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Abstract

Using a probabilistic approach we establish a new residual property of free products of finite
groups.
0 2003 Elsevier Inc. All rights reserved.

1. Introduction

A group G is said to be residually (in) a seéf of groups if the kernels of all
epimorphisms fromG to members ofS intersect trivially. In this note we consider the
following question: given finite groupa and B, for which infinite collectionsS of finite
simple groups is the free produtt B residuallyS? WhensS consists of alternating groups
a definitive answer is given in [4]. In [1, Theorem 1.2] we proved thdt iB are nontrivial
and not both 2-groups, arftlis a collection of finite simple classical groups of unbounded
ranks, themd x B is residuallysS. In this paper we improve this result as follows:

Theorem. Let A, B be nontrivial finite groups, not both 2-groups. Then there exists an
integer r =r(A, B) dependingonlyon A, B, suchthat if S isan infinite collection of finite
simple classical groups, all of rank at least r, then the free product A « B isresidually S.

Note that some assumption on the groupsiis needed in order to maké and B
embeddable in such groups.
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An immediate consequence of the Theorem is that for any nontrivial finite gioup
there exists: = r(A) such that ifS is an infinite collection of classical groups of rank at
leastr(A), thenA x Z is residuallyS. This improves [1, Theorem 1.3(ijii)].

The proof uses probabilistic methods as in [1], combined with added ingredients
supplied by [2,3,5], where results on the linearity of some free products are established.

2. Proof of the Theorem

We begin with a definition taken from [1]. IA is a finite groupk is a field, andV
is akA-module, we say thaV is avirtually free kA-module if V | A = F & U, where
F £ 0 is free and din/ < 2|A| + 4; the corresponding representatian— GL(V) is
also said to be virtually free. And iW is a vector space oveér and A < GL(W), we
say A is embeddedirtually freely in GL(W) if W is virtually free as a&A-module. In
such a situation, ifZ = Z(GL(W)), then the image ofA in PGL(W) is AZ/Z = A,
and we say also that is embedded virtually freely iPGL(W). If «: A — GL(W) is
the corresponding representation, we shall abuse notation slightly by #simglenote
both mapsA — GL(W) and A — PGL(W). Note that if g € GL(W), then the map
a8 :a — a(a)® (a € A) is also a virtually free embedding.

As observed in [1], any finite group can be embedded virtually freely in any classical
simple groupX with natural moduleV of dimensionn > 2|A| 4 4 over[F,. Here is an
explicit such embedding. IKX = PSL(V), write dimV = m|A| + k with 1 < k < |A]|,
and embedA freely in the subgrougsl,, a;(¢) of X. And whenX # PSL(V), write
dimV =2m|A| + k with 4 < k < 2|A| + 4; thenA embeds freely irGL,,4/(g), which
is a subgroup ok, and this yields a virtually free embedding 4fin X.

Let A, B be nontrivial finite groups, not both 2-groups. By [1, Theorem 2.3], there is an
integerr(A, B) > max(2|A| + 4, 2| B| + 4) such that ifX is a finite classical simple group
of rank at least (A, B), andA, B are embedded virtually freely i, then for randomly
choserr € X, the probability thatrAr—1, B) = X tends to 1 a$X| — oo.

Let S be an infinite collection of finite simple classical groups, all of rank at least
r(A, B). Since the resultis proved in [1, Theorem 1.2] in the case whieantains groups
of unbounded ranks, we may assume that the ranks of the classical grétgrgibhounded,
and indeed tha$ consists of groups of the foriki(¢), simple groups of fixed Lie typ&
over fieldsF,, whereg — co. Such groups (¢) are of the forn(G,,q)’, whereG = G(K)
is an adjoint simple algebraic group of fixed type o¥grthe algebraic closure &, (T)
(T an indeterminate)y, is a Frobeniug-power morphism ang is a power ofp. Note
that asg — oo the primep may vary.

Fix ¢ with X(q) = (G,,)" € S, and fix virtually free embeddings: A — X (¢) and
B:B — X(q) as explicitly described above. Foe G, definey;: A « B — G to be the
homomorphism sending— ta(a)t =1 for a € A andb — B(b) for b € B.

Claim. Thereexistst € G for which v, isinjective.

Proof. We first handle the case wheée= P9, (K). We aim to apply the argument of
[3, Proposition 1.3]. To do this, we need first to argue that we can choose the virtually free
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embeddingg, 8 to have the property that the matrix entriga),1 # 0 ands(b)1, # O for
all1-£a € A, 1# b € B. This will be achieved by replacing, 8 by suitable conjugates
ad, B8 with g € G.

Let 1#a € A anda(a) = (a;;). If there existi, j with i # j anda;; # 0, choose an
even permutation sending— n, j — 1; settingP to be the corresponding permutation
matrix, we havex” (a),1 # 0. If no suchi, j exist then(a;;) is diagonal, and is non-scalar
asa is virtually free; applying a permutation again, we may take+# a,,,, and now setting
Q =1+ E,1 we havex?(a),1 # 0.

This shows that for each a € A,

V., = {ge G: ag(a),,l:O}

is a proper subvariety of;. Likewise, so isU, = {g € G: B8(b)1, =0} for 1 £4b € B.
SinceG is not a finite union of proper subvarieties, we can chgosas not lying in any
V, or Uy, and then we have our desireél, 8¢, with which we replace, 8.

At this point, the argument of the proof of [3, 1.3] shows that & G is the image
of the matrix diagl, T, T2, ..., T"1), then vy, is injective. This proves the claim for
G =P3,(K).

Now supposé& # P, (K). From the description af andg, we may take it that there
is a subgroupL,, (¢) of X (¢) containing the images ef andg8, and thisGL,,(¢) lies in
a subgroupsL,, (K) of G. By thePSL,,(K) case, there existse GL,,(K) such that/, is
injective. This completes the proof of ClaimD

Let1# w € A x B, and define
Vi ={t € G: ¥ (w) =1},

a subvariety of5. By Claim, V,, is proper inG. Also V,, is o,-invariant. By [1, 5.6], there
is a constant = c(w) such thal(Vy)e, | < cq¥™"». We have dinV,, < dimG, and from
the order formulae for simple group (¢)| < ¢’¢9™M¢ for some absolute constarit It
follows that

teX(q): 1 i i
= (ﬁ;(w;Tw)# o1 cgtmetmé > 1 _ gt 51 asg o0, (1)
q

As discussed above, [1, Theorem 2.3] implies that

i € X(q): (ta(A)i~1, B(B)) = X (9)}]
1X(q)|

— 1 asqg— oc. (2)

From (1) and (2), it follows that iy is large enough, there exisis= X (¢) such that
(ta(A)t~1, B(B)) = X (¢) andy,; (w) # 1. This shows tha#t = B is residuallys, and the
proof of the Theorem is complete.
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