements, so Corollary 6 is applicable. In any case we see that the set of limit points for
each component C ×D is either {0} or {1}. We conclude that set of the limit points of Pr,s(G(q))
as q varies is a finite set of rational numbers. The result follows.

4. (2, 3)-Generation

In this section we prove Theorem 8, namely that for simple exceptional groups of Lie type G(q),
excluding the Suzuki groups, we have P2,3(G(q)) → 1 for q → ∞. Here G(q) is of one of the types
2G2, G2, 3D4, 2F4, F4, E6, 2E6, E7 or E8.

It is convenient to prove the result replacing G(q) by its simply connected cover GFq arising from
a corresponding simple, simply connected algebraic group G over F̄q (the finite simple groups are
quotients of these by their centres).

We wish to apply Corollaries 5 and 6. First we need to identify the largest classes of elements of
orders 2 and 3 in G (modulo Z(G)). This is done in the next result; in Table 1, the labelling of the
classes is taken from [17] for unipotent classes, and uses the centralizer of an element in the class
for semisimple classes.

Lemma 4.1. Let G be a simply connected simple algebraic group of exceptional type over an alge-
braically closed field of characteristic p. Then G has unique conjugacy classes of elements of orders
2 and 3 (modulo Z(G)) of maximal dimension, as listed in Table 1. In all but one case, each class
listed intersects G(q) in one class; the exception is the class labelled G2(a1) in G2 (p = 3), which
gives two G(q)-classes.

Table 1

G largest invol. largest invol. largest order 3 largest order 3
class, p = 2 class, p 6= 2 class, p = 3 class, p 6= 3

E8 A4
1,dim 128 D8,dim 128 A2

2A
2
1,dim 168 A8,dim 168

E7 A4
1,dim 70 A7,dim 70 A2

2A1,dim 90 A5A2,dim 70
E6 A3

1,dim 40 A1A5,dim 40 A2
2A1,dim 54 A3

2,dim 54

F4 A1Ã1,dim 28 A1C3,dim 28 Ã2A1,dim 34 A2Ã2,dim 34

G2 Ã1,dim 8 A1Ã1,dim 8 G2(a1),dim 10 A1T1,dim 10



ZERO-ONE GENERATION LAWS FOR FINITE SIMPLE GROUPS 13

Proof. For unipotent classes (involutions with p = 2, order 3 elements with p = 3), this follows from
[17, Chapter 22]. For semisimple elements of order 2 or 3, the classes correspond to orbits of the Weyl
group on elements of order 2 or 3 in a maximal torus. These orbits and the corresponding centralizers
are independent of the characteristic, and the classes and centralizers in the corresponding complex
Lie groups are listed in [2, 3, 4]. �

Proof of Theorem 8

Suppose first that G is of type E8, E7, E6 or F4. Let C,D be classes of elements of orders 2,3 in
G of largest dimension. By the uniqueness of these classes given by Lemma 4.1, there are positive
absolute constants c1, c2 such that |C(q)| > c1 i2(G(q)) and |D(q)| > c2 i3(G(q)) for all q, where
ir(G(q)) denotes the number of elements of order r in G(q). Hence Theorem 8 will follow from
Corollaries 5 and 6, once we know that for sufficiently large q, G(q) is generated by two elements,
one from each of the classes C(q) and D(q) (since this will ensure that condition (i) of Corollaries 5
and 6 holds). But this has already been proved in [22], with the exception of G = E8, p = 3. In
the latter case, the (2, 3)-generation of E8(q) was shown in [22] without using the largest class of
elements of order 3. However, we have checked that the computations and arguments from [22] also
work with the largest class of elements of order 3, completing the proof for this case.

It remains to handle the cases where G(q) is of type G2, 2G2 or 3D4. These groups were shown
to be (2, 3)-generated in [23, 24]. With two exceptions, there are unique largest classes of elements
of orders 2 and 3, and these are the classes used in [23, 24], giving the result as above. The two
exceptions are as follows. For G(q) = G2(q) (with p = 3) there are two largest classes of elements of
order 3. Both contain an element which generates together with an element of order 2 (there is only
one class of these) the group G2(q), as shown in [23]. Finally, for G(q) = 3D4(q) and p 6= 3 there are
two classes of elements of order 3 and these have the same dimension. In [24] the (2, 3)-generation
was shown using one of these classes. Using CHEVIE [6] one can check that similar computations
and the same arguments work for the other class.

This completes the proof of Theorem 8.
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[6] M. Geck, G. Hiss, F. Lübeck, G. Malle, and G. Pfeiffer, CHEVIE – A system for computing and processing
generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras, Appl. Algebra Engrg.
Comm. Comput. 7 (1996), 175–210.

[7] S. Gerhardt, Topological generation of linear algebraic groups, I, arXiv:1801.10065.

[8] R. Guralnick and W. Kantor, Probabilistic generation of finite simple groups, J. Algebra 234 (2000), 743–
792.

[9] R. Guralnick and P.Tiep, Decompositions of small tensor powers and Larsen’s conjecture, Represent. Theory
9 (2005), 138–208.

[10] G.M.D. Hogeweij, Almost-classical Lie algebras, I, Nederl. Akad. Wetensch. Indag. Math. 44 (1982), 441–

452.
[11] W.M. Kantor and A. Lubotzky, The probability of generating a finite classical group, Geom. Ded. 36 (1990),

67–87.

[12] S. Lang and A. Weil, Number of points of varieties in finite fields, Amer. J. Math. 76 (1954), 819–827.
[13] M. Larsen and A. Shalev, Word maps and Waring type problems, J. Amer. Math. Soc. 22 (2009), 437–466.



14 ROBERT M. GURALNICK, MARTIN W. LIEBECK, FRANK LÜBECK, AND ANER SHALEV
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[22] F. Lübeck and G. Malle, (2, 3)-generation of exceptional groups, J. London Math. Soc. 59 (1999), 109–122.
[23] G. Malle, Hurwitz groups and G2(q), Canad. Math. Bull. 33 (1990), 349–357.

[24] G. Malle, Small rank exceptional Hurwitz groups, in Groups of Lie type and their geometries, London Math.

Soc. Lecture Notes 207 (Cambridge University Press, Cambridge, 1995), 173–183.
[25] L. L. Scott, Matrices and cohomology. Ann. of Math. 105 (1977), no. 3, 473–492.

[26] R. Steinberg, Generators for simple groups, Canad. J. Math. 14 (1962), 277–283.

[27] Y. Varshavsky, Lefschetz-Verdier trace formula and a generalization of a theorem of Fujiwara, Geom. Funct.
Anal. 17 (2007), 271–319.

Department of Mathematics, University of Southern California, Los Angeles, CA 90089-2532, USA

E-mail address: guralnic@usc.edu

Department of Mathematics, Imperial College, London SW7 2BZ, UK

E-mail address: m.liebeck@imperial.ac.uk

Lehrstuhl D für Mathematik, Pontdriesch 14/16, 52062 Aachen, Germany

E-mail address: Frank.Luebeck@Math.RWTH-Aachen.De

Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel

E-mail address: shalev@math.huji.ac.il


